Italian Journal of Zoology

# Monacha samsunensis (Pfeiffer, 1868): another Anatolian species introduced to Western Europe, where it is known as Monacha atacis Gittenberger \& de Winter, 1985 (Gastropoda: Eupulmonata: Hygromiidae) 

J. R. Pieńkowska, G. Manganelli, M. Proćków, G. Gürelli, E. Kosicka, F. Giusti \& A. Lesicki<br>To cite this article: J. R. Pieńkowska, G. Manganelli, M. Proćków, G. Gürelli, E. Kosicka, F. Giusti \& A. Lesicki (2022) Monacha samsunensis (Pfeiffer, 1868): another Anatolian species introduced to Western Europe, where it is known as Monacha atacis Gittenberger \& de Winter, 1985 (Gastropoda: Eupulmonata: Hygromiidae), The European Zoological Journal, 89:1, 966-990, DOI: 10.1080/24750263.2022.2100932<br>To link to this article: https://doi.org/10.1080/24750263.2022.2100932



[^0]

Article views: 401


View Crossmark data $\triangle$

# Monacha samsunensis (Pfeiffer, 1868): another Anatolian species introduced to Western Europe, where it is known as Monacha atacis Gittenberger \& de Winter, 1985 (Gastropoda: Eupulmonata: Hygromiidae) 

J. R. PIEŃKOWSKA © ${ }^{1}$, G. MANGANELLI © $\oplus^{2}$, M. PROĆKÓW © ${ }^{3}$, G. GÜRELLI $\oplus^{4}$, E. KOSICKA $\oplus^{1}$, F. GIUSTI $\oplus^{2}, \&$ A. LESICKI $\oplus^{1 \star}$<br>${ }^{1}$ Department of Cell Biology, Institute of Experimental Biology, Adam Mickiewicz University, Poznan, Poland,<br>${ }^{2}$ Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, Università di Siena, Italy, ${ }^{3}$ Museum of Natural History, University of Wroctaw, Poland, and ${ }^{4}$ Department of Biology, Faculty of Sciences and Arts, Kastamonu University, Turkey

(Received 28 April 2022; accepted 7 fuly 2022)


#### Abstract

Populations of Monacha atacis from southern Occitania in France and of M. samsunensis from northern Anatolia in Turkey (Atakum/Samsun and Kastamonu) were investigated by an integrative approach based on morphological (shell and genitalia) and molecular (mitochondrial and nuclear gene sequences) features. Morphological examination revealed a complex pattern of variation within and between geographically separated populations, while molecular analysis showed strong similarity between the two species, confirming earlier suggestions that the species are conspecific. Pfeiffer's name Helix samsunensis introduced in 1868 has priority over the name M. atacis given by Gittenberger \& de Winter in 1985.


Keywords: Genital anatomy, molecular features, shell, species delimitation, synonymy

## Introduction

Monacha Fitzinger, 1833 is a speciose hygromiid genus with species occurring from Britain and north-western France to the Caucasus, Middle East and north African coast (Hausdorf 2000a, 2000b; Welter-Schultes 2012; Neiber \& Hausdorf 2017 and other references therein). After Hesse (1914), Hausdorf (2000a) recognised three subgenera within Monacha on the basis of presence/absence of penial retractor muscle and vaginal appendix: Monacha s.s. Fitzinger, 1833) (type species: Helix cartusiana Müller, 1774) for species without penis retractor but with appendix, Metatheba Hesse, 1914 (type species: Helix samsunensis Pfeiffer, 1868) for species with penial retractor but without appendix, and Paratheba Hesse, 1914 (type species: Helix fruticola Krynicki, 1833) for species with both penial retractor and
appendix. In an excellent integrative phylogenetic and biogeographic analysis of Monacha based on anatomical features of the reproductive system and molecular data (mitochondrial and nuclear gene sequences), Neiber and Hausdorf (2017) established four new subgenera: Pontotheba (type species: Monacha (Paratheba) bithynica Hausdorf, 2000a), Aegaeotheba (type species: Monacha (Paratheba) cretica Hausdorf, 2003), Trichotheba (type species: Monacha (Monacha) comata Hausdorf, 2000a), Rhytidotheba (type species: Helix (Trichia) densecostulata Retowski, 1887). They also resurrected the subgenus Platytheba Pilsbry, 1895 (type species: Caracolla nummus Ehrenberg, 1831) but left the status of Eutheba Nordsieck, 1993 unresolved.

Most Monacha species have limited ranges of distribution, restricted to their type localities, or if

[^1]wider, to the southern Balkans and Anatolia (especially the Pontic region along the Black Sea coast). The exceptions include three species from the subgenus Monacha s.s., namely M. cartusiana (Müller, 1774), M. claustralis (Rossmässler, 1834) and $M$. cantiana (Montagu, 1803). M. cartusiana is widespread throughout Europe except in the north-east (Scandinavia, Russia, Baltic states, Belarus, northern Ukraine) (Welter-Schultes 2012). M. claustralis is now spreading quickly northward (Pinter 1968; Hlaváč \& Peltanová 2010; Pieńkowska et al. 2015, 2016, 2018a; Hutchinson et al. 2019; Čejka et al. 2020; Gural-Sverlova \& Gural 2022) from its native range in European and Anatolian Turkey (Hausdorf 2000a) and Greece (with Corfu/Kerkyra as type locality, Welter-Schultes 2012). M. cantiana is found in Great Britain, northern France and Germany, in the Benelux countries as well as in Spain, where it was probably introduced in Roman times from its native area in central Italy (Kerney et al. 1964; Kerney 1970; Evans 1972; Pieńkowska et al. 2018b). Monacha (Platytheba) ocellata (Roth 1839), known from the vicinity of Istanbul in Turkey, was recently discovered in a single locality in Britain, probably resulting from passive introduction in unknown circumstances (Anderson et al. 2018).

All but one species of subgenus Metatheba occur in northern Anatolia, mainly along the Black Sea coast. The only exception is $M$. (Metatheba) atacis Gittenberger \& de Winter, 1985, known from southern Occitania, France (Hausdorf 2000a; Falkner et al. 2002; Gargominy et al. 2011; Neiber \& Hausdorf 2017) and a site in Catalonia, north-eastern Spain (Bertrand 2003). However, when describing the new species, Gittenberger and de Winter (1985) already drew attention to its close relationship with $M$. samsunensis (Pfeiffer, 1868). Considering the great similarity between M. atacis and M. samsunensis, Hausdorf (2000a) and Neiber and Hausdorf (2017) suggested that despite their disjunct ranges these two taxa could be conspecific and that the French populations of $M$. atacis might be the result of introduction of $M$. samsunensis in historical times. One of us (MP) collected $M$. atacis in several sites in the foothills of the Pyrenees, southern France, while another member of our team (GG) found M. samsunensis in two localities in northern Anatolia, Turkey, one in the vicinity of her university in Kastamonu and the other near Atakum/ Samsun, i.e. in the type locality of the species. This enabled us to undertake the task of verifying the hypothesis of Hausdorf (2000a) and Neiber and Hausdorf (2017, also see Cadevall et al. 2020: p. 155). The results of our study are reported in this paper.

## Material and methods

## Taxonomic sampling

Specimens for research were collected on the basis of the literature data on the occurrence of $M$. atacis in France (Gittenberger \& de Winter 1985) and M. samsunensis in Turkey (Hausdorf 2000a; Welter-Schultes 2012). Species identification was based on morphological and molecular research. Thus, the specimens were obtained from 18 populations of Monacha atacis from southern France and three populations of $M$. samsunensis from northern Anatolia in Turkey. They were considered in our analysis of molecular and genital structure (Table I and Figure 1). A new French population of $M$. cartusiana (Table I) as well as literature data on several Monacha species and lineages were used in the analysis. Several sequences deposited in GenBank (Table II) were also used for molecular analysis. Sequences of Trochulus hispidus (Linnaeus, 1758) from GenBank were used as an outgroup to construct phylogenetic trees.

## Material examined

New material examined is listed as follows, when possible: geographic coordinates of locality, locality (country, region, municipality and province, site), collector(s), date, number of specimens, with the collection where the material is kept in parenthesis (Table I). The material is kept in the collection of the Department of Cell Biology, Adam Mickiewicz University, Poland (DCBC), the Małgorzata Proćków collection (MNHW; Museum of Natural History, University of Wrocław, Poland) and the Folco Giusti collection (FGC; Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, Università di Siena, Italy). The material used for comparison has already been described (see Pieńkowska et al. 2018b: table 1, 2019a: table 1, 2020: table 1).

## Morphological study

Twenty-four specimens from 15 sites in France and ten specimens from two sites in Turkey were analysed for shell and anatomy (see Table I). Snail bodies were dissected under a light microscope (Wild M5A, or Zeiss SteREO Lumar. V12). Anatomical details were drawn using a Wild camera lucida. Adult specimens from Turkey were obtained in sufficient number to describe their genital structure, however the scarcity of specimens per population (where several were juveniles or subadults) meant that no quantitative analysis was done on the morphological characters.
Table I. List of localities of the French and Turkish populations of Monacha atacis, M. samsunensis and M. cartusiana used for molecular and morphological research.

|  |  |  |  |  |  | cor |  | 16SrDNA |  | H3 |  | $\begin{gathered} \mathrm{sITS} 2 \\ (5.8 \mathrm{~S} \mathbf{\mathrm { rDNA } + \mathrm { TTS } 2 )} \end{gathered}$ |  | $\operatorname{lgITS} 2(5.8 S$ rDNA + ITS2 $+\mathbf{2 8 S}$ rDNA) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | coordinates | country and site | collector / date / <br> no. <br> of specimens <br> (collection) | Revised taxonomy | Designation of voucher sps | new haplotype (no. spec.) | $\begin{gathered} \text { GenBank } \\ \# \# \end{gathered}$ | new haplotype (no. spec.) | $\begin{gathered} \text { GenBank } \\ \# \# \end{gathered}$ | new common sequence (no. spec.) | $\begin{gathered} \text { GenBank } \\ \text { \#\# } \end{gathered}$ | new common sequence (no. spec.) | $\begin{gathered} \text { GenBank } \\ \# \# \end{gathered}$ | new common <br> sequence <br> (no. spec.) | $\begin{gathered} \text { GenBank } \\ \# \# \end{gathered}$ | AA | Figs |
|  | $\begin{gathered} 42^{\circ} 44^{2} \cdot 278^{\circ \mathrm{N}} \\ 01^{\circ} 28^{\prime} 34.7^{\mathrm{V} \mathrm{E}} \end{gathered}$ | France, Occitania, Ariège, Arties near Auzat, edge of riparian forest, 984 m a.s.l. | M. Proćków / <br> 3.07 .2018 / 2 / (DCBC \& MNHW- <br> F.18.38) | $\begin{aligned} & \text { M. atacis } \\ & =\text { M. samsunensis } \end{aligned}$ | $\begin{aligned} & \text { Art1 } \\ & \text { Art2 } \end{aligned}$ | $\begin{aligned} & \text { COI } 1(1) \\ & \text { CoI } 2(1) \end{aligned}$ | $\begin{aligned} & \text { ON332579 } \\ & \text { ON332580 } \end{aligned}$ | $\begin{aligned} & 16 S 1^{\star}(1) \\ & 16 S 2(1) \end{aligned}$ | ON350884 <br> ON350885 | $\begin{aligned} & \text { H3 } 1 \text { (1) } \\ & \text { H3 2 (1) } \end{aligned}$ | ON325311 <br> ON325312 |  |  | $\operatorname{lgITS} 21$ (1) | ON332736 | + |  |
|  | $\begin{aligned} & 42^{\circ} 52^{2}+11.6^{\prime \prime} \mathrm{N} \\ & 02^{\circ} 1^{1} 51.9^{\prime 9} \mathrm{E} \end{aligned}$ | France, Occitania, Aude, Le Chandelier, clearing, 826 m a.s.l. | M. Proćków / <br> 27.06.2018 / 1/ <br> (DCBC \& MNHWF.18.35) | $\begin{aligned} & \text { M. atacis } \\ & =\text { M. samsunensis } \end{aligned}$ | Chal | Coi 2 (1) | ON332581 | $168{ }^{\text {* }}$ (1) | ON350886 | H3 1 (1) | ON325313 |  |  | $\operatorname{lgITS} 21$ (1) | ON332737 |  |  |
|  | $\begin{aligned} & 42^{4} 48^{4} 35.5^{\prime{ }^{\prime N}} \\ & 02^{\circ} 15^{\circ} 04.0^{\circ \prime \mathrm{E}} \end{aligned}$ | France, Occitania, Aude, near Axat, vegetation along road, 460 m a.s 1. | M. Proćków <br> 26.06.2018/5/ <br> (DCBC \& MNHW- <br> F.18.26) | $\begin{aligned} & \text { M. atacis } \\ & =\text { M. samsunensis } \end{aligned}$ | $\begin{aligned} & \text { Axal } \\ & \text { Axa2 } \\ & \text { Axa5 } \end{aligned}$ | Cor 3 (2) Coi 4 (1) | $\begin{aligned} & \text { ON332582 } \\ & \text { ON332583 } \\ & \text { ON332584 } \end{aligned}$ | $\begin{aligned} & 1654^{*}(1) \\ & 1655(1) \\ & 1656(1) \end{aligned}$ | ON350887 ON350888 ON350889 | H32 (3) | $\begin{aligned} & \text { ON325314 } \\ & \text { ON325315 } \\ & \text { ON32516 } \end{aligned}$ | siTS2 1 (1) <br> sITS2 2 (1) | $\begin{aligned} & \text { ON332739 } \\ & \text { ON332740 } \end{aligned}$ | $\operatorname{lgTS5} 21$ (1) | ON332738 | + |  |
|  | $\begin{aligned} & 42^{\circ} 48^{4} 40.2^{\prime \prime} \mathrm{N} \\ & 02^{\circ} 17^{\prime 1} 12.2^{\prime \mathrm{E}} \end{aligned}$ | France, Occitania, Aude, near Lapradelle, roadside, 497 m a.s.l. | M. Proćków <br> 25.06.2018/5/ <br> (DCBC \& MNHW- <br> F.18.27; FGC 51247) | $\begin{aligned} & \text { M. atacis } \\ & =\text { M. samsunensis } \end{aligned}$ | $\begin{aligned} & \text { Lap1 } 1 \\ & \text { Lap2 } \\ & \text { Lap3 } \\ & \text { Lap4 } \\ & \text { Lap5 } \end{aligned}$ | $\begin{aligned} & \text { COI } 4 \text { (1) } \\ & \text { COI } 2(2) \end{aligned}$ | ON332585 ON332586 ON332587 | $\begin{aligned} & 16 \mathrm{~S} 7^{\star}(1) \\ & 16 \mathrm{~S} 2(1) \\ & 16 \mathrm{~S} 8(1) \\ & 16 \mathrm{~S} 9(2) \end{aligned}$ | ON350890 <br> ON350891 <br> ON350892 <br> ON350893 <br> ON350894 | H3 2 (5) | ON325317 <br> ON325318 <br> ON325319 <br> ON325320 <br> ON325321 |  |  | $\operatorname{lgTS5} 2(1)$ | ON332741 | + | 12-14 |
|  | $\begin{aligned} & 42^{\circ} 43^{3} 3392^{\prime \prime \mathrm{N}} \\ & 02^{\circ} 01^{\prime 2} 2.0^{\prime \mathrm{E}} \end{aligned}$ | France, Occitania, Ariège Mijanès, vegetation beneath rocks, 1518 ma.s.l. | M. Proćków / <br> 4.07.2018 / 4 / <br>  <br> MNHW- <br> F.18.50) | $\begin{aligned} & \text { M. atacis } \\ & =\text { M. samsunensis } \end{aligned}$ | $\begin{aligned} & \text { Mij1 } \\ & \text { Mij2 } \\ & \text { Mij3 } \\ & \text { Mij4 } \end{aligned}$ | $\cos 4$ (3) Col 1 (1) | ON332588 <br> ON332589 <br> ON332590 <br> ON332591 | $\begin{aligned} & 1657^{7 \times(1)} \\ & 1655(1) \\ & 1656 \text { (2) } \end{aligned}$ | ON350895 <br> ON350896 <br> ON350897 <br> ON350898 | $\begin{array}{ll} \text { H3 } 2(1) \\ \text { H3 } & (1) \\ \text { H3 } 4(1) \\ \text { H3 } 2(1) \end{array}$ | ON325322 <br> ON325323 <br> ON325324 <br> ON325325 | sITS2 3 (2) | ON332744 ON332745 | 1 lgTS 23 (2) | $\begin{aligned} & \text { ON332742 } \\ & \text { ON332743 } \end{aligned}$ | + |  |
|  | $\begin{aligned} & 42^{\circ} 44^{\prime} 19.3^{\prime \prime} \mathrm{N} \\ & 02^{\circ} 13^{\prime} 13.6^{\prime \prime} \mathrm{E} \end{aligned}$ | France, Occitania, Aude, near Grotte de Majestier, vegetation beneath rocks, 729 m a.s.l. | M. Proćków <br> 29.06.2018/5/ <br> (DCBC \& Mnhw- <br> F.18.41; FGC 51099) | $\begin{aligned} & \text { M. atacis } \\ & =\text { M. samsunensis } \end{aligned}$ | $\begin{aligned} & \text { Maji } 1 \\ & \text { Maj2 } \\ & \text { Maj3 } \\ & \text { Maj4 } \\ & \text { Maj } \end{aligned}$ | $\begin{aligned} & \operatorname{col} 4(1) \\ & \operatorname{col} 1(1) \\ & \cos 4(3) \end{aligned}$ | ON332592 <br> ON332593 <br> ON332594 <br> ON332595 <br> ON332596 | $\begin{aligned} & 1657^{7}(1) \\ & 1655(1) \\ & 1656 \text { (3) } \end{aligned}$ | ON350899 <br> ON350900 <br> ON350901 <br> ON350902 ON350903 | H3 2 (5) | ON325326 <br> ON325327 <br> ON325328 <br> ON325329 <br> ON325330 | $\begin{aligned} & \text { siTS2 } 4 \text { (1) } \\ & \text { sITS2 } 3(1) \end{aligned}$ | ON332747 ON332748 | 1 lgTS 24 (1) | ON332746 | + | 2 |
|  | $\begin{aligned} & 42^{2} 45^{2} 55.1^{19} \mathrm{~N}, \\ & 02^{\circ} 03^{2} 27.6^{10 \mathrm{E}} \end{aligned}$ | France, Occitania, Aude, Campagna-de-Sault, vegetation along the road, 1024 m a.s.l. | M. Proćków / <br> 4.07.2018 / 5 / <br>  <br> MNHw- <br> F.18.51) | $\begin{aligned} & \text { M. atacis } \\ & =\text { M. samsunensis } \end{aligned}$ | $\begin{aligned} & \text { Des1 } \\ & \text { Des2 } \\ & \text { Des3 } \\ & \text { Des4 } \\ & \text { Des5 } \end{aligned}$ | $\begin{aligned} & \cot 5(1) \\ & \cot 4(1) \\ & \cot 6(1) \\ & \cot 4(1) \\ & \cot 6(1) \end{aligned}$ | ON332597 <br> ON332598 <br> ON332599 <br> ON332600 <br> ON332601 | 16S 10 (1) <br> 16 S 11* (1) <br> $16 \mathrm{~S} 12^{\star}$ (1) <br> 16S 11* (1) <br> $16 \mathrm{~S} 12^{\star}$ (1) | ON350904 <br> ON350905 <br> ON350906 <br> ON350907 <br> ON350908 | $\begin{aligned} & \text { H3 } 2 \text { (3) } \\ & \text { H3 } \\ & \text { H3 (1) } \\ & \text { H3 (1) } \end{aligned}$ | ON325331 <br> ON325332 <br> ON325333 <br> ON325334 <br> ON325335 | sITS2 5 (2) | ON332750 ON33275 | $\operatorname{lgTS} 25$ (1) | ON332749 | + |  |

Table I. (Continued).

Table I. (Continued).

| Localities |  |  |  |  |  | COI |  | 16SrDNA |  | H3 |  | $\begin{gathered} \text { sITS2 } \\ (5.8 \mathrm{~S} \text { rDNA + ITS2) } \end{gathered}$ |  | $\begin{gathered} \text { lgITS2 }(5.8 \mathrm{~S} \text { rDNA }+ \\ \text { ITS2 }+28 \mathrm{~S} \text { rDNA) } \end{gathered}$ |  | AA Figs |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | coordinates | country <br> and site | collector / date / <br> no. <br> of specimens (collection) | Revised taxonomy | Designation of voucher sps | new haplotype (no. spec.) | GenBank <br> \#\# | new haplotype (no. spec.) | GenBank <br> \#\# | new common sequence (no. spec.) | GenBank <br> \#\# | new <br> common sequence (no. spec.) | GenBank <br> \#\# | new common <br> sequence <br> (no. spec.) | GenBank \#\# |  |  |
| 15 | $42^{\circ} 44^{\prime} 10.2^{\prime \prime} \mathrm{N} 02^{\circ}$ | France, Occitania, Aude, | M. Proćków / | M. atacis | Roq1 | COI 4 (1) | ON332635 | 16S 7* (1) | ON350941 | H3 1 (1) | ON325364 |  |  | lgITS2 9 (1) | ON332774 | + |  |
|  | $12^{\prime} 36.7$ " E | Roquefort-de-Saul, | 29.06.2018 / 5 / | $=M$. samsunensis | Roq2 | COI 1 (1) | ON332636 | 16S5 (1) | ON350942 | H3 2 (3) | ON325365 |  |  | $\operatorname{lgITS2} 1$ (1) | ON332775 | + |  |
|  |  | vegetation beneath | ( DCBC \& |  | Roq3 | COI 4 (1) | ON332637 | 16S 6 (2) | ON350943 |  | ON325366 |  |  |  |  |  |  |
|  |  | rocks, 838 m a.s.l. | MNHW- |  | Roq4 | COI 3 (1) | ON332638 |  | ON350944 |  | ON325367 |  |  |  |  |  |  |
|  |  |  | F.18.42) |  | Roq5 | COI 11 (1) | ON332639 | 16S 9 (1) | ON350945 | H3 5 (1) | ON325368 |  |  |  |  |  |  |
| 16 | ca. $43^{\circ} 12^{\prime} \mathrm{N}, 02^{\circ}$ | France, Occitania, Aude, | G. Manganelli / | M. atacis | FGC 35773 |  |  |  |  |  |  |  |  |  |  | + | 4, 8-11 |
|  | $20^{\prime} \mathrm{E}$ | Carcassonne | 15.07.2004 / 1 / | = M. samsunensis |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | FGC35773 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 17 | $42^{\circ} 48^{\prime} 35^{\prime \prime} \mathrm{N} 02^{\circ}$ | France, Occitania, | unknown (Neiber \& | M. atacis | ZMH 119337/ |  | KX507213 |  | KX495402 |  |  |  |  |  | KX495455 |  |  |
|  | $16^{\prime} 32^{\prime \prime} \mathrm{E}$ | (Languedoc- | Hausdorf 2017: | $=$ M. samsunensis | 2637 |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | Roussillon-Midi- | ZMH 119337/ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | Pyrénées), Aude, 2.5 | 2637) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | km W of Lapradelle, <br> edge of woodland, |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | 550 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | m a.s.l. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 18 | $42^{\circ} 33^{\circ} 00^{\prime \prime} \mathrm{N} 02^{\circ}$ | France, Occitania, | unknown (Neiber \& | M. atacis | SP295 |  | KX507236 |  | KX495430 |  |  |  |  |  | KX495480 |  |  |
|  | $23^{\prime} 00^{\prime \prime} \mathrm{E}$ | (Languedoc- | Hausdorf 2017: | = M. samsunensis |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | Roussillon-Midi- | SP295) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | Pyrénées), Pyrénées- |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | Orientales, Vernet les |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | Bains |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 19 | $41^{\circ} 22^{\prime} 45.6{ }^{\prime \prime} \mathrm{N}-41^{\circ}$ | Turkey, Kuzeykent | G. Gürelli / | M. samsunensis | Sam2 |  |  | $16 \mathrm{~S}^{19 *}$ (3) | ON350946 | H3 1 (7) | ON325369 | sITS2 13 (3) | ON332776 |  |  | + |  |
|  | $26^{\prime} 14.9$ " N | neighbourhood, | 27.11.2019/5 |  | Sam3 |  |  |  | ON350947 |  | ON325370 |  | ON332777 |  |  | + | 21-22 |
|  | $33^{\circ} 45^{\prime} 38.5{ }^{\prime \prime} \mathrm{E}-33^{\circ}$ | Kastamonu, near | (DCBC \& FGC |  | Sam6 | COI 12 (1) | ON332640 |  | ON350948 |  | ON325371 |  | ON332778 |  |  | + |  |
|  | $45^{\prime} 44.7$ " | Kastamonu | 51095) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | University Central |  |  | Sam7 | COI 13 (1) | ON332641 | $16 \mathrm{~S} 20^{\star}$ (1) | ON350949 |  | ON325372 |  |  | lgITS2 10 (4) | ON332779 |  |  |
|  |  | Research Laboratory |  |  | Sam8 | COI 14 (1) | ON332642 | 165 21* $^{\text {(1) }}$ | ON350950 |  | ON325373 |  |  |  | ON332780 |  |  |
|  |  | Application and | G. Gürelli / | M. samsunensis | Kas1 | COI 13 (1) | ON332643 | $16 \mathrm{~S} 22^{*}$ (1) | ON350951 |  | ON325374 |  |  |  | ON332781 | + |  |
|  |  | Research Centre | 30.09.2020 / 6 |  | Kas2 | COI 15 (1) | ON332644 | $16523 *$ (1) | ON350952 |  | ON325375 |  |  |  | ON332782 | + | 5 |
|  |  |  | (DCBC \& FGC |  | Kas3 | COI 12 (1) | ON332645 | 16S 24 (1) | ON350953 | H3 6 (1) | ON325376 |  |  | lgITS2 11 (1) | ON332783 | + | 7, 20 |
|  |  |  | 51094) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | Kas4 | COI 16 (1) | ON332646 | 16 S 25 (1) | ON350954 | H3 1 (2) | ON325377 |  |  | lgITS2 12 (1) | ON332784 | + |  |
|  |  |  |  |  | Kas5 | COI 15 (1) | ON332647 | 16S 26 (1) | ON350955 |  | ON325378 |  |  | $\operatorname{lgITS} 210$ (1) | ON332785 | + |  |
|  |  |  |  |  | Kas6 |  |  |  |  |  |  |  |  |  |  | + | 6 |
| 20 | $41^{\circ} 18^{\prime} 34.9{ }^{\prime \prime} \mathrm{N}-41^{\circ}$ | Turkey, Balac | G. Gürelli / | M. samsumensis | Bey 1 | COI 17 (1) | ON332648 | 16S 27 (1) | ON350956 | H3 2 (4) | ON325379 |  |  | lgITS2 13 (1) | ON332786 |  |  |
|  | $18^{\prime} 35.6^{\prime \prime} \mathrm{N}$ | neighbourhood, | 8.09.2021/4 |  | Bey2 | COI 18 (1) | ON332649 | 16S 28 (1) | ON350957 |  | ON325380 |  |  | lgITS2 14 (3) | ON332787 |  | 16-19 |
|  | $36^{\circ} 16^{\prime} 00.5$ " $-36^{\circ}$ | Atakum, Samsun | (DCBC \& FGC |  | Bey3 | COI 19 (1) | ON332650 | 16S 29 (1) | ON350958 |  | ON325381 |  |  |  | ON332788 |  | 15 |
|  | $16^{\prime} 01.2^{\prime \prime} \mathrm{E}$ |  | 51175) |  | Bey4 | COI 20 (1) | ON332651 | 16 S 30 (1) | ON350959 |  | ON325382 |  |  |  | ON332789 |  |  |

Table I. (Continued).


[^2]Abbreviations: BC bursa copulatrix (also known as gametolytic gland), BW body wall, DBC duct of bursa copulatrix (also known as pedunculus), DG digitiform glands (also known as mucous glands or glandulae mucosae), DV distal vagina (from digitiform glands to genital atrium), E epiphallus (from base of flagellum to beginning of penial sheath), F flagellum, FO free oviduct, GA genital atrium, GAR genital atrium retractor, OSD ovispermiduct (also known as spermoviduct), P penis (from beginning of penial sheath to genital atrium), PP penial papilla (also known as glans), PR penial retractor, PV proximal vagina (from confluence of free oviduct and duct of bursa copulatrix to digitiform glands), VD vas deferens.

## Molecular study

Sixty-three specimens of $M$. atacis and 14 of $M$. samsunensis were used in the molecular analysis (Table I). Total genomic DNA was extracted from 20 mg of foot tissue using Tissue Genomic DNA extraction MiniKit (Genoplast) following the manufacturer's instructions. Purified total DNA was used as template for amplification by polymerase chain reaction (PCR) of partial sequences of the following gene fragments: mitochondrial 5 '-end of cytochrome c oxidase subunit I (COI) and large subunit ribosomal DNA gene ( 16 S rDNA), as well as nuclear internal transcribed spacer 2 (ITS2) in ribosomal DNA flanked with 5.8 S and 28 S ribosomal DNA fragments ( 5.8 S rDNA and 28 S rDNA, respectively) and histone 3 (H3). Partial sequences of these gene fragments were obtained by PCR with the primer sets listed in Table III.

All PCRs were carried out with total volumes of $10 \mu \mathrm{l}$. The following thermal profile was used for COI amplification: 5 min at $95^{\circ} \mathrm{C}$ followed by 35 cycles of 30 s at $95^{\circ} \mathrm{C}, 1 \mathrm{~min}$ at $50^{\circ} \mathrm{C}, 1 \mathrm{~min}$ at $72^{\circ} \mathrm{C}$, and finally 5 min at $72^{\circ} \mathrm{C}$ using Type-it Microsatellite PCR kit (Qiagen) or 5 min at $95^{\circ} \mathrm{C}$ followed by 40 cycles of 30 s at $94^{\circ} \mathrm{C}, 30 \mathrm{~s}$ at $50^{\circ} \mathrm{C}, 1 \mathrm{~min}$ at $72^{\circ} \mathrm{C}$, and finally 7 min at $72^{\circ} \mathrm{C}$ using tiTaq Polymerase $\left(\mathrm{EUR}_{\mathrm{x}}\right)$. Amplifications of fragments of 16 S rDNA (short fragment, see Table III), H3 and ITS2 (flanked with 5.8 S rDNA and short fragment of 28 S rDNA, see Table III) were performed according to procedures previously described by Manganelli et al. (2005), Colgan et al. (1998) and Almeyda-Artigas et al. (2000), respectively. Amplifications of 16 S rDNA (longer fragment, see Table III) and ITS2 (flanked with 5.8 S rDNA and longer fragment of 28 S rDNA, see Table III) were performed with the same thermal profile as for COI amplification with tiTaq Polymerase $\left(\mathrm{EUR}_{\mathrm{x}}\right)$, however for this ITS2
sequence, two rounds of amplifications were performed: the first with the purified total DNA as template and the second with $1 \mu \mathrm{l}$ of the $10 \times$ diluted product from the first round as template. Lengths of amplification products were as follows: COI - 710 bp; 16S rDNA - 371-382 (short fragments) or 873-882 bp (long fragments); ITS2 (flanked with 5.8 S rDNA and short fragment of 28 S rDNA) -$655-681 \mathrm{bp}$; ITS2 (flanked with 5.8 S rDNA and longer fragment of 28 S rDNA) - 911-932 bp; H3375 bp .

The PCR products were verified by agarose gel electrophoresis ( $1 \%$ agarose) and purified for sequencing with thermosensitive Exonuclease I and FastAP alkaline phosphatase (Fermentas, Thermo Scientific). Finally, the amplified products were sequenced in both directions using the BigDye Terminator v3.1 sequencing kit on an ABI Prism 3130XL Analyzer (Applied Biosystems, Foster City, CA, USA) according to the manufacturer's protocols.

Sequences were edited with BioEdit version 7.0.6 (Hall 1999; BioEdit 2017). Alignments were performed with ClustalW, implemented in BioEdit (Thompson et al. 1994). The COI and H3 sequences were aligned according to the translated amino acid sequences to correct errors that could arise from the presence of ambiguous nucleotides after sequencing. The ends of all sequences were trimmed and deposited in GenBank (Table I). Sequences obtained by PCR with NEWS2 and ITS2-RIXO, and LSU1 and LSU3 primer pairs (Table III) were joined in longer sequences marked as $\operatorname{lgITS} 2$ (see Table I). After trimming, the lengths of sequences were 684 and 678 bp for COI, 309-317 bp for 16 S rDNA short fragment, 814-821 for 16 S rDNA long fragment, 558-581 for short ITS2 (marked sITS2, including 71 bp 5.8 S rDNA $+487-510 \mathrm{bp}$ ITS2), 835-856 bp for long ITS2 (marked lgITS2, including 89 bp 5.8 S rDNA $+489-510 \mathrm{bp}$ ITS $2+257 \mathrm{bp} 28 \mathrm{~S}$ rDNA) and 303 bp for H3 (see also Table I). For phylogenetic analysis, the following alignments were made: 600 positions long for COI, 332 or 869 positions long for 16 S rDNA, 279 position long for H3. Sequences of ITS2 alone and sequences of ITS2 flanked by fragments of 5.8 S rDNA at the 3 '-end and 28 S rDNA at the 5 '-end, for comparison with sequences obtained from GenBank, were 546 (or 564) and 856 positions of alignment length, respectively. The sequences were collapsed to haplotypes (COI, 16S rDNA) and to common sequences (H3, ITS2 flanked with 5.8S rDNA, ITS2 flanked with 5.8 S rDNA and 28 S rDNA) using the programme ALTER (Alignment Transformation EnviRonment)


Figure 1. Map of localities of the populations of Monacha atacis, M. samsunensis and M. cartusiana analysed (see Table I for details).
(Glez-Peña et al. 2010). Finally COI and 16 S rDNA haplotypes were joined into concatenated sequences COI +16 S rDNA, 932 or 1469 positions ( $600 \mathrm{COI}+$ 332 16S rDNA or $600 \mathrm{COI}+86916 \mathrm{~S}$ rDNA) in length, ITS2 and H3 common sequences were joined into concatenated sequences ITS2 + H3, 825 positions ( 546 ITS2 +279 H3) in length and COI and 16 S rDNA haplotypes were joined with ITS2 (flanked with 5.8 S and 28 S rDNA fragments) common sequences into concatenated sequences of COI +16 S rDNA + ITS2, 2325 positions in length ( $600 \mathrm{COI}+86916 \mathrm{~S}$ rDNA +425.8 S rDNA +557 ITS2 +25728 S rDNA).

For each alignment file, best nucleotide substitution models were specified according to the Bayesian Information Criterion (BIC): for COI ( 600 bp ) HKY+G+I, for concatenated sequences COI + short 16 S rDNA ( 932 positions) - T92+G+I, for $\mathrm{COI}+16 \mathrm{~S}$ rDNA +ITS 2 (flanked with 5.8 S and 28 S rDNA) - GTR+G + I, for COI + long 16 S rDNA (1469 positions) - GTR+G, for ITS2 (564 bp) and for concatenated sequences ITS2 + H3 (825
positions) - K2 + G (Kimura 1980; Hasegawa et al. 1985; Tamura 1992; Nei \& Kumar 2000; Kumar et al. 2016). The evolutionary distances were computed using the Kimura 2 -parameter method (Kimura 1980). Neighbour Joining (NJ) analysis (Saitou \& Nei 1987) and Maximum Likelihood (ML) analysis were performed with MEGA7 (Kumar et al. 2016). Calculated bootstrap values obtained by ML and NJ analysis were mapped on the ML trees. In addition, Bayesian Inference (BI) was conducted for concatenated $\mathrm{COI}+16 \mathrm{~S}$ rDNA + ITS2 (flanked with 5.8 S and 28 S rDNA) sequences with the use of the programme MrBayes 3.2.6 (Ronquist \& Huelsenbeck 2003; Ronquist et al. 2012). Four Monte Carlo Markov chains were run for 1 million generations, sampling every 100 generations (the first $25 \%$ of trees were discarded as "burn-in"). Posterior probability (PP) values obtained on the $50 \%$ majority rule consensus Bayesian tree of concatenated sequences were mapped together with bootstrap values obtained by ML and NJ analysis on the ML tree.

Table II. GenBank sequences used for molecular analysis comparisons.

| Species | COI | 16S rDNA | H3 | $\begin{gathered} (5.8 \mathrm{~S} \text { rDNA) }+ \\ \text { ITS2 } \\ (5.8 \mathrm{~S} \text { rDNA) }+ \\ \text { ITS2 }+(28 \mathrm{~S} \\ \text { rDNA }) \end{gathered}$ | References |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Monacha atacis | $\begin{aligned} & \text { KX507213, } \\ & \text { KX507236 } \end{aligned}$ | $\begin{gathered} \text { KX495402, } \\ \text { KX495430 } \end{gathered}$ |  | $\begin{aligned} & \text { KX495455, } \\ & \text { KX495480 } \end{aligned}$ | Neiber and Hausdorf (2017) |
| Monacha cantiana | KX507234 | KX495428 |  | KX495478 | Neiber and Hausdorf (2017) |
| Monacha cantiana CAN-1 | $\begin{aligned} & \text { MG208884, } \\ & \text { MG208905 } \end{aligned}$ | MG208966 | $\begin{gathered} \text { MG209038, } \\ \text { MG209048 } \end{gathered}$ | MH137963*, MH137971^, MH137972^, MH137978* | Pieńkowska et al. (2018b) |
| Monacha cantiana CAN-2 | $\begin{gathered} \text { MG208925, } \\ \text { MG208931 } \end{gathered}$ | MG208996 | $\begin{aligned} & \text { MG209050, } \\ & \text { MG209052 } \end{aligned}$ | MH137981* | Pieńkowska et al. (2018b) |
|  |  |  |  | MK067000* | Pieńkowska et al. (2019a) |
| Monacha cantiana CAN-3 | $\begin{aligned} & \text { MG208933, } \\ & \text { MG208936 } \end{aligned}$ | MG209005 | MG209040 | $\begin{aligned} & \text { MH137982^, } \\ & \text { MH137983^ } \end{aligned}$ | Pieńkowska et al. (2018b) |
|  |  |  |  | MK067001* | Pieńkowska et al. (2019a) |
|  | MN107010, MN107015 |  |  |  | Pieńkowska et al. (2019b) |
| Monacha cantiana CAN-4 = Monacha cemenelea | $\begin{aligned} & \text { MG208939, } \\ & \text { MG208940 } \end{aligned}$ | MG209011 | $\begin{aligned} & \text { MG209058, } \\ & \text { MG209059 } \end{aligned}$ | MH137984* | Pieńkowska et al. (2018b) |
|  |  |  |  | MK067003* | Pieńkowska et al. (2019a) |
|  | MT947641 | MT952445 |  |  | Čejka et al. (2020) |
| Monacha sp. CAN-5 | MK066934, MK066938 | MK066952 | MK066970, MK066976 | $\begin{aligned} & \text { MK066985^, } \\ & \text { MK066991^ } \end{aligned}$ | Pieńkowska et al. (2019a) |
| Monacha sp. CAN-6 | MK066942, MK066943 | MK066960 | MK066980 | MK066995*, MK066996*, MK066999* | Pieńkowska et al. (2019a) |
| Monacha cartusiana | $\begin{aligned} & \text { KX507189, } \\ & \text { KX507235 } \end{aligned}$ | $\begin{gathered} \text { KX495378, } \\ \text { KX495429 } \end{gathered}$ |  | $\begin{aligned} & \text { KX495431, } \\ & \text { KX495479 } \end{aligned}$ | Neiber and Hausdorf (2017) |
|  |  |  | MG209072 | MH137993* | Pieńkowska et al. (2018b) |
|  | MT947646 | MT952354 |  |  | Čejka et al. (2020) |
| Monacha claustralis | KX507199 | KX495388 |  | KX495441 | Neiber and Hausdorf (2017) |
| Monacha cretica | KX507190 | KX495379 |  |  | Neiber and Hausdorf (2017) |
| Monacha devrekensis |  |  |  | KX495470 | Neiber and Hausdorf (2017) |
| Monacha laxa | $\begin{aligned} & \text { KX507200, } \\ & \text { KX507201 } \end{aligned}$ | $\begin{gathered} \text { KX495389, } \\ \text { KX495390 } \end{gathered}$ |  | $\begin{aligned} & \text { KX495442, } \\ & \text { KX495443 } \end{aligned}$ | Neiber and Hausdorf (2017) |
| Monacha ocellata | KX507220 | KX495409 |  | KX495462 | Neiber and Hausdorf (2017) |
|  | MG918127 | MG918128 |  | MG918129 | Anderson et al. (2018) |
| Monacha pantanellii | MT380013, MT380014, MT380038, MT380063 | MT376033 | MT385778, MT385781, MT385808 | $\begin{aligned} & \text { MT376088^, } \\ & \text { MT376090, } \\ & \text { MT376110^ } \end{aligned}$ | Pieńkowska et al. (2020) |
| Monacha samsunensis | KX507202 | KX495391 |  | KX495444 | Neiber and Hausdorf (2017) |
| Monacha parumcinta | $\begin{aligned} & \text { MG208949, } \\ & \text { MG208955 } \end{aligned}$ | MG209023 | MG209066, MG209067 | $\begin{aligned} & \text { MH137985^, } \\ & \text { MH137987* } \end{aligned}$ | Pieńkowska et al. (2018b) |
| Monacha perfrequens | KX507191 | KX495380 |  | KX495433 | Neiber and Hausdorf (2017) |
| Monacha tibarenica | KX507227 | KX495421 |  | KX495472 | Neiber and Hausdorf (2017) |

Table II. (Continued).

| Species | COI | 16S rDNA | H3 | $\begin{gathered} (5.8 \mathrm{~S} \text { rDNA) }+ \\ \text { ITS2 } \\ (5.8 \mathrm{~S} \text { rDNA) }+ \\ \text { ITS2 }+(28 \mathrm{~S} \\ \text { rDNA }) \end{gathered}$ | References |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Trochulus hispidus | KY818415 | KY818541 |  | KY818647 | Neiber et al. (2017) |
|  |  |  |  | KX495451 | Neiber and Hausdorf (2017) |
|  |  |  |  | MG585474 | Caro et al. (2019) |
|  |  |  | MT758614 | MT755395* | Proćków et al. (2021) |

Table III. Primers used in molecular analysis.

| Name | Sequence 5' - 3' | References |
| :--- | :--- | :--- |
| COI |  |  |
| LCO1490 | GGTCAACAAATCATAAAGATATTGG | Folmer et al. (1994) |
| HC02198 | TAAACTTCAGGGTGACCAAAAAATCA |  |
| F01 | CATTTTCHACTAAYCATAARGATATTGG | Dabert et al. (2010) |
| R04 | TATAAACYTCDGGATGNCCAAAAAA |  |
| 16S rRNA (shorter fragment) |  |  |
| LR-J-12887 | CGATTTGAACTCAGATCA | Simon et al. (1994) |
| (reverse) | GTGCAAAGGTAGCATAATCA | Gantenbein et al. (1999) |
| 16S rRNA (longer fragment) |  |  |
| 16Scs1 | AAACATACCTTTTGCATAATGG | Chiba (1999) |
| 16Scs2 | AGAAACTGACCTGGCTTACG |  |
| ITS2 (flanked with 5.8S rDNA and short fragment of 28S rDNA) |  |  |
| NEWS2 | TGTGTCGATGAAGAACGCAG | Almeyda-Artigas et al. (2000) |
| ITS2-RIXO | TTCTATGCTTAAATTCAGGGG |  |
| ITS2 (flanked with for 5.8S rDNA and longer fragment of 28S rDNA) | Wade and Mordan (2000) |  |
| LSU1 | CTAGCTGCGAGAATTAATGTGA |  |
| LSU3 | ACTTTCCCTCACGGTACTTG | Colgan et al. (1998) |
| H3 |  |  |
| H3F |  |  |
| H3R | ATGGCTCGTACCAAGCAGACVGC |  |

## Results

## Morphological study

Monacha atacis and M. samsunensis have globose to subglobose shell (Figures 2-7), sometimes variably depressed, variable in size (in M. atacis: diam. 7.515.2 mm ; Gittenberger \& de Winter 1985; in $M$. samsunensis: diam. $11.0-19.1 \mathrm{~mm}$; Hausdorf 2000a), pale yellowish, pale ochre or whitish in colour (creamy-white, sometimes with sparse darker stripes in M. samsunensis), sometimes with one whitish peripheral band (only in some light horn-
coloured specimens of $M$. samsunensis according to Hausdorf 2000a), surface with fine irregular growthridges, very fine spiral striae and evident hair scars on the first whorls. Aperture roundish to oval, slightly descending, with a variably thick white internal rib (only very evident in $M$. samsunensis). Peristome interrupted, its columellar margin reflexed to more or less cover the umbilicus, which may be very small to almost closed or rather open (for $M$. atacis, see also Gittenberger $\&$ de Winter 1985: fig. 2; Welter-Schultes 2012: fig. at p. 503; for M. samsunensis, see also Hudec \& Ležava 1969: pl.

10 fig. 25; Schileyko 1978: pl. 16 fig. 159; Hausdorf 2000a: pl. 12 figs 56-57; Schileyko 2005: fig. 2534a; Welter-Schultes 2012: fig. at p. 512).

Monacha atacis and M. samsunensis show distal genitalia of the Metatheba type, i.e. with penial retractor muscle but without vaginal appendix. The literature reports evidence of a long vagina, bursa copulatrix duct and flagellum in $M$. atacis (Gittenberger \& de Winter 1985) and a variably long vagina, bursa copulatrix duct and flagellum in M. samsunensis (Hesse 1931; Hudec \& Ležava 1969; Hudec 1973; Schileyko 1978; Hausdorf 2000a). This picture was confirmed by our anatomical study. Both species showed vagina with very short proximal section and variably long distal section. In $M$. atacis, the distal vagina is long and variably slender, sometimes widening slightly in its subterminal portion where the internal surface shows a series of small swollen pleats (Figures 8 and 12). In M. samsunensis, the distal vagina is variably long and wide: sometimes long and slender (Figures 15 and 16; see also Hesse 1931: pl. 6 figs 55a-b; Hudec \& Ležava 1969: fig. 22; Hudec 1973: fig. 6; Hausdorf 2000a: fig. 50) and at other times rather or very short (Figures 20 and 21). When short or very short, the vagina is also wider distally (Figure 21) or very wide with an internal ring of variably raised pleats (Figure 22), a detail never mentioned before. The duct of the bursa copulatrix is very long in M. atacis (Figures 8 and 12; see also Gittenberger \& de Winter 1985: figs. 7-8) and variably long in M. samsunensis, ranging from very short or short (Hesse 1931: pl. 6 fig. 55a; Hudec \& Ležava 1969: fig. 22) to long or very long (Figures 15, 16, 20 and 21 ; see also Hudec 1973: fig. 6; Hausdorf 2000a: fig. 50). Finally the flagellum is rather long in $M$. atacis (Figures 8, 12; see also Gittenberger \& de Winter 1985: figs. 7-8) and variably long in $M$. samsunensis, ranging from short (Figures 20 and 21; see also Hesse 1931: pl. 6 fig. 55a; Hudec \& Ležava 1969: fig. 22; Hudec 1973: fig. 6) to medium or rather long (Figures 15 and 16; see also Schileyko 1978: fig. 377; Hausdorf 2000a: fig. 50).

## Molecular study

Two hundred and ninety-two new sequences were obtained and deposited in GenBank: 221 for $M$. atacis (61 COI, 6216 S rDNA, $58 \mathrm{H} 3,20$ sITS2 and $20 \operatorname{lgITS} 2$ ), 54 for $M$. samsunensis ( $12 \mathrm{COI}, 14$ 16 S rDNA, $14 \mathrm{H} 3,3$ sITS2 and $11 \operatorname{lgITS} 2)$ and 17 for $M$. cartusiana ( $4 \mathrm{COI}, 516 \mathrm{~S}$ rDNA, $5 \mathrm{H} 3,2$
sITS2 and $1 \operatorname{lgITS} 2$ ) (for details on their lengths and GenBank accession numbers, see Table I). We identified 24 COI haplotypes (eleven COI 1 - COI 11 for $M$. atacis, nine COI 12 - COI 20 for $M$. samsunensis, four COI 17 - COI 20 for M. cartusia$n a)$ and 3516 S rDNA haplotypes ( 18 16S 1-16S 18 for $M$. atacis; 12 16S 19-16S 30 for M. samsunensis; 5 16S 31-16S 35 for M. cartusiana). Among sequences of the H 3 gene, 10 common sequences were identified ( $6 \mathrm{H} 31-\mathrm{H} 36$ for $M$. atacis and $M$. samsunensis; 4 H3 7 - H3 10 for M. cartusiana). We established 15 short ITS2 (sITS2: 5.8 S rDNA + ITS2) and 15 long ITS2 (lgITS2: 5.8 S rDNA + ITS $2+28 \mathrm{~S}$ rDNA) common sequences (for $M$. atacis - 12 sITS2: sITS2 $1-$ sITS2 12 and 9 $\ln$ ITS2: $\operatorname{lnITS} 21-\ln$ TTS 29 ; for $M$. samsunensis one sITS2: sITS2 13 and $4 \ln$ ITS2: $\operatorname{lgITS} 210-$ lgITS2 14; for M. cartusiana: two sITS2: sITS2 14 sITS2 15 and one $\operatorname{lgITS} 2$ : $\operatorname{lgITS} 2$ 13). Haplotypes and common sequences were used for phylogenetic analysis.

In the case of mitochondrial gene fragments (COI and 16 S rDNA), sequences obtained from $M$. atacis and $M$. samsunensis were analysed separately as single locus data sets (not shown, except COI sequence analysis, see Supplementary Material Figure S1) or as concatenated COI + short 16 S rDNA sequences (Figure 23 and Supplementary Material Table S1). A tree of similar topology was obtained from analysis of concatenated $\mathrm{COI}+$ long 16 S rDNA sequences (Figure S2 and Supplementary Material Table S1). The $M$. atacis and $M$. samsunensis sequences clustered together in these trees, although two groups, one for $M$. atacis and another for $M$. samsunensis sequences, can be seen. In the case of new sequences obtained from the population of $M$. cartusiana from Cubières-sur-Cinoble, southern France, in the concatenated COI +16 S rDNA tree (Figure 23, see also Supplementary Material Table S1), they clustered quite separately from $M$. atacis and $M$. samsunensis, as well as from other representatives of Metatheba, but together with other COI and 16 S rDNA sequences of $M$. cartusiana obtained from GenBank.

K2P distances for COI sequences characteristic of intraspecies differentiation were very small: mean $0.6 \%$ (range $0.0-1.4 \%$ ) for $M$. atacis and mean 3.5\% (range $0.0-7.6 \%$ ) for $M$. samsunensis (Table IV). K2P distances between COI sequences of $M$. atacis and $M$. samsunensis were also small (mean $3.5 \%$, range $1.2-6.9 \%$, Table IV). They were an order of magnitude smaller than the distances that distinguished these two taxa from the other species of the


Figure 2-7. Shells of Monacha atacis from France: Grotte de Majestier [Maj3] (DCBC \& MNHW-F.18.41; FGC 51099) (2), SaintFerriol [Fer2-1] (DCBC \& MNHW-F.18.39; FGC 51097) (3) and Carcassonne (FGC 35773) (4) and Monacha samsunensis from Turkey: Kastamonu [Kas2: 5; Kas6: 6; Kas3: 7] (DCBC; FGC 51094) (5-7).
subgenus Metatheba i.e. M. perfrequens, M. laxa and $M$. tibarenica ( $3.5 \%$ vs. $13.0-18.6 \%$ ) analysed here. The K2P distances separating the

COI sequences of $M$. atacis and M. samsunensis from species of other Monacha subgenera were even greater (19.1-22.9\%). K2P distances within
the southern French M. cartusiana populations, as well as between them and other Monacha species $(0.4 \%$ intraspecies, $14.5 \%$ and $19.9 \% ~ M$. cartusiana vs. M. claustralis and M. cantiana, respectively; Table IV) were similar to those reported in our previous papers (Pieńkowska et al. 2015, 2016, 2018a).

Analysis of nuclear genes was hindered by the fact that only the 5.8 S rDNA $+\mathrm{ITS} 2+28 \mathrm{~S}$ rDNA gene sequences (lgITS2) were deposited in great number in GenBank by Neiber and Hausdorf (2017), including Metatheba subgenus representatives. For the H3 gene, GenBank only contains sequences of the M. cantiana s.l. complex, deposited in connection with our previous papers (Pieńkowska et al. 2018b, 2019a, 2020). We therefore present two trees, based on various analyses of single or multiple locus data sets, one consisting of the ITS2 gene sequences cut off from flanking fragments (Figure 24) and the other built from concatenated ITS2 +H 3 sequences (Figure 25, Supplementary Material Table S2). They confirm the results obtained with mitochondrial genes. The sequences obtained from M. atacis and M. samsunensis specimens are grouped into a common clade, and because they are mixed with each other, no separate subgroups can be distinguished (Figures 24 and 25). It is noteworthy that the sequence KX 495444 deposited in GenBank by Neiber and Hausdorf (2017) for ITS2 of $M$. samsunensis is identical to the sequences lgITS2 1 , found in some specimens of $M$. atacis from different French populations (Arties, Le Chandelier, Axat, Saint-Martin-Lys, Belfort-sur-Rebenty, Salvezines and Roquefort-de-Sault; Table I). Moreover, the H3 1 sequence was found in 9 out of the 10 specimens of M. samsunensis from Kastamonu as well as in nine specimens of M. atacis from eight French populations (Arties, Le Chandelier, Mijanès, Campagna-de-Sault, Saint-Ferriol 2, Belfort-sur-Rebenty 1, Salvezines and Roquefort-de-Sault; Table I) and the H3 2 sequence was found in four $M$. samsunensis specimens from Atakum/Samsun as well as in 44 specimens from 14 French populations (i.e. all but one: Le Chandelier, however only one specimen was available from this population; Table I).

Finally, we present an analysis of concatenated mitochondrial and nuclear gene sequences: COI +16 S rDNA +5.8 S rDNA + ITS $2+28 \mathrm{~S}$ rDNA conducted by three different methods (ML, NJ and BI) (Figure 26, Supplementary Material, Table S3). Again, sequences from M. atacis and M. samsunensis clustered in two slightly separate subgroups, but as a common clade they were clearly separate from sequences of other Monacha (Metatheba) and Monacha s.s. species.

## Discussion

The shells of $M$. atacis from southern France and $M$. samsunensis from Turkey (Atakum/Samsun and Kastamonu) are very similar and do not differ from the lectotype of $M$. samsunensis deposited in the Naturhistorisches Museum Wien (Figure 27, see also Hausdorf 2000a: pl. 11, fig. 54).

The distal genitalia of M. atacis specimens from Carcassonne (Figures 8-11) and Lapradelle (Figures 12-14), characterised by a long vagina, a long bursa copulatrix duct and a long flagellum, exactly match those of the original description of this species (Gittenberger \& de Winter 1985: figs 7-8). Specimens of $M$. samsunensis from the type locality (Figures 15-19) and the literature (Hesse 1931: pl. 6 fig. 55a; Hudec \& Ležava 1969: fig. 22; Hudec 1973: fig. 6; Schileyko 1978: fig. 377; Hausdorf 2000a: fig. 50; Schileyko 2005: fig. 2534b) are usually characterised by a shorter flagellum, vagina and bursa copulatrix duct. Specimens of M. samsunensis from Kastamonu also seem to have a much shorter vagina than the others (Figures 20 and 21). However, vagina length is variable in M. samsunensis populations and possibly depends on sexual maturation (Hausdorf 2000a: tables $10 \& 11$, vagina total length $1.7-7.2 \mathrm{~mm}$, measured in 35 specimens from different populations). In contrast to $M$. samsunensis, the features of the distal genitalia of $M$. atacis seem to vary little. In the absence of a more integrative approach to the study of the Turkish Metatheba, it is difficult to explain the significance of this pattern. For example, Gittenberger and de Winter (1985) wondered if the various figures of $M$. samsunensis reported in the literature really belong to a single species. However, high intra- and interpopulation variability is well known among the Monacha species so much so that the species of this genus can only occasionally be recognised morphologically (Pieńkowska et al. 2018b, 2019a, 2020).

Some sequences of nuclear genes (H3 and $\operatorname{lgITS} 2$ ) obtained from specimens of $M$. atacis and M. samsunensis are exactly the same. The sequences of nuclear genes from these two species mixed and grouped together in a common clade on phylogenetic trees (Figures 24 and 25). The sequences of their mitochondrial genes also cluster together (Figure 23, also Supplementary Material Figure S1) as found also in those of the concatenated mitochondrial and nuclear genes (Figure 26). Although there are two separate subgroups for sequences of $M$. atacis and $M$. samsunensis in these analyses, they create a single strongly supported clade on both phylogenetic trees (Figures 23 and
26). The mean K2P distance for COI sequences between $M$. atacis and $M$. samsunensis is small, reaching 3.5\% (Table IV) which is almost at the $3 \%$ threshold of the "barcode method" based on

COI sequences (Hebert et al. 2003a, 2003b; Pentinsaari et al. 2020).

It is noteworthy that the mean K2P distance between the French $M$. atacis and the topotypical


Figures 8-14. Distal genitalia (8, 12), internal structure of distal genitalia ( 9,13 ), transverse sections of medial epiphallus (10) and apical penial papilla (11, 14) of Monacha atacis from France: Carcassonne (FGC 35773) (8-11) and Lapradelle (DCBC \& MNHW-F.18.27; FGC 51247) (12-14).
M. samsunensis from Atakum/Samsun is smallest (2.8\%) when the Turkish populations are analysed separately (Table V). The mean K2P distances between $M$. atacis and $M$. samsunensis from the

Kastamonu population as well as between M. atacis and $M$. samsunensis from Kürtün (sequence KX507202 from Neiber \& Hausdorf 2017) were $3.8 \%$ and $4.4 \%$, respectively (Table V).


Figures 15-19. Distal genitalia (15-16), internal structure of distal genitalia (17), transverse sections of medial epiphallus (18) and apical penial papilla (19) of Monacha samsunensis from Turkey: Atakum/Samsun [Bey3: 15; Bey2: 16-19] (DCBC; FGC 51175).

Nevertheless it must be stressed that Turkish populations vary in K2P distances between COI sequences (see K2P distances between three Turkish populations as well as the ranges of K 2 P
distances, Table V), which may suggest that they are somewhat genetically differentiated. We are aware of limits of the barcode method in the analysis of taxonomic relations of stylommatophoran snails


Figures 20-22. Distal genitalia (20-21) and internal structure of distal genitalia (22) of Monacha samsunensis from Turkey: Kastamonu [Kas3: 20; Sam3: 21-22] (DCBC; FGC 51094, 51095).


Figure 23. Maximum Likelihood (ML) tree of concatenated COI + (short) 16S rDNA haplotypes obtained from specimens of Monacha atacis and Monacha samsunensis compared with sequences obtained from GenBank for representatives of the other Monacha species. Concatenated COI +16 S rDNA sequences (Table S 1 ) were cut to 932 positions ( $600 \mathrm{bp} \mathrm{COI}+332 \mathrm{bp} 16 \mathrm{~S}$ ) in length. Numbers next to the branches indicate bootstrap support above $50 \%$ calculated for 1000 replicates from ML (left) and NJ (right) analysis (Felsenstein 1985). The tree was rooted with Trochulus hispidus concatenated sequences KY818415 + KY818541 deposited in GenBank by Neiber et al. (2017).

Table IV. Ranges of K2P genetic distances between analysed COI sequences (mean value in parenthesis).

| Comparison | COI (\%) |
| :---: | :---: |
| Within M. atacis | 0.0-1.4 (0.6) |
| Within M. samsunensis | 0.0-7.6 (3.5) |
| Within M. cartusiana | 0.0-0.7 (0.4) |
| Between M. atacis and M. samsunensis | 1.2-6.9 (3.5) |
| Between M. atacis and M. perfrequens | 12.6-13.6 (13.0) |
| Between M. atacis and M. laxa | 17.3-18.6 (17.9) |
| Between M. atacis and M. tibarenica | 17.5-18.1 (17.8) |
| Between M. atacis and M. parumcincta | 17.9-20.1 (19.1) |
| Between M. atacis and M. claustralis | 18.7-20.5 (19.5) |
| Between M. atacis and M. cartusiana | 19.6-21.7 (20.6) |
| Between M. atacis and M. cantiana | 22.2-23.4 (22.9) |
| Between M. samsunensis and M. perfrequens | 12.6-15.9 (13.4) |
| Between M. samsunensis and M. laxa | 17.7-21.9 (18.6) |
| Between M. samsunensis and M. tibarenica | 16.4-21.0 (17.4) |
| Between M. samsunensis and M. parumcincta | 18.8-22.5 (20.3) |
| Between M. samsunensis and M. claustralis | 19.6-23.0 (20.6) |
| Between M. samsunensis and M. cartusiana | 20.1-23.2 (21.4) |
| Between M. samsunensis and M. cantiana | 21.7-25.8 (22.5) |
| Between M. perfrequens and M. laxa | 16.9 |
| Between M. perfrequens and M. tibarenica | 18.1 |
| Between M. perfrequens and M. parumcincta | 19.7-20.6 (20.2) |
| Between M. perfrequens and M. claustralis | 19.2 |
| Between M. perfrequens and M. cartusiana | 20.7-21.6 (21.1) |
| Between M. perfrequens and M. cantiana | 23.1-23.3 (23.2) |
| Between M. laxa and M. tibarenica | 17.2 |
| Between M. laxa and M. parumcincta | 17.2 |
| Between M. laxa and M. claustralis | 17.5 |
| Between M. laxa and M. cartusiana | 18.2-18.7 (18.4) |
| Between M. laxa and M. cantiana | 18.5 |
| Between M. tibarenica and M. parumcincta | 18.8-19.2 (19.0) |
| Between M. tibarenica and M. claustralis | 18.0 |
| Between M. tibarenica and M. cartusiana | 20.4-20.9 (20.7) |
| Between M. tibarenica and M. cantiana | 20.7-20.9 (20.8) |
| Between M. claustralis and M. cartusiana | 14.2-14.6 (14.5) |
| Between M. cartusiana and M. cantiana | 19.4-20.3 (19.9) |

(Davison et al. 2009; Sauer \& Hausdorf 2010, 2012; Köhler \& Johnson 2012; see also discussions in our previous papers Pieńkowska et al. 2018b, 2019a, 2020). Nevertheless in this study we used Hebert's method to confirm conspecificity and not to support the conclusion about species distinctness.

Incidentally, we used molecular analysis to confirm the occurrence of $M$. cartusiana in southern France (population from Cubières-sur-Cinoble in Aude, Table I), where it may co-occur with $M$. atacis. This confirms previous molecular reports of M. cartusiana in France (Dahirel et al. 2015: northwestern France $48^{\circ} 07^{\prime} 51^{\prime \prime} \mathrm{N}, 01^{\circ} 41^{\prime} 34^{\prime \prime} \mathrm{W}$, near

Rennes; Čejka et al. 2020: fig. 3 - in Provence, southern France: $43^{\circ} 31^{\prime} 34.7^{\prime} \mathrm{N}, \quad 05^{\circ} 04^{\prime} 30.7^{\prime} \mathrm{E}$, L'Etang de Berre; $43^{\circ} 49^{\prime} 13.1^{\prime \prime} \mathrm{N}, 05^{\circ} 18^{\prime} 29.5^{\prime} \mathrm{E}$, Bonnieux; $43^{\circ} 37^{\prime} 03.7^{\prime} \mathrm{N}, \quad 05^{\circ} 18^{\prime} 37.8^{\prime} \mathrm{E}$, St. Cannat; $43^{\circ} 37^{\prime} 58.4 " \mathrm{~N}, \quad 05^{\circ} 38^{\prime} 37.3^{\prime \prime} \mathrm{E}$, Jouques; $43^{\circ} 39^{\prime} 33.5^{\prime} \mathrm{N}, 05^{\circ} 20^{\prime} 43.1^{\prime} \mathrm{E}$, Rognes).

In conclusion, our morphological (shell and genitalia, Figures 2-22 and 27) and molecular (mitochondrial and nuclear gene sequences, Figures 23-26) findings corroborate that M. atacis and M. samsunensis are conspecific and that the former should be named $M$. samsunensis because the name introduced by Pfeiffer in 1868 has priority over that established by


Figure 24. Maximum Likelihood (ML) tree of ITS2 common sequences obtained from specimens of Monacha atacis and Monacha samsunensis compared with sequences obtained from GenBank for representatives of the other Monacha species. ITS2 sequences were cut to 564 positions in length. Numbers next to the branches indicate bootstrap support above $50 \%$ calculated for 1000 replicates from ML (left) and NJ (right) analysis (Felsenstein 1985). The tree was rooted with Trochulus hispidus ITS2 sequences KX495451 and MG585474 deposited in GenBank by Neiber and Hausdorf (2017) and Caro et al. (2019), respectively.


Figure 25. Maximum Likelihood (ML) tree of concatenated ITS2 + H3 common sequences obtained from specimens of Monacha atacis and Monacha samsunensis compared with sequences obtained from GenBank for representatives of the other Monacha species. Concatenated ITS2 + H3 sequences (Table S2) were cut to 825 positions ( 546 positions ITS2 and 279 positions H3) in length. Numbers next to the branches indicate bootstrap support above $50 \%$ calculated for 1000 replicates from ML (left) and NJ (right) analysis (Felsenstein 1985). The tree was rooted with Trochulus hispidus ITS2 + H3 concatenated sequences MT755395 and MT758614 deposited in GenBank by Proćków et al. (2021).

Gittenberger \& de Winter in 1985. According to Hausdorf (2000a) the occurrence of M. atacis in France is the result of an introduction of $M$. samsunensis in historic times. This possibility is supported by the fact that $M$. atacis occurs in a rather small area of France. However, the diversity of rapidly evolving mitochondrial genes may indicate that the French populations differentiated since their introduction. They may represent a distinct lineage that originated in France after their introduction (according to Falkner et al. 2002, the species has been reported from France at least since the 19th century) by the founder effect or by selection. This hypothesis cannot be verified without further research on a greater number of French populations of $M$. samsunensis (possibly also those from Catalonia, Spain).

On the other hand, it seems that there is greater genetic differentiation between Turkish populations from Atakum/Samsun, Kastamonu and Kürtün. It is noteworthy that there is more genetic similarity between specimens of $M$. atacis from France and the topotypical M. samsunensis from Atakum/Samsun than between Atakum/Samsun and Kastamonu populations. M. samsunensis has a wider distribution in Turkey than in France, and has probably existed there for much longer. A reason for the lower variability observed within French populations may be their smaller range and shorter evolution. The variability in populations of $M$. samsunensis occurring in northern Anatolia and along the Black Sea coast is worthy of further study.


Figure 26. Maximum Likelihood (ML) tree of concatenated COI +16 S rDNA $+(5.8 \mathrm{~S} \mathrm{rDNA}+\mathrm{ITS} 2+28 \mathrm{~S}$ rDNA) sequences of Monacha atacis and Monacha samsunensis compared with sequences obtained from GenBank for representatives of the other Monacha species. Concatenated sequences (Table S3) were 2325 positions in length ( $600 \mathrm{COI}+86916 \mathrm{~S}$ rDNA +425.8 S rDNA +557 ITS $2+$ 257 28S rDNA). Bootstrap support above $50 \%$ from ML (left) and NJ (middle) analysis as well as posterior probabilities (right) from Bayesian inference analysis are marked at the nodes. Bootstrap analysis was run with 1000 replicates (Felsenstein 1985). The tree was rooted with Trochulus hispidus COI +16 S rDNA $+(5.8 \mathrm{~S}$ rDNA + ITS $2+28 \mathrm{~S}$ rDNA $)$ concatenated sequences KY818415 $+\mathrm{KY} 818541+$ KY818647 deposited in GenBank by Neiber et al. (2017).


Figure 27. Shell of the Monacha samsunensis lectotype designated by Hausdorf (2000a), kept in the Naturhistorischen Museum Wien (© NHMW, the inventory number: NHMW-MO-79000/K/19263) (photo by Sara Schnedl obtained by courtesy of Anita Eschner, NHMW). Scale bar 5 mm .

Table V. Ranges of K2P genetic distances between COI sequences of M. atacis and M. samsunensis populations (mean value in parenthesis).

| Comparison | COI (\%) |
| :--- | :---: |
| Within $M$. atacis (southern France) | $0.0-1.4(0.6)$ |
| Within $M$. samsunensis (Anatolia Atakum/Samsun) | $0.0-6.5(3.5)$ |
| Within $M$. samsunensis (Anatolia Kastamonu) | $0.3-0.8(0.7)$ |
| Within $M$. samsunensis (Anatolia Kürtün, Gümüshane) | $\mathrm{n} / \mathrm{a}$ |
| Between $M$. atacis (southern France) and $M$. samsunensis (Anatolia Atakum/Samsun) | $1.2-6.9(2.8)$ |
| Between $M$. atacis (southern France) and $M$. samsunensis (Anatolia Kastamonu) | $3.3-4.3(3.8)$ |
| Between $M$. atacis (southern France) and $M$. samsunensis (Anatolia Kürtün, | $4.1-4.8(4.4)$ |
| $\quad$ Gümüshane) |  |
| Between $M$. samsunensis (Anatolia Atakum/Samsun) and $M$. samsunensis (Anatolia | $3.1-7.0(4.4)$ |
| $\quad$ Kastamonu) |  |
| Between $M$. samsunensis (Anatolia Atakum/Samsun) and $M$. samsunensis (Anatolia | $4.1-7.6$ (5.0) |
| $\quad$ Kürtün, Gümüshane) |  |
| Between $M$. samsunensis (Anatolia Kastamonu) and M. samsunensis (Anatolia Kürtün, | $4.5-4.8$ (4.6) |
| $\quad$ Gümüshane) |  |

The introduction of $M$. samsunensis to Western Europe is not an isolated case among the Monacha hygromiids. A population of M. ocellata was recently found in England, where it was accidentally introduced from the Istanbul area, Turkey (Anderson et al. 2018).

## Acknowledgements

We thank Anita Eschner (Naturhistorischen Museum Wien) for providing photos of the shell of Monacha samsunensis lectotype, Krzysztof Duda (Adam Mickiewicz University) for preparing the map of localities, Jarosław Bogucki (Poznań,

Poland) for preparing some graphs for print and Helen Ampt (Siena, Italy) for revising the English.

## Funding

The study was supported by Adam Mickiewicz University, Poznań (Poland) under project 526000/ REZ_PROJEKT "Powrót do badań" of Andrzej Lesicki.

## Disclosure statement

The authors declare that they do not have any conflict of interests.

## Supplementary material

Supplemental data for this article can be accessed online at https://doi.org/10.1080/24750263.2022. 2100932.

## ORCID

J. R. Pieńkowska (1) http://orcid.org/0000-0003-0372121X
G. Manganelli © http://orcid.org/0000-0002-8453-280X
M. Proćków (D) http://orcid.org/0000-0003-2240-7306
G. Gürelli (D) http://orcid.org/0000-0001-7233-9060
E. Kosicka (D) http://orcid.org/0000-0001-7969-4153
F. Giusti © http://orcid.org/0000-0001-8722-4653
A. Lesicki (1) http://orcid.org/0000-0002-1924-1934

## References

Almeyda-Artigas RJ, Bargues MD, Mas-Coma S. 2000. ITS-2 rDNA sequencing of Gnathostoma species (Nematoda) and elucidation of the species causing human gnathostomiasis in the Americas. Journal of Parasitology 86(3):537-544. DOI: 10.1645/0022-3395(2000)086[0537:IRSOGS]2.0.CO;2.

Anderson A, Giusti F, Telfer MG, Manganelli G, Pieńkowska JR, Lesicki A. 2018. Monacha ocellata (Roth, 1839) (Gastropoda: Hygromiidae) established in Essex, an addition to the fauna of Britain and Ireland. Journal of Conchology 43(2):201-211.
Bertrand A. 2003. Notes sur la distribution géographique des mollusques continentaux de France et de Catalogne. Documents Malacologiques 4:33-36.
BioEdit. 2017. BioEdit 7.2. Available: https://bioedit.software. informer.com/7.2. Accessed May 202121.
Cadevall, J, Corbella, J, Bros, V, Orozco, A, Guillén, G, Prats, L, and Capdevila, M. 2020. Els mol-luscs continentals de Catalunya i Andorra (península Ibèrica). Llista comentada. Spira 7:117-159.
Caro A, Neiber MT, Gomez-Moliner BJ, Madeira MJ. 2019. Molecular phylogeny and biogeography of the land snail subfamily Leptaxinae (Gastropoda: Hygromiidae). Molecular Phylogenetics and Evolution 139:106570. DOI: 10.1016/j. ympev.2019.106570.
Čejka T, Beran L, Korábek O, Hlaváč JČ, Horáčková J, Coufal R, Drvotová M, Maňas M, Horsáková V, Horsák M. 2020. Malacological news from the Czech and Slovak Republics in

2015-2019. Malacologica Bohemoslovaca 19:71-106. Available: http://mollusca.sav.sk/pdf/19/19.Cejka2.htm.
Chiba S. 1999. Accelerated evolution of land snails Mandarina in the oceanic Bonin Islands: Evidence from mitochondrial DNA sequences. Evolution 53(2):460-471. DOI: 10.1111/ j.1558-5646.1999.tb03781.x.

Colgan DJ, McLauchlan A, Wilson GDF, Livingston S, Edgecombe GD, Macaranas J, Cassis G, Gray MR. 1998. Histone H3 and U2 snRNA sequences and arthropod molecular evolution. Australian Journal of Zoology 46(5):419-437. DOI: 10.1071/zo98048.
Dabert M, Witalinski W, Kazmierski A, Olszanowski Z, Dabert J. 2010. Molecular phylogeny of acariform mites (Acari, Arachnida): Strong conflict between phylogenetic signal and long-branch attraction artifacts. Molecular Phylogenetics and Evolution 56(1):222-241. DOI: 10.1016/j.ympev.2009.12.020.
Dahirel M, Olivier E, Guiller A, Martin MC, Madec L, Ansart A. 2015. Movement propensity and ability correlate with ecological specialization in European land snails: Comparative analysis of a dispersal syndrome. Journal of Animal Ecology 84 (1):228-238. DOI: 10.1111/1365-2656.12276.

Davison A, Blackie RL, Scothern GP. 2009. DNA barcoding of stylommatophoran land snail: A test of existing sequences. Molecular Ecology Resources 9(4):1092-1101. DOI: 10.1111/j.1755-0998.2009.02559.x.

Ehrenberg CG. 1831. Symbolae physicae. Animalia Evertebrata exclusis insectis. Series prima cum tabularum decade prima. Berolini: Mittler. pp. 135.
Evans JG. 1972. Land snails in archeology. With special reference to the British Isles. London: Seminar Press Inc. pp. 436.
Falkner G, Ripken TEJ, Falkner M. 2002. Mollusques continentaux de France: Liste de référence annotée et bibliographie. Patrimoines naturels, 52. Paris: Muséum national d'Histoire naturelle. pp. 356.
Felsenstein J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39(4):783-791. DOI: 10.2307/2408678.
Fitzinger LJ. 1833. Systematisches Verzeichniß der im Erzherzogthume Oesterreich vorkommenden Weichthiere, als Prodrom einer Fauna derselben. Beiträge zur Landeskunde Oesterreichs's unter der Enns 3:88-122. Wien. Available: https://biodiversitylibrary.org/page/10601570.
Folmer O, Black M, Hoeh W, Lutz RA, Vrijenhoek RC. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3(5):294-299.
Gantenbein B, Fet V, Largiader CR, Scholl A. 1999. First DNA phylogeny of Euscorpius Thorrell, 1876 (Scorpiones: Euscorpiidae) and its bearing on taxonomy and biogeography of this genus. Biogeographica (Paris) 75:49-65.
Gargominy O, Prié V, Bichain JM, Cucherat X, Fontaine B. 2011. Liste de référence annotée des mollusques continentaux de France. MalaCo 7:307-382.
Gittenberger E, de Winter AJ. 1985. A Pyrenean Monacha species, Monacha (Metatheba) atacis spec. nov. (Mollusca: Gastropoda: Pulmonata). Zoologische Mededelingen 59(17):197-207.
Glez-Peña D, Gómez-Blanco D, Reboiro-Jato M, Fdez-Riverola F, Posada D. 2010. ALTER: Program-oriented format conversion of DNA and protein alignments. Nucleic Acids Research 38(suppl. 2):W14-W18. DOI: 10.1093/nar/gkq321.
Gural-Sverlova NV, Gural RI. 2022. Monacha claustralis and M. cartusiana (Gastropoda, Hygromiidae), two cryptic species of anthropochorous land molluscs in Western Ukraine. Ruthenica 32:69-80. (in Russian). DOI: 10.35885/ruthenica.2022.32(2).3.

Hall TA. 1999. BioEdit: A user friendly biological sequence alignment editor and analysis program for Windows 95/ 98/NT. Nucleic Acids Symposium Series 41:95-98.
Hasegawa M, Kishino H, Yano T. 1985. Dating the human-ape split by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22:160-174. DOI: 10.1007/ BF02101694.
Hausdorf B. 2000a. The genus Monacha in Turkey (Gastropoda: Pulmonata: Hygromiidae). Archiv für Molluskendkunde 128(1-2):61-151. DOI: 10.1127/arch. moll/128/2000/61.
Hausdorf B. 2000b. The genus Monacha in the Western Caucasus (Gastropoda: Hygromiidae). Journal of Natural History 34 (8):1575-1594. DOI: 10.1080/00222930050117495.

Hausdorf B. 2003. Preliminary revision of the Monacha (Paratheba) rothii (L. Pfeiffer, 1841) species complex from the Aegean region (Gastropoda: Hygromiidae). Journal of Conchology 38(1):35-46.
Hebert PDN, Cywinska A, Ball SL, deWaard JR. 2003a. Biological identifications through DNA bardcodes. Proceedings of the Royal Society B: Biological Sciences 270 (1512):313-321. DOI: 10.1098/rspb.2002.2218.

Hebert PDN, Ratnasingham S, deWaard JR. 2003b. Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society B: Biological Sciences 270(Suppl. 1):596-599. DOI: 10.1098/rsbl.2003.0025.

Hesse P. 1914. Helix frequens Mousson (Helicidae, Mollusca). Mitteilungen des Kaukasischen Museums - Izvestija Kavkazskago Muzeja 6:253-269, Taf. [1]. Tiflis/Tbilisi.
Hesse P. 1931. Zur Anatomie und Systematik palaearktischer Stylommatophoren. Zoologica 31(81):1-118.
Hlaváč JČ, Peltanová A. 2010. First occurrence of the Kentish Snail Monacha cantiana (Mollusca: Gastropoda: Hygromiidae) in the Czech Republic. Malacologica Bohemoslovaca 9:11-15. Available: http://mollusca.sav.sk/ pdf/9/9.Hlavac-Peltanova.pdf.
Hudec V, Ležava GI. 1969. Bemerkungen zur Erforschung der Landmollusken der grusinischen sozialistischen Sowjetrepublik (II). Sborník národního Muzea Praze 25B (3):93-155.

Hudec V. 1973. Helicidae (Gastropoda, Pulmonata) gesammelt von der niederländischen biologischen Expedition in die Türkei in 1959. II. Zoologische Mededelingen 46(18):231259.

Hutchinson JMC, Schlitt B, Reise H. 2019. Monacha claustralis (Rossmässler, 1834), a hygromiid snail new to Germany. Mitteilungen der Deutschen Malakozoologische Gesellschaft 100:17-22.
Kerney MP, Brown EH, Chandler TJ, Carreck JN, Lambert CA, Levy JF, Millman AP. 1964. The Late-glacial and Post-glacial history of the Chalk escarpment near Brook, Kent. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 248(745):135-204. Available: http://www.jstor.org/stable/2416547.
Kerney M. 1970. The British distribution of Monacha cantiana (Montagu) and Monacha cartusiana (Müller). Journal of Conchology 27:145-148.
Kimura M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16 (2):111-120. DOI: 10.1007/bf01731581.

Köhler F, Johnson MS. 2012. Species limits in molecular phylogenies: A cautionary tale from Australian land snails (Camaenidae: Amplirhagada Iredale, 1933). Zoological

Journal of the Linnean Society 165(2):337-362. DOI: 10.1111/j.1096-3642.2011.00810.x.

Krynicki J. 1833. Novæ species aut minus cognitæ e chondri, bulimi, peristomæ helicisque generibus præcipue Rossiæ meridionalis. Bulletin de la Société Impériale des Naturalistes de Moscou 6:391-436. Available: https://www.biodiversityli brary.org/item/173062\#page/801/mode/1up.
Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33(7):1870-1874. DOI: 10.1093/molbev/msw054.

Linnaeus C. 1758. Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Editio decima, reformata. Vol. 1. Holmiae: Laurentius Salvius. pp. 824. Available: https://biodiversitylibrary.org/page/726886.
Manganelli G, Salomone N, Giusti F. 2005. A molecular approach to the phylogenetic relationships of the western palaearctic Helicoidea (Gastropoda: Stylommatophora). Biological Journal of the Linnean Society London 85 (4):501-512. DOI: 10.1111/j.1095-8312.2005.00514.x.

Montagu G. 1803. Testacea Britannica, or natural history of British shells, marine, land, and fresh-water, including the most minute: Systematically arranged and embellished with figures. Vol. 2. London: Romsey. pp. XXXVII+606.
Müller OF. 1774. Vermium terrestrium et fluviatilium, seu animalium infusiorium, helminthicorum, et testaceorum, non marinorum, succinct historia. Vol. II. Havniae et Lipsiae: Heineck \& Faber. pp. XXXVI+214+10. DOI: 10.5962/bhl. title.46299.
Nei M, Kumar S. 2000. Molecular evolution and phylogenetics. New York: Oxford University Press. p. 352.
Neiber MT, Razkin O, Hausdorf B. 2017. Molecular phylogeny and biogeography of the land snail family Hygromiidae (Gastropoda: Helicoidea). Molecular Phylogenetics and Evolution 111:169-184. DOI: 10.1016/j.ympev.2017.04.002.
Neiber MT, Hausdorf B. 2017. Molecular phylogeny and biogeography of the land snail genus Monacha (Gastropoda, Hygromiidae). Zoologica Scripta 46(3):308-321. DOI: 10.1111/zsc. 12218.

Nordsieck H. 1993. Das System der paläarktischen Hygromiidae (Gastropoda: Stylommatophora: Helicoidea). Archiv für Molluskendkunde 122:1-23. DOI: 10.1127/arch.moll/122/ 1993/1.
Pentinsaari M, Ratnasighman S, Miller SE, Hebert PDN. 2020. BOLD and GenBank revisited - Do identification errors arise in the lab or in the sequence libraries? PLoS ONE 15(4): e0231814. DOI: 10.1371/journal.pone. 0231814.
Pfeiffer L. 1868. Monographia heliceorum viventium. Sistens descriptiones systematicas et criticas omnium huius familiae generum et specierum hodie cognitarum. Volumen quintum. Lipsiae: Brockhaus. pp. I-XII [= 1-12], 1-565.
Pieńkowska JR, Giusti F, Manganelli G, Lesicki A. 2015. Monacha claustralis (Rossmässler 1834) new to Polish and Czech malacofauna (Gastropoda: Pulmonata: Hygromiidae). Journal of Conchology 42(1):79-93. Available: http://doc player.net/56112556-Monacha-claustralis-rossmassler-1834-new-to-polish-and-czech-malacofauna-gastropoda-pulmo nata-hygromiidae.html.
Pieńkowska JR, Górka M, Matuszak M, Bocianowski P, Gwardjan M, Lesicki A. 2016. New data on distribution and molecular diagnostics of Monacha claustralis (Rossmässler, 1834) and M. cartusiana (O. F. Müller, 1774) (Gastropoda: Eupulmonata: Hygromiidae) in Poland, Bosnia and Serbia. Folia Malacologica 24(4):223-237. DOI: 10.12657/folmal.024.019.

Pieńkowska JR, Proćków M, Górka M, Lesicki A. 2018a. Distribution of Monacha claustralis (Rossmässler, 1834) and M. cartusiana (O. F. Müller, 1774) (Eupulmonata: Hygromiidae) in central European and Balkan countries: New data. Folia Malacologica 26(2):103-120. DOI: 10.12657/folmal.026.009.
Pieńkowska JR, Manganelli G, Giusti F, Hallgass A, Lesicki A. 2018b. Exploring Monacha cantiana (Montagu, 1803) phylogeography: Cryptic lineages and new insights into the origin of the English populations (Eupulmonata, Stylommatophora, Hygromiidae). ZooKyes 765:1-41. DOI: 10.3897/zookeys.765.24386.
Pieńkowska JR, Manganelli G, Giusti F, Barbato D, Hallgass A, Lesicki A. 2019a. Exploration of phylogeography of Monacha cantiana s.l. continues: The populations of the Apuan Alps (NW Tuscany, Italy) (Eupulmonata, Stylommatophora, Hygromiidae). ZooKeys 814:115-149. DOI: 10.3897/zookeys.814.31583.
Pieńkowska JR, Duda M, Kosicka E, Manganelli G, Giusti F, Lesicki A. 2019b. Monacha cantiana s.l. (Montagu, 1803) (Gastropoda: Hygromiidae) - Mitochondrial lineage occurring in Austria. Arianta 7:33-40.
Pieńkowska JR, Manganelli G, Giusti F, Barbato D, Kosicka E, Hallgass A, Lesicki A. 2020. Redescription of Monacha pantanellii (De Stefani, 1879), a species endemic to the central Apennines, Italy (Gastropoda, Eupulmonata, Hygromiidae) by an integrative molecular and morphological approach. ZooKeys 988:17-61. DOI: 10.3897/zookeys.988.56397.
Pilsbry HA. 1895. Manual of conchology, structural and systematic, with illustrations of the species. Ser. 2, Pulmonata. Vol. 9: Helicidae, Vol. 7, Guide to the study of Helices. Philadelphia: Conchological Section, Academy of Natural Sciences. pp. 1366, pls 1-71, 1893-1895. [pp. 161-366, pls 41-71, i-xlviii, 2 Feb 1895; index 1-126, April 1895]. Available https://www. biodiversitylibrary.org/page/1102607
Pinter L. 1968. Über bulgarischen Mollusken. Malakologische Abhandlungen 2(15):209-230.
Proćków M, Kuźnik-Kowalska E, Pieńkowska JR, Żeromska A, Mackiewicz P. 2021. Speciation in sympatric species of land snails from the genus Trochulus (Pulmonata, Hygromiidae). Zoologica Scripta 50:16-42. DOI: 10.1111/zsc. 12458.
Retowski O. 1887. Am Strande der Krim gefundene angeschwemmte Binnenconchylien. Malakozoologische Blätter 9 [1886](1):22-42.
Ronquist F, and Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12):1572-1574. DOI: 10.1093/bioinformatics/btg180.
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, and Huelsenbeck JP. 2012. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model selection across a large model space. Systematic Biology 61 (3):539-542. DOI: $10.1093 /$ sysbio/sys029.
Rossmässler EA. 1834. Diagnoses conchyliorum terrestrium et fluviatilium. Zugleich Verzeichniss zu Fascikeln natürlicher Exemplare. Vol. II. Heft. No. 21-40. Dresden and Leipzig:

Arnold. pp. 1-8. Heft. No. 21-40: https://www.biodiversityli brary.org/bibliography/10380.
Roth JR. 1839. Molluscorum species, quas in itinere per orientem facto comites clariss. Schuberti Doctores M. Erdl et J. R. Roth collegerunt. Monachii: C. Wolf. pp. I-VIII, 9-26, [1], pls I-II.
Saitou N, Nei M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4(4):406-425. DOI: 10.1093/oxfordjournals.molbev.a040454.
Sauer J, Hausdorf B. 2010. Reconstructing the evolutionary history of the radiation of the land snail genus Xerocrassa on Crete based on mitochondrial sequences and AFLP markers. BMC Evolutionary Biology 10(1-13):299. DOI: 10.1186/ 1471-2148-10-299.
Sauer J, Hausdorf B. 2012. A comparison of DNA-based methods for delimiting species in a Cretan land snail radiation reveals shortcomings of exclusively molecular taxonomy. Cladistics 28(3):300-316. DOI: 10.1111/j.10960031.2011.00382.x.

Schileyko AA. 1978. Nazemnye molljuski nadsemejstva Helicoidea [Terrestrial molluscs of the superfamily Helicoidea]. In: Strelkov AA, editor. Fauna SSSR, Molljuski. III, 6 [= N.S. 117]. Leningrad: Nauka. pp. 1-384 (including 21 plates).
Schileyko AA. 2005. Treatise on recent terrestrial pulmonate molluscs. Part 14. Helicodontidae, Ciliellidae, Hygromiidae. Ruthenica Supplement 2(14):1905-2047.
Simon C, Frati F, Beckenbach AT, Crespi B, Liu H, and Flook P. 1994. Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of Entomological Society of America 87(6):651-701. DOI: 10.1093/aesa/ 87.6.651.

Tamura, K. 1992. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and $\mathrm{G}+\mathrm{C}$-content biases. Molecular Biology and Evolution 9:678-687. DOI: 10.1093/oxfordjournals.molbev.a040752.
Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, posi-tion-specific gap penalties and weight matrix choice. Nucleic Acids Research 22(22):4673-4680. DOI: 10.109 3/nar/22.22.4673.
Wade CM, Mordan BP. 2000. Evolution within the gastropod molluscs; using the ribosomal RNA gene-cluster as an indicator of phylogenetic relationships. Journal of Molluscan Studies 66(4):565-570. DOI: 10.1093/mollus/66.4.565.
Welter-Schultes FW. 2012. European non-marine molluscs, a guide for species identification. Göttingen: Planet Poster Editions. pp. 679+78.


[^0]:    © 2022 The Author(s). Published by Informa UK Limited, trading as Taylor \& Francis
    Group.

[^1]:    *Correspondence: A. Lesicki, Department of Cell Biology, Institute of Experimental Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, Poznań 61-614, Poland. Email: alesicki@amu.edu.pl

[^2]:    Particular gene sequences were trimmed and then deposited in GenBank with the following lengths:
    Sequences 16 SrDNA were $308-317$ bp
    5.8 S rDNA fragment) were of $558-581 \mathrm{bp}$ ( $71 \mathrm{bp} 5.8 \mathrm{~S}+487-510 \mathrm{bp}$ ITS2);

    Sequences H3 were 303 bp long;
    Sequences lgITS 2 (complete ITS2 flanked by 5.8 S and 28 S rDNA fragments) were of $835-856 \mathrm{bp}$ long ( $89 \mathrm{bp} 5.8 \mathrm{~S}+489-510 \mathrm{bp}$ ITS $2+257 \mathrm{bp} 28 \mathrm{~S}$ ) AA - specimens used in anatomical studies marked with + .

