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1 Introduction

The classical pricing theory is based on the assumptions that the market is
frictionless and competitive. Hence, the existence of a linear pricing rule is equivalent
to the fact that the market is arbitrage-free (the first fundamental theorem of asset
pricing). In turn, the existence of a linear pricing rule is equivalent to the existence
of an equivalent martingale measure. Moreover, the assumption of completeness of
the market assures that the equivalent martingale measure is unique.

Under market incompleteness, the uniqueness is lost and this leads to a set
of equivalent martingale measures (see, e.g., |[Amihud and Mendelson| {1986} |Chen|
and Kulperger| 2006; |Acciaio et al., |2016). The literature concerning the theory of
sets of probability measures and their envelopes essentially refers to Walley] (1991)),
Gilboa and Schmeidler| (1989)), |Schmeidler| (1989)), |Cozman)| (2000)), |Ghirardato and
Marinacci (2001), [Capotorti et al| (2008), (Coletti et al| (2016), [Erreygers et al.
2019)), [Petturiti and Vantaggi| (2020)), [T Joens et al. (2021)), [Petturiti and Vantaggi
2022).

In the framework of decision theory, sets of probability measures are related also
to the notion of ambiguity (Etner et al., 2012; |Gilboa and Marinacci, 2011)).

As is well-known, the simplest example of incomplete market is the trinomial
market model. In the classical approach the market can be completed by adding
another risky asset that leads to choose a specific equivalent martingale measure in
the original set. Anyhow the latter procedure requires a choice criterion and it would
lead to lose some information contained in the set. More generally, incompleteness
continues to hold if the risky asset is allowed to have n different possible future
values, for n > 3.

The existence of a set of probability measures suggests to work with a non-linear
pricing rule that can model frictions in the market. Frictions such as bid-ask spreads
are largely proved to exist (Amihud and Mendelson) |1986, 1991) and they are
studied in [Bensaid et al. (1992), |Jouini and Kallall (1995)), |Acciaio et al. (2016),
(Cerraia-Vioglio et al. (2015), |[Chateauneuf et al| (1996]), (Chateauneuf and Cornet,
(2022).

There are alternative attempts along this line by considering different function-
als for pricing: envelopes of expected values with respect to a class of probability
measures, integral forms such as Choquet expectation with respect to non-additive
measures. In general, the two approaches are not equivalent but in case of a convex
capacity (or a belief function) v the Choquet integral coincides with the lower ex-
pectation induced by its core (see Schmeidler} [1986). In particular, in
the study of market frictions has been faced by replacing probability mea-
sures with belief functions in the Dempster-Shafer theory (Dempster} 1967; |Shafer,
1976).

The paper is structured as follows. In Section 2 we report the classical no-arbitrage
pricing theory in the one-period setting. We introduce complete and incomplete
markets and we show the one-period trinomial market model as a prototypical ex-
ample of incomplete market. Section 3 introduces non-additive measures that are
required to deal with non-linear pricing rules and the Choquet integral as non-linear
functional. In Section 4 we recall and connect some results given in
et al| (1996) and |Coletti et al| (2020) assuring that a non-linear pricing rule can be
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expressed through a Choquet expectation. In particular we will focus on a global
lower pricing rule that can be expressed as a discounted Choquet expectation with
respect to a convex capacity or a belief function. Then we point out that in the
trinomial market model the lower probability, proved to be a belief function in
Cinfrignini et al. (2021), gives rise to a Choquet expectation that does not coincide
with the lower expectation induced by the equivalent martingale measures. Nev-
ertheless, the lower price assessment on the bond and the risky asset satisfies the
generalized no-Dutch-book condition obtained from |Coletti et al.| (2020). Finally,
the last section draws conclusions.

2 Classical one-period no-arbitrage theory

We refer to a one-period financial market open at times ¢t = 0 and ¢t = 1. An
asset (or security) is a tradable financial instrument that has a positive or negative
cash flow of money. The cash flow is deterministic (i.e. it does not depend on future
states of the world) when the asset is riskless; otherwise the cash flow is a random
variable since it depends on what state of world will occur, and the asset is called
risky. The market is based on two fundamental assumptions (Allingham), [1991)):

(i) absence of frictions (there are no transaction costs, taxes and others restric-
tions on trading);

(ii) competitiveness (every quantity can be traded at market’s price).

One period market model consists of a set of K risky assets with price process
(Sék), Sik)), for K = 1,..., K, and by one riskless asset (bond) with price process
(By, B1) that is identified with a 0-th asset (Séo), Sio)) to simplify the notation. It is
usually assumed that S((]k) = s > 0 is a deterministic positive value (called price),
while S{k) is a random variable (called payoff), for each k = 1,..., K. The bond

process, without loss of generality, is assumed to be S(()O) =1and Sio) = 1+, where
r > 0 is the risk-free interest rate of the market.

Price processes are defined on a filtered probability space (2, {Fo, Fi},F, P)
where Q = {1,...,n}, n € N is a finite state space, {Fo, F1} is a filtration such
that o = {0,Q} and F; = F = P(R) is the power set of 2, and P is a probability
measure on F. The probability measure is called “natural” or “real-world” proba-
bility measure and the classical pricing theory asks for the positivity of P since it
assures that an asset with a non-negative and non-null payoff will have a positive
price at time t = 0. We also denote by R® the set of all random variables which
are automatically F-measurable. Moreover, scalar real numbers are identified with
constant random variables. Finally, P(£2, F) stands for the set of all probability
measures on (9, F).

Let us denote the set of all random payoff with G = {S§O), ey S§K)} and with
7 : G — R a function such that 7 (S@) = (k), for K =0,..., K, which is called

price assessment. Our aim is to look for a global pricing rule 7’ : R® — R that
extends 7.

The risk-free bond is usually used as a numraire (see Pliska, (1997)); it means
that the riskless bond allows to discount the risky process and defines a new process
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denoted as (gék), 5‘@) with S(()k) = Sék) and S’fk) =(1+ r)—le“), fork=1,... K.

A portfolio (or trading strategy) is a collection of assets that an agent can hold.
It is denoted by a vector A = (Ao, ..., Ax) € RETL whose component )\, expresses
the number of units purchased (A\; > 0) or sold (A\x < 0) of the k-th asset in the
time interval [0, 1].

The price at time t = 0 of the portfolio A is computed as weighted sum of prices:

K K
V=Y nes = e (s1)) 1)
k=0 k=0

while the payoff of the portfolio A is given by a random variable V* : O — R
defined, for every i € (2, as the weighted sum of payoffs:

V) =D s (). (2)

Given the set of random variables G, A € RE*! is a Dutch-book portfolio if the
following condition holds:

max i A (S@ () - (5@)) <o0. (3)

1€Q

The condition means that the portfolio A € RE+! gives rise to a sure loss for each
1 € €1, since the supremum gain is negative for sure. The portfolio is also called
incoherent. Conversely, if inequality in Equation does not hold, the portfolio
is called coherent and it avoids a Dutch-book opportunity, i.e. it avoids a sure loss
(Schervish et al., 2008).

The arbitrage definition is stronger than that of Dutch-book, since the former
guarantees a positive payoff in, at least, one state of the world, with a zero or
negative price. A portfolio A € RE*! is an arbitrage portfolio if one of the following
condition holds (Allingham, [1991):

(1) V* <0 and V> > 0 with a strict inequality for at least one i € Q;
(2) V <0and VX =0.

Equivalently A € RE+! is an arbitrage portfolio if S0 o Ay (ka)(z) - (ka)» >0,
for all 7, with a strict inequality for at least one ¢ € ). Note that a Dutch-book
opportunity implies the existence of an arbitrage but the converse does not hold
(Schervish et al., 2008).

The assumption that the market has to be arbitrage-free is standard in classical
pricing theory (see, e.g., Pliska, [1997; Dybvig and Ross, [1989)) and it has important
implications in asset pricing. The absence of arbitrage opportunities guarantees the

existence of a positive linear pricing rule 7/ : R® — R such that 7/ (Sgk)> = <S£k)> ,
for k =0,..., K (Dybvig and Ross, 1989).
Furthermore, when the market is complete, there is a unique linear pricing

rule 7" given by the discounted expected value computed with respect to a unique
risk-neutral probability measure that has to be equivalent to the natural one.
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Under completeness, a deriwvative X, that is a financial contract defined as a ran-
dom process (Xg, X1) on the filtered probability space (2, {Fo, F1},F, P), adapted
to the filtration {Fy, F1}, can be perfectly replicated by setting up a replicating
strategy A € RE+! composed by the risky assets and the bond, such that they have
the same final payoff X; = V.

Then, by the law of one price, they have the same price at time t = 0:

Xo = v()A? (4)
and its value is computed as discounted expected value of its payoft:
XO = (1 -+ T)ilEQ(Xl), (5)

where () is the unique equivalent martingale measure. Therefore, we have that
() = (1+7) " Eq(-).

On the other hand, in the case of an incomplete market, the price assessment is
consistent with the no-arbitrage assumption but not each derivative in the market
can be replicated by a strategy. This leads to a set of equivalent martingale measures
Q such that each ) € Q defines a different price.

Given a non-replicable derivative with payoff Y7 € R®, its fair price can be
computed as an interval defined through the closest replicable derivative. If X; is
the closest replicable derivative of Y7, the following quantities can be computed:

V() = inf (1+7) 'Eg(X1), V(Vi)= sup  (1+7)"Eq(Xy). (6)
X1V, X1<Y1,
X is replicable X is replicable

The fair price of the derivative has to be in the interval (V(Y;), V(Y1)), otherwise it
gives rise to an arbitrage opportunity (Pliskal [1997). Another approach to select a
replicating strategy for a non-replicable derivative is to choose the best replicating
strategy among the imperfect strategies through approximations/algorithms (see
Cern) 2009; Bertsimas et al. 2001). Although they are not detailed here, some
criteria to choose a replicating strategy can be the following:

(a) sub(super)-hedging. We look for a strategy Ag € RE*! such that
Vs < (>)Y1. Hence the sub-hedging V3* and the super-hedging prices V()f s
are the no-arbitrage bounds for the non-replicable payoff Y7;

(b) quadratic risk minimization. We look for a strategy Agr € RFT! that
minimizes the expected value of the quadratic distance between the payoff
of the derivative and the value of the portfolio. The following optimization
problem has to be solved:

pinz | (v - 12 ©

AQR

(c) shortfall risk minimization. We look for a strategy Agr € RET! that min-
imizes the shortfall risk. It penalizes only deviations in defect but it is less
mathematically tractable. The following problem has to be solved:

ASR

min {(Yl . vﬁ%)j . (8)

b}
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Another approach to overcome market’s incompleteness is to complete the market
with an appropriate number of extra assets. Let us introduce the matrix notation
to go deep into the problem. Payoffs of riskless and risky assets are defined in the
matrix A € R™(E+D;

s st L. s
Ao . . | o)

SOy sMm) ... S ()

and the vector of payoff of the derivative is denoted by X = (X;(1),...,X1(n)) € R™
Hence, an arbitrage-free market is complete if and only if the following linear prob-
lem has a unique solution:

ANT = X, (10)
where XA = (A, ..., \x) € RET! is the portfolio such that )\ is referred to units of
risk-free asset S(© and ), is referred to units of risky asset S®), for k =1,..., K.

Problem has a unique solution, assumed that there are no redundant assetﬂ
if and only if rank(A) = n = K + 1, hence A has to be a square matrix. Otherwise,
the following possibilities can occur (Cern, 2009):

(I1) rank(A) = n < (K + 1): the market is complete but there are K +1 —n
redundant assets that lead to K 4+ 1 —n free parameters referred to redundant
assets;

(I2) rank(A) = (K + 1) < n: the market is incomplete since n — (K + 1) assets
are lacking. It can be completed by adding the missing number of assets;

(I3) rank(A) < n,rank(A) < (K + 1): the market is incomplete and there are
(K + 1) — rank(A) redundant assets.

However, sometimes the completion is not possible or not desirable as it changes
the market structure. Also other procedures that introduce additional requirements
such as agents’ preferences may be not desirable as they change the framework.
A way to define a unique price consistent with the no-arbitrage principle without
changing the market structure is to compute prices with every ) € Q through
Equation and define a set of prices Y. Then we could choose the price Y € Y
that departs as little as possible from the actually observed in the market. For this
procedure we can refer, for example, to Pascucci and Runggaldier| (2011)).

The simplest example of complete market model is the one-period binomial
model (Cox et al. (1979), while an example of incomplete market model is the
trinomial model.

The trinomial model is composed by a bond with price process
(Bo=1,B1 = (1 +1)By) and by a risky asset with the following price process:

uSy  with probability pq,
So=s>0, Sy =< mSy with probability ps, (11)
dSy  with probability ps,

1 An asset whose payoff can be written as a linear combination of others assets’ payoffs is called
redundant since it does not add anything new to the market. If there are no redundant assets,
the market’s asset are said to be linearly independent.
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where u > m > d > 0 are parameters, p; € (0,1) for i = 1,2, 3, and Z?lei =1.
Such model is free of arbitrage if and only if v > (1+r) > d as the binomial model
but it is not complete since it occurs condition (12).

In the trinomial case there is a set of equivalent martingale measures denoted
as:

Q={QEP(QF): (1+7) 'Eq(S1) = So. @~ P}. (12)

The set Q is a convex set that can be characterized by its extreme points
(Runggaldier] 2006]) (in particular it is a segment since there are two extreme points):

m—d 7’ m—d

<0, (14r)—d mf(1+r)> if m > (1 + 7’),

Q' =(d.¢3.q3) = 1 1 (13)
((erm =) ) ifm < (147),
2 2 2 2 (1+T)_d “_<1+T)
pr— p— . 14
Q (Q17QZ7q3> ( u—d 707 U—d ( )

We stress that extreme points Q! and Q? are not equivalent to P since they are not
positive on F; hence equivalent martingale measures are given by the strict convex
combinations of Q' and Q%

Q={Q": Q" =aQ' + (1-a)Q* ac (0,1}, (15)

with Q¢ ~ P, for each Q% € Q.

At this point, a suitable criterion to choose one measure in the set is required.
In the following example we show that each Q¢ € Q is an equivalent martingale
measure consistent with no-arbitrage assumption but it leads to varied prices for

the derivative, through Equation .
Example 2.1 Let Sp = 100,u = 2,m = g,d = % and, without loss of generality,

r = 0. Extreme points of the set Q, computed with Equations , are:

1_(p3 1 2_ (342
Q_(07474>7 Q_(87078>

Then the set of equivalent martingale measures is given by:

Qz{Q":Q"‘:a(O,%i)jt(l—a) (§o§> 046(0,1)}.

For instance, let a = 0.2. The equivalent martingale measure is Q%2 = (2%, %, %)

and we can verify that Q%2 € Q by computing the following expected value:
Sy 6 6 3 2 11
Egoo () =2 — 4+ 2. 2 42— =1
@ (So) 207520 75 20

Let C be a European call option with payoff C; = max(S; — K,0) and strike price
K = 110. The payoff at time t = 1 is the following:

90 ifi=1
Ci() =4 10 ifi=2
0 ifi=3

7
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The price of the call option Cy computed through Q%2 is:

6 3 o7
Cy = ]EQOQ(Cl) =90- 2—0 + 10 - % =5 = 28.5.

Let be o = 0.9. The equivalent martingale measure is Q%% = (%, %, %). Also in

this case Q%Y € Q since Ego. (%) =1, and the price of the call option computed
trough Q%Y is:

3 27 81
Co =Eqgoa(Cy) =90 g T10 5= 5 = 10125

¢

The trinomial model can be completed by adding another risky asset. We de-
note risky assets as S and S, each of them with price process as in (T1]), with
parameters u;, m;, d;, for ¢« = 1,2. The model is complete as K +1 =3 = n, with a
unique solution for ¢i, ¢, g3 (for details see Pascucci and Runggaldier;, [2011)).

We stress that any n-nomial market model composed by K risky asset is incom-
plete, for n > 3 and K < (n — 1), as explained in |Cinfrignini et al.| (2021)).

Anyhow completing the market is not always possible or desirable. Our approach
would deal with a subset Q" C Q, possibly with an equality. Pricing with Q" would
allow to model frictions in the market in the form of bid-ask spreads. The intuitive
way to face the problem of frictions in a trinomial model is to define the interval of
derivative’s price induced by @'. It means that we look for the lower and the upper
bounds of price, defined as:

Xo= (147" inf Ega(X;), Xo=(1+7)"" sup Ega(X). (16)
—_— Qate QQEQ/
Thus, we could look for a lower /upper pricing rule which is given by the lower /upper

envelope of a class of expectations with respect to each Q% € Q' and extends the
fixed lower /upper price assessment.

3 Non-additive measures and non-linear functionals

When uncertainty is not quantifiable in a single probability measure and we have
to deal with a set of them, we are facing a situation called ambiguity. Since working
with the whole class of probabilities is hard, we usually consider the envelopes of
the class. For instance, in the trinomial model just defined, we would consider a
lower pricing rule expressed by a functional of an envelope of the set of equivalent
martingale measures. In particular, in what follows, we work with the lower enve-
lope, but we point out that the upper envelope leads to the same results, since they
are conjugate functions. Generally, envelopes of a set of probability measures are
no longer probabilities. Hence, we have to introduce generalized functions that lose
the additive property: for that they are called non-additive measures. Moreover, in
particular settings, there exists a link between the envelopes of linear functionals
defined with respect to a class of probability measures and a non-linear functionals
computed with respect to a non-additive measure, as we show in this section.

Let (2, F) be the finite space defined in the previous section, with F = P(Q).

8
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Definition 3.1 A function v : F — R is called a non-additive measure or a capacity
if it is:
(i) normalized: v(0)) =0 and v(Q) = 1;
(ii) monotone: v(A) <v(B) for all A,B € F, with A C B.
Moreover, a capacity v is called:

(a) 2-monotone or convex capacity if, for every A, B € F:

v(AUB) > v(A) +v(B) —v(AN B); (17)

(b) totally monotone capacity or belief function (usually denoted by Bel) if, for
every Ay, ..., A, € F with k > 2, it holds that:

k
. (U AZ) S Sy (m@-) ; as)
i=1 }

OAIC{1,... .k il

(c) (coherent) lower probability if there exists a set P of probability measures on F
such that, for every A € F:

v(4) = inf P(A); (19)

(d) probability measure if v(AU B) = v(A) + v(B), for every disjoint A, B € F.

If v is a belief function, then it is also a 2-monotone capacity and a (coherent)
lower probability. In turn, if v is a probability measure, then it is also a belief
function. Conversely, the property of being a lower probability does not imply
2-monotonicity and, so, neither total monotonicity.

We denote by V(Q, F) and B(£2, F), respectively, the set of all capacities and
that of all belief functions on (2, F), and we stress that P(Q, F) C B(, F) C V(Q, F P}
For every 2-monotone capacity there exists a set of dominating probability mea-

sures called core (or credal set) (Gilboa and Schmeidler} |1994; [Walley, 1991)):

core(v) = {P € P(Q2, F)|P(A) > v(A), YA € F}. (20)

A coherent lower probability P is such that core(P) # @) and P is its lower

envelope: P(A) = R min(P)P(A), VA € F. In turn, a belief function, as it is a
ccore(P

particular lower probability, can be regarded as the lower envelope of its core:

Bel(A) = min P(A). (21)

Peccore(Bel)

Every capacity v can be characterized in terms of another function called Mdbius
inverse (Chateauneuf and Jaffrayl [1989):

m(A) =Y (-1)"y(B),  v(A) =D m(B). (22)

BCA BCA

2 Every capacity v has a conjugate function called dual capacity. In general it is defined as
7(A) =1—-v(AY), YA € F. The dual of a lower probability is said upper probability; the dual
of a 2-monotone (convex) capacity is said 2-alternating (concave) capacity; the dual of a belief
function is said plausibility function (Pl); the dual of a probability is itself.

9
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Proposition 3.1 (Chateauneuf and Jaffray} [1989). Given a function v : F — R,
let m be its Mobius inverse. Then:

(a) v is a capacity if and only if:
m(0) =0,

> perm(B) =1, and
Z{i}eBgAm(B) >0, for all A€ F and for all i € A;

(b) v is a 2-monotone capacity if and only if condition (a) holds and VA € F, and
{i,j} € Awithi#j, >0 hepcam(B) = 0;

(c) v is a belief function if and only if condition (a) holds and m is non-negative;

(d) v is a probability measure if and only if condition (a) holds, m is non-negative
and can be positive only on singletons.

Definition 3.2 (Gilboa and Schmeidler, 1994). Given a capacity v and a random
variable X € R®, the Choquet expectation of X with respect to v, denoted by C,(X),
is defined through the Choquet integral:

= /000 v({i e QX (i) >z})dx +/ v({i € QX (i) > 2}) —v(Q)] da.

We point out that the Choquet expectation coincides with the expected value

if v is additive (i.e. it is a probability measure P): C,(X) = Ep(X). Assuming
Q ={1,...,n}, the Choquet integral can be computed in the following way:

n

Co(X) =) [X(o(i)) = X(oli+ 1)) v(E7), (24)

i=1

where ¢ is a permutation of 2 such that X (o(1)) > ... > X(o(n)), Ef = {o(1),...,0(i)},
fori=1,...,n, and X(o(n + 1)) = 0. Moreover, for every v € V(Q, F) with cor-
responding Mobius inverse m, and X € R?, the Choquet expectation of X with
respect to v can be computed through the Mobius inverse:

C(X)= > m(B) min X (i) (25)
BeF\{0}
We summarize some properties of the Choquet integral:

v(A), with 14 : Q — {0, 1} the indicator

(i) for all A C Q we have that C,(14) =
=1ifi € A and 14, = 0 otherwise;

function of A such that 14(7)

(ii) for any capacities v, ¢, € V(Q, F) and «, § € R, it holds that
Cavtpp(X) = aC,(X) + SC(X);

(iii) (non-negative homogeneity) for any capacity v and all & > 0, it holds that
C,(aX) =aC,(X);

10
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(iv) (constant additivity) for any capacity v and all & € R, it holds that
Cola+X)=a+C,(X);

(v) (monotonicity) for any capacity v and for any X,Y € R® such that X <Y, it
holds that C,(X) < C,(Y);

(vi) if v is a 2-monotone capacity, for any X,Y € R the Choquet integral is
super-additive: C,(X +Y) > C,(X) + C,(Y), and, for every X € R?, the
Choquet expectation equals the lower expectation with respect to the core(v)
(Gilboa and Schmeidler} [1994):

C,(X) = min()ZP({i})X(i): min  Ep(X); (26)

Pecore(v Péecore(v
1€Q @)

(vii) if v reduces to a belief function Bel, for any Xi,..., X, € R®, the Choquet
integral is completely monotone:

k
Cpe (\/ Xi) > > (=nHc (/\ XZ-> : (27)
i=1 PAIC{L,... k} iel

We stress that property (vi) continues to hold if v reduces to a belief function and it
can be interpreted as a lower expectation. This shows that Choquet expectation with
respect to a 2-monotone capacity or a belief function leads to a specific functional
inside the class of envelopes of expectations.

In the following example we show that, despite the lower envelope of a set P of
probability measures is 2-monotone (or even a belief function), the corresponding
Choquet expectation may not coincide with the lower expectation induced by P if
its closed convex hull does not coincide with core(P).

Example 3.1 Let Q = {1,2,3} and X be a random wvariable that assumes the
following values: X(i) = i, for i = 1,2,3. Let P be a set of three probability
measures: P = {Py, Py, P3} taking values reported below:

Fl0] 1 2 3 12 | 13 | 23 | Q
P 0| 1/2]1/4]1/4[3/4[3/4]1/2] 1
Py |0 1/3[1/3]1/3]2/3]2/32/3]1
Py [ 0]2/5]2/5]1/5]4/5]3/5]3/5] 1
The lower probability P(A) = min  P(A),VA € F, and its Mdbius inverse m

PE{Pl,PQ,Pg}
are reported in the following table:

1| 2] 3| 12] 13| 23
12 [ 1/4]1/a| 3/4 | 3/4 | 1/2
1/311/3]1/3| 2/3 | 2/3 | 2/3
2/5|2/51/5| 4/5 | 3/5 | 3/5
1/3[1/4]1/5| 2/3 | 3/5 | 1/2
1/3 [ 1/4]1/5 [ 1/12 | 1/15 | 1/20 | 1/60

el el il i )

S| Pesiiesi il
olololoo=
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Since m(A) > 0 for every A € F, the lower probability P is a belief function.

The Choquet integral of X with respect to P, generally, is not equal to the lower
expectation of X computed among P € P since the conver hull conv(P), which is
closed as P is finite, does not coincide with core(P). To show that, we compute
the extreme points of core(P). FExtreme points of core(P) are computed in the
following way: for any permutation of indices o = (o(1),...,0(n)), extreme points
are computed as P = (P(o(1)),..., P(o(n))) with
P(o(i)) = P({o(1),...,0(i)}) = PL({o(1),...,0(i = 1)}).

Hence, for any permutation of {1,2,3}, we have the following set of extreme
points ext(core(P)):

PO = (LL]) =R PO (L3 4),
PO (dd) POU (4D -R,
PO S (G Eh =R, PO = (L3
This proves that conv(P) # core(P), hence the lower expectation with respect to P

and the Choquet integral with respect to P, generally, lead to different results:
E(X)= min Ep(X)=min{1.75,2,1.8} = 1.75,

PE{Pl,PQ,Pg}
Cp(X) = (3= 2)P(3) + (2— 1) P(23) + (1 - 0)P(Q) = L.T.
Therefore, we get that Cp(X) < E(X), since conv(P) C core(P). ¢

At this point the question that arises is if a n-nomial model leads to analogous
results. This problem has been faced in |Cinfrignini et al. (2021). It is proved that
any n-nomial market model, for n > 3 is incomplete and the lower envelope of the
set of equivalent martingale measures is a belief function but the closure of the set of
equivalent martingale measures does not coincide with the core of its lower envelope.

4 Non-linear pricing rules

Let us consider a one-period financial market with frictions in the form of bid-ask
spreads, that can be due to the presence of intermediaries, taxes, or to the incom-
pleteness of the market. The market consists of a risk-free bond B and of a set of
K risky assets with payoffs SF), ce S§K).

For £k = 1,..., K, each asset’s price is defined through an interval [ﬁ(()k) ,g(()k)],
where §(()k) is called bid price and gék) is called ask price (it is tacit that §(()k) < gék)
where equality holds only if the k-th asset is frictionless). The bond price process
is (By =1,B; = 1 +7) and it is frictionless, i.e. B, = By = B.

The problem is to determine non-linear functionals able to characterize bid and
ask prices. In Acciaio et al.| (2016]), for instance, lower and upper expectations are
used as non-linear functionals. The question that in literature has been addressed
is if non-linear functionals can be defined by means of the lower/upper expectation
with respect to a set of probabilities, or by means of a Choquet integral with respect
to a 2-monotone capacity or a belief function, and if the two approaches give out to
the same outcome.

12
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In what follows we will see that the same question arises in the trinomial model
where a generalization of no-Dutch book condition can be shown to hold. We point
out that the framework in (Chateauneuf et al| (1996 and Coletti et al. (2020) is
from the upper price point of view, in terms of concave capacities and plausibility
functions. Here, the setting has been reversed in terms of convex capacities and belief
functions. Original results do not change since concave (plausibility) functions are
the conjugate of convex (belief) functions.

We consider a global lower pricing rule 7 : R® — R defined for all X; € R? as:

T (X1) = X, (28)

which is not assumed to be linear.
In accordance with Chateauneuf et al. (1996)@, we make the following assump-
tions:

(A1) monotonicity: for X;,Y; € R? if X; > Y] then 7 (X)) > 7 (Y});

(A2) frictionless bond: there is a risk-free bond By = 1, B; = 1 + r that is not
frictional m(aB;) = a, for all a € R;

(A3) super-additivity: for X1,Y; € R, we have that 7 (X;) + 7 (V1) < 7 (X, + Y1),
withi,7 € {1,..., K}, where equality holds only if X and Y; are comonoton(ﬂ

Theorem 4.1 (Chateauneuf et al. [1996). Under assumptions (A1)-(A3), for all
X, € R® there exists a unique convex capacity v such that the global lower pricing
rule m can be expressed as a discounted Choquet expectation of the payoff with
respect to v:

(X)) = (1 +7")_1;[£X1 dv = (14+1)7'C, (X1). (29)

We stress that the Choquet integral with respect to a 2-monotone capacity is
equivalent to the lower expectation with respect to the set of probability measures
in core(v), hence the bid price is equivalently computed as:

Xo=r(X))=0+7r)"" min Ep(X;). (30)
Pccore(v)

As we already pointed out, the same model can be set up from the upper
point of view with respect to a concave capacity, replacing assumption (A3) with
sub-additivity property (that is the version in (Chateauneuf et al., 1996)). Since it is
the dual function of a convex capacity, for each X; € R®, we can compute the ask
price X, as a discounted Choquet integral with respect to the conjugate concave
capacity, which can be expressed in terms of an upper pricing rule:

Xo =7 (X)) = —n(—X)). (31)

The approach of Chateauneuf et al. (1996)) characterizes a lower pricing rule
already defined on the whole R®. If we refer to the K fixed risky assets and identify

3 In the quoted paper, the authors consider already discounted amounts that, in our setting, is
equivalent to take r = 0.

4 Two assets X1,Y; € R? are comonotone if they vary in the same way: Vw,w’ € Q,
(X1 (w) = Xy (w)][Y1(w) = Yi(w)] 2 0.
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the payoff of the risk-free bond By with a 0-th asset, and —B; with a (K + 1)-th

S§K+l)

asset, we have a finite set of payoffs G = {550)7 ey }. In this case, we have

a lower price assessment m : G — R such that (S@) = §(()k), for k=1,..., K,
s (Sf))) = 1 and ﬂ(Sy{H)) = —1. Now, our goal is to find a lower pricing

rule 7’ : R® — R that extends 7 and can be expressed as a discounted Choquet
expectation. This problem can be tackled in the framework of belief functions by
relying on results given in (Coletti et al.| (2020).

If there exists a belief function Bel : F — [0, 1] such that, for £ =0,..., K + 1,
the lower price assessment is defined as the discounted Choquet expectation with
respect to Bel, that is it satisfies:

s (S ) Chei (5 k)) ) (32)

then the lower price assessment is called CBel-coherent. As usual, SYC) denotes the
discounted payoft, for k =0,..., K + 1.

Theorem 4.2 (Coletti et al., 2020). For a finite G defined as above the following
statements are equivalent:

(i) m is a CBel-coherent price assessment;

(ii) 7 avoids CBel-Dutch book opportunities: for every A € RE*2 the following
condition holds:

max KZHA,C (mln $® ) — (Sf’“’)) > 0. (33)

BeF\{0} i€B

Condition assures that there cannot be a portfolio that leads to a sure
loss, defined under partially resolving uncertainty (Jaffray|, 1989)), i.e., working over
F\ {01,

The no-Dutch book condition in the setting of belief functions in Equation (33)
is weaker than the classical no-Dutch book condition in Equation since in the
latter case we are working under completely resolving uncertainty. Completely re-
solving uncertainty is the common assumption of the classical Dutch-book condition
(Equation (3])) and requires that, once uncertainty is resolved, the knowledge of the
true state ¢ € ) will be acquired. Conversely, under partially resolving uncertainty
we assume that, when uncertainty is resolved, we may acquire the information that
an event B has occurred but we may not identify the state : € B that turns out
to be true. In particular, condition considers a systematically pessimistic be-
havior as, for every £ = 0,..., K 4+ 1, we take the minimum payoff given by all
1 € B, defined as Izrélél Sﬁk) (7). We notice that Theorem does not guarantee the

uniqueness of Bel and, so, of the lower pricing ruler 7’ extending w. Nevertheless,
every such extension satisfies conditions (A1)-(A3) introduced before.

We finally get back to the trinomial market model. In|Cinfrignini et al.|(2021)) it
is proved that the lower probability @ of the set Q of equivalent martingale measures,

computed as Q(A) = thng )Q( ), VA € F, is a belief function. Therefore, this
- S
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would suggest to define a lower pricing rule as the discounted Choquet expectation
with respect to (). Unfortunately, a situation analogous to Example occurs since

the closure cl(Q) does not coincide with core(®). Thus the discounted Choquet
expectation does not coincide with the lower expectation computed with respect to
Q, and so the two approaches lead to different results.

We also notice that, still referring to the trinomial model, by considering the
set G = {By, 51, —Bi}, with the lower pricing assessment defined as m(B;) = 1,
w(S1) = Sp, and w(—B;) = —1, we get that the no-Dutch book condition in (77)
of Theorem holds. It is actually possible to show that m can be extended by a
discounted Choquet expectation functional computed with respect to a non-additive

belief function Bel which, however, must be different from Q.

5 Conclusion

In this paper we have presented a survey on classical pricing theory and we
focused on markets with frictions in the form of bid-ask spreads. Frictions are
largely proved to exists and are studied in order to embody them into price mod-
els. Then, after having introduced non-additive measures and the Choquet ex-
pectation, we recalled the properties characterizing a global lower pricing rule de-
fined as the discounted Choquet expectation with respect to a convex capacity
(Chateauneuf et al., [1996). Then, referring to a finite set of payoffs, we showed a
condition that guarantees the representation of lower prices as discounted Choquet
expectation with respect to a belief function. The latter condition is in the form of
no-Dutch book under partially resolving uncertainty. We also showed that the lower
envelope of equivalent martingale measures in the trinomial model does not produce
sharp lower prices, with respect to the class of martingale measures, if used to com-
pute discounted Choquet expectations (see |Cinfrignini et al., 2021). Nevertheless,
the lower prices of fixed securities satisfy the generalized no-Dutch book condition
given in (Coletti et al. (2020).
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