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Abstract
This	 paper	 studies	 Bertrand–	Edgeworth	 competition	
among	 firms	 producing	 a	 homogeneous	 commodity	
under	 efficient	 rationing	 and	 constant	 (and	 identical	
across	firms)	marginal	cost	until	full	capacity	utilization	
is	reached.	Our	focus	is	on	a	subset	of	the	no	pure-	strategy	
equilibrium	region	of	 the	capacity	 space	 in	which,	 in	a	
well-	defined	sense,	some	firms	are	 large	and	the	others	
are	small.	We	characterize	equilibria	for	such	subset.	For	
each	firm,	the	payoffs	are	the	same	at	any	equilibrium	and,	
for	each	 type	of	 firm,	 they	are	proportional	 to	capacity.	
While	there	is	a	single	profile	of	equilibrium	distributions	
for	the	large	firms,	there	is	a	continuum	of	equilibrium	
distributions	for	the	small	firms:	what	is	uniquely	deter-
mined,	for	the	latter,	is	the	capacity-	weighted	sum	of	their	
equilibrium	distributions	and	hence	the	union	of	the	sup-
ports	of	their	equilibrium	strategies.
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1 |  INTRODUCTION

Bertrand–	Edgeworth	competition	among	capacity-	constrained	sellers	of	a	homogeneous	product	
has	been	an	active	 field	of	research	since	Levitan	and	Shubik’s	 (1972)	reappraisal	of	such	theo-
retical	framework.	Assume	a	given	number	of	firms	producing	on	demand	a	homogeneous	good	
at	constant	and	identical	unit	variable	cost	up	to	some	fixed	capacity.	Furthermore,	assume	that	
rationing	takes	place	according	to	the	surplus-	maximizing	rule	and	that	demand	is	a	continuous,	
non-	increasing,	and	non-	negative	function	defined	on	the	set	of	non-	negative	prices	and	is	positive,	
strictly	decreasing,	twice	differentiable	and	such	that	the	monopolist’s	profit	function	is	strictly	con-
cave	when	positive.	Then	there	are	a	few	well-	established	facts	about	the	equilibrium	of	this	price	
game.	First,	at	any	pure	strategy	equilibrium,	the	firms	earn	competitive	profit.	However,	a	pure	
strategy	equilibrium	need	not	exist.	In	this	case,	existence	of	a	mixed	strategy	equilibrium	is	guar-
anteed	by	the	sufficient	conditions	of	Theorem	5	of	Dasgupta	and	Maskin	(1986).	Under	similar	
assumptions	on	demand	and	cost,	the	set	of	mixed	strategy	equilibria	was	characterized	by	Kreps	
and	Scheinkman	(1983)	for	the	duopoly	within	a	two-	stage	capacity	and	price	game.	This	model	
was	subsequently	extended	to	allow	significant	convexities	in	the	demand	function	(by	Osborne	&	
Pitchik,	1986)	or	differences	in	unit	cost	among	the	duopolists	(by	Deneckere	&	Kovenock,	1996).	
This	led	to	the	discovery	of	new	phenomena,	such	as	the	possibility	of	the	supports	of	the	equilib-
rium	strategies	being	disconnected	and	non-	identical	for	the	duopolists.

The	characterization	of	equilibria	of	the	price	game	among	capacity-	constrained	sellers	of	a	
homogeneous	product	under	general	oligopoly	is	far	from	complete	in	the	literature.	An	import-
ant	result	is	that	the	equilibrium	payoff	of	the	largest	firm	(or	any	of	the	largest	firms,	if	more	
than	one	firm	has	the	largest	size)	is	equal	to	the	payoff	of	the	Stackelberg	follower	when	the	ri-
vals	supply	their	entire	capacity	(Boccard	&	Wauthy,	2000;	De	Francesco	2003).1	Based	on	this	
property,	Ubeda	(2007)	showed,	among	other	things,	that	the	maximum	and	minimum	over	all	
the	supports	of	equilibrium	strategies	belong	to	the	support	of	the	equilibrium	strategies	of	any	
firm	with	the	largest	capacity.2	Other	results	were	provided	by	De	Francesco	and	Salvadori	(2010).

Progress	on	the	characterization	of	equilibria	of	the	price	game	under	given	capacities	has	
been	made	along	several	directions.	One	direction	was	to	restrict	the	number	of	competing	firms.	
Hirata	 (2009)	 and	 De	 Francesco	 and	 Salvadori	 (2010,	 2015,	 2016)	 have	 analyzed	 the	 triopoly	
price	game	with	a	decreasing	and	concave	demand	function,	establishing	independently	a	num-
ber	 of	 features	 of	 equilibria.	 In	 a	 recent	 study	 on	 price	 strategic	 interaction	 among	 capacity-	
unconstrained	 sellers	 facing	 “captive	 customers”	 and	 price-	rigidity	 of	 market	 demand,	 Mark	
Armstrong	and	John	Vickers	 (2018)	have	also	compared	 the	resulting	equilibria	with	equilib-
ria	in	the	more	standard	Bertrand–	Edgeworth	framework;	such	a	task	has	been	accomplished	
for	the	triopoly,	providing	a	complete	characterization	of	the	equilibria	arising	in	the	Bertrand–	
Edgeworth	price	game	with	rigid	demand.

A	 second	 direction	 of	 research	 focused	 on	 portions	 of	 the	 whole	 region	 of	 an	 oligopoly	
capacity	space	where	no	pure	strategy	equilibria	exist	(hereafter,	the	no-	pure	strategy	equilib-
rium	region,	 for	brevity).	Vives	(1986),	among	others,	characterized	the	(symmetric)	mixed	

	1The	proof	provided	by	Boccard	and	Wauthy	(2000)	is	carried	out	along	the	lines	followed	by	Kreps	and	Sheinkman	
(1983)	for	the	analogous	result	under	duopoly.	After	pointing	out	a	mistake	in	the	proof,	De	Francesco	(2003)	
established	the	result	correctly	along	the	same	lines.

	2In	a	still	unpublished	paper,	Ubeda	(2007)	compares	discriminatory	and	uniform	auctions	among	capacity-	constrained	
producers	and	obtains	a	number	of	novel	results	on	discriminatory	auctions:	a	discriminatory	auction	could	be	
designed	in	such	a	way	as	to	be	equivalent	to	Bertrand–	Edgeworth	competition	under	the	efficient	rationing	rule.
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strategy	equilibrium	of	the	price	game	for	the	subset	in	which	all	firms	have	the	same	capac-
ity.	De	Francesco	and	Salvadori	(2011)	generalized	Vives’	result:	they	established	uniqueness	
of	equilibrium	in	Vives’	symmetric	capacity	case	and,	more	generally,	whenever	the	capac-
ities	of	the	largest	and	smallest	firm	are,	in	a	precise	sense,	sufficiently	close	to	each	other.	
Furthermore,	they	characterized	the	equilibrium	in	this	“quasi-	symmetric”	oligopoly,	show-
ing	 that	 the	 supports	 of	 the	 equilibrium	 strategies	 of	 all	 firms	 are	 intervals,	 each	 with	 the	
same	minimum	price	whereas	 the	higher	a	 firm’s	capacity,	 the	higher	 the	maximum	price.	
Within	an	analysis	concerning	horizontal	merging	of	firms,	Davidson	and	Deneckere	(1984)	
characterized,	for	the	case	of	linear	demand,	equilibria	for	the	subset	in	which	all	firms	but	
one	have	an	identical	capacity	and	one	firm,	the	largest,	has	a	capacity	that	is	a	multiple	of	the	
other	firms.	Again,	the	attention	was	restricted	to	equilibria	in	which	the	strategies	of	equally-	
sized	firms	are	symmetrical.

There	is	one	result	 in	Hirata3	(2009)	that	extends	straightforwardly	to	the	oligopoly.	Hirata	
(2009)	showed,	not	only	for	the	triopoly	but	also	for	the	oligopoly,	that	a	continuum	of	equilibria	
exists	in	the	subset	of	the	no-	pure	strategy	equilibrium	region	in	which	the	largest	firm	can	meet	
the	highest	level	of	total	demand	possibly	arising	at	an	equilibrium.	In	fact,	while	there	is	one	
equilibrium	 strategy	 for	 the	 largest	 firm,	 there	 is	 a	 continuum	 of	 equilibrium	 strategies	 for	
smaller	firms,	in	that	there	is	a	single	equation	determining	the	capacity-	weighted	sum	of	their	
cumulative	distributions	throughout	the	lowest	price	and	the	highest	price.	The	present	paper	
shows	constructively	that	the	subset	of	the	no-	pure	strategy	equilibrium	region	in	which	a	con-
tinuum	of	equilibria	exists	is	much	wider.

We	specifically	analyze	a	subset	of	the	no-	pure	strategy	equilibrium	region	in	which	there	are	
two	groups	of	firms,	firms	that	are	“large”	and	firms	that	are	“small”	in	the	following	technical	
sense:	the	total	capacity	of	the	large	firms	can	meet	the	highest	level	of	demand	that	can	arise	at	
an	equilibrium	of	the	price	game,	whereas	the	total	capacity	of	the	small	firms	is	so	small	that	
total	industry	capacity	minus	the	capacity	of	any	of	the	large	firms	does	not	exceed	the	smallest	
level	of	total	demand	that	can	arise	at	an	equilibrium.

Such	 a	 bipolarized	 industry	 structure	 has	 two	 interesting	 and	 intertwined	 implications.	
On	the	one	hand,	and	similarly	as	 in	the	mentioned	case	studied	by	Hirata	(2009),	 there	is	
no	“direct”	strategic	 interaction	among	the	small	 firms:	more	specifically,	 regardless	of	 the	
prices	being	charged	by	the	other	small	firms,	each	small	firm	either	sells	its	entire	capacity,	
if	at	least	one	of	the	large	firms	is	more	expensive,	or	sells	nothing,	if	all	the	large	firms	are	
cheaper.	On	 the	other	hand,	each	 large	 firm	sells	 its	entire	capacity	 if,	and	only	 if,	at	 least	
one	of	the	other	large	firms	is	more	expensive.	In	the	event	of	all	the	other	large	firms	selling	
cheaper,	the	expected	value	of	its	residual	demand	falls	short	of	total	demand	by	an	amount	
equal	to	the	total	capacity	of	the	other	large	firms	(as	it	would	be	in	De	Francesco	&	Salvadori,	
2011)	plus	 the	capacity-	weighted	sum	of	 the	probabilities	of	all	 the	 small	 firms	charging	a	
lower	price.	We	will	characterize	the	equilibria	for	such	a	bipolarized	industry	structure.	It	
will	be	 shown	 that	 the	above	 implications	are	ultimately	 responsible	 for	 the	existence	of	a	
continuum	 of	 equilibrium	 distributions	 for	 the	 small	 firms.	What	 is	 uniquely	 determined,	
instead,	 are	 the	 equilibrium	 payoffs	 of	 all	 firms,	 the	 equilibrium	 distributions	 of	 the	 large	
firms	and	hence	the	supports	of	their	equilibrium	strategies,	the	union	of	the	supports	of	the	
equilibrium	strategies	of	the	small	firms,	and	the	capacity-	weighted	sum	of	the	equilibrium	
distributions	of	the	small	firms.	Most	importantly,	characterizing	the	continuum	of	equilibria	

	3The	same	result	was	independently	reached	by	De	Francesco	and	Salvadori	(2008).
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for	any	such	bipolarized	industry	structure	involves	determining	the	lowest	and	highest	price	
that	small	firms	can	ever	charge	in	equilibrium:	the	former	is	generally	higher	than	(in	a	limit	
case,	equal	to)	the	(uniform)	minimum	price	each	large	firm	will	ever	charge	in	equilibrium	
and	 the	 latter	 is	always	 less	 than	 the	maximum	price	any	 large	 firm	will	ever	charge.	This	
property	of	the	equilibrium	is	similar	to	a	property	arising	in	the	triopoly	under	some	indus-
try	configurations	which	has	been	observed	both	by	De	Francesco	and	Salvadori	(2008)	and	
Hirata	(2009):	it	implies	that	the	smaller	firms	have	a	higher	profit	per	unit	of	capacity	than	
the	larger	firms	have.

Although	our	interest	here	is	purely	theoretical,	as	mentioned	above,	the	present	study	is	
potentially	relevant	to	a	wide	array	of	empiricists.	First,	the	parameter	region	it	covers	appears	
fairly	natural:	casual	observation	seems	to	provide	some	evidence	of	industries	where	a	num-
ber	 of	 relatively	 few	 firms	 of	 a	 comparable	 size	 coexist	 with	 considerably	 smaller	 firms.4	
Second,	the	unique	results	in	terms	of	each	firm’s	equilibrium	payoff,	the	supports	of	the	equi-
librium	 strategies	 of	 the	 large	 firms,	 and	 the	 minimum	 and	 maximum	 of	 the	 union	 of	 the	
supports	of	the	small	firms’	equilibrium	strategies	provide	a	set	of	empirically	testable	predic-
tions.	Quite	interestingly,	carrying	out	such	a	test	need	not	require	detailed	information	on	the	
individual	capacities	of	each	small	firm,	which	might	be	more	difficult	to	obtain	than	an	ap-
proximate	estimate	of	their	total	capacity,	which	is	what	actually	matters	for	the	equilibrium	
features,	since	a	redistribution	of	 total	capacity	among	the	small	 firms	would	not	affect	 the	
total	 of	 their	 equilibrium	 payoffs.	Third,	 the	 fraction	 of	 industry	 capacity	 pertaining	 to	 the	
small-	firm	segment	of	the	industry	is	proven	to	be	relevant	for	the	equilibrium	payoffs	of	the	
remaining	firms	and	therefore	the	equilibria	under	such	industry	structures	are	worth	exam-
ining:	 indeed,	 that	 fraction	and	even	the	capacity	of	each	small	 firm	need	not	be	negligible	
compared	to	the	industry	size.5

The	remainder	of	the	paper	is	organized	as	follows.	Section	2	presents	basic	properties	of	the	
equilibrium	 of	 the	 price	 game	 in	 the	 no-	pure	 strategy	 equilibrium	 region	 of	 the	 capacity	 space.	
Section	3	defines	an	 industry	containing	“large”	 firms	as	well	as	“small”	 firms	and	then	charac-
terizes	the	continuum	of	equilibria	arising	under	such	circumstances.	These	are	the	main	results	
of	the	paper.	Other	two	sections	concern	the	motivation	of	the	paper	and	makes	use	of	numerical	
examples.	Section	4	shows	that	the	role	of	small	firms	is	not	negligible:	if	there	is	a	change	in	the	
sum	of	their	sizes	which	does	not	change	their	role	of	small	firms,	the	effect	on	the	profits	of	the	
other	firms	may	be	relevant.	Section	5	shows	that	the	part	of	the	region	of	no	pure	strategy	equilibria	
investigated	in	this	paper	can	be	quite	large	indeed.	Section	6	briefly	concludes.	All	proofs	are	in	the	
Mathematical	Appendix,	which	includes	also	some	further	results.

2 | PRELIMINARIES

Denote	by	 = {1,…, z}	the	set	of	firms.6	Each	firm	i	produces	to	order	a	homogeneous	commodity	
with	the	same	constant	marginal	cost	(with	no	loss	of	generality	normalized	to	zero)	up	to	its	fixed	

	4For	instance,	the	market	share	held	by	the	first	corporate	group	(the	first	two	corporate	groups,	the	first	three	
corporate	groups)	for	the	residential-	customer	segment	of	the	retail	electricity	(free)	market	in	Italy	was	45,7%	(58,2%.	
63,3%)	in	2020	and	was	50,2%	(62%,	72,8%)	in	2014.	Data	provided	by	ARERA,	the	Italian	Regulatory	Authority	for	
Energy,	Networks	and	the	Environment:	https://www.arera.it/it/dati/mr/mre_conce	ntra.htm#domes	tici.

	5See	the	simulations	in	Section	4.

	6The	assumptions	and	notation	laid	down	in	this	section	largely	draw	on	De	Francesco	and	Salvadori	(2011).

https://www.arera.it/it/dati/mr/mre_concentra.htm#domestici
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capacity	ki.	Denote	by	K	total	capacity	and,	with	no	loss	of	generality,	let	k1 ⩾ k2 ⩾⋯ ⩾ kz.	A	con-
tinuous	demand	function	D(p)	which	is	strictly	decreasing	and	such	that	pD(p)	is	strictly	concave	
over	the	price	range	in	which	D(p) > 0	is	assumed	to	exist.	Firm	i’s	profit	at	strategy	profile	(pi, p−i)	
is	Πi(pi, p−i) = pimin

{
di(pi, p−i), ki

}
,	 where	di(pi, p−i)	 is	 the	 demand	 forthcoming	 to	 firm	 i	 at	

(pi, p−i),	pi	is	the	price	charged	by	firm	i	and	p−i	is	the	vector	of	prices	charged	by	all	firms	except	firm	
i.	Under	efficient	rationing	and	assuming	that	such	demand	is	proportional	to	capacity	for	equally	
priced	firms,	we	have	that	di(pi, p−i) = max {0,D(pi) −

∑
j:pj<pi

kj} ×
ki∑

r:pr=pi
kr

.

Denote	by	pc	the	competitive	price:	D(pc) = K	if	D(0) ⩾ K	and	pc = 0	if	D(0) ⩽ K.	As	is	well	
known	(see,	e.g.,	De	Francesco	&	Salvadori,	2010),	(p1,…, pz) = (pc,…, pc)	is	an	equilibrium	of	
the	price	game	if,	and	only	if,	either

or

Holding	(2),	(pc,…, pc)	is	the	unique	equilibrium;	holding	(1),	the	competitive	payoff	is	earned	by	
each	firm	at	any	equilibrium.	It	is	also	known	that	there	are	no	pure	strategy	equilibria	if	neither	
inequality	(1)	nor	inequality	(2)	holds	or,	equivalently,	if

where	�	is	the	price	elasticity	of	demand.
In	 the	 remainder,	 inequality	 (3)	 is	assumed	 to	hold.	 It	 follows	 from	 the	 strict	 concavity	of	

pD(p)	that	there	is	a	single	solution	to	maxpp(D(p) −
∑

j≠1kj),	call	it	pM:

Furthermore,	we	call	pm	the	lower	solution	of	equation	pmin{D(p), k1} = pM (D(pM ) −
∑

j≠1kj).
Denote	 by	�i: (0,∞)→ [0, 1]	 a	 mixed	 strategy	 of	 firm	 i,	 where	𝜎i(p) = Pr𝜎i (pi < p)	 is	 the	

probability	that	firm	i	charges	a	price	lower	than	p	under	strategy	�i.	Note	that	�i(p)	is	con-
tinuous	except	at	any	p◦	such	that	Pr𝜎i (pi = p◦) > 0.	A	mixed	strategy	equilibrium	is	denoted	
by	� = (�1,…,�z): (0,∞)z → [0, 1]z,	where	𝜙i(p) = Pr𝜙i (pi < p).	We	denote	by	Πi(�i,�−i)	 firm	
i’s	expected	profit	when	it	 follows	strategy	�i	and	the	rivals	are	playing	their	equilibrium	
strategy	profile	�−i;	in	particular	Πi(p,�−i)	is	firm	i’s	expected	profit	when	it	charges	p	with	
certainty	and	the	rivals	are	playing	their	equilibrium	strategy	profile	�−i.	We	denote	by	Π∗

i
	

firm	i’s	expected	profit	at	equilibrium	�,	by	Si	the	support	of	�i	and	by	p(i)
M

	and	p(i)m 	the	max-
imum	and	the	minimum	of	Si,	respectively.	Note	that	p ∈ Si	when	there	is	𝜆 > 0	such	that	
𝜙i(p + h) > 𝜙i(p − h)	 for	 each	 h ∈ (0, �).	 Clearly,	 Π∗

i
⩾ Πi(�i,�−i)	 (each	 i).	 For	 any	 p ∈ Si,	

Π∗
i
= Πi(p,�−i)	 almost	 	everywhere,	 namely,	 whenever	Pr�j (pj = p) = 0	 (any	 j ≠ i).	 In	 fact,	

Π∗
i
= limpi⟶p−Πi(pi,�−i)	everywhere	for	p ∈ Si	since,	quite	obviously,	Π∗

i
≥ limpi⟶p−Πi(p,�−i)	

(any	 p)	 and,	 furthermore,	Π∗
i
	 cannot	 be	 greater	 than	 limpi⟶p−Πi(p,�−i)	 for	 some	 p ∈ Si:	

since	 limpi⟶p+Πi(p,�−i) ⩽ Πi(p,�−i) ⩽ limpi⟶p−Πi(p,�−i),	 that	 event	 would	 imply	 that	
Πi(p,𝜙−i) < Π∗

i
	on	a	neighborhood	of	p,	contrary	to	the	fact	that	p ∈ Si.

(1)K−k1⩾D(0) when D(0)⩽K ,

(2)k1⩽ −pc
[
D�(p)

]
p=pc

when D(0)>K .

(3)
k1
K

>max

{
1−

D(0)

K
, ∣𝜀 ∣p=pc

}
.

(4)pM : =argmaxpp(D(p)−
∑
j≠1

kj).
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We	now	present	some	basic	properties	of	mixed	strategy	equilibria.
Proposition 1 Let inequality (3) hold. Then, in any equilibrium: 

(i)  maxj{p
(j)
M
} = pM, minj{p

(j)
m } = pm, # > 1 and # > 1, where : =

{
i ∈ 

|||p
(i)
m = pm

}
 

and : =
{
i ∈ 

|||p
(i)
M

= pM

}
; there exists some i such that ki = k1, p(i)M = pM, 

p(i)m = pm, Π∗
i
= pM (D(pM ) −

∑
j≠1kj) and Pr�j (pj = pM ) = 0 for any j ≠ i.

(ii)	 D(pm) <
∑

i∈ki,	Pr�i (pi = pm) = 0	for	each	i ∈ ,	and	Π∗
i
= pmki	for	each	i ∈  − {1}.

(iii)	 	If	k2 = k1,	then,	for	any	i	such	that	ki = k1,	Pr�j (pj = pM ) = 0	for	any	 j ≠ i,	
Π∗
i
= pM (D(pM ) −

∑
j≠1kj) = pmki,	p

(i)
M

= pM,	and	p(i)m = pm.

(iv) Pr𝜙1 (p1 = pM ) > 0 if k1 > k2.

3 | SOME FIRMS ARE LARGE AND THE OTHERS ARE SMALL

We	will	focus	on	the	subset	of	the	region	of	no	pure	strategy	equilibria	in	which7

The	sets	 = {1,…,n}	and	 − 	will	be	referred	to	as	the	set	of	“large”	firms	and	the	set	
of	“small”	firms,	respectively.	Let	us	look	more	deeply	at	these	inequalities	in	order	to	grasp	
the	 rationale	 for	 this	 terminology.	 According	 to	 inequality	 (5),	 large	 firms	 as	 a	 whole	 can	
meet	the	highest	demand	that	can	arise	at	an	equilibrium	of	the	price	game,	D(pm).	If	n = 1,		
inequality	 (5)	 coincides	 with	 the	 inequality	 that	 defines	 the	 subset	 of	 the	 no-	pure	 strategy	
equilibrium	 region	 mentioned	 in	 the	 introduction	 as	 explored	 by	 Hirata	 (2009)	 (and	 De	
Francesco	&	Salvadori,	2008,	2010).	According	to	inequality	(6),	total	industry	capacity	minus	
the	capacity	of	any	of	the	large	firms	does	not	exceed	the	smallest	level	of	demand	possibly	
arising	at	an	equilibrium	of	the	price	game,	D(pM ).	If	n = 1,	inequality	(6)	coincides	with	in-
equality	D(pM ) ⩾ K − k1,	which	certainly	holds	as	a	strict	inequality.	Most	importantly,	since	
K > D(pm) > D(pM ),	inequalities	(5)	and	(6)	imply	that

consistent	with	the	“small”	labeling	of	firms	from	n + 1	to	z	and	with	the	“large”	labeling	of	
firms	from	1	to	n.	In	the	following,	we	will	assume,	without	further	mentioning,	that	inequal-
ities	(5)	and	(6)	hold	with	n > 1.	However,	footnotes	will	give	some	details	concerning	the	case	
in	which	n = 1.

	7A	simple	example	can	easily	show	that	such	subset	may	be	quite	large	with	respect	to	the	the	region	of	no	pure	
strategy	equilibria:	see	Section	5.

(5)k1+⋯+kn⩾D(pm)

(6)D(pM )⩾K−kn.

(7)kn>kn+1+⋯+kz ,

(8)k1−kn⩽D(pM )−
∑
j≠1

kj



   | 809DE FRANCESCO et al.

Because	of	inequalities	(5)	and	(6),	almost	everywhere	in	the	range	[pm, pM ]	the	payoff	func-
tion	of	firm	i ∈ 	in	the	face	of	rivals’	equilibrium	strategies	is	equal	to8

that	is

whereas	almost	everywhere	in	the	same	range	the	payoff	function	of	firm	r ∈  − 	in	the	face	of	
rivals’	equilibrium	strategies	is	equal	to9

where

We	can	now	determine	the	equilibrium	payoff	of	each	large	firm	(and	each	small	firm	in	a	special	
case)	and	prove	properties	concerning	the	supports	of	the	strategies,	the	payoffs	and	the	equilibrium	
distributions	of	the	large	firms.

Proposition 2 In any equilibrium 

(i)   ⊇ , Π∗
i
= pmki (each i ∈) and �i(p)ki = �j(p)kj everywhere for p ∈ Si ∩ Sj 

(any i, j ∈); moreover, kjΠi(p,�−i) = kiΠj(p,�−j) almost everywhere for 
p ∈ Si ∩ Sj (any i, j ∈);10

(ii)	Π∗
r∕kr = Π∗

s ∕ks	(each	r, s ∈  − );
(iii)	 if	k1 +⋯ + kn > D(pm),	then	 = 	and	Π∗

r > pmkr	(each	r ∈  − );
(iv)	 if	k1 +⋯ + kn = D(pm),	then	 ⊃ 	and	Π∗

i
= pmki	(each	i ∈ );

	8If	n = 1,	then	
∏

j∈−{i}�j(p)	is	the	empty	product	and	equality	(9)	becomes	Π1(p,�−1) = p[D(p) −
∑

r∈−�r (p)kr ].

Πi(p,�−i)=p
�

j∈−{i}

�j(p)
⎡
⎢⎢⎣
D(p)−

�
j∈−{i}

kj−
�

r∈−

�r(p)kr

⎤
⎥⎥⎦
+

+

⎡⎢⎢⎣
1−

�
j∈−{i}

�j(p)
⎤⎥⎥⎦
pki,

(9)Πi(p,�−i)=pki−p
�

j∈−{i}

�j(p)
⎡⎢⎢⎣
�
j∈

kj+
�

r∈−

�r(p)kr −D(p)
⎤⎥⎥⎦
,

	9There	are	two	reasons	for	the	“almost	everywhere”	qualification.	First,	thus	far	we	have	not	ruled	out	yet	the	event	
that,	for	some	p◦ ∈ (pm, pM ),	𝜙j(p◦+) > 𝜙j(p

◦)	(some	 j ∈  ):	under	that	event,	for	instance,	
Πi(p

◦,𝜙−i) < limp→p◦−Πi(p,𝜙−i).	Second,	because	of	Proposition	1(iv),	if	k1 > k2	then	limp→pM−Πi(p,𝜙−i) > Πi(pM ,𝜙−i)	
(any	i ∈  − {1}).

(10)Πr(p,�−r)=F(p)kr

(11)F(p)=
⎡⎢⎢⎣
1−

�
j∈

�j(p)
⎤⎥⎥⎦
p.

	10Because	of	part	(vi)	kjΠi(p,�−i) = kiΠj(p,�−j)everywhere	for	p ∈ Si ∩ Sj − {pM}	(any	i, j ∈  ).	But	the	proof	of	part	
(vi)	requires	that	kjΠi(p,�−i) = kiΠj(p,�−j)	almost	everywhere	for	p ∈ Si ∩ Sj	(any	i, j ∈  ).
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      (v)	 	Si = [pm, p
(i)
M
]	 (each	 i ∈ );	 S1 = S2 ⊇ S3 ⊇⋯ ⊇ Sn;	 moreover,	 Si ⊃ Si+1	 (each	

i ∈ − {1,n})	if	and	only	if	ki > ki+1;
         (vi)	Pr�i (pi = p) = 0	(any	p ∈ [pm, pM )	and	any	i ∈ );
  (vii)	max

⋃
r∈− Sr ⩽ p(n)

M
;

(viii)	 	if	either	any	of	inequalities	(5)	and	(6)	is	satisfied	as	a	strict	inequality	or	k2 > kn,	then	
max

⋃
r∈− Sr < p(n)

M
	and	Πr(p

(n)
M
,𝜙−r) < Π∗

r.

Proposition	2	allows	segment	[pm, pM ]	to	be	partitioned	into	three	parts:	[pm, p),	[p, p]	,	(p, pM ],	
where	 p = min

⋃
r∈− Sr	 and	 p = max

⋃
r∈− Sr.	 The	 first	 part	 is	 empty	 only	 if	

k1 +⋯ + kn = D(pm);
11	the	second	part	contains	

⋃
r∈− Sr.	In	the	first	and	third	parts	the	equi-

librium	distributions	are	easily	determined.

3.1 | The equilibrium distributions in [pm, p)

In	 this	 subsection,	 we	 assume	 that	k1 +⋯ + kn > D(pm).	 In	 the	 range	[pm, p)	 the	 equilibrium	
distributions	are:	�r(p) = 0	for	each	r ∈  − 	and	

for	each	l ∈ ,	because	of	Equation	(9)	and	Proposition	2.	It	is	easily	recognized	that	the	RHS	of	
Equation	(12)	is	quasi-	concave	throughout	[pm, pM ].

12	Moreover,	it	is	larger	than	1	for	p = pM	and	
l = n	since	pM

�
D(pM ) −

∑
j∈−{1}kj

�
> pmk1.	Hence	there	is	 p̃(n)

M
∈ (pm, pM )	such	that	in	the	range	

[pm, p̃
(n)
M
]	the	RHS	of	Equation	(12)	is	increasing	and	no	larger	than	1	for	each	i ∈ .	Hence	the	

functions	F(p)	and	Πr(p,�−r) = F(p)kr	are	well-	defined	in	the	range	[pm, p]	if	and	only	if	p ⩽ p̃(n)
M

	
and	this	inequality	can	easily	be	proved	(by	following	the	same	procedure	used	to	prove	Proposition	
2(vii)	&	(viii)).

In	order	to	determine	 p	and	the	equilibrium	payoff	of	each	small	 firm,	the	functions	�l(p)	
(each	 l ∈ )	 and	 F(p),	 as	 calculated	 in	 the	 range	[pm, p]—	that	 is,	 by keeping	�r(p) = 0	 (each	
r ∈  − )—	need	to	be	extended	somewhat	beyond	p.	Let	us	call	these	extended	functions	�g

l
(p)	

and	G(p),	 respectively.	 In	 the	 range	[pm, p̃
(n)
M
],	�g

l
(p)	 consists	of	 the	RHS	of	Equation	 (12)	and	

G(p) =
�
1 −

∏
j∈�

g

l
(p)

�
p.	 The	 functions	�g

l
(p)	 and	 G(p)	 are	 well-	defined	 in	 the	 mentioned	

range.	As	we	will	see,	p	equals	the	argument	of	a	maximum	of	G(p)	in	the	range	(pm, p̃
(n)
M
).	We	

will	show	that	such	a	maximum	exists,	but	we	were	not	able	to	prove	that	it	is	unique,	even	if	all	
our	simulations	suggest	that	it	is	so.	That	said,	we	prove	that	p	coincides	with	the	largest	argu-
ment	in	which	such	a	maximum	is	obtained.

Proposition 3 Let k1 +⋯ + kn > D(pm). Then p = max argmax
p∈(pm,p̃

(n)
M
)
G(p) and

	11Obviously	the	first	part	is	empty	also	in	the	case	in	which	n = 1.

(12)�l(p)=
1

kl

⎛⎜⎜⎜⎝

p−pm
p

∏
j∈

kj

∑
j∈

kj−D(p)

⎞⎟⎟⎟⎠

1
n−1

	12The	sign	of	its	first	derivative	coincides	with	the	sign	of	function	pm
�∑

j∈ kj − D(p)
�
+
�
p − pm

�
pD�(p)	which	is	

decreasing	in	the	mentioned	range,	is	positive	for	p = pm	and	negative	for	p = pM.



   | 811DE FRANCESCO et al.

A	simple	 intuition	can	be	gained	 if	we	spell	out	 the	procedure	whereby	we	have	determined		
p:	p	is	the	price	that	maximizes	firm	r’s	payoff	function	when	the	strategy	profile	of	the	large	firms	is	
such	as	to	yield	them	their	equilibrium	payoffs	when	the	small	firms	charge	a	higher	price.

3.2 | The equilibrium distributions in (p, pM]

In	this	range,	�r(p) = 1	for	each	r ∈  − 	and	Equation	(9)	can	thus	be	written	

Taking	into	account	Proposition	2(i)	&	(iv),	these	equations	are	enough	to	determine	all	the	�i’s	in	
the	range	(p, pM ].	This	is	done	straightforwardly	if	k2 = kn.	In	this	case	[p, pM ] ⊂ (∩j∈ Sj):	then	it	
follows	from	Equation	(14)	that,	for	each	i ∈ ,	

throughout	(p, pM ].	If,	instead,	k2 > kn,	then	(p, pM ]	can	be	partitioned	in	a	number	of	non-	empty	
intervals	(p(i+1)

M
, p(i)

M
],	where	each	i < n	is	such	that	ki > ki+1	and,	by	definition,	p(n+1)

M
= p.	In	each	

range	(p(i+1)
M

, p(i)
M
],	�l(p) = 1	for	l = i + 1,…,n;	then	Equation	(14)	lead	to	

for	each	l = 1,…, i.	The	RHS	of	Equation	(16)	(each	l = 1,…, i)	is	in	fact	strictly	increasing	over	the	
range	(p(i+1)

M
, pM ],	its	derivative	being	strictly	decreasing	over	that	range	and	equal	to	zero	at	p = pM:		

hence,	p(i)
M

	is	the	unique	solution	of	the	equation	
�
p − pm

� ∏
j⩽ikj = p

�
K − D(p)

�
ki−1
i

	over	the range	
(p(i+1)
M

, pM ].	Thus	p(i)
M

= pM	if	ki = k2,	since	pmk1 = pM

�
D(pM ) −

∑
jkj≠1

�
;	if	ki < k2,	then	p(i)

M
< pM	

and	𝜙l(p
(i)
M
) =

ki
kl
< 1	for	any	l < i	such	that	kl > ki.

Next	we	prove	that	any	large	firm	l	with	kl < k2	would	earn	strictly	less	than	Π∗
l
	by	charging	

any	price	higher	 than	 p(l)
M

.	 In	 the	next	subsection,	we	prove	 that	any	small	 firm	r	would	earn	
strictly	less	than	Π∗

r	by	charging	more	than	p.	This	will	complete	the	analysis	of	the	range	(p, pM ]	.

(13)Π∗
r =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1−

⎛⎜⎜⎜⎜⎜⎜⎝

�
p−pm

�� ∏
j∈

kj

� 1
n

p

�
∑
j∈

kj−D(p)

�

⎞⎟⎟⎟⎟⎟⎟⎠

n
n−1 ⎤⎥⎥⎥⎥⎥⎥⎥⎦

pkr .

(14)Πi(p,�−i)=pki−
∏

j∈−{i}

�j(p)p
[
K−D(p)

]
.

(15)�i(p)=
1

ki

⎛⎜⎜⎜⎝

p−pm
p

∏
j∈

kj

K−D(p)

⎞⎟⎟⎟⎠

1
n−1

(16)�l(p)=
1

kl

⎛⎜⎜⎜⎝

p−pm
p

∏
j⩽i
kj

K−D(p)

⎞⎟⎟⎟⎠

1
i−1
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Proposition 4 For	any	l ∈ − {1, 2} such	that kl < k2, Πl(p,𝜙−l) < Π∗
l
 over	the	range (p(l)

M
, pM ].

3.3 | The equilibrium distributions in [p, p]

Let	p ∈
⋃

r∈− Sr.	Then	we	obtain	from	Equation	(10)	and	Proposition	3	that

and,	afterwords,	from	equations	(9)	and	Proposition	2	that

As	a	consequence,	also	by	using	Equation	(17)	again,

Finally,	from	equations	(18)	and	(19)	we	obtain

Remark 1 By	construction	the	RHS	of	Equation	(12)	equals	the	RHS	of	Equation	(20)	for	p = p	,	
whereas	it	is	larger	than	the	latter	for	p > p.	As	a	consequence,	the	RHS	of	Equation	(19)	
equals	zero	for	p = p	and	is	positive	for	p > p.

Another	 remark	 concerns	 a	 constant	 finding	 of	 our	 simulations,	 according	 to	 which	 the	
RHS	of	Equation	(19)	is	strictly	increasing	over	the	relevant	subset.	Whenever	this	is	the	case,	
Equations	(19)	and	(20)	hold	throughout	[p, p]	and	[p, p] =

⋃
r∈− Sr.	On	the	other	hand,	we	

have	not	been	able	to	establish	theoretically	the	generality	of	the	above	finding,	except	for	the	
special	case	in	which	k1 +⋯ + kn = D(pm).	Nevertheless,	a	general	characterization	of	equilibria	
is	possible.	This	will	be	done	in	the	Mathematical	Appendix.	The	following	proposition	is	stated	
in	the	assumption	that	the	RHS	of	Equation	(19)	is	strictly	increasing	over	the	relevant	subset.	
Let	us	clarify	that	if	the	RHS	of	Equation	(19)	is	not	so,	then	there	is	in	[p, p]	some	interval	which	
is	not	in	the	support	of	any	of	the	small	firms	and	therefore	the	union	of	the	supports	of	the	small	
firms	is	not	connected.

(17)
∏
j∈

�j(p)=
p−F(p)

p
.

(18)�l(p)=
1

kl

p−F(p)

p−pm

⎡⎢⎢⎣
�
j∈

kj+
�

r∈−

�r(p)kr −D(p)
⎤⎥⎥⎦

l∈ .

(19)

�
r∈−

�r(p)kr =

�
p

p−F(p)

� n−1
n p−pm

p

⎛⎜⎜⎝
�
j∈

kj

⎞⎟⎟⎠

1
n

−

⎡⎢⎢⎣
�
j∈

kj−D(p)
⎤⎥⎥⎦
.

(20)�l(p)=
1

kl

�
p−F(p)

p

� 1
n
⎛⎜⎜⎝
�
j∈

kj

⎞⎟⎟⎠

1
n

l∈ .
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Proposition 5 Let the RHS of Equation (19) be strictly increasing over the range (p, p(n)
M
). Then, 

		(i)	 p	is	the	unique	solution	of	the	equation	

	over	the	range	(p, p(n)
M
).

(ii) Πr(p,𝜙−r) < Π∗
r over the range (p, pM ], each r ∈  − .

Remark 2 There	is	a	continuum	of	profiles	of	equilibrium	distributions	for	the	small	firms,	and	
this	is	so	whether	or	not	the	RHS	of	Equation	(19)	is	strictly	increasing	over	the	relevant	
subset.	The	continuum	of	equilibria	includes	one	in	which	the	equilibrium	distributions	
are	the	same	for	each	small	firm:	at	the	“symmetric”	equilibrium,

for	any	p ∈
⋃

r∈− Sr	(each	r ∈  − ).

Some	 considerations	 are	 in	 order	 about	 the	 role	 played	 by	 firms	r ∈  − .	 Although	 the	
total	capacity	of	these	firms	is	fairly	small,	their	impact	on	the	equilibrium	may	well	be	sizeable.	
Simple	comparative	statics	will	help	to	see	this	point.	This	will	be	shown	in	next	section.

4 |  THE ROLE OF SMALL FIRMS IS NOT NEGLIGIBLE

In	this	section,	we	show	that	the	impact	of	total	capacity	of	small	firms	on	the	equilibrium	
may	well	be	sizeable.	Take	the	number	and	capacities	of	the	small	firms	as	an	independent	
variable	while	keeping	fixed	the	number	and	capacities	of	the	large	firms.	Of	course,	mere	
reshuffling	 of	 capacities	 among	 the	 small	 firms	 would	 not	 affect	 Si,	 Π∗

i
	 (each	 i ∈ ),	∑

r∈−Π∗
r ,	and	∪ Sr∈− 	.	On	the	other	hand,	 there	 is	 room	for	a	significant	 (upward	or	

downward)	 change	 in	�: =
∑

r∈− kr	 that	 does	 not	 violate	 inequalities	 (5)	 and	 (6):	 any	
such	change	would	have	a	considerable	impact	on	the	equilibria.	The	resulting	change	of	
the	equilibrium	payoff	is	ΔΠ∗

i
≈ −

ki
k1
pMΔ�	for	any	large	firm;	thus,	for	each	large	firm,	the	

proportional	change	 in	 the	equilibrium	payoff	 is	
ΔΠ∗

i

Π∗
i

≈ −
Δ�

D(pM )−
∑
j≠1kj

,	which	may	be	 far	

from	negligible,	as	the	following	example	illustrates.
Let	n = 5,	 D(p) = 22 − p,	 k1 = 9.2,	 k2 = 8.5,	 k3 = 6,	 k4 = 0.4, k5 = 0.2.	 Then	 pM = 3.45,	 pm = 1.29375,	

Π∗
1 = pmk1 = 11.9025,	 and	 Π∗

2 = pmk2 = 10.996875.	 Since	 k1 + k2 + k3 = 23.7 > D(pm) = 20.70625	 and	
D(pM ) = 18.55 > K − k3 = 18.3,	 then	 firms	 1,	 2,	 and	 3	 are	 “large”	 firms,	 consequently	
Π∗
3 = pmk3 = 7.7625,	 and	 firms	 4	 and	 5	 are	 “small”	 firms.	 Inequality	 (5)	 is	 strict	 and	 hence	

L = {1, 2, 3}.	 According	 to	 Equation	 (12),	 over	 the	 range	 [pm, p],	 �1(p) = 1

9.2

√
469.2

p−1.29375

p(1.7+p)
,	

�2(p) =
1

8.5

√
469.2

p−1.29375

p(1.7+p)
	 and	 �3(p) =

1

6

√
469.2

p−1.29375

p(1.7+p)
;	 hence,	

G(p)kr = p

[
1 − 21.66102489

(
p−1.29375

p(1.7+p)

) 3
2

]
kr

	

(21)
�
p−F(p)

p

� n−1
n

=
p−pm

p
�
K−D(p)

�
⎛⎜⎜⎝
�
j∈

kj

⎞⎟⎟⎠

1
n

(22)
�r(p)=

�
p

p−F(p)

� n−1
n p−pm

p

�
∏
j∈

kj

� 1
n

−

�
∑
j∈

kj−D(p)

�

∑
r∈−

kr
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(r = 3, 4)	 over	 the	 range	 [pm, p̃
(3)
M
] = [1.29375; 1.761639635].	 Then	 it	 is	 found	 that	

argmax
p∈(pm,p̃

(3)
M
)
G(p) = 1.330357324,	 implying	 that	 F(p) = 1.305422514	 and	 hence	

Π∗
4 = F(p)k4 = 0.5221690056	 and	 Π∗

5 = F(p)k5 = 0.2610845028.	 Over	 the	 range	 ∪r∈{4,5}Sr,	
(�4(p),�5(p))	 is	 any	 pair	 of	 continuous	 and	 non-	decreasing	 functions	 such	 that		
Equation	(19)	holds,	namely:

The	 RHS	 of	 Equation	 (22)	 is	 strictly	 increasing	 throughout	 [p, p̃(3)
M
],	 implying	 that	

∪r∈{4,5}Sr = [p, p]	,	 where	 p = 1.423433842,	 the	 single	 value	 of	 p ∈ [p, p̃(3)
M
]	 such	 that		

the	 RHS	 of	 (22)	 is	 equal	 to	 0.6.	 According	 to	 Equation	 (20),	 over	 the	 range	
[p, p] = [1.330357324; 1.423433842],	�1(p) = 1

9.2

(
469.2

p−1.305422514

p

) 1
3,	�2(p) = 1

8.5

(
469.2

p−1.305422514

p

) 1
3,	

and	�3(p) = 1

6

(
469.2

p−1.305422514

p

) 1
3.

Over	 the	 range	 (p, p(3)
M
] = (1.423433842; 1.911346695],	 �1(p) =

1

9.2

√
p−1.29375

p(2.3+p)
469.2,	

�2(p) =
1

8.5

√
p−1.29375

p(2.3+p)
469.2	and	�3(p) =

1

6

√
p−1.29375

p(2.3+p)
469.2;	p(3)

M
= 1.911346695.	Over	the	remain-

ing	range	(p(3)
M
, pM ] = (1.911346695; 3.45],	�1(p) = 8.5

p−1.29375

p(2.3+p)
	and	�2(p) = 9.2

p−1.29375

p(2.3+p)
:	of	course,	

�2(pM ) = 1	while	�1(pM ) =
k2
k1

=
8.5

9.2
= 0.9239130437.	Figure	1	provides	a	graphical	representation	

of	one	of	the	equilibria.	More	specifically,	the	dashed	curve	represents	the	uniform	cumulative	
distribution	 of	 the	 small	 firms	 in	 the	 “symmetric”	 equilibrium,	 in	 which	

�r(p) =
1

0.6

(
p−1.29375

p

(
p

p−1.305422514

) 2
3
469. 20

1
3 − 1.7 − p

)
	 for	r ∈ {4, 5}	 throughout	[p, p];	 the	other	

curves	represent	the	unique	cumulative	distributions	of	the	large	firms	in	any	equilibrium.

A	few	variants	of	this	numerical	example	also	allow	us	to	assess	the	role	played	by	the	small	
firms.	Suppose	that,	other	things	being	equal,	the	total	capacity	of	the	small	firms	decreases	from	
0.6	to	zero.	This	would	result	in	a	sizeable	increase	in	pM,	pm,	and	Π∗

i
	(each	i ∈ ):	Π∗

1	would	rise	
to	14.0625,	meaning	that	Π∗

i
	(each	i ∈ )	would	increase	approximately	by	18.15%.	Alternatively,	

let	total	capacity	of	the	small	firms	increase	from	0.6	to	1.1.	Note	that	firms	1,	2,	and	3	are	still	
“large”	firms	while	the	remaining	firms	are	still	“small”	firms	in	that	inequalities	(5)	and	(6)	still	
hold.	By	straightforward	computation	it	is	found	that	the	equilibrium	payoff	of	firm	1	would	now	
fall	to	10.24,	meaning	a	fall	by	approximately	13.97%	for	each	large	firm,	compared	to	the	initial	
industry	structure.

Quite	 interestingly,	 what	 is,	 according	 to	 our	 criterion,	 the	 small-	firm	 segment	 of	 a	 bi-
polarized	industry	might	account	for	a	remarkable	share	of	industry	capacity.	As	before,	let	
D(p) = 22 − p,	n = 5,	and	k1 + k2 + k3 = 23.7	but	now	let	k1 = k2 = k3 = 7.9.	Now,	firms	4	and	5	
would	be	“small”	firms	even	with	capacities	much	closer	to	k1	than	in	previous	simulations.	
Let,	for	instance,	k4 = k5 = 3.	Then	pM = 0.1,	pm = 0.0012658,	Π∗

1 = pmk1 = 11.9025,	and	hence	
k1 + k2 + k3 = 23.7 > D(pm) = 21.9987	and	D(pM ) = 21.9 > K − k3 = 21.8:	as	before,	inequalities	
(5)	and	(6)	both	hold:	firms	1,	2,	and	3	are	large	firms	while	firms	4	and	5	are	small	firms.	
But	now	small	firms	are	more	than	one	third	as	large	as	the	largest	firms;	and	the	small-	firm	
segment	accounts	for	20%	of	industry	capacity.	Thus,	a	“bipolarized”	industry	structure	need	
not	involve	that	the	small-	firm	segment	is	a	“fringe”	or	that	each	small	firm	is	negligible.

(23)0.4�4(p)+0.2�5(p)=
p−1.29375

p

(
p

p−1.305422514

) 2
3

469. 20
1
3 −1.7−p.
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5 |  THE REGION OF NO PURE STRATEGY EQUILIBRIA 
INVESTIGATED IN THIS PAPER IS NOT SMALL

In	this	section,	we	show	that	the	part	of	the	region	of	no	pure	strategy	equilibria	in	which	ine-
qualities	(5)	(6)	hold	can	be	quite	large	indeed.	In	order	to	do	so	and	to	represent	our	data	in	a	
plane,	we	consider	a	subset	of	the	part	of	the	region	of	no	pure	strategy	equilibria	in	which	ine-
qualities	(5)	(6)	hold,	and	precisely	the	subset	in	which	kn+1 +⋯ + kz =

1

10
K	and	n = 2,	so	that	

kn = k2 =
9

10
K − k1.	As	a	consequence,	inequalities	(5)	(6)	can	be	represented	in	terms	of	K	and	k1	

only:

since	pM	and	pm	are	determined	by	K	and	k1	(and	the	demand	function)	only.
Figure	2	represents	a	partition	of	the	space	in	the	case	in	which	the	demand	is	D(p) = 1 − p	

(and	therefore	pM =
1−K +k1

2
	and	pm =

(1−K+k1)
2

4k1
)	and	z = 25.	K	is	on	the	horizontal	axis	and	k1	is	

on	the	vertical	axis.	Of	course	the	whole	space	is	below	the	45◦	line	and	either	above	or	along	the	
straight	line	k1 =

1

z
K.	The	portions	of	space	A	and	B	are	the	regions	in	which	pure	strategy	equi-

libria	exist.	Portion	C1,	above	the	curve	k1 =
1

5
[1 + K + 2

√
3K − K2 − 1,	is	the	subset	of	the	region	

of	 no	 pure	 strategy	 equilibria	 in	 which	 K1 > D(pm).	 Portion	 C2,	 above	 or	 along	 the	 curve	
k1 = 1 − 4

5
K + 2

√
1

10
K −

9

100
K2	and	below	or	along	the	straight	line	k1 =

1

3
+

4

15
K,	is	the	subset	of	

(24)9

10
K ⩾D(pm)

(25)D(pM )⩾
1

10
K+k1.

F I G U R E  1 	 The	cumulative	distributions	in	the	symmetric	equilibrium
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the	region	of	no	pure	strategy	equilibria	in	which	inequalities	(23)	(24)	hold.	Portion	C3	 is	the	
remaining	part	of	the	region	of	no	pure	strategy	equilibria.

6 |  CONCLUDING REMARKS

This	paper	is	a	further	contribution	to	the	analysis	of	equilibria	of	the	price	game	in	a	setting	
of	given	capacities.	We	in	fact	characterized	the	equilibria	in	a	specific	subset	of	the	no-	pure	
strategy	 equilibrium	 region	 of	 the	 capacity	 space,	 the	 subset	 where,	 according	 to	 a	 well-	
defined	distinction,	there	are	“large”	firms	along	with	“small”	firms.	It	was	found	that,	with	
an	industry	structure	like	this,	the	interval	between	the	minimum	price	pm	and	maximum	
price	pM	being	quoted	in	equilibria	can	be	partitioned	into	three	intervals,	[pm, p),	[p, p],	and	
(p, pM ],	where	p	and	p	are,	respectively,	the	minimum	and	the	maximum	of	the	union	of	the	
supports	of	 the	small	 firms.	The	 first	part	 is	empty	 in	a	 limit	case,	whereas	 the	other	 two	
are	never	so.	We	determined	the	equilibrium	payoffs	for	all	firms	and	we	saw	that,	for	firms	
of	the	same	type,	the	equilibrium	payoffs	are	proportional	to	capacities.	Except	in	the	limit	
case	in	which	p = pm,	the	equilibrium	payoff	per	unit	of	capacity	is	larger	for	the	small	firms	
and	we	saw	 that	 p,	 and	correspondingly	 the	equilibrium	payoff	of	 each	 small	 firm,	 is	 the	
solution	of	a	maximization	problem	facing	any	small	 firm.	Finally,	although	a	continuum	
of	equilibrium	distributions	exists	 for	 the	small	 firms,	 the	capacity-	weighted	sum	of	 these	
distributions	is	the	same	at	each	equilibrium	and	hence	the	union	of	the	supports	of	their	
equilibrium	strategies	is	also	the	same.

To	 conclude,	 there	 is	 undoubtedly	 still	 a	 long	 way	 to	 go	 before	 the	 equilibria	 of	 the	
price	game	among	capacity-	constrained	sellers	across	the	whole	region	of	no-	pure	strategy	
equilibria	are	characterized.	Yet	it	is	encouraging	that	such	a	task	could	be	performed	for	
the	bipolarized	distribution	of	 total	capacity	assumed	in	the	present	paper.	It	seems	rea-
sonable	 to	 expect	 that	 the	 findings	 obtained—	most	 notably,	 the	 procedure	 to	 determine	
the	 equilibrium	 payoff	 and	 the	 minimum	 price	 for	 the	 relatively	 small	 firms—	may	 also	

F I G U R E  2 	 A	partition	of	the	space
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be	helpful	to	characterize	equilibria	in	parts	of	that	region	that	lie	somewhere	in	between	
the	“quasi-	symmetric”	case	(De	Francesco	&	Salvadori,	2011)	and	the	bipolarized	industry	
structure	of	this	paper.
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APPENDIX A

MATHEMATICAL APPENDIX

Proof of Proposition 1 
	(i)	 The	contents	of	this	part	has	already	been	established	in	the	recent	literature:	see,	for	ex-

ample,	Claim	1	in	Hirata	(2009).13

	(ii)	 If	D(pm) >
∑

i∈ki,	then	Πi(p,𝜙−i) = pki > pmki = Π∗
i
	(each	i ∈ )	for	p	larger	than	and	close	

enough	 to	 pm.	 If	 D(pm) =
∑

i∈ki,	 then	
pmk1 ⩾

∏
i∈−{1}�i(p)[D(p) −

∑
i∈−{1}kj] + (1 −

∏
i∈−{1}�i(p))pk1	for	p	larger	than	and	

close	enough	to	pm.	This	implies	a	contradiction	since	
∏

i∈𝜙i(p) ⩾
(p−pm)kj

p[
∑
i∈ki −D(p)]

> 1	for	p	

larger	than	and	close	enough	to	pm,	since	limp→pm+
(p−pm)k1

p
�∑

i∈kj −D(p)
� = k1

−pmD
�(pm)

> 1:	indeed,	

pmk1 > − p2D�(p)	over	 the	 range	[pm, pM ),	 since	− p2D�(p)	 is	 strictly	 increasing	over	 that	
range,	because	of	strict	concavity	of	pD(p),	and	[−p2D�(p)]p=pM = pmk1.	The	 last	equality	
derives	from	equalities	[D(p)−

∑
j≠1kj+pD

�(p)]p=pM = 0	and	pmk1 = pM [D(pM ) −
∑

i≠1ki]	
because	of	part	 (i).	 If	Pr𝜙i (pi = pm) > 0	 for	 some	i ∈ ,	 then	Πj(p,𝜙−j) < Πj(pm,𝜙−j)	 (any	
j ∈  − {i})	for	p	larger	than	and	close	enough	to	pm,	and	hence	p ∉ ( ∪ Sj∈−{i}).	This	means	
that	 Pr𝜙j (pj = pm) > 0	 (each	 j ∈  − {i}),	 in	 its	 turn	 implying	 that	
Π∗
j
= Πj(pm,𝜙−j) < pmkj = limp→p−m

Πj(p,𝜙−j).	 Finally,	 since	
D(pm) > D(pM ) >

∑
j≠1kj ≥

∑
i:i∈,ki<k1

ki	 and	given	 that	Pr�i (pi = pm) = 0	 (each	i ∈ ),	 it	
follows	that	Π∗

i
= pmki	for	each	i ∈  − {1}.

(iii)	 	Without	loss	of	generality,	let	p(1)m = pm,	p(1)
M

= pM,	Π∗
1 = pM (D(pM ) −

∑
j≠1kj)	and,	by	way	

of	contradiction,	let	p(i)m > pm	for	some	i	such	that	ki = k1.	Then,	since	D(pM ) −
∑

j≠1kj > 0	,	
it	would	be	D(pm) >

∑
j∈kj	contrary	to	part	(i).	Thus,	p(i)m = pm	and	hence	Π∗

i
= Π∗

1 = pmk1.		
This	 in	 its	 turn	 implies	 that	 p(i)

M
= pM:	 if	 not,	 then,	 𝜙i(p) = 1 > 𝜙1(p)	 for	 any	

p ∈ S1 ∩ [p
(i)
M
, pM )	,	but	then	from	Π1(p,�−i) = Π∗

1	it	would	follow	Πi(p,𝜙−i) > Π∗
i
,	an	obvi-

ous	contradiction.	And,	of	course,	Pr�i (pi = pM ) = 0	for	any	i	such	that	ki = k1,	for	other-
wise	Π∗

i
> pM (D(pM ) −

∑
j≠1kj)	.

(iv)	 	Let	k1 > k2.	If	Pr�1 (p1 = pM ) = 0,	then	Π∗
i
= Πi(pM ,�−i) = pMmax {D(pM ) −

∑
j≠ikj, 0}	for	

i ∈ − {1}.	We	are	already	done	if	D(pM ) −
∑

j≠ikj ≤ 0.	If	D(pM ) −
∑

j≠ikj > 0,	then	firm	
i	has	failed	to	make	a	best	response	since	p[D(p) −

∑
j≠ikj]	is	a	decreasing	function	for	p	

less	than	and	close	enough	to	pM.

	13In	De	Francesco	(2003)	this	statement	was	proved	under	the	assumption	that	D′′(p) ≤ 0	over	the	range	[0, p].	The	
proof	in	Hirata	(2009)	relies	upon	the	weaker	assumption	that	pD(p)	is	strictly	concave	over	the	range	in	which	D(p)	is	
positive	[0,	p],	which	assures	that	argmaxpp(D(p) −

∑
j≠1kj)	is	a	singleton.

https://doi.org/10.1111/meca.12382
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Proof of Proposition 2 
							(i)	 Since	

∑
i∈ki > D(pm) > D(pM ) ⩾ K − kn	because	of	Proposition	1(ii),	inequality	pm < pM,		

and	 inequality	 (6),	 if	 ⊉ ,	 and	 therefore	K − kn ⩾
∑

i∈ki,	 then	a	contradiction	 is	ob-
tained.	 ⊇ 	implies	Π∗

i
= pmki	(each	i ∈ ),	because	of	Proposition	1(ii)	and	inequalities	

D(pm) > D(pM ) ⩾ K − kn > k1;	the	last	inequality	being	a	consequence	of	n > 1.14	Hence	

	 	 	 	 because	 of	 Equation	 (9).	 As	 a	 consequence,	 for	 any	 p ∈ Si ∩ Sj(i, j ∈ ),	�i(p)ki = �j(p)kj.	
Moreover,	from	equations	(9),	we	obtain	that,	almost	everywhere	throughout	[pm, pM ],	

	where	

				(ii)	 Equations	(10)	imply	that	Πr(p,�−r)ks = Πs(p,�−s)kr	(any	r, s ∈  − ),	almost	every-
where	 throughout	 [pm, pM ].

15	 Then	 the	 claim	 follows	 straightforwardly.	 Indeed,	 if	
Π∗
r∕kr < Π∗

s ∕ks,	 then	 Sr ∩ Ss = �	 since,	 at	 any	 p ∈ Sr ∩ Ss	,	 Πr(p,�−r(p)) = Π∗
r	 and	

Πs(p,�−s(p)) = Π∗
s;	but	then	firm	r’s	strategy	would	not	be	a	best	response	to	�−r,	since	a	

payoff	of	Πr(p,𝜙−r) = (kr∕ks)Π
∗
s > Π∗

r	is	obtained	by	quoting	any	p ∈ Ss	.
							(iii)	 If	 ⊃ ,	 then,	 by	 Proposition	 1(ii)	 and	 part	 (ii),	Π∗

r = pmkr	 (each	r ∈  − ).	Then,	
again	by	Proposition	1(ii),	p ∈ Sr	(some	r ∈  − )	for	p	larger	than	and	close	enough	to	
pm.	Hence	Equation	(10)	implies	

∏
i∈�i(p) =

p−pm
p

.	Thus,	on	a	right	neighborhood	of	
pm,	

∑
j∈ kj +

∑
r∈−�r(p)kr − D(p) = �i(p)ki,	because	of	Equation	(25)	(each	i ∈ );	

but	 then	 it	 follows	 from	 limp→pm+
�i(p) = 0	 that	 limp→pm+

∑
r∈−𝜙r(p)kr < 0.	 Thus	

 = .16	Further,	since	limp→pm+
F �(p) = 1,	F(p)	is	increasing	on	a	right	neighborhood	of	

pm.	As	a	consequence,	Π∗
r > pmkr	(any	r ∈  − ).	Otherwise	firm	r	would	have	failed	to	

make	a	best	response	given	that	Πr(p,𝜙−r) > pmkr	for	p	close	enough	to	pm.

								(iv)	 If	 = ,	then	Proposition	1(ii)	is	contradicted.	Therefore,	by	Proposition	1(ii)	and	part	
(ii),	Π∗

r = pmkr	(each	r ∈  − ).
							(v)	 The	first	of	the	two	claims	is	obviously	equivalent	to:	

	14If	n = 1,	Π∗
1 ⩽ pmk1;	the	equality	holds	only	when	inequality	(5)	is	satisfied	as	an	equality;	the	whole	part	(i)	collapses	

to	 ⊇  .

(A1)

�
j∈−{i}

�j(p)=
(p−pm)ki

p

�
∑
j∈

kj+
∑

r∈−

�r(p)kr −D(p)

� ,∀p∈Si

Πj(p,�−j)

kj
−
Πi(p,�−i)

ki
=

[
1

�i(p)ki
−

1

�j(p)kj

]
A(p)

A(p)=p
∏
l∈

�l(p)

[∑
l∈

kl+
∑

r∈−

�r(p)kr −D(p)

]
.

	15The	argument	in	the	text	would	work	even	if,	contrary	to	part	(vi),	not	yet	proved,	Pr𝜙i (pi = p◦) > 0	(some	p◦ ∈ Si	and	
some	i ∈  ),	except	for	Πr (p

◦,�−r )	and	Πs(p
◦,�−s)	being	replaced	by	limp→p◦−Πr (p,�−r )	and	limp→p◦−Πs(p,�−r ),	

respectively.

	16If	n = 1	Equation	(25)	does	not	hold	(unless	D(pm) = k1),	and	indeed	 ⊃  = {1}	because	of	Proposition	1(i).

(A2)
Sn−u=

[
pm, p

(n−u)
M

]
=∩h∈[1,…,n−u]Sh u=0, 1,…,n−2
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Property	 (A2)	 will	 be	 proved	 by	 induction.	 Let	 us	 first	 prove	 that	 it	 holds	 for	u = 0.	
Because	of	part	(i)	and	Proposition	1(ii),	there	is	p̃	such	that	[pm, �p] ⊆ ∩i∈ Si.	Note	that	
dΠi(p,�−i)

dp
=

�Πi(p,�−i)

�p
+

∑
j∈−{i}

�Πi(p,�−i)

��j
��

j (p) = 0	in	the	range	[pm, p̃],	and	therefore	in	

the	same	range	𝜕Πi(p,𝜙−i)

𝜕p
> 0,	since	

	if	 j ∈ − {i}	and	𝜕Πi(p,𝜙−i)

𝜕𝜙j
= − pkj

∏
h∈ −{i}

𝜙h(p) < 0,	if	 j ∈  − .	If	there	is	��p > �p	such	

that	(p̃, ̃̃p) ∩ (∩i∈ Si) = �,	then	either	(a)	p̃ = p(n)
M

,	or	(b)	Pr𝜙i (pi = �p) > 0	for	some	i ∈ ,	or	
(c)	there	is	a	gap	(p̃, p◦)	in	Sj	(some	 j ∈ 	and	some	p◦ ⩾ ̃̃p):	namely,	�j(p◦) = �j(p̃),	while	
�j(p)	is	increasing	in	both	p̃	and	p◦.	Obviously	property	(A2)	for	u = 0	holds	in	event	(a).	Let	
us	first	exclude	event	(b).	By	way	of	contradiction,	let	Pr𝜙r (pr = �p) > 0	(some	r ∈  −).	
As	 a	 consequence,	 there	 is	 p◦ ∈ (p̃, pM )	 such	 that	 (p̃, p◦) ∩ (∪j∈ Sj) = �,	 since	
limp→�p+Πj(p,𝜙−j) < limp→�p−Πj(p,𝜙−j) = Π∗

j
,	 each	 j ∈ .	 But	 then	 it	 follows	 from	

Equation	(10)	that	Πr(p,𝜙−r) > Πr(�p,𝜙−r) = Π∗
r	over	the	range	(p̃, p◦).	Quite	similarly,	if	

Pr𝜙i (pi = �p) > 0	 (some	i ∈),	 then	(p̃, p◦) ∩ (∪j∈−{i}Sj) = �	 for	 some	 p◦ ∈ (p̃, pM ),	 but	
then	Πi(p,𝜙−i) > Πi(�p,𝜙−i) = Π∗

i
	on	the	right	of	p̃.	Let	us	now	exclude	event	(c).	If	there	is	

p◦◦ ∈ (p̃, p◦]	 such	 that	(p̃, p◦◦) ∩ (∪i∈Si) = �,	 the	same	argument	applies.	Then	 there	 is	
h ≠ j	such	that	(p̃, p◦) ∩ Sh ≠ �	and	𝜙j(p◦)kj = 𝜙j(�p)kj = 𝜙h(�p)kh < 𝜙h(p

◦)kh,	and	therefore	
Πj(p

◦,𝜙−j) <
kj

kh
Πh(p

◦,𝜙−h) ⩽
kj

kh
Π∗
h
= Π∗

j
,	 contrary	 to	 the	 fact	 that	 p◦ ∈ Sj.	 Now	 assume	

that	 property	 (A2)	 holds	 for	 u = v < n − 2;	 then	 there	 is	 p̃ ⩾ p(n−v)
M

	 such	 that	
[pm, p̃] = ∩h∈ ;h⩽n−v−1Sh.	Hence	the	same	argument	used	above	proves	that	property	(A2)	
holds	for	u = v + 1.	Note	that	p(n−v)

M
= p(n−v−1)

M
	if	and	only	if	kn−v−1 = kn−v,	because	of	part	

(i).

																			(vi)	 It	is	an	obvious	consequence	of	part	(v).
								(vii)	 	By	way	of	contradiction,	let	p > p(n)

M
.17	Then	𝜙1(p) > 𝜙1(p

(n)
M
) =

kn
k1

,	the	equality	being	a	

consequence	of	part	(i).	Therefore,	

the	equality	is	a	consequence	of	Equation	(9)	and	part	(i)	since	∑r∈−�r(p)kr =
∑

r∈− kr;		
the	 second	 inequality	 is	 a	 consequence	 of	 inequality	 (6).	Thus	Πr(p,𝜙−r)) < pmkr	 be-
cause	of	Equation	(10)	and	the	definition	of	p	is	contradicted.

(viii) By way of contradiction, let p = p(n)
M

. Then instead of (A3) we have18

𝜕Πi(p,𝜙−i)

𝜕𝜙j
=p

∏
h∈−{i,j}

𝜙h(p)

[
D(p)−

∑
h∈

kh−
∑

r∈−

𝜙r(p)kr

]
<0,

	17If	n = 1,	p > p(n)
M

= p(1)
M

	contradicts	Proposition	1(i),	and	therefore	the	statement	holds,	but	the	proof	provided	in	the	
text	does	not	apply	since	part	(i)	does	not	hold	and	therefore	the	equality	(A3)	is	not	satisfied	in	general;	it	is,	of	course,	
when	D(pm) = k1.

(A3)
∏
j∈

𝜙j(p)=𝜙1(p)
p−pm

p

k1

K−D(p)
>
p−pm

p

kn

K−D(p)
⩾
p−pm

p
:

	18If	n = 1	,	the	first	equality	(A4)	does	not	hold,	unless	D(pm) = k1	(see	previous	footnote);	this	time	also	the	statement	is	
false	since	p = p(n)

M
= p(1)

M
	because	of	Proposition	1(i).
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It	follows	that	Πr(p,�−r)) ⩽ pmkr.	Hence,	if	inequality	(5)	holds	as	a	strict	inequality,	part	(iii)	
is	contradicted;	if	either	inequality	(6)	holds	as	a	strict	inequality	or	k2 > kn	(or	both),	then	
the	weak	inequality	in	(A4)	is	satisfied	as	a	strict	inequality	and	hence	Πr(p,𝜙−r)) < pmkr.	
Finally,	it	follows	from	p < p(n)

M
	that	

	 implying	 that	Πr(p
(n)
M
,�−r)) ⩽ pmkr ⩽ Π∗

r,	 with	 at	 least	 one	 strict	 inequality:	 the	 last	 in-
equality	is	strict	if	inequality	(5)	is	strict	and	the	first	inequality	is	strict	if	either	k2 > kn,	or	
inequality	(6)	is	strict	(or	both).

Proof of Proposition 3 Since	 G(�p(n)
M
) =

�
1 −

∏
j∈𝜙

g
j
(%p̃(n)

M
)
�
�p(n)
M

< pm,	 as	 can	 easily	 be	

checked,	 G(p)	 has	 a	 maximum	 at	 some	 p ∈ (pm, p̃
(n)
M
).	 By	 way	 of	 contradiction,	 let	

G(p) ⩾ F(p)	 for	 some	 p ∈ (p, p̃(n)
M
).	 Then,	�

1 −
∏

j∈�j(p)
�
p ⩽ F (p) = G (p) ⩽ G(p) =

�
1 −

∏
j∈�

g
j
(p)

�
p,	where	the	first	weak	in-

equality	is	certainly	an	equality	for	p ∈ ∪ Sr.	Therefore,	
∏

j∈�j(p) ⩾
∏

j∈�
g
j
(p)	and,	

as	 a	 consequence	 of	 Equation	 (A1)	 and	 the	 definition	 of	 functions	 �
g
j
(p)’s,	∑

r∈−�r(p)kr ⩽ 0,	an	obvious	contradiction.	Next,	again	by	way	of	contradiction,	let	
G(p) > G(p)	for	some	p ∈ (pm, p).	Under	such	an	event,	firm	r	would	get	G(p)kr > Π∗

r = G(p)kr	
by	 charging	 a	 price	 somewhat	 less	 than	 p.	 Finally,	 Equation	 (13)	 derives	 straightfor-
wardly	from	Π∗

r = F(p)kr	(each	r ∈  − )	and	Equation	(12).
Proof of Proposition 4 It	 is	 enough	 to	 remark	 that	 over	 any	 non-	empty	 range	 (p(i+1)

M
, p(i)

M
],	

Πl(p,𝜙−l)∕kl < Πi(p,𝜙−i)∕ki = pm	for	any	l ⩾ i + 1,	since	𝜙i(p) >
kl
ki

.

Proof of Proposition 5 

   (i)	 By	definition	p	is	the	unique	solution	to	Equation	(21)	and	p < p < p(n)
M

	because	of	Proposition	
2(v)&(viii).

(ii)	 Since	
∑

r∈−�r(p)kr =
∑

r∈− kr	is	lower	than	the	RHS	of	Equation	(19)	over	the	range	
(p, p(n)

M
],	 over	 the	 same	 range	�l(p)	 is	 larger	 than	 the	 RHS	 of	 Equation	 (20),	 each	l ∈ ,		

and,	 as	 a	 consequence,	 F(p) < F(p).	 If	 kn < k2,	 so	 that	 p(n)
M

< pM,	 then	
F(p) = p

[
1 − 𝜙1(p)

p−pm
p

k1
K −D(p)

]
< pm < F(p)	over	 the	range	(p(n)

M
, pM ).	The	 first	 inequality	derives	

from	𝜙1(p) > 𝜙1(p
(n)
M
) =

kn
k1

>
K −D(p)

k1
,	whereas	the	last	inequality	holds	since	inequality	(5)	is	strict	

and	Proposition	2(iii)	holds.
As	mentioned	in	the	main	text,	we	have	not	proved	that	the	RHS	of	Equation	(19)	is	strictly	

increasing	over	the	relevant	subset.	For	this	reason	we	establish	here	the	following	results,	that	
complete	Proposition	5.

Proposition A1 If k1 +⋯ + kn > D(pm), in any equilibrium 
 		(i)	 p	is	the	largest	solution	of	the	Equation	(21)	over	the	range	(p, p(n)

M
);

(ii)	 the	set	of	equilibrium	distributions	of	the	small	firms	is	any	set	of	non-	negative,	continuous	
and	non-	decreasing	functions	no	larger	than	1	such	that	

(A4)
∏
j∈

�j(p)=�1(p)
p−pm

p

k1

K−D(p)
=
p−pm

p

kn

K−D(p)
⩾
p−pm

p
.

∏
j∈

�j(p
(n)
M
)=�1(p

(n)
M
)

(p(n)
M

−pm)k1

p(n)
M

[
K−D(p(n)

M
)
] = (p(n)

M
−pm)kn

p(n)
M

[
K−D(p(n)

M
)
] ⩾ p(n)

M
−pm

p(n)
M

,
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	over	the	range	[p, p];
(iii) 	the	 equilibrium	 distributions	 of	 the	 large	 firms	 are	 uniquely	 determined	 by	 the	

equations	

	over	the	range	[p, p];
   (iv)	Πr(p,𝜙−r) < Π∗

r	over	the	range	(p, pM ],	each	r ∈  − .
      (v)	If	k1 +⋯ + kn = D(pm),	then	the	RHS	of	Equation	(19)	is	increasing	in	the	whole	range	

[p, p],	 so	 that	 [p, p] =
⋃

r∈− Sr,
19	 and	 p < p(n)

M
⩽ pM;	 p	 is	 the	 single	 solution	 of	 the	

equation	

over	the	range	(p, p(n)
M
);	the	set	of	equilibrium	distributions	of	the	small	firms	is,	over	the	

range	[p, p],	any	set	of	non-	negative,	continuous	and	non-	decreasing	functions	no	 larger	
than	1	such	that	

	the	equilibrium	distributions	of	the	large	firms	are	uniquely	determined	by	the	Equation	
(A6)	over	the	range	[p, p];	Πr(p,𝜙−r) < Π∗

r	over	the	range	(p, pM ],	each	r ∈  − .

Proof  (i)	By	definition	p	is	a	solution	to	Equation	(21)	and	p < p < p(n)
M

	because	of	Proposition	
2(v)&(viii).	Note,	furthermore,	that	the	RHS	of	(21)	is	lower	(higher)	than	the	LHS	at	any	p	
where	the	RHS	of	(19)	is	lower	(higher)	than	

∑
j∈Z− kr.	Over	(p, p(n)

M
)	Equation	(21)	has	an	

odd	number	of	solutions.	Indeed,	since	the	RHS	of	Equation	(19)	equals	zero	at	p	(Remark	
1),	the	RHS	of	Equation	(21)	is	smaller	than	the	LHS	at	p	too.	On	the	other	side,	the	RHS	of	
Equation	(21)	is	larger	than	the	LHS	at	p(n)

M
.	In	order	to	recognize	this	fact,	we	obtain	from	

equations	(11)	and	(16)	for	i = n,	that

(A5)

�
r∈−

�r(p)kr =

miny∈[p,p]

⎧⎪⎨⎪⎩

�
y

y−F(p)

� n−1
n y−pm

y

⎛
⎜⎜⎝
�
j∈

kj

⎞
⎟⎟⎠

1
n

−

⎡
⎢⎢⎣
�
j∈

kj−D(y)
⎤
⎥⎥⎦

⎫⎪⎬⎪⎭

(A6)�i(p)=
1

ki

⎛⎜⎜⎜⎝

p−pm
p

∏
j∈

kj

∑
j∈

kj+
∑

r∈−

�r(p)kr −D(p)

⎞⎟⎟⎟⎠

1
n−1

	19Equality	
⋃

r∈− Sr = [pm, pM ]	is	easily	proved	if	n = 1.	In	such	a	case,	
∑

r∈−�r (p)kr =D(p)−Π∗
1∕p	over	the	range	

[pm, pM ],	where	Π∗
1 = pmD(pm):	indeed,	by	the	strict	concavity	of	pD(p),	pD(p)− pmD(pm)

p
	is	strictly	increasing.

(A7)⎛⎜⎜⎝
p−pm
p

�
j∈

kj

⎞⎟⎟⎠

1
n

−
�
K−D(p)

�
=0

(A8)
�

r∈−

�r(p)kr =
⎛⎜⎜⎝
p−pm
p

�
j∈

kj

⎞⎟⎟⎠

1
n

−

⎡⎢⎢⎣
�
j∈

kj−D(p)
⎤⎥⎥⎦
;
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and	since	F(p(n)
M
) < F(p)	because	of	Proposition	2(viii),	we	obtain	that	the	RHS	of	Equation	

(21)	is	larger	than	the	LHS	at	p(n)
M

.
Let	us	say	that	a	solution	is	odd	if	there	is	a	left	neighborhood	in	which	the	RHS	of	Equation	
(21)	is	smaller	than	the	LHS,	whereas	a	solution	is	even	if	there	is	a	left	neighborhood	in	
which	the	RHS	of	Equation	(21)	exceeds	the	LHS.	Let	p′	be	an	odd	solution	differing	from	
the	largest	one	and	p′′	be	the	lowest	even	solution	larger	than	p′.	Clearly,	p ≠ p′′	since	the	
RHS	of	Equation	(19)	is	decreasing	for	p	less	than	and	close	enough	to	p′′	whereas,	because	
of	Proposition	2(vi),	 p ∈

⋃
r∈− Sr	on	some	 left	neighborhood	of	 p.	Nor	can	 it	be	 that	

p = p�.	 Under	 such	 an	 event,	
∑

r∈−�r(p)kr =
∑

r∈− kr	 is	 larger	 than	 the	 RHS	 of	
Equation	(19)	in	a	right	neighborhood	of	p′′	that	is	part	of	

⋂
i∈ Si	(see	Proposition	2(v)-	

(vi))	and	therefore	�j(p)	 is	 lower	 than	the	RHS	of	Equation	(20)	 (each	 j ∈ ),	but	 then	
F(p) = F(p),	an	obvious	contradiction.

(ii)	and	(iii)	The	RHS	of	Equation	(A5)	is	a	non-	decreasing	function	that	equals	0	at	p,		
also	because	of	Remark	1,	and	equals	

∑
r∈− kr	at	p.	Whenever	the	RHS	of	Equation	

(A5)	 is	 increasing,	 it	 equals	 the	 RHS	 of	 Equation	 (19)	 and	 the	 RHS	 of	 Equation	 (A6)	
equals	the	RHS	of	Equation	(20).	Therefore,	F(p) = F(p)	whenever	the	RHS	of	Equation	
(A5)	 is	 increasing.	Over	any	 range	(p′, p′′) ⊂ [p, p]	 in	which	 the	RHS	of	Equation	 (A5)	
is	constant,	it	is	lower	than	the	RHS	of	Equation	(19)	and	the	RHS	of	Equation	(A6)	is	
higher	 than	 the	RHS	of	Equation	 (20).	Therefore	F(p) < F(p),	 consistent	with	 the	 fact	
that	(p�, p��) ∩ (∪r∈− Sr) = �	.
(iv)	By	exploring	the	proof	of	part	(i)	we	obtain	that	

∑
r∈−�r(p)kr =

∑
r∈− kr	is	lower	

than	the	RHS	of	Equation	(19)	over	the	range	(p, p(n)
M
].	The	the	proof	follows	along	the	same	

lines	of	the	proof	of	Proposition	5(ii).
(v)	Because	of	Proposition	2(iii),	p = F(p) = pm.	As	a	consequence,	Equation	(19)	can	be	
written	as	Equation	(A8)	and	Equation	(21)	can	be	written	as	Equation	(A7).	The	derivative	
of	the	RHS	of	Equation	(A8)	is	positive	if,	and	only	if,	

The	LHS	of	inequality	(A1)	is	a	strictly	decreasing	function	in	the	range	[pm, pM ]	since	the	sec-
ond	addend	is	strictly	decreasing	due	to	the	strict	concavity	of	pD(p).	This	is	enough	since	the	
LHS	 of	 inequality	 (A1)	 is	 by	 definition	 non-	negative	 for	 p = p.	 Now	 we	 will	 prove	 that	
p < p(n)

M
= pM.	Because	of	Proposition	2(viii)	we	can	concentrate	on	the	case	in	which	k2 = kn	

and	K − kn = D(pM ) > K − k1	(the	inequality	is	a	consequence	of	Proposition	1(i)).	In	this	case	
the	RHS	of	Equation	(A8)	equals	

∑
r∈− kr	also	at	pM = p(n)

M
.	Nevertheless,	at	p = pM,	the	LHS	

of	 inequality	 (A1)	 is	 negative	 since,	 because	 of	 the	 fact	 that	 p2
M
D�(pM ) = − pmk1,	 it	 equals	

pmk
1
n

1
k
n−1
n

2
− n

(
pM−pm
pM

) n−1
n
pmk1 = pmk

1
m

1

[
k
n−1
n

2
− n

(
pM−pm
pM

k1

) n−1
n

]
= pmk

1
n

1
(1 −m)

[
K−D(pM )

] n−1
n < 0	,

F(p(n)
M
)=

⎡
⎢⎢⎢⎢⎣
1−

1∏
j∈

kj

⎛⎜⎜⎜⎝

p(n)
M

−pm

p(n)
M

∏
j∈

kj

K−D(p(n)
M
)

⎞⎟⎟⎟⎠

n
n−1 ⎤⎥⎥⎥⎥⎦

p(n)
M

(A9)pm

⎛⎜⎜⎝
�
j∈

kj

⎞⎟⎟⎠

1
n

+n

�
p−pm
p

� n−1
n

p2D�(p)>0.
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the	last	equality	deriving	since	pM−pm
pM

=�1(pM ) =
k2
k1

.	Hence,	because	of	quasi-	concavity	of	

the	RHS,	Equation	(A7)	has	two	solutions	in	the	range	[p, pM ]:	the	former	is	p,	the	latter	is	
pM.	Clearly,	over	the	range	(p, pM ),	the	RHS	of	Equation	(A8)	is	higher	than	

∑
r∈− kr.	

Therefore,	Πr(p,𝜙−r) < Π∗
r	over	that	range	and	Πr(pM ,𝜙−r) < Π∗

r.


