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UNIVERSITÀ DEGLI STUDI DI SIENA

Dipartimento di Ingegneria dell’Informazione e Scienze Matematiche

  

DI 

Bounds on Super-Directivity and Super-Gain

Laura Passalacqua

Ph.D Thesis in Information Engineering and Science

Supervisor

Prof. Stefano Maci

Prof. Enrica Martini

Dr. Cristina Yepes

Examination Commitee

Prof. Matteo Albani

Prof. Antonio Clemente

Prof. Simone Genovesi

Thesis reviewers

Prof. Antonio Clemente

Prof. Simone Genovesi

Siena, 05/03/2024





Contents

1 Introduction 3

1.1 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 State of the Art 5

2.1 Historical notes about Super-Directivity . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Bounded Super-Directivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Bounds on Super-Directivity 11

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Q-Bounded Super-Directivity for Self-Resonant Antennas . . . . . . . . . . . . . 12

3.2.1 Analytical form for Q-bounded maximum directivity . . . . . . . . . . . . 12

3.2.2 SW coefficients for maximum directivity . . . . . . . . . . . . . . . . . . . 16

3.3 Small Antennas: Dipolar and Quadrupolar Resonant Sources . . . . . . . . . . . 18

3.3.1 Minimum Q for Dipolar and Quadrupolar contributions . . . . . . . . . . 19

3.3.2 long title splitted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.3 Multipole contributions without and with Q-bounds . . . . . . . . . . . . 24

3.4 Closed-form formulas for larger antennas . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Maximum Directivity and Equivalent Radius for constant Q . . . . . . . . . . . . 27

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Bounds on Super-Gain 31

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Antenna Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Maximum Super-Gain Without Q-Bounds . . . . . . . . . . . . . . . . . . . . . . 32

4.3.1 Maximum Gain for Externally Tuned Antennas . . . . . . . . . . . . . . . 32

4.3.2 Maximum Gain for Self-Resonant Antennas . . . . . . . . . . . . . . . . . 36

4.3.3 Comparison with Gustafson-Capek results . . . . . . . . . . . . . . . . . . 37

4.3.4 Distribution of the currents coefficients . . . . . . . . . . . . . . . . . . . 38

4.3.5 Physical interpretation for Small Antennas . . . . . . . . . . . . . . . . . 41

4.4 Value of Q on the maximum gain curve . . . . . . . . . . . . . . . . . . . . . . . 43

4.5 Maximum Super-Gain With Q-Bounds . . . . . . . . . . . . . . . . . . . . . . . . 46

i



Contents

4.6 Maximum Gain calculated by the discretization of the radiation operator . . . . 49

4.6.1 Maximum Gain for Spherical Shape . . . . . . . . . . . . . . . . . . . . . 49

4.6.2 Maximum Gain for Parallelepipal Box Shape . . . . . . . . . . . . . . . . 52

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Degrees of Freedom and relationship with Super-Directivity 55

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Degrees of Freedom and Maximum Directivity of non-super-directive antennas . 55

5.2.1 Degrees of Freedom for a limited angular region . . . . . . . . . . . . . . . 57

5.2.2 Approximate expression of DoF for convex minimum region . . . . . . . . 57

5.2.3 DoF calculation by means of SVD . . . . . . . . . . . . . . . . . . . . . . 58

5.2.4 Spherical surface case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 DoF link with correlation parameter . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.1 DoF-compliant beams and minimum ECC . . . . . . . . . . . . . . . . . . 63

5.3.2 Universal ECC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6 Conclusions 69

A Spherical Wave Function 75

B Equivalent Currents using SWs 77

B.1 Equivalent Currents Derivation in presence of electric currents . . . . . . . . . . 77

B.2 Equivalent Currents derivation in presence of electric and magnetic currents . . . 79

C Quality Factor 83

D Discretization of the radiation operator 87

D.1 Discretization of the radiation operator in terms of Spherical Modes . . . . . . . 89

E Singular Value Decomposition 91

Bibliography 95

ii



List of Figures

3.1 Q-bounded maximum directivity in (3.15) (continuous lines) at different constant

Q values (Q = 10, Q = 100, Q = 1000, and Q = 5000) and the Harrington

directivity (black dash-dotted lines) in (3.2). These curves are limited up to the

Chu-limit radius kr1, where the maximum directivity Dmax(Q, krmin) = 3. . . . 15

3.2 Parameter ξ̄ that minimizes the summation in (3.15) (continuous line) and its

approximation in (3.16) (dashed line) truncated at Q = Q2, for various values of

Q (Q = 10, 12, 15, 20, 30, 40, 50, 60, 70, 80). . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Envelope of the maximum directivity summation terms in (3.15) for three values

of Q (Q = 10, Q = 100, and Q = 1000) and two values of krmin. Continuous lines

and dash-dotted lines correspond to krmin = 5 and krmin = 5, respectively. Dot-

ted black line represent the envelope of the Harrington coefficient for maximum

directivity in (3.6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Envelope of the amplitude of the coefficients in (3.18) for various values of krmin

and two values of Q, namely Q = 10 (continuous line) and Q = 100 (dashed line). 17

3.5 Graphical representation of a (a) Huygens’ dipole (HD), (b) Huygens’ Quadrupole

(HQ) and (c) Vertical Dual Quadrupole (DVQ). . . . . . . . . . . . . . . . . . . . 18

3.6 (a) normalized polar patterns and (b) 2D radiation patters of HD, HQ and com-

bination of HD, HQ and DVQ for maximum directivity as in (3.15). hmax provides

a maximum directivity of 8 (9.03 dBi), while the isolated hHD and hHQ provide

a directivity of 3 (4.77 dBi) and 7.5 (8.75 dBi), respectively. . . . . . . . . . . . . 20

3.7 Dotted lines represent the maximum directivity as a function of the Q. Dots

connected by dashed lines are obtained by (Dmax = 8) and by (Dmax = 3).

Continuous lines are obtained through (3.15). Dash-dotted lines are obtained by

using (3.23), namely setting Q constant for dipolar and quadrupolar contribu-

tions. The solution minimally deviates around with respect to eq. (3.15) since

the latter include contribution of order 3 (hexapoles). . . . . . . . . . . . . . . . 22

iii



List of Figures

3.8 Bound of frequency bandwidth constrained super-Directivity (log-log scale) for

different values of Q, truncated at the corresponding Chu-limit radius kr1, where

Dmax = 3. Comparison between the exact formula (3.15) (continuous lines) and

the approximate formula for small antennas in (3.23) (dashed lines). The validity

range of the approximation is kr1 ≤ krmin ≤ kr(2). . . . . . . . . . . . . . . . . . 23

3.9 Percentage error between the approximation in (3.23) and the exact formula in

(3.15) for Q = 10, 20, 30, 50, 100, 300, 500, 1000 in the range from kr1 ≤ krmin ≤
0.8kr2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.10 Maximum directivity of a finite number of multipoles as a function of Q (dots

connected by dashed lines) and as a function of Q derived (dashed lines) for

krmin = 0.2, 0.5, 1, 2, 3. The results are compared with the results obtained from

(3.15). The vertical dotted lines correspond to the Chu-limit Q = Q1. . . . . . . 25

3.11 Maximum directivity (log-log scale) for constant Q. The curves are truncated at

the corresponding Chu-limit radius, where Dmax(Q, krmin) = 3. Comparisons of

the exact formula (3.15) (continuous line) and the combination between (3.23)

and (3.28) (dotted lines) for Q = 10, 100, 1000, 5000. . . . . . . . . . . . . . . . . 26

3.12 Percentage error between the approximation in (3.28) and the exact formula

in (3.15) for Q = 10, 20, 30, 50, 100, 300, 500, 1000 in the range from 0.8kr2 ≤
krmin ≤ 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.13 Bound of Super-Directivity (log-log scale) truncated at the corresponding Chu-

limit radius kr1. Comparisons of the exact formula (3.15) (continuous lines)

and the combination between (3.23) and (3.28) (dash-dotted lines) for Q =

10, 100, 1000, 5000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.14 Ratio between req and rmin as a function of krmin for different values of Q,

the curves are truncated at radius corresponding to the Chu-limit. The equi-

valent radius is obtained from the exact formula in (3.15) (continuous lines)

and the combination between the approximate ones in (3.23) and (3.28) (dot-

ted lines). The back dash-dotted line is obtained with the Harrington formula,

i.e., (krmin)
2 + 2(krmin). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 Radiation resistance of individual harmonics for n = 1, 2, 3, 4 as a function of the

minimum surface normalized radius for TM (continuous lines) and TE (dashed

lines) modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Efficiency of the super-gain calculated for different values of RΩ as a function of

krmin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Maximum gain of externally tuned antennas calculated for different values of

RΩ as function of krmin (continuous lines) and corresponding directivity (dashed

lines) obtained by Gmax/η. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Maximum gain calculated for different values of RΩ as a function of krmin for

tuned antennas (dashed lines) and self-resonant antennas (continuous lines). . . . 37

4.5 Comparison between the maximum gain for the externally tuned case of our for-

mulation (continuous lines) and the formulation in [1] (dashed lines), also obtained

by using (4.19) in (4.11). The dash-dotted black line represent the Harrington

limit, i.e., (krmin)
2 + 2(krmin). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

iv



List of Figures

4.6 Histograms of current coefficients for TE (inductive, right-hand side) and TM

(capacitive, left-hand side) harmonics with RΩ = 10−1Ω. (a)-(b) for externally

tuned case, and (c)-(d) for self-resonant case. . . . . . . . . . . . . . . . . . . . . 39

4.7 Histograms of current coefficients for TE (inductive, right-hand side) and TM

(capacitive, left-hand side) harmonics with RΩ = 1Ω. (a)-(b) for externally tuned

case, and (c)-(d) for self-resonant case. . . . . . . . . . . . . . . . . . . . . . . . 40

4.8 Envelope of the current coefficients and their amplitude for different values of the

surface: (a) RΩ = 10−3Ω; (b) RΩ = 10−2Ω; (c) RΩ = 10−1Ω; (d) RΩ = 1Ω.

The amplitudes are normalized to have a unit radiated power (Pr = 1W ). The

dashed vertical line denotes NDoF in absence of Q-bounds. The red line (right-

hand side scale) represents the radiation resistance of the SW harmonics. The

ohmic surface resistance is indicated by a horizontal red line; it crosses the curve

of the radiation resistance of the harmonics approximately at the maximum of

the envelope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.9 Elementary source associated with the far-field pattern of dipolar h
(TM)
1 (a),

h
(TE)
1 (c) and quadrupolar h

(TM)
2 (b), h

(TE)
2 (d) contributions. Electric dipoles

(TM) are denoted in blue with a single arrow and magnetic dipoles (TE) with a

double arrow. The vertical doublet is aligned along x for electrical dipoles and

along y for magnetic dipoles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.10 Maximum gain for externally tuned antennas calculated for different values of RΩ

as a function of krmin using the full series in (4.11) (continuous lines) and the

two terms approximation for small antennas in (4.24) (dash-dotted lines). Dotted

lines are the corresponding directivities obtained by Gmax/η with the full series. 43

4.11 Maximum gain of self-resonant antennas calculated for different values of RΩ as

a function of krmin using the full series in (4.16) (continuous lines) and the first

two terms of the series in (4.16) valid for small antennas (dash-dotted lines). . . 44

4.12 Quality factor of spherical wave expansion with coefficients associated to the

maximum gain (4.13). The two dashed dotted lines represents Q′
1 and Q′′

2 . . . . . 45

4.13 Q-bounded maximum gain in (4.32) as a function of the antenna size calculated for

Q = 10 (a), Q = 100 (b), and Q = 1000 (c) and different values of the ohmic losses

resistance RΩ; the curves tend smoothly to the Q-bounded maximum directivity

(black dash-dotted lines) when the losses tend to zero, i.e., the curve RΩ = 0Ω

corresponds to the maximum Q-bounded super-directivity in (3.15). . . . . . . . 47

4.14 Percentage difference between maximum Q-bounded directivity in (3.15) and

maximum Q-bounded gain in (4.32) for different values of the loss resistance.

The green curves correspond to an efficiency larger than 93% in the overall range

from the Chu-limit. (a) Q = 10; (b) Q = 100; (c) Q = 1000. The horizontal scale

start form the corresponding Chu-limit for the different values of Q. . . . . . . . 48

4.15 Region of validity of the various formulas for Q-bounded maximum gain with

losses in (4.32) and Q-bounded maximum directivity without losses. For Q <

9/R0.8
Ω + 3, eq.(4.32) can be used with a maximum error less than 7% for all

antenna sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

v



List of Figures

4.16 (a) Graphical representation of the source region sphere (small green sphere) and

of the observation far-field sphere (big blue sphere); (b) Graphical representation

of the source region sphere, the red dot are the location of the two orthogonal

electric dipoles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.17 Graphical representation of the box shape, the pair of orthogonal dipoles are

located on the six faces of the box and separated by a distance d to each other. . 52

4.18 Graphical representation of the study case of the box circumscribed to the sphere

(a) and of the box inscribed within the sphere (b). . . . . . . . . . . . . . . . . . 52

4.19 Maximum gain of the box circumscribed to the sphere (continuous lines) com-

pared with the one of the sphere (dotted lines) for different values of RΩ. . . . . 53

4.20 Maximum gain of the box inscribed within the sphere (continuous lines) compared

with the one of the sphere (dotted lines) for different values of RΩ . . . . . . . . 53

5.1 (a) graphical illustration of the solid beam angle for a highly directive antenna.

This angle is approximately equal to the product of the 3dB angles in the two

principal planes. (b) illustration of the DoF as the number of beam angles coming

from the maximum area of the sphere in independent directions. . . . . . . . . . 56

5.2 Graphical illustration of the independent beams of beam angles Ωrmin
contained

in a finite solid angle Ω. The number of these independent beams gives the degrees

of freedom of the field in the solid angle Ω. . . . . . . . . . . . . . . . . . . . . . 58

5.3 Graphical illustration of eq. (5.8). The NDoF of sources contained in a given

surface is interpreted as the number of sub-surfaces of area (λ/2)2 that can be

distributed over the surface. (a) actual surface; (b) minimum spherical surface. . 58

5.4 Singular values of the radiation operator for rmin = 2λ and R = 7λ, showing the

analytical solution and the solutions with different number of dipole sources. . . 62

5.5 Graphical representation of the two beams rotated by an angle α. . . . . . . . . . 63

5.6 ECC for non-super-directive case varying the angle α; the vertical dashed line

correspond to the angle α corresponding to a krmin = 20. . . . . . . . . . . . . . 64

5.7 ECC for super-directive case varying the angle α for krmin = 20 and for Q =

10, 100, 1000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.8 Radiation Pattern for non-super-directive case (a) and for Q-bounded case with

Q = 100 (b), for krmin = 20. The blue curves correspond to the radiation pattern

for the broadside beams, the red curves correspond to the radiation pattern for

the rotated beams, and the green one to the sum of the two beams. The blue and

the red curves approaches the maximum directivity, while the green curve does

not reach the maximum directivity value. . . . . . . . . . . . . . . . . . . . . . . 65

5.9 2D radiation patterns of the broadside beam (blue curves) and of the sum of

the four rotated beams (red curves), both for non-super-reactive case (a) and

Q-bounded case with Q = 100 (b). . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.10 ECC % for the non-super-reactive case. The corresponding ECC is equal for two

different values of the source size, i.e., krmin = 20 (blue curve) and krmin = 25

(red curve). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

vi



List of Figures

5.11 ECC % for the Q-bounded case with Q = 10 (a), Q = 100 (b), and Q = 1000 (c).

The corresponding ECC is equal for two different values of the source size, i.e.,

krmin = 20 (blue curves) and krmin = 25 (red curves). . . . . . . . . . . . . . . . 67

B.1 Graphical representation of the Equivalent Theorem. The sources can be enclosed

by a minimum surrounding sphere S of radius rmin. . . . . . . . . . . . . . . . . 77

B.2 Graphical representation of the Equivalent Theorem considering only a set of

electric currents J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

B.3 (a) Graphical representation of Love’s formulation of the equivalent currents; (b)

the magnetic currents radiating on a perfect conducting sphere; (c) the magnetic

currents radiate in presence of lossy conductor material with resistivity RΩ. . . . 80

C.1 Fante’s Qn coefficients. The used log-log scale emphasizes the different behaviour

of Qn with corner at krmin ≈ n. . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

D.1 (a) Original problem, (b) Love’s equivalent problem, and (c) the equivalent prob-

lem with only electric currents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

D.2 Equivalent currents radiating in presence of an object and different Green’s func-

tion contributions (incident and scattered contributions) in both near (a) and far

(b) zone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

D.3 Spectral lattice of directions r̂m; m = 1, ...,M for the definition of the far field.

For simplicity, the figure is referred to free-space Greens function. . . . . . . . . . 90

E.1 Visualization of the matrix multiplication in singular value decomposition. . . . . 91

E.2 Visualization of the matrixes [V ] (a) and [I] (b) showing their orthogonality. . . 92

E.3 Mapping of the vector columns of [I] onto the vector columns of [V ] through the

[F ] matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

vii





Abstract

The thesis focuses on the definition of bounds for maximum directivity and gain of antennas.

The main goal is to establish an analytical formula for maximum super-directivity considering

specific parameters like bandwidth and antenna size. The upper limit on directivity for self-

resonant antennas within a minimum sphere is determined based on a given quality factor. The

formulation, obtained through rigorous convex problem-solving, is expressed as a rapidly conver-

ging analytical series. Approximate closed-form formulas are derived, showing high accuracy in

various ranges of the minimum circumscribed sphere’s radius, including small and intermediate

to large antennas. Special attention is given to small antennas, interpreting the solution as a

combination of dipolar and quadrupolar Huygens’ source contributions with closed-form coef-

ficients. The solution maintains continuity to the maximum directivity between 3 and 8 while

holding a constant Q. The challenge of achieving super-gain is addressed by assuming small

losses in terms of surface resistance over the metalized surface of the minimum sphere circum-

scribing the antenna. The final closed-form formula indicates that maximum gain results from a

summation similar to Harrington’s sum for maximum directivity, with coefficients weighted by

the radiation efficiency of each spherical harmonic. The formulation is extended to self-resonant

antennas, providing a tighter bound for any losses. The thesis further explores the relationship

between maximum directivity and the Degrees of Freedom (DoF) of the fields.





Chapter 1

Introduction

This research initiative originated with the aim of improving the performance of low-band

base station antennas in 5G networks by creating a broad-band, high-gain radiator. 5G an-

tennas represent a paradigm shift in wireless communications, introducing distinct features and

presenting significant challenges. The crucial aspect of the directional operation of 5G anten-

nas involves dynamic responses to connected devices’ requests, contrasting with the continuous

emission of radio waves within a specific cell, as seen in traditional antennas. This dynamic

mode optimizes resource usage, minimizing radio wave emissions when not strictly necessary to

avoid additional interference. Further benefit is the energy-saving capacity of these antennas,

reducing environmental impact and contributing to the overall energy efficiency of network in-

frastructures. Despite these advantages, 5G antennas face various challenges, including limited

coverage. This issue raises concerns about inclusivity and accessibility, emphasizing the need to

extend coverage for uniform connectivity across the entire territory. The design of antennas for

5G communication systems presents challenges due to constrained dimensions, particularly in

lower frequency bands where antennas are larger. Addressing user interference in the emerging

MIMO system is crucial, with key parameters including gain, bandwidth, and isolation between

ports. The main objective is to increase antenna gain, reducing the number of base stations,

mitigating interference, and lowering overall power consumption. Recent demands for highly

directive electrically small radiators and scatterers in communication and sensor applications

have revived interest in the concept of super-directivity. This interest arises from the necessity

for improved performance in terms of range, resolution, and sensitivity in communication and

sensing systems. In conclusion, 5G antennas, with their innovative features, present a multitude

of complex challenges. The ongoing evolution of technology is likely to reveal additional issues

in implementing this revolutionary communication infrastructure. It is crucial to address these

challenges thoughtfully, considering both positive and negative impacts, to ensure a smooth

transition towards an increasingly connected society. The purpose of this project is to conduct

a study to enhance the directivity and gain of radiating elements, highlighting the theoretical

limits that exist for such a goal. Super-directivity can be exploited to increase the reactive

area, this means that the super-reactive effect produces an effective area that becomes larger

than the physical area of the antennas itself. A larger reactive effective area generally indicates

that the antenna can capture larger amount of power from the incoming signal, resulting in

a stronger received signal and a higher antenna efficiency. This is crucial in wireless commu-

nications, where signal strength can significantly influence the quality of the communication.

However, this implies a strong reactive field that reduces the bandwidth. It is well known that

the gain, as well as the directivity, is not mathematically limited, but a small sized antenna

with extremely high gain produces a high reactive field intensity in the proximity of the an-
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tenna, resulting in high losses and high stored energy, and consequently, a narrow bandwidth.

Therefore, the quality factor is pivotal to evaluate the performance of an antenna system due to

its primary relationship with the stored energy and bandwidth. One of the first points of this

project is to study the limitation of the product bandwidth-gain. Despite the fact the limitation

in bandwidth and in gain of an antenna has been a field of interest, an expression connecting

both bandwidth and gain has not founded so far. The main objective of this thesis is to obtain

the maximum super-directivity for a given bandwidth and given size of the antennas and derive

analytical closed form for it. The analytical formula permits to have an immediate feedback and

idea of the possible main characteristics and antenna design parameters of the antenna under

design, dealing with both small and large antennas. This part will be the most extensive one

and will also include physical insight about possible antenna designs to incorporate additional

information about the limitation of the product bandwidth-gain. In the second stage of this

project the maximum antenna super-directivity is investigated in relationship with the number

of Degrees of Freedom (DoF) of the electromagnetic field. The numbers of Degrees of Free-

dom are the minimum number of parameters necessary to describe the electromagnetic field at

a certain distance from a minimum surface enclosing the sources, so that the reactive field is

negligible. This number is determined by the limited spatial bandwidth of the electromagnetic

fields and has a direct proportionality to the square of the radius of the smallest sphere that can

enclose the sources, with the radius being measured in wavelength units. In this context, the

investigation of maximum antenna super-directivity in relation to the number of DoF becomes

a crucial aspect of this project. By understanding this relationship, we can potentially optimize

the design of super-directive antennas, balancing the trade-offs and pushing the boundaries of

what is currently achievable in antenna technology. This could open new possibilities in various

fields, from telecommunications to space exploration, enhancing the efficiency and effectiveness

of wireless communication systems.

1.1 Organization of the thesis

The thesis provides a succinct overview that attempts to encapsulate the author’s investigation

into super-directivity and super-gain analysis and synthesis, placing this research in the context

of the existing body of knowledge. The primary insights shared here are derived from two papers

written during the course of the Ph.D. studies [2] [3], presented in a more detailed format than

their original versions. Chapter 2 explores the historical evolution and current advancements

in super-directive antennas and related topics, merging historical advancements with the most

recent discoveries. Chapter 3 elaborates on the boundary of super-directivity, followed by an

examination of the boundary on super-gain in Chapter 4. Chapter 5 investigates the Degrees of

Freedom (DoF) theory in relation to super-directivity. Chapter 6 marks the principal results of

the dissertation, providing also a possible future plans.



Chapter 2

State of the Art

This chapter offers a thorough review of the current state-of-the-art topics discussed in this

thesis. The concepts of super-directivity and super-gain have brought about a revolution

in antenna design, allowing for exceptional levels of signal strength and directionality. This

Chapter also underscores significant research studies and technological advancements that have

contributed to our comprehension of these subjects. It lays the groundwork for the following

Chapters, where we will further investigate these concepts and examine their practical implica-

tions in contemporary antenna systems.

2.1 Historical notes about Super-Directivity

Super-directivity refers to the ability to achieve exceptionally high levels of directivity, beyond

what is traditionally achievable with conventional antenna designs. This advanced characteristic

allows super-directive antennas to precisely focus and concentrate electromagnetic signals in a

specific direction, enhancing the general performance of the communication systems.

The challenge of super-directivity can be traced back to 1922 when Oseen, in his seminal work

on ”Einsteinian needle radiation” dealt with the application of Maxwell’s equations to clarify the

phenomenon wherein the radiation emanating from a large point source disperses infinitely. In

his publication [4], Oseen wanted to solve the problem of how a minute atom, alike to a photon,

absorbs energy from an incident wave. Oseen postulated that an atom could only absorb energy

by emitting its own wave, which, in part, cancel out the incident wave. Without such partial

cancellation, the incident wave would carry the same energy to infinity, regardless of whether

there is absorption or not, which is physically impossible. The concept of ”needle radiation”

introduced by Oseen is intricately linked to the fascinating question of how a very small atom

can effectively absorb energy from a substantial electromagnetic wave. It is noteworthy that

Oseen’s exploration not only sheds light on the absorption process but also extends to the con-

verse challenge—transmitting a radiation pattern akin to a needle from a compact source. In

essence, this reciprocal problem highlights the pursue for achieving super-directivity in radiation

patterns, mirroring the needle-like characteristics encountered in absorption scenarios.

The concept of super-directivity is indeed fascinating. Super-directivity is a concept related to

antenna arrays, where the focus is on creating more compact antenna arrays to achieve higher

directivity. It is based on the principle of destructive interference, which can occur in all dir-

ections, including the direction of the main lobe. In the context of antenna design, destructive

interference is used to suppress radiation in unwanted directions, thereby enhancing the dir-

ectivity of the antenna. This is achieved by carefully designing the antenna elements and their

relative phases such that the electromagnetic waves they emit interfere destructively in undesired
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directions. This principle allows super-directive antennas to focus their radiation pattern more

narrowly, resulting in a higher gain in the desired direction. However, it is worth noting that

super-directive antennas often require more complex designs and can be more sensitive to manu-

facturing errors and signal noise. They also tend to have a higher Q-factor, which can limit their

bandwidth. In summary, super-directivity is a powerful concept in antenna design that leverages

the principle of destructive interference to achieve higher levels of directivity than conventional

antennas. This makes them particularly valuable in applications where precise control of the

radiation pattern is crucial. However, these benefits come with trade-offs in terms of design

complexity, sensitivity to errors and noise, and potentially limited bandwidth. However, the

direction of the main lobe corresponds to the direction on which the interference is minimum;

this implies that arbitrarily high directivity could be achieved with an array of finite size [5].

In [6] the authors demonstrate that in certain types of directional antenna arrays, the gain can

be increased by arranging the waves so that they do not strictly fade at large distances as they go

from the array elements in the direction of maximum transmission, proposing an end-fire array

solution. [7] presents a mathematical theory to evaluate and control the directive properties of

linear array, in the paper broadside pattern enhancements from different array configurations

were considered. The mathematical theory developed by Schelkunoff provides a framework for

calculating and controlling the directional properties of the antenna arrays. In other words, it

allows to understand how electromagnetic waves propagate from linear antenna arrays and how

one can manipulate it to achieve a desired radiation pattern. La Paz and Miller in [8] defined the

theoretical optimum current distribution on a vertical antenna of a given length as the current

distribution that provides the maximum possible field strength on the horizon for a given power

output. This concept was introduced to improve the overall performance in directional antenna

applications. However, later on, Bouwkamp and De Bruijn in [9] individuate an error in their

theory and demonstrated that there was no theoretical limit on the directivity from an aperture

of any size. Bouwkamp and De Bruijn demonstrate that the problem of the optimal current

distribution does not have an exact solution. Instead, they develop a method to realize any

given vertical radiation patter through an appropriate choice of the current distribution. In this

way, it is feasible to construct theoretical current distributions that are much better then the

one proposed by La Paz and Miller. In 1946 Dolph [10] presented a method to design arrays

with a desired side-lobe level. This method is based on family of current distribution using the

Chebyshev polynomial to produce an array pattern that satisfy the requirement on the level

side-lobes. This kind of array are well known as Dolph-Chebyshev arrays. Riblet in [11] [12]

developed a super-directive Dolph-Chebyshev arrays for spacing below λ/2, he also illustrate

that this influence the main lobe.

The aforementioned papers, along with their respective historical references, are, of course, only

a portion that constitutes references for an initial approach to super-directive antennas and their

potential implementations. These sources serve as a foundation for further exploration into the

subject, providing valuable insights into the historical context and practical applications of

super-directive antenna technology.
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2.2 Bounded Super-Directivity

Numerous authors have demonstrated that super-directive antennas necessitate to a constraints.

The issue of the maximum limit of directivity has been extensively researched by many esteemed

scientists [13–24].

Chu [25] is likely the first to have undertaken an analysis of the fundamental limitations of

antennas in the context of the radiansphere. The concept of the radiansphere was initially

introduced by Wheeler in [26], and further expanded upon in the same work to include non-

spherical radiators [27]. Chu established the lowest Q-factor and the highest gain of a linearly

polarized omni-directional antenna, utilizing the spherical wave functions expansion outside the

smallest sphere enclosing the antenna. In [18], Hansen analyzes the fundamental limitation for

electrically small antennas, super-directive antennas, super-resolution antennas, and high-gain

antennas. Assuming sources fitting inside a minimum sphere of radius rmin, the maximum

directivity can be found as suggested by Harrington [28] [29] [30]. His method, that will be

analysed in next Chapter, is based on the expansion of the radiated field in a finite number of

spherical waves (SWs), and on the maximization of the directivity with respect to the coefficients

of the expansion. It was suggested by Harrington to excite a finite number of SWs; this number

of maximum SWs that can be excited is the largest integer smaller than krmin, where k is

the free-space impedance. This procedure invokes the difficulty to excite higher order of SW

harmonics with sufficiently high intensity over the minimum sphere to significantly contribute

to the far field; namely, as underlined in [31], it relies on the finiteness of the number of Degrees

of Freedom of the field in the far zone. To put it differently, Harrington’s procedure is grounded

in the understanding that the SWs are below cut-off as long as the order of the spherical Hankel

function is larger than its argument. This is actually the same concept invoked to establish

the number of DoF of the field radiated by sources inside a minimum sphere. It is well-known

that there exist super-directive antennas, with directivity larger than the limit proposed by

Harrington even if with a small bandwidth. The possibility to exceeded the Harrington limit

derives from the fact that its derivation does not consider the change to excite, with a sufficiently

large intensity over the minimum sphere, SWs with polar index larger than krmin. As a matter of

fact, increasing the number of super reactive harmonics over the minim sphere leads a diverging

Q-factor, which is eventually useless for practical antenna applications, since the bandwidth

goes to zero. Vice-versa, allowing for a certain desired maximum Q may imply a bound of

directivity larger than the one derived by Harrington. In [32] the relationship between antenna

directivity and size is discussed, proposing a normalization of the Harrington limit to fulfill both

directivity definition and physical behaviour, this has been done considering a new effective

radiansphere k(R + 1
2π ). Reference [33] presents a formula for accurately estimating the total

radiated power from a transmitting antenna, the derivation is conducted using the theory of

spherical wave expansion of electromagnetic fields. The paper also establishes a simple criterion

for the required number of samples of the power density. [34] discusses the constraint on the

maximum available directivity measured on a single port and multiple ports of both small and

large antennas. The effect of the coupling is also mentioned since a reduction in gain can be

characterized in terms of coupling efficiency and in consequent reduction of the total radiated

power.

The paper [35] addresses the problem of minimizing the signals received from interfering or
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undesirable signal sources by appropriately modifying the antenna radiation pattern, exploring

the physical limitations that exist when trying to reduce interference through antenna pattern

shaping. It is also shown that the field components with spatial variation of a period smaller

than a wavelength contribute essentially reactive power. They increase the Q-factor of the

aperture and impose a limitation on the pattern.

Other studies have concentrated on finding the optimal balance between antenna directivity and

bandwidth [1,14,36–41]. Indeed, the definition of the maximum directivity for a given electrical

size of the minimum sphere circumscribing the antenna requires a constraint to ensure a finite

bound, as without it the directivity could be in principle infinite. This constraint can take the

form of upper-limit on the Q-factor, i.e., minimum relative frequency bandwidth, among other

possibilities [14]. Fante [36] proposed a maximization of the product directivity-bandwidth;

he used the term gain, even if the treatment is relevant to directivity. The coefficients of the

SWs found by Fante are different from the ones found by Harrington, and the series is not

truncated. However, the D/Q bound obtained in this way is always relevant to small Q (large

bandwidth) and moderate D, which is of practical interest only for ultra-wideband antennas.

In [42], the minimum Q-factor for a given directivity of small antenna of arbitrary shape is

obtained by setting a convex problem and solving it by a semidefinite relaxation technique.

Geyi, in [38], carried out a comprehensive analysis on minimizing the Q-factor and its trade-off

with the maximum value of G/Q, exploring the physical limitation of omni-directional antennas

and using the spherical wave expansion to describe the field.

Gustafsson gives an extensive contribution to the exploration of the physical constraints of

antennas, particularly in the assessment of bandwidth limits associated with super-directivity.

In [43], a paper of which he is a co-author, he generalizes the Chu results for arbitrary antennas

shape, i.e., non-spherical geometries. The theory is verified against the classical Chu limitations

for spherical geometries and shown to yield sharper bounds for the ratio of the directivity and the

Q-factor for non-spherical geometries. The product of bandwidth and realizable gain is shown

to be bounded by the eigenvalues of the long-wavelength, high-contrast polarizability dyadics.

These dyadics are proportional to the antenna volume and can be easily determined for an

arbitrary geometry. In [1] Gustafsson-Capek presented a results based on a Methods of Moments

(MoM) applied to the surface of an arbitrary metallic body and by a convex optimization

procedure. They found the maximum super-gain by imposing a maximization of the power

intensity with constant radiated power for any coefficient of the MoM basis functions, assuming

small losses on the metallic shape. This procedure is quite general and can be applied to

arbitrary shape. In [44] he discusses the challenges in designing small antennas due to their

hight Q-factor (low bandwidth) and efficiency. The procedure is again conducted by means of

the convex optimization of the current that provide upper bounds on the antenna. The paper

also presents an optimized maximum gain Q factor quotient. In [45] the problem about the

fundamental lower bound on the radiation of Q has been addresses for small electrical antenna,

resulting of importance in relationship with the antenna bandwidth. [45] also discusses on the

relationships between the losses in the antenna and the losses in the matching network, and

their possible effect on the system bandwidth, the system efficiency. The investigation of super-

directivity in MIMO antenna system is also examined in [46], where the analysis also involves

the antenna loss. Reference [47] provides a framework for illustrating the achievable super-

directivity achievable by a MIMO system. [48] presents a new approach to antenna directivity,
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leading on massive MIMO application scenario. This theory is used for the analysis and synthesis

of antenna systems, and it integrates with global optimization algorithms. The authors combine

the infinitesimal dipole model (IDM) and the cross-correlation Green’s function (CGF) in a new

formulation, referred to as the IDM-CGF method. The realization of practical small and high

directive antenna is one of the focus research of Richard W. Ziolkowski, who gives different

contributions in these field. In [49] [50–55] presents a significant advancement in the field of

electrically small antennas, tying to design small antenna capable to achieve simultaneously high

radiation efficiencies, directivities, and front-to-back-ratios over a broad bandwidth.

Several contributions [2, 3, 56–58] provide fresh and intriguing insights into the boundaries and

limitations of super-directive antennas. These studies delve into the exploration of achieving

high levels of directivity in antenna system performance. As a result, it becomes evident that

this research field is a hot topic in antenna theory, gaining significant attention, particularly in

light of the expanding landscape of wireless and 5G antenna environments. The investigation

of super-directive antennas not only contributes to advancing the theoretical understanding but

also holds practical implications for the evolving technologies in the wireless communication

scenario.





Chapter 3

Bounds on Super-Directivity

3.1 Introduction

In absence of super-reactive source, the maximum available directivity is the one of a large

illuminated circular aperture of area A and the same radius of the sphere surrounding the

source krmin, namely

Dmax = 4π
A(circular)

λ2
= (krmin)

2 (3.1)

One of the simplest ways to obtain this number is counting the number of spherical waves

that have experienced the cut-off transition on the minimum-sphere surface [59]. Expression in

(3.1) is also related to the maximum directivity of non-super-reactive sources inside a sphere

whose radius is large is terms of wavelength [19]. Assuming non-super-reactive sources that fit

within a minimum sphere of radius rmin, the maximum directivity can be found as suggested

by Harrington [28] [60] [29]. His method is based on the expansion of the radiated field in a

finite number of spherical waves (SWs) and the maximization of directivity with respect to the

coefficients of the expansion. This procedure leads to

Dmax =

Nmax
∑

n=1

(2n+ 1) = (Nmax)
2 + 2Nmax (3.2)

Consequently, the maximum directivity depends on the value set for the maximum polar index

Nmax of the spherical waves (SWs) contributing to the far-field for the given minimum sphere

(Nmax ≥ 1). Harrington suggested that, for the case of non-super-reactive antennas, the max-

imum polar index should be set as the largest integer smaller than the electrical radius, namely

Nmax = ⌈krmin⌉. This results in the continuous formula for maximum directivity

Dmax = (krmin)
2 + 2krmin (3.3)

This assumption presents the challenge of exciting SWs with polar indices n > krmin with

sufficient intensity over the minimum sphere to significantly contribute to the far field. In

essence, this approach is grounded in the understanding that the SWs are below the cut-off

as long as the order of the spherical Hankel function is larger than its argument. To ensure

continuity in the maximum directivity formula around this value, it was proposed in [31] that

the maximum directivity for non-super-reactive antennas (without bandwidth limitation) can

be defined as

Dmax =

{

(krmin)
2 + 2(krmin) for krmin ≥ 1.5

(krmin)
2 + 3 for krmin < 1.5

(3.4)
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The heuristic expression (3.4) serves as a practical reference for antenna designers, indicating

a directivity limit. Although certain antennas exceed this limit, known as super-directive, our

analysis ignores the possibility to excite with enough intensity spherical waves (SWs) with po-

lar indices greater than Nmax = ⌊krmin⌋ with adequate intensity over the minimum sphere.

Mathematically, an infinite number of super-reactive harmonics can be excited over this sphere,

leading to unbounded super-directivity. To calculate the maximum directivity of an antenna,

it is necessary to apply certain limitations to avoid infinite results. These constraints might

involve setting lower efficiency limits, bandwidth limits, or restricting the number of harmonics

based on the field’s degrees of freedom. This study primarily focuses on achieving a bandwidth

limit on maximum directivity.

The concept of bandwidth is closely connected to the quality factor (Q-factor); actually, it can

be expressed as the reciprocal of the fractional bandwidth, BW = 1/Q, for sufficiently large

values of Q (Q > 10) [21]. A higher Q-factor generally results in a narrower bandwidth because

antennas with higher Q-factors are more selective in terms of the frequencies they can efficiently

radiate or capture. Conversely, antennas with lower Q-factors tend to have broader bandwidths,

enabling them to cover a wider range of frequencies. Therefore, the Q-factor of an antenna is a

crucial parameter that characterizes its efficiency and performance. It quantifies the antenna’s

ability to store and radiate energy with minimal losses, indicating low resistive losses and effi-

cient conversion of electrical power into electromagnetic radiation.

In the following the investigation about the maximum super-directivity with Q-bound is con-

ducted. However, it is important to remember that choosing the right Q-factor and bandwidth

for an antenna is dependent on the specific needs of the application.

3.2 Q-Bounded Super-Directivity for Self-Resonant An-

tennas

In deriving the Q-bounded maximum directivity, we will refer to the equivalent problem presen-

ted in Appendix B and depicted in Figure B.3(a). In this formulation, the currents are expanded

in terms of spherical wave harmonics with coefficients denoted as Ci, following the normalization

specified in Hansen’s book [61]. Since Love’s formulation of the equivalence theorem is applied,

it is assumed that the field inside the minimum sphere is zero, making it non-equivalent in terms

of stored energy to the initial problem. However, because the energy of the equivalent problem

is zero inside the sphere, any other source generating the same external fields will result in a

higher Q. Consequently, the bounds obtained here are more optimistic than those obtained

using electric currents only over a sphere, where energy can be stored even inside the sphere.

Furthermore, since the energy stored is zero, a bound for self-resonant antennas is addressed.

3.2.1 Analytical form for Q-bounded maximum directivity

From the general definition of directivity, given by the ratio between the radiation intensity U

and the total power radiated Pr [62], i.e.,

D = 4π
U

Pr
(3.5)
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where the U is the radiation intensity and Pr is the power radiated that in terms of SW expansion

can be written as U = 1
4π |
∑

i CiKi|2 and Pr = 1
2

∑

i |Ci|2, respectively. In maximizing the

directivity, and exploiting the symmetry of the spherical source region, it is sufficient to consider

only the broadside direction (θ, ϕ) = (0, 0); this implies that only azimuthal wavenumbers

m = ±1 will contribute to the radiated field. Hence, the far-field pattern are

Ki =
√
2n+ 1















0 if |m| ≠ 1

−(−j)n if s = 1,m = ±1

−m(−j)n if s = 2,m = ±1

(3.6)

Note that (3.6) is congruent with the normalization of Hansen’s book [61], for which the power

transported by an individual harmonic is Pr = 1
2 |Ci|2. Since the maximum directivity is a

convex function, the maximum directivity with Q-bound can be formulated in terms of a convex

optimization problem, namely

max
Cn

∣

∣

∣

∑

n CnKn

∣

∣

∣

2

∑

n |Cn|2

s.t.

∑

n Qn|Cn|2
∑

n |Cn|2
≤ Q

(3.7)

where Qn are the Fante’s quality factors of the polar harmonics defined in Appendix C and Q is

the maximum accepted Q-factor (minimum relative bandwidth). It is important to observe that

the inequality in (3.7) is actually equivalent to an equality, since any increase in the amplitude

of the higher-order coefficients that provides larger directivity also implies an increase in Q.

Therefore, finding the maximum directivity for a given maximum Q means, in practice, finding

it for a constant Q.

Because the constraints are solely based on the magnitude of the coefficients, the maximum

value in (3.7) is attained when ∠Ci = −∠Ki, resulting in CiKi = |Ci||Ki| = |Cn|
√
2n+ 1.

Consequently, we can exclusively utilize the polar index n, as the magnitude of Ki remains

unaffected by the indices m and s. When setting the radiated power to unity, ensuring that
∑

n |Cn|2 = 1, the problem in (3.7) becomes equivalent to

max
|Cn|

(

∑

n

|Cn|
√
2n+ 1

)2

s.t.
∑

n

|Cn|2 = 1

∑

n

Qn|Cn|2 = Q

(3.8)

We can reformulate (3.8) by using its dual problem [63] obtained by multiplication with a scalar

parameter ξ, namely

min
ξ

max
|Cn|

(

∑

n

|Cn|
√
2n+ 1

)2

s.t.
∑

n

[

ξ(Qn −Q) + 1
]

|Cn|2 = 1

(3.9)
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Solution of the convex optimization problem

The solution of the problem in (3.9)for Q ≥ Q1 is provided by the Lagrange multiplier method

[63]. To achieve this, we define the Lagrangian function for the problem in (3.9) as follows:

Λ(Cn, λ) =
(

∑

n

CnKn

)2

− λ
(

∑

n

[

ξ(Qn −Q) + 1
]

C2
n − 1

)

(3.10)

where Cn = |Cn| and Kn = |Kn| =
√
2n+ 1. The problem is structured such that the minimum

with respect to ξ of the value λ, which maximizes the Lagrangian, represents the maximum

directivity with Q-bound. To find this value, we differentiate the Lagrangian function in (3.10)

with respect to λ and Cm and set the partial derivatives to zero:

∂Λ(Cn, λ)

∂Cm
= 2|Km|

∑

n

Cn|Kn| − 2λ
[

ξ(Qn −Q) + 1
]

Cm = 0 (3.11a)

∂Λ(Cn, λ)

∂λ
=
∑

n

[

ξ(Qn −Q) + 1
]

C2
n − 1 = 0 (3.11b)

Equation (3.11b) ensures compliance with the Q-bound after minimization, while eq.(3.11a) is

satisfied if and only if

∑

n

Cn|Kn| = λ (3.12a)

|Km| =
[

ξ(Qn −Q) + 1
]

Cm (3.12b)

Substituting the equality in (3.12b) into 3.12a) and using |Kn| =
√
2n+ 1 results in:

λ =
∑

n

2n+ 1
[

ξ(Qn −Q) + 1
] (3.13)

from which the maximum directivity is obtained by minimizing with respect to ξ. The range

of variation of ξ is determined by imposing that the constraint terms are non-negative, ξ(Qn −
Q) + 1 ≥ 0 for all n; i.e.,

Qn > Q : ξ ≥ max
{ 1

Q−Qn

}

= 0 (3.14a)

Qn < Q : ξ ≤ min
{ 1

Q−Qn

}

=
1

Q−Q1
(3.14b)

Finally, we obtain the result

Dmax(Q, krmin) = min
ξ∈[0,ξmax]

∞
∑

n=1

2n+ 1

ξ̄(Qn −Q) + 1
(3.15)

In (3.15), ξmax = 1/(Q−Q1) and ξ̄ = ξ̄(Q, krmin) represents the value of ξ that minimizes the

infinite summation in (3.15). Equation (3.15) relates the maximum directivity to the antenna

size’s bandwidth. In Figure 3.1 the maximum directivity for different values of the Q-bound has

been plotted and compared with the Harrington maximum directivity in (3.2); note that the

Harrington directivity (black dash-dotted line) is lower wrt the Q-bounded maximum directivity
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Figure 3.1: Q-bounded maximum directivity in (3.15) (continuous lines) at different constant

Q values (Q = 10, Q = 100, Q = 1000, and Q = 5000) and the Harrington directivity (black

dash-dotted lines) in (3.2). These curves are limited up to the Chu-limit radius kr1, where the

maximum directivity Dmax(Q, krmin) = 3.

derived in (3.15) supporting the fact that a higher directivity exists. The value of ξ̄ that

minimizes the series in (3.15) in the given range is illustrated in Figure 3.2 as a function of

krmin for fixed Q values. An excellent approximation of ξ̄, valid for Q1 ≤ Q ≤ Q2, is given by

ξ̄ ≈ 8

3(Q2 −Q)

(

− 1 +

√

1− 60(Q2 −Q)

256(Q1 −Q)

)

(3.16)

Figure 3.2 depicts the parameter ξ̄ that minimizes the summation in (3.15) (continuous lines)

and its approximation in (3.16) (dashed lines) truncated at Q = Q2 for various Q values (Q =

10, 12, 15, 20, 30, 40, 50, 60, 70, 80). We observe that ξ̄ tends to diverge for Q = Q1. However,

it can be easily seen that ξ̄(Q1 − Q) in the denominator of (3.15) approaches zero, while all

other terms in the series are negligible, given the high values of ξ̄(Q1 −Q) for n ̸= 1. Therefore,

Dmax(Q, krmin) approaches 3 for any Q when Q1 ≈ Q. This is expected since in the quasi-static

limit, a sphere can only contain a self-resonant source, which is the Huygens’ dipole.

The envelope of the terms inside the summation in (3.15) is plotted in Figure 3.3 for three Q

values (Q = 10, 100, 1000), and two values of krmin (krmin = 5, 10). The dotted black line

represents the envelope of the Harrington coefficient for maximum directivity in (3.6). For a low

Q value, the envelope of the coefficients reaches the maximum close to n = krmin. However,

as Q increases, this maximum shifts towards higher values, which are defined by Q = Qn and

correspond to specific antenna sizes denoted by krn. For n > krn, the coefficients for both field

and directivity expansions exhibit rapid decay, the rate of which depends on krmin and Q. This

behavior arises from the change in the decay rate of Qn when crossing krn (see Figure C.1 in



16 3. Bounds on Super-Directivity

Figure 3.2: Parameter ξ̄ that minimizes the summation in (3.15) (continuous line) and its

approximation in (3.16) (dashed line) truncated at Q = Q2, for various values of Q (Q =

10, 12, 15, 20, 30, 40, 50, 60, 70, 80).

Appendix C). An approximation for values of Q larger than 100, krmin < 2, and n < 12 is given

by:

krn ≈ n

1.356Q1/(2n+1)
(3.17)

3.2.2 SW coefficients for maximum directivity

The coefficients that yield the maximum directivity can be derived from the equation in (3.15);

they are defined as

C
(Q)
i,max =

C0

√
2n+ 1

ξ̄(Qn −Q) + 1















0 if |m| ≠ 1

−(j)n if s = 1,m = ±1

−m(j)n if s = 2,m = ±1

(3.18)

where C0 is an arbitrary constant. When ξ̄(Qn − Q) ≪ 1, the coefficients C
(Q)
i,max return the

coefficients derived by Harrington in (3.6) without enforcing the Q-bound and simply truncating

the series. It is important to emphasize that the selection of SW coefficients in (3.18) also

ensures equality between electric and magnetic energy for r > rmin across all polar indices n.

This condition signifies that the maximization is specifically relevant to self-resonant antennas.

The amplitude envelope of the coefficients in (3.18) in dB scale is depicted in Figure 3.4 for two

Q values (Q = 10 and Q = 100) and various krmin values. Note that the arbitrary constant C0

is set to unity in the calculations.
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Figure 3.3: Envelope of the maximum directivity summation terms in (3.15) for three values of

Q (Q = 10, Q = 100, and Q = 1000) and two values of krmin. Continuous lines and dash-dotted

lines correspond to krmin = 5 and krmin = 5, respectively. Dotted black line represent the

envelope of the Harrington coefficient for maximum directivity in (3.6).

Figure 3.4: Envelope of the amplitude of the coefficients in (3.18) for various values of krmin

and two values of Q, namely Q = 10 (continuous line) and Q = 100 (dashed line).
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3.3 Small Antennas: Dipolar and Quadrupolar Resonant

Sources

The analysis presented above reveals a fundamental insight: spherical n-th harmonics, encom-

passing both TE and TM modes with azimuthal index m = ±1, share identical Qn values and

coefficients essential for achieving maximum directivity. This observation holds true for both

Harrington’s coefficients in (3.6) and the Q-bounded coefficients in (3.18).

Specifically, when n = 1, their fields, obtained with the same coefficients, can be considered

as the ones produced from an elementary Huygens’ dipole (HD) located at the origin, outside

the minimum sphere (refer to Figure 3.5(a)). This HD configuration consists of horizontally

aligned electric and magnetic dipoles, their momenta related by the free space impedance ζ,

i.e., I∆l = M∆l/ζ. Huygens’ source antennas have found versatile applications, ranging from

compact, electrically small packages [49–52, 54] to large ones [64] [65]. Their importance in re-

search is underscored, especially for of Internet of Things (IoT) applications [66]. Furthermore,

Huygens’ metasurfaces have proven their efficacy in a variety of antenna and scattering prob-

lems [67] [68] [69].

(a) (b)

(c)

Figure 3.5: Graphical representation of a (a) Huygens’ dipole (HD), (b) Huygens’ Quadrupole

(HQ) and (c) Vertical Dual Quadrupole (DVQ).
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For n = 2, the combination of the second spherical wave harmonics gives rise to the field

characteristics of a Huygens’ Quadrupole (HQ) and a Dual Vertical Quadrupole (DVQ). These

structures are illustrated in Figures 3.5(b) and (c), respectively. HQs have garnered recent

attention, particularly in studies involving needle radiation from arrays [53]. The HQ config-

uration consists of pairs of counter-directed HDs, with their separation distances converging to

infinitesimal values in terms of wavelengths. On the other hand, the DVQ configuration involves

closely positioned counter-directed vertical magnetic and electric dipoles. The electric dipoles

are displaced along the x-axis, while the magnetic dipoles are oriented along the y-axis. It is

worth noting that the HD configuration maintains a balanced energy distribution outside the

minimum sphere, precisely in line with the self-resonant approach. This balance is also observed

in both HQ and DVQ configurations, a direct outcome of their duality.

The far-field radiation patterns of HD, HQ, and DVQ are given by

hHD =
1

2
(cos θ + 1)p̂ (3.19a)

hHQ =
1

2
(cos θ + 1) cos θp̂ (3.19b)

hDVQ = sin2 θp̂ (3.19c)

where p̂ = [cosϕ− sinϕ]ϕ̂ is a unit polarization vector. We note that the coefficients associated

with the maximum directivity to the spherical wave for n = 2 are linked the coefficients of HQ

and DVQ each other, therefore combining it in

h′
HQ = hHQ − 1

2
hDVQ =

1

2
(cos θ + cos 2θ)p̂ (3.20)

Hence, the far-field pattern hmax which provides the maximum directivity is provided by the

combinations between hHD and h′
HQ weighted by the corresponding coefficients. This provides

the maximum directivity of 8, while the individual directivity of isolated hHD and hHQ are 3

and 7.5, respectively, as can be observed from Figure 3.6(a). The far-field polar pattern are

depicted in Figure 3.6(b) for hHD, hHQ and hmax.

3.3.1 Minimum Q for Dipolar and Quadrupolar contributions

A lower limit can be determined for the minimum Q value, considering both the isolated effects

of the Huygens’ dipole and quadrupole, as well as the multipolar contribution.

Minimum Q for Isolated Huygens’ dipole

The Q1 in eq. (C.11) of Appendix C can be interpreted as the quality factors of isolated Huygens’

Dipole, hence Q ≤ Q1 establishes a lower limit for the Q-factor, signifying an upper threshold

for the maximum bandwidth of small antennas. This limitation corresponds to the well-known

Chu-limit. However, in [25] Chu defined the limit for omni-directional antennas, focusing solely

on the TM modes. This formulation yielded Q ≥ Q
(TM)
Chu ≈ 1/(krmin)

3+1/(krmin). McLean [37]

emphasized that the limit shifts when both TE and TMmodes, especially in circular polarization,

are taken into account. In such scenarios, the dominant quasi-static term is weighted by a factor

of 2 in the denominator, leading to a revised expression. This modified limit corresponds to
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Figure 3.6: (a) normalized polar patterns and (b) 2D radiation patters of HD, HQ and com-

bination of HD, HQ and DVQ for maximum directivity as in (3.15). hmax provides a maximum

directivity of 8 (9.03 dBi), while the isolated hHD and hHQ provide a directivity of 3 (4.77 dBi)

and 7.5 (8.75 dBi), respectively.

configurations featuring two vertical electric and magnetic dipoles, ensuring energy balance.

It is worth noting that both authors, Chu and McLean, focused on antennas isotropic in the

azimuthal plane rather than considering the scenario of maximum directivity. However, in

cases of maximum directivity and self-resonant antennas, the current formulation naturally

converges towards a configuration involving more than two vertical dipoles, specifically the

Huygens’ dipole, as it offers the highest directivity. Despite these considerations, we will continue
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to refer to this scenario as the Chu-limit for clarity.

Minimum Q for Isolated Huygens’ quadrupole

The Q2 factor defined in eq. (C.12) of Appendix C can be understood as the quality factor of

an isolated Huygens’ Quadrupole. Upon examining (C.12), it becomes evident that the gener-

alization to this concept in Appendix C implies that isolated Huygens’ Quadrupoles adhere to

Q ≥ Q2. This condition is considerably more restrictive than Q ≤ Q1, yielding a relative band-

width of 0.11(krmin)
5 at low frequencies. However, it offers superior directivity (7.5 compared

to 3). Optimal maximum directivity is achieved through a judicious combination of dipolar and

quadrupolar contributions.

Minimum Q for the combination of Dipolar and Quadrupolar contributions for

Maximum Directivity

The maximum directivity can be achieved through the combination of the contribution of both

dipolar and quadrupolar. Hencem, let us combined the dipolar hHD and quadrupolar h′
HQ

contributions with arbitrary coefficients, i.e., h = hHD + γh′
HQ where the parameter γ is a

real number. Applying the definition of directivity in (3.5), the directivity can be written as,

D = 2/
∫ π

0
|h|2/|hmax|2 sin θ dθ, which leads to

D = 3
(1 + γ)2

1 + 3
5γ

2
(3.21)

To reach a maximum directivity of 8 the coefficient γ need to assume γ = 5/3. Hence, the

associated minimum Q for the maximum directivity can be calculated using the expression

in (C.8) of Appendix C truncating the series at the second terms and using the associated

Harrington’ coefficients for the maximum directivity in (3.6) leads to a

Q(2) =
3Q1 + 5Q2

8
=

45

8(krmin)5
+

3

(krmin)3
+

2

(krmin)
(3.22)

Therefore, Q(2) is the is the minimum quality factor that can be obtained with dipolar and

quadrupolar contributions combined for maximum directivity. These findings lead to a higher

maximum relative bandwidth at low frequencies compared to that of HQ alone. The data points

corresponding to (Dmax = 8) and (Dmax = 3) are depicted in Figure 3.7 for various values of

krmin. These points are connected by straight dashed lines. Our solution in (3.15) is represented

in the same Figure 3.7. The latter spans the range of directivity from 3 to 8 for any fixed Q,

shown as continuous lines for comparison.

3.3.2 Combination of dipolar and quadrupolar contributions with Q-

bound: closed-form approximation for small antennas

In the previous section, we explored the minimum Q problem without imposing any a-priori

Q-bound. In the following discussion, we delve into this limit by examining scenarios involving

only the contributions from dipolar and quadrupolar Huygens’ sources, as well as considering

the multipole contributions.
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Figure 3.7: Dotted lines represent the maximum directivity as a function of the Q. Dots

connected by dashed lines are obtained by (Dmax = 8) and by (Dmax = 3). Continuous lines

are obtained through (3.15). Dash-dotted lines are obtained by using (3.23), namely setting Q

constant for dipolar and quadrupolar contributions. The solution minimally deviates around

with respect to eq. (3.15) since the latter include contribution of order 3 (hexapoles).

Referring to the maximum directivity with Q-bound and truncate the series in (3.15) at the

first two terms leads to the combination hmax = hHD + γh′
HQ, as well as the case without

any Q-bound but with a different γ parameter. The resulting total Q in (C.8) of Appendix

C, obtained with the corresponding Q-bounded maximum directivity coefficients in (3.18) is

Q = (Q1 + 3
5γ

2Q2)/(1 + 3
5γ

2). Deriving γ from the latter leads to γ =
√

5(Q−Q1)
3(Q2−Q) which

substituted in (3.21) yields

Dmax = 3

(√
Q2 −Q+

√

5
3 (Q−Q1)

)2

Q2 −Q
(3.23)

Consequently, the combination of dipolar and quadrupolar contributions that minimizes Q and

maximizes directivity for any antenna size can be obtained substituting the γ =
√

5(Q−Q1)
3(Q2−Q) into

h = hHD + γh′
HQ, whcih leads to

hmax ≈ hHD +

√

5(Q−Q1)

3(Q2 −Q)
h′
HQ for Q1 ≤ Q ≤ Q(2) (3.24)

From Figure 3.7 the excellent accuracy of (3.23) in the range 3 ≤ Dmax ≤ 8 is evident; the

continuous lines are referred to the exact solution in (3.15) while the dash-dotted are referred

to (3.23).

The equation in (3.23) holds for Q1 ≤ Q ≤ Q2, ensuring the existence of a real square root.
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However, this result signifies the maximum achievable directivity within the Q-bound range

of Q1 ≤ Q ≤ Q(2), where at Q(2) the directivity reaches its peak value of 8, intersecting the

Harrington point before decreasing (refer to Figure 3.7). This range of validity can be also

expressed in terms of antenna size, inverting the relation in (C.11) and (C.12), namely

kr1 ≤ kmin ≤ kr(2) ≈ 0.9kr2 (3.25)

where kr1, kr2, and kr(2) are the values for which Q = Q1, Q = Q2, and Q = Q(2), respectively.

These values as a function of Q are obtained by inverting the expression of Q1, Q2, and Q(2),

from (C.11), (C.12), and (3.22), respectively.

kr1 ≈ 0.4

(

1

Q
+

2

Q1/3

)

(3.26a)

kr2 ≈ 1.42

(

1

Q
+

1

Q1/5

)

(3.26b)

Comparison of the exact formula in (3.15) (continuous lines) with the two terms approximation

Figure 3.8: Bound of frequency bandwidth constrained super-Directivity (log-log scale) for

different values of Q, truncated at the corresponding Chu-limit radius kr1, where Dmax = 3.

Comparison between the exact formula (3.15) (continuous lines) and the approximate formula

for small antennas in (3.23) (dashed lines). The validity range of the approximation is kr1 ≤
krmin ≤ kr(2).

in (3.23) (dashed lines) is shown in Figure 3.8 for several values of Q. The percentage relative

error of (3.23) with respect to the full expansion, namely ϵ = (D
(approx)
max − Dmax)/Dmax, in

the range kr1 ≤ krmin ≤ 0.8kr2 is less than 1% for 100 ≤ Q ≤ 1000 and less than 4% for

10 ≤ Q ≤ 100, with maximum error always obtained close to 0.8kr2 (see Figure 3.9).
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Figure 3.9: Percentage error between the approximation in (3.23) and the exact formula in

(3.15) for Q = 10, 20, 30, 50, 100, 300, 500, 1000 in the range from kr1 ≤ krmin ≤ 0.8kr2.

It is worth noting that the same outcome can be attained by truncating the series in (3.15), set-

ting its derivative to zero, and solving the resulting second-order equation with the approximate

ξ in (3.16), i.e.,

Dmax(Q, krmax) ≈
3

ξ̄(Q1 −Q) + 1
+

5

ξ̄(Q2 −Q) + 1
(3.27)

3.3.3 Multipole contributions without and with Q-bounds

Figure 3.10 shows the maximum directivity as a function of Q for various values of krmin

associated to a finite numbers Nmax of multipoles. To this end the expression Dmax = N2
max +

2Nmax is evaluated as a function of the total quality factor in (C.8) in Appendix C, using the

Harrington coefficients in (3.6), i.e., Q =
∑Nmax

n=1 Qn(2n+1)/(N2
max +2Nmax). The Fante’s Qn

has been used in the calculation in Appendix (C). This plots can be obtained only by a discrete

points since Nmax can assume only integer values. These points are connected by straight line

in Figure 3.10. The continuous curve is obtained by the exact formula (3.15). It is seen that

the discrete points are reasonably close to the continuous curve obtained by (3.15), and always

below the continuous curve.

3.4 Closed-form formulas for larger antennas

From Figure 3.2, it can be observed that the value of ξ̄ exhibits smooth variation for krmin ≤ kr2;

for this reason by adopting the value of ξ̄ at 0.6kr2 and maintaining it throughout the range

0.6kr2 ≤ krmin ≤ 10, an accurate solution for directivity is obtained. This value of ξ̄ is directly
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Figure 3.10: Maximum directivity of a finite number of multipoles as a function of Q (dots con-

nected by dashed lines) and as a function of Q derived (dashed lines) for krmin = 0.2, 0.5, 1, 2, 3.

The results are compared with the results obtained from (3.15). The vertical dotted lines cor-

respond to the Chu-limit Q = Q1.

derived from (3.26b) and yields ξ̄ ≈ 0.16/Q. Utilizing this value of ξ̄ leads to the following

concise closed form

Dmax(Q, krmin) ≈
∞
∑

n=1

2n+ 1

0.16
(

Qn

Q − 1
)

+ 1
(3.28)

We observe that the summation can be truncated at [krmin] + 10 without compromising the

accuracy. Comparison between the exact form in (3.15), and the combination between (3.23)

and (3.28) is given in Figure 3.11. It is seen that this formula is accurate for kr(2) ≤ krmin ≤ 20

and 10 < Q < 5000.

It is seen that this formula is accurate for 0.8kr2 ≤ krmin ≤ 20 and 10 < Q < 5000. In

particular, the percentage error ϵ[%] = (D
(approx)
max −Dmax)/Dmax in the above range for various

values of Q is presented in Figure 3.12. It can be seen that the percentage error is less than 5%

for Q < 100 and less than 7% for Q < 1000.

A less accurate, but simpler formula (since it does not require the calculation of Qn) is obtained

on the basis of an approximation (3.17) and is given by

Dmax(Q, krmin) ≈
∞
∑

n=1

2n+ 1

0.16

[

1
Q

(

n
1.2(krmin)

)(2n+1)

− 1

]

+ 1

(3.29)

This formula is accurate enough for kr(2) ≤ krmin ≤ 3 as can be observed from Figure 3.13.
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Figure 3.11: Maximum directivity (log-log scale) for constant Q. The curves are truncated

at the corresponding Chu-limit radius, where Dmax(Q, krmin) = 3. Comparisons of the exact

formula (3.15) (continuous line) and the combination between (3.23) and (3.28) (dotted lines)

for Q = 10, 100, 1000, 5000.

Figure 3.12: Percentage error between the approximation in (3.28) and the exact formula in

(3.15) for Q = 10, 20, 30, 50, 100, 300, 500, 1000 in the range from 0.8kr2 ≤ krmin ≤ 20.
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Figure 3.13: Bound of Super-Directivity (log-log scale) truncated at the corresponding Chu-

limit radius kr1. Comparisons of the exact formula (3.15) (continuous lines) and the combination

between (3.23) and (3.28) (dash-dotted lines) for Q = 10, 100, 1000, 5000.

3.5 Maximum Directivity and Equivalent Radius for con-

stant Q

The effectiveness of the presented formulation is more clear when the results are presented in

terms of equivalent area. This is because the equivalent area provides a more tangible measure

for understanding the impact of the bandwidth bound in the maximum directivity. Hence, this

formulation provide also an optimization in terms of area. Yaghjian [70] presented simplified

formulas for sampling the minimum sphere. He distinguished non-resonant antennas from res-

onant antennas and provided a link between the equivalent radius associated with the storage of

reactive energy and maximum equivalent area of the antenna, therefore establishing a link with

the maximum directivity. The maximum directivity can be described in terms of equivalent

radius, i.e., by Dmax = (kreq)
2. The req may be interpreted as the equivalent radius at which

the reactive field becomes negligible [70]. Figure 3.14 compares the results for different values

of Q with the ones obtained from the directivity estimated by Harrington.

3.6 Conclusions

In the previous section, we established an analytical closed-form formula for the Q-bounded

maximum directivity (3.15). The expression has been obtained by solving a convex optimization

problem formulated in terms of an SW expansion of the radiated field, and it is expressed in the

form of a series that converges rapidly in a large range of the parameters’ variation. The main

achievements connected with this expression are summarized here.
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Figure 3.14: Ratio between req and rmin as a function of krmin for different values of Q,

the curves are truncated at radius corresponding to the Chu-limit. The equivalent radius is

obtained from the exact formula in (3.15) (continuous lines) and the combination between the

approximate ones in (3.23) and (3.28) (dotted lines). The back dash-dotted line is obtained with

the Harrington formula, i.e., (krmin)
2 + 2(krmin).

1. The coefficients of the SW expansion providing the maximum directivity are given in

analytical form, thus allowing for the derivation of the optimal radiation pattern for any

radius of the minimum sphere;

2. The maximum directivity limit goes to 3 for the values of krmin that respect the Chu-limit

for dipolar Huygens’ sources. In this case, the exact formula predicts maximum directivity

equal to 3 independently of the value of Q

3. For small antennas, the results are interpreted in terms of a combination of the field

radiated by dipolar and quadrupolar Huygens’ sources outside the minimum sphere. This

interpretation leads to the simple formula (3.23) which provides an accurate continuous

description of directivity in the range 3 ≤ Dmax ≤ 8 as a function of the minimum Q

for any fixed antenna size as an intermediate step of the solution for small-size antennas,

we have also found the relation Q > Q2 that established the limit of bandwidth for HQs

alone, which is an extension of the Chu-limit to isolated resonant quadrupoles;

4. By using the exact formula, a simple analytical closed-form expression has been derived,

which complements the expression in the quadrupole range for electrical size till krmin = 20

and Q < 5000.

It is important to stress that being the limit obtained with zero field inside the minimum sphere,

this limit could be very difficult to approach for large antenna sizes. For small- to-intermediate
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size antennas, the simplicity of the final formulas together with their interpretation renders this

work useful for antenna engineers. The extension of this work to account for losses will be

carried out in a dedicated article.





Chapter 4

Bounds on Super-Gain

4.1 Introduction

In the previous chapter (Chapter 3), the study focused on determining the upper limit of super-

directivity for self-resonant antennas with a minimum Q. It’s important to note that super-

directivity and super-gain are not the same; the latter takes losses into account. In this Chapter,

we establish an upper bound on the maximum gain achievable for any type of antenna. To

achieve this, a numerical approach has been implemented considering a pair of electric orthogonal

dipole located over a spherical surface. By expanding the fields using spherical waves and

applying the equivalence theorem, analytical formulas for the maximum gain has been calculated

with and without of bandwidth constraint.

4.2 Antenna Gain

Antenna gain refers to the ability of an antenna to concentrate its radiated energy in a specific

direction. It’s used in both transmitting and receiving contexts, means that in a transmitting

antenna, the gain describes how well the antenna converts the input power into waves oriented

in a specified direction, reversely in a receiving antenna, it characterizes how well the antenna

converts the waves coming from a specified direction into electrical power. The antenna gain is

defined by the product between the radiation efficiency η and the directivity D

G = ηD (4.1)

Knowing that the directivity is the ratio between the radiation intensity in the direction of

its strongest intensity and the power total radiated power, namely D(θ, ϕ) = 4πU(θ, ϕ)/Pr,

therefore, the gain can be expressed as

G(θ, ϕ) = 4π
U(θ, ϕ)

Pr + PΩ
(4.2)

where U(θ, ϕ) is the radiation intensity, Pr is the radiated power, and PΩ is the power dissipated

due to losses.

As for the directivity, we can write the gain as a function of the antenna effective area Aeff , an

alternative quantity used to describe the directive properties of reciprocal antennas

G = 4π
Aeff

λ2
(4.3)
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It is important to note that the effective area is a theoretical concept and can be used to compare

antennas in terms of their performance characteristics, but it does not necessarily represent a

physical area of the antenna.

4.3 Maximum Super-Gain Without Q-Bounds

In this Section the determination maximum super-gain is done expanding the electric and the

magnetic fields in terms of spherical waves (see Appendix A). The Love formulation of the

equivalence theorem is first applied to the minimum spherical surface which includes all the

sources. The equivalent electric and magnetic currents radiate zero field inside the surface.

The external field is the same as that provided by magnetic currents radiating on a perfectly

conducting sphere of radius rmin, as predicted by the Schelkunoff formulation. In Section B.1

of Appendix B, the equivalent currents derivation is presented. For instance, we assume that

the magnetic currents radiate in presence of a lossy conductor with resistivity for square-surface

RΩ. This resistance, also known as sheet resistance, has a value that depends on
√
f , for copper

it is approximately RΩ = 2.82 × 10−7
√
fω). We assume that the electric currents induced on

the conductor by the magnetic forced currents will not change significantly wrt the currents on

a PEC. Since the resulting fields inside the minimum sphere S is zero, the total stored energy

is zero. However, considering only the contribution of the electric currents radiating alone in

free space (see Section B.2 of Appendix B) leads to a different expression of radiation resistance

as well as a non-zero value of the energy stored inside to the surface. This aspect will be

investigated further.

Referring to Appendix B, we obtain the expression for the radiation resistance (eq. B.16) of

the individual harmonics in the case of a lossy conducting sphere. This expression can also be

explicitly derived using the spherical Hankel’s function of the second type h
(2)
n (krmin), i.e.,

R
(s)
rad,n =

{

ζ
∣

∣

d
d(kr)krminh

(2)
n (krmin)

∣

∣

−2
for s = 1 (TE)

ζ(krmin)
−2
∣

∣h
(2)
n (krmin)

∣

∣

−2
for s = 2 (TM)

(4.4)

Note that these values has a weak dependence on krmin for n > krmin and goes to ζ for

krmin >> n. The value of the radiation resistance for n = 1, 2, 3, 4 is shown in Figure 4.1. It

is seen that for small values of n, R
(2)
rad,1 and R

(2)
rad,2 (TM) go to zero as (krmin)

2 and (krmin)
4,

respectively; while R
(1)
rad,1 and R

(1)
rad,2 (TE) go to zero as (krmin)

4 and (krmin)
6, respectively.

4.3.1 Maximum Gain for Externally Tuned Antennas

Although in the definition of the radiated power, namely Pr = 1
2

∑

i R
(s)
rad,n|Ii|2, only involves

the electric current coefficients Ii, it represents the total power radiated by both the equivalent

electric and magnetic currents radiating together in free-space or, equivalently, the power radi-

ated by the magnetic currents alone on top of a metallic sphere, that induces electric currents

on the metallic sphere (see Appendix B). The total power Pr + PΩ (radiated plus dissipated

power) is given by

Pr + PΩ =
1

2

∑

i

(

R
(s)
rad,n +RΩ

)
∣

∣Ii
∣

∣

2
(4.5)
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Figure 4.1: Radiation resistance of individual harmonics for n = 1, 2, 3, 4 as a function of the

minimum surface normalized radius for TM (continuous lines) and TE (dashed lines) modes.

We observe that, since the symmetry of the problem, the maximization of the gain can be done

in an arbitrary observation direction and with an arbitrary polarization. It is therefore not

restrictive to assume (θ, ϕ) = (0, 0) as well as a θ̂-polarization. The power density in direction

(θ, ϕ) = (0, 0) (broadside direction) is obtained by using the far zone limit approximation. This

can be written as U = limr→∞
1
2ζ |rE|2 = 1

8π |
∑

i CiKi|2, whit Ki = 4πT i limr→∞ krR
(3)
3−s,n.

The same quantity can be expressed in terms of the electric currents coefficients Ii through

|Ci| = |Ii|
√

R
(s)
rad,n; therefore, from the definition in (4.2) the antenna gain in direction (θ, ϕ) is

given by

G(θ, ϕ) =

∣

∣

∣

∑

i

√

R
(s)
rad,nIiKi(θ, ϕ)

∣

∣

∣

2

∑

i

(

Rrad,i +RΩ

)

|Ii|2
(4.6)

under the assumption that the modal currents on the surface are not perturbed by the presence

of the small losses.

Starting from equation in (4.6), we followed the method applied by Harrington in [28] to max-

imize the directivity, without imposing an a-priori truncation on the harmonics, which was

necessary in the Harrington’s process to get a finite result. Applying the Swartz identity to the

numerator of (4.6), yields to

G ≤

(

∑

i

√

Rrad,i|Ii||Ki|
)2

∑

i

(

Rrad,i +RΩ

)

|Ii|2
.
= G0(|Ii|) (4.7)
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The equality symbol in (4.7) is valid when ∠Ki = −∠I∗i . The maximization of the function in

(4.7) is obtained by imposing the vanishment of the derivative wrt |Ii|; namely

∂G0

∂|Ii|
=

∂

∂|Ii|

(

∑

i

√

Rrad,i|Ii||Ki|
)2

∑

i

(

Rrad,i +RΩ

)

|Ii|2
= 0 (4.8)

The above (4.8) is equivalent to

(

2|Kq|
√

Rrad,q

)

∑

i

(

Rrad,i +RΩ

)

∣

∣Ii
∣

∣

2
=

= 2
∣

∣Iq
∣

∣

(

Rrad,i +RΩ

)(

∑

i

√

Rrad,i

∣

∣Ii
∣

∣

∣

∣Ki

∣

∣

) (4.9)

which is respected if and only if

∣

∣Kq

∣

∣

√

Rrad,i =
∣

∣Iq
∣

∣

(

Rrad,q +RΩ

)

(4.10)

for any couple of indexes i, q. Substituting (4.10) in (4.7) leads to the following analytic closed-

form formula for the maximum gain

Gmax =
1

2

∞
∑

n=1

{

(2n+ 1)(η(TE)
n + η(TM)

n )

}

(4.11)

with

η(TE,TM)
n =

1

1 +RΩ/R
(1,2)
rad,n

(4.12)

where η
(TE)
n and η

(TM)
n correspond to the radiation efficiency associated to TE and TM indi-

vidual modes, respectively.

The electric field coefficients (with Hansen’s normalization) are given by

Ci = δiη
(TE,TM)
n

√
2n+ 1 (4.13)

where

δi = I0
√

ζ















0 if |m| ≠ 1

(−j)n if s = 1,m = ±1

m(−j)n if s = 2,m = ±1

(4.14)

The constant I0 is arbitrary (it disappears in calculating Gmax) and can be set up in such a

way to have the same radiated power for any RΩ. The total radiation efficiency η = Pr

Pr+PΩ
in

condition of maximum gain is indeed given by

η =

∑

i R
(s)
rad,n

|Ii|
2

|I0|2

∑

i

(

R
(s)
rad,n +RΩ

) |Ii|2

|I0|2

=

∑

n(2n+ 1)
[(

η
(TE)
n

)2
+
(

η
(TM)
n

)2]

∑

n(2n+ 1)
[

η
(TE)
n + η

(TM)
n

]

(4.15)

The efficiency in (4.15) is shown in Figure 4.2 for different values of the loss resistance RΩ.
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Figure 4.2: Efficiency of the super-gain calculated for different values of RΩ as a function of

krmin.

Figure 4.3: Maximum gain of externally tuned antennas calculated for different values of RΩ

as function of krmin (continuous lines) and corresponding directivity (dashed lines) obtained by

Gmax/η.

Figure 4.3 shows the values of maximum gain obtained implementing (4.11) for various values

of the surface resistance RΩ (continuous lines). It also shows the directivity (dashed lines)
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obtained dividing the maximum gain in (4.11) for the efficiency in (4.15). From Figure 4.3

can be observed that the super-gain and the corresponding directivity show inflection points

at the maximum of the radiation efficiency. The lower frequency inflection point occurs at

Gmax = 1.5. For smaller value of electrical radius wrt the one of the first inflection point the

directivity saturate to 1.5. Decreasing the minimum sphere radius, the directivity obtained by

the current coefficients is close to the maximum gain till a value of 1.5 and next remains equal

to 1.5 till zero dimension of the minimum sphere. It is worth noting that this flat level is 1.5,

which corresponds to the directivity of an electric dipole and not 3 (Huygens’ source directivity),

which, on the contrary, was the case for directivity (see Chapter 3). The phenomenon discussed

was previously highlighted in Gustafsson’s work [1]. It is primarily attributed to the elevated

radiation resistance exhibited by the first TM dipolar mode (electric dipole) when the radius

of the minimum sphere is extremely small. Conversely, the radiation resistance of the first TE

mode is significantly lower, making it more susceptible to losses. It’s also important to note

that the additional inflection points of the super-gain are due to the fact that one more mode

becomes significantly excited in the summation in eq. (4.11).

4.3.2 Maximum Gain for Self-Resonant Antennas

The solution presented in (4.11) is not self-resonant; this implies that an additional external

reactive tuning circuit is needed to achieve the maximum gain possible. The maximum gain can

be obtained through a convex optimization, which relies on the principles of the Lagrange dual

problem, following a similar procedure used for the maximization of the directivity for a fixed Q

in Chapter 3. We won’t repeat the entire procedure here, but the final result is provided below

Gmax = min
ξ∈[ξ(TE),ξ(TM)]

∞
∑

n=1

1

2

(

η
(TE)
n (2n+ 1)

1 + ξη
(TE)
n (Q′

n −Q′′
n)

+
η
(TM)
n (2n+ 1)

1− ξη
(TM)
n (Q′

n −Q′′
n)

)

(4.16)

with

ξ(TE) = − 1

maxn{η(TE)(Q′
n −Q′′

n)}
(4.17a)

ξ(TM) =
1

minn{η(TM)(Q′
n −Q′′

n)}
(4.17b)

where Q′
n and Q′′

n are the dominant and subdominant quality factors reported in Appendix C.

The gain in (4.16) is obtained with field coefficients

Ci = δi
η
(TE,TM)
n

√
2n+ 1

1 + ξ0η
(TM)
n (Q′

n −Q′′
n)

(4.18)

where ξ0 is the value that minimize the series and δi is defined in (4.14).

Comparison between the externally tuned gain antennas and self-resonant gain antennas, ex-

pressed with eq. (4.11) and eq. (4.16), respectively, is given in Figure 4.4. The resonant antenna

maximum gain is tighter wrt the one for externally tuned antenna, especially for small antennas,

and drop rapidly to zero for gain approximately equal to 3. This aspect has been also underlined

in [1].
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Figure 4.4: Maximum gain calculated for different values of RΩ as a function of krmin for

tuned antennas (dashed lines) and self-resonant antennas (continuous lines).

4.3.3 Comparison with Gustafson-Capek results

It is important to compare the results with the ones obtained by Gustafsson and Capek in [1].

The approach presented there is based on Methods of Moments (MoM) applied to the surface of

an arbitrary metallic body and by a convex optimization procedure. Their investigation led to

maximum super-gain through the imposition of power intensity maximization while maintaining

a constant radiated power for all coefficients of the MoM basis functions. This procedure is

quite general and can be applied to arbitrary shape. In Fig. 1 of [1], the authors demonstrated

the application of this methodology to a spherical shape, utilizing spherical modes as basis

functions. In externally tuned case, the convex optimization is carried out without condition

on the reactance of the MoM matrix; while in the self-resonant case, they impose a vanishing

reactive average power through the imaginary part of the MoM matrix. Here, the formulation

has been re-implemented using the convex optimization procedure of Gustafsson-Capek for both

cases, obtaining a very similar results provided by (4.11) with the radiation resistance in (4.4).

Figure 4.5 shows the difference between our results and the one in [1] for the externally-tuned

case (similar discrepancy is found for the self-resonant case). We discover that the motivation

of this discrepancy resides in the different definition of the original formulation problem and as

consequence of the radiation resistance. Indeed, it is seen eventually that the results from our

procedure become identical to those obtained in [1] if one uses the radiation resistance produced

by electric current only, which derivation is reported in Appendix B. In other terms, we can

reproduce exactly the results in [1] changing the SW radiation resistances in 4.4 with the one

in (B.9) in Appendix B that can be expressed explicitly with the spherical Bessel’s function
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jn(krmin), i.e.,

R
(s)
rad,n,J−only =

{

ζ
[

d
d(kr)krminjn(krmin)

]2
for s = 1 (TE)

ζ
[

krminjn(krmin)
]2

for s = 2 (TM)
(4.19)

These radiation resistances are the one corresponding to harmonics of electric currents only

Figure 4.5: Comparison between the maximum gain for the externally tuned case of our

formulation (continuous lines) and the formulation in [1] (dashed lines), also obtained by using

(4.19) in (4.11). The dash-dotted black line represent the Harrington limit, i.e., (krmin)
2 +

2(krmin).

radiating in free-space. It should be noted that using the electric currents only, provides field

and energy different from zero inside the minimum sphere as explained also in Appendix B,

therefore, the use of (4.4) leads to a bit lower value of the maximum gain wrt to the gain with

(4.19).

4.3.4 Distribution of the currents coefficients

The coefficients for the currents expansion are obtained dividing by the square root of the

individual TE and TM individual n-indexed radiation resistance, namely

Ii = I0
√
2n+ 1



























0 if |m| ≠ 1

−(j)n
√

ζR
(1)
rad,n

R
(1)
rad,n

+RΩ

if s = 1,m = ±1

−m(j)n
√

ζR
(2)
rad,n

R
(2)
rad,n

+RΩ

if s = 2,m = ±1

(4.20)
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where constant I0 is arbitrary (it disappears in calculating Gmax) and can be set up in such a

way to have the same radiated power for any RΩ, i.e.,

I0 =

√

2Pr
∑

i R
(s)
rad,i|Ii|2/|I0|2

(4.21)

Figure 4.6 and 4.7 shows the histogram of the n-indexed current coefficients’ amplitude in

(a) (b)

(c) (d)

Figure 4.6: Histograms of current coefficients for TE (inductive, right-hand side) and TM

(capacitive, left-hand side) harmonics with RΩ = 10−1Ω. (a)-(b) for externally tuned case, and

(c)-(d) for self-resonant case.

(4.20) corresponding to the maximum gain, for RΩ = 10−1Ω and RΩ = 1Ω and for krmin = 2.

Both cases of externally tuned coefficients and self-resonant coefficients are reported. It is seen

that for smaller values of the loss resistance the optimal current coefficients concentration is

pertinent to super-reactive SWs (it means SWs with polar index much larger than krmin = 2).

The amplitudes are normalized to have a unit radiated power (Pr = 1W ). The maximum

coefficients are obtained for the n where the harmonics efficiency is about 50%. It is apparent

that for smaller values of the loss-resistance the optimal current coefficients are concentrated on

super-reactive harmonics, it means SWs with polar index larger than krmin = 2. This makes it

challenging to achieve their excitation on the minimum sphere. It is also apparent from Figure

4.6 and Figure 4.7 that the TE optimal coefficients for the resonant case are higher, aligning

with their reduced efficiency for small antennas. Furthermore, lower losses correspond to larger
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(a) (b)

(c) (d)

Figure 4.7: Histograms of current coefficients for TE (inductive, right-hand side) and TM

(capacitive, left-hand side) harmonics with RΩ = 1Ω. (a)-(b) for externally tuned case, and

(c)-(d) for self-resonant case.

optimal coefficient values, as noted by the disparity in the vertical scales between Figure 4.6

and 4.7.

From Figure 4.8 is more clear that the maximum coefficient amplitude, is given at the values

in which the ohmic losses resistance (horizontal red line) approaches the average resistance of

the harmonics (red line), that is RΩ ≈ R
(1,2)
rad,2, namely when the efficiency of the harmonic is

50%, i.e., η
(TE,TM)
n ≈ 1/2. In this case the calculations is carried out for krmin = 20 and for

externally tuned case. It can be also observed that lower losses also imply larger value of the

optimal coefficients (see difference in the vertical scale for cases Figure 4.8(d) and Figure 4.8(c)).

This renders their excitation on the minimum sphere extremely difficult and practically not so

efficient because we need more dissipated power than radiated power to excite that number of

SWs. For this reason, the bound in (4.11) does not give much information in practice. It is

indeed more appropriate in our view to use Q-limited maximum gain concept presented in the

following section.
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(a) (b)

(c) (d)

Figure 4.8: Envelope of the current coefficients and their amplitude for different values of the

surface: (a) RΩ = 10−3Ω; (b) RΩ = 10−2Ω; (c) RΩ = 10−1Ω; (d) RΩ = 1Ω. The amplitudes are

normalized to have a unit radiated power (Pr = 1W ). The dashed vertical line denotes NDoF in

absence of Q-bounds. The red line (right-hand side scale) represents the radiation resistance of

the SW harmonics. The ohmic surface resistance is indicated by a horizontal red line; it crosses

the curve of the radiation resistance of the harmonics approximately at the maximum of the

envelope.

4.3.5 Physical interpretation for Small Antennas

In Chapter 3, a physical interpretation for small antenna was presented, suggesting that the

combination of dipolar and quadrupolar contributions from Huygens’ sources can be observed.

In the context of maximum directivity, where losses are absent, the coefficients associated with

the n-th spherical harmonics, whether TE or TM modes with azimuthal index m ± 1, are

identical. In contrast, in the context of gain, where losses are present, achieving maximum gain

requires unbalanced coefficients. This generally renders the antenna non-resonant, implying that

outside the minimum sphere, electric and magnetic energies are not balanced. For this reason,
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to address this issue, an additional constraint has been introduced in Section 4.3.2 to attain a

self-resonance condition. Similar to the procedure outlined in Chapter 3, this section employed

a comparable approach. However, in this case, the coefficients are weighted by their respective

efficiencies.

In the far zone the resulting electric field is proportional to

h =
3

2

(

η
(TM)
1 h

(TM)
1 + η

(TE)
1 h

(TE)
1

)

+
5

2

(

η
(TM)
2 h

(TM)
2 + η

(TE)
2 h

(TE)
2

)

(4.22)

where the explicit far-field pattern in (θ, ϕ) coordinates are

h
(TM)
1 = (cos θ cosϕ)θ̂ − sinϕϕ̂ (4.23a)

h
(TE)
1 = cosϕθ̂ − (cos θ sinϕ)ϕ̂ (4.23b)

h
(TM)
2 = (cos 2θ cosϕ)θ̂ − (cos θ sinϕ)ϕ̂ (4.23c)

h
(TE)
2 = (cosϕ cosϕ)θ̂ − (cos 2θ sinϕ)ϕ̂ (4.23d)

While h
(TM)
1 and h

(TE)
1 are the electric far-field pattern of the x-directed electric and y-directed

magnetic dipoles, respectively, h
(TM)
2 and h

(TE)
2 are the electric and magnetic quadrupole,

respectively. The latter are obtained by in phase combination of x-directed and z-directed

electric quadrupoles, and y-directed and z-directed electric quadrupoles, respectively (see Figure

4.9).

(a) (b)

(c) (d)

Figure 4.9: Elementary source associated with the far-field pattern of dipolar h
(TM)
1 (a), h

(TE)
1

(c) and quadrupolar h
(TM)
2 (b), h

(TE)
2 (d) contributions. Electric dipoles (TM) are denoted in

blue with a single arrow and magnetic dipoles (TE) with a double arrow. The vertical doublet

is aligned along x for electrical dipoles and along y for magnetic dipoles.
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The maximum gain for this two terms approximation is given by

Gmax ≈ 3

2

(

η
(TM)
1 + η

(TE)
1

)

+
5

2

(

η
(TM)
2 + η

(TE)
2

)

(4.24)

this corresponds to the maximum achievable gain for externally tuned small antennas.

Figure 4.10: Maximum gain for externally tuned antennas calculated for different values

of RΩ as a function of krmin using the full series in (4.11) (continuous lines) and the two

terms approximation for small antennas in (4.24) (dash-dotted lines). Dotted lines are the

corresponding directivities obtained by Gmax/η with the full series.

Figure 4.10 shows the comparison between the maximum gain for externally tuned case obtained

considering the full series in (4.11) (continuous lines) and two source contributions for small

antennas in (4.24) (dash-dotted lines) for values of RΩ ∈ [10−6Ω; 10−1Ω]. The two expressions

coincide below Gmax = 6 and agrees reasonably till Gmax = 7. In the same Figure has been

plotted also the directivity (dotted lines) obtained by Gmax/η with the full series.

Since analogous analyses can be conducted for self-resonant small antennas, the details will

be omitted, and only the results will be reported in Figure 4.11. This Figure displays the

comparison between the maximum gain obtained by considering the full series in (4.16) and the

corresponding two-term approximation valid for small antennas.

4.4 Value of Q on the maximum gain curve

For the case of maximum gain, the presence of losses causes an unbalancing of the coefficients

associated to the TE and TM modes. In this case, as we have seen in previous Section, the

antenna naturally is not self-resonant. This implies that till a certain dimension of the antenna,

the reactive electric energy We dominates, and therefore we should always apply the first of



44 4. Bounds on Super-Gain

Figure 4.11: Maximum gain of self-resonant antennas calculated for different values of RΩ as

a function of krmin using the full series in (4.16) (continuous lines) and the first two terms of

the series in (4.16) valid for small antennas (dash-dotted lines).

(C.7) in Appendix C; therefore, using the electric field coefficients in (4.13) leads to

Qtot =

∑

n(2n+ 1)
[(

η
(TM)
n

)2
Q′

n +
(

η
(TE)
n

)2
Q′′

n

]

∑

n(2n+ 1)
[(

η
(TM)
n

)2
+
(

η
(TE)
n

)2] (4.25)

The value of Q on the maximum Gain curve as a function of the antenna size is presented in

Figure 4.12 for various values of the loss resistance. It is seen that the bandwidth (the inverse of

Qtot) becomes extremely small for small resistance, even if it corresponds to very high maximum

gain limit. Furthermore, all the curves tend asymptotically, for small electrical size, to the value

of Q that satisfy the Chu-limit, namely

Qtot → Q′
1 =

1

(krmin)3
+

1

(krmin)
for krmin → 0 (4.26)

It is important to notice that for the case of self-resonant antennas the Qtot converges to Q1

reported (C.11) of Appendix C. This is because the TE modes (magnetic currents) are less

efficient in the quasi-static limit.

Hence, he total Q-factor associated with the externally tuned gain for small antennas in (4.24)

is

Qtot =
3
(

η
(TM)
1

)2
Q′

1 + 3
(

η
(TE)
1

)2
Q′′

1 + 5
(

η
(TM)
2

)2
Q′

2 + 5
(

η
(TE)
2

)2
Q′′

2

3
(

η
(TM)
1

)2
+ 3
(

η
(TE)
1

)2
+ 5
(

η
(TM)
2

)2
+ 5
(

η
(TE)
2

)2 (4.27)
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Figure 4.12: Quality factor of spherical wave expansion with coefficients associated to the

maximum gain (4.13). The two dashed dotted lines represents Q′
1 and Q′′

2 .

The explicit expression of the SW efficiency in (4.12) for small antennas are

η
(TM)
1 =

x2

x2 + RΩ

ζ (x2 + 1)
≈ x2

x2 + RΩ

ζ

(4.28a)

η
(TE)
1 =

x4

x4 + RΩ

ζ [(x2 − 3)2 + 9x2]
≈ x4

x4 + 9RΩ

ζ

(4.28b)

η
(TM)
2 =

x4

x4 + RΩ

ζ [(x2 − 1)2 + x2]
≈ x4

x4 + RΩ

ζ

(4.28c)

η
(TE)
2 =

x6

x6 + RΩ

ζ [(−x3 + 6x)2 + (−3x2 + 6)2]
≈ x6

x6 + 36RΩ

ζ

(4.28d)

where x = krmin has been taken to simplify the form of the expressions. The equality in (4.28)

are derived directly by the radiation resistance value (4.4) and the approximation is valid for

RΩ ∈ [106Ω, 10−1Ω] and Gmax < 8.

The exact values of the quality factors, in this case, are

Q′
1 =

1

x3
+

1

x
(4.29a)

Q′′
1 =

1

x
(4.29b)

Q′
2 =

18

x5
+

6

x3
+

3

x
(4.29c)

Q′′
2 =

3

x3
+

3

x
(4.29d)
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Indeed, a reasonable approximation for the total quality factor is provided by

Qtot ≈
1

x3

1 + 30x2

(

x2+RΩ/ζ
x2+9RΩ/ζ

)2

1 + x4

(

x2+RΩ/ζ
x4+RΩ/ζ

)2 (4.30)

with a validity range is till Gmax = 7.

4.5 Maximum Super-Gain With Q-Bounds

In the previous Section we outlined that the expression in (4.11) does not give much information

in practice. In this terms seems necessary to introduce a fundamental bound. It is indeed more

appropriate in our view to use Q-limited maximum gain concept presented in this Section.

This Q-bounded approach, driven by the Q-bounded super-directivity presented in Chapter 3,

does not imply the excitation of unlimited number of harmonics, but the number of significant

harmonics such to provide a given bandwidth. We stress here that Q-bounded maximization for

gain, is a different concept from the maximization of the product bandwidth-gain [36], which

leads to a different set of optimal current coefficient. It is seen that the TE optimal coefficients

for the resonant case are higher in this case, in agreement with the fact that they are less

efficient for small antennas. This bound can be found solving a problem of convex optimization

of the current density by imposing a constraint on the bandwidth. The bandwidth is expressed

in terms of Q-factor, which can be interpreted as the reciprocal of the fractional bandwidth.

In obtaining the Q-bounded maximum gain, we assume that we always are in the condition

We > Wm, so that to impose as a bound the first of (C.7) in Appendix C.

Mathematically the problem can be written as

max
|Ii|

∣

∣

∣

∣

∣

∑

i

√

Rrad,iIiKi

∣

∣

∣

∣

∣

2

∑

i
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Rrad,i +RΩ

)∣

∣Ii
∣

∣

2

s.t.

∑

i QnRrad,i

∣

∣Ii
∣

∣

2

∑

i Rrad,i

∣

∣Ii
∣

∣

2 = Q

(4.31)

Since the procedure is similar to the one in Chapter 3, we omit the demonstration. The final

expression is

Gmax = min
ν∈[0,νmax]

∞
∑

n=1

1

2

(

η
(TM)
n (2n+ 1)

ν(η
(TM)
n Q′

n −Q) + 1
+

η
(TE)
n (2n+ 1)

ν(η
(TE)
n Q′′

n −Q) + 1

)

(4.32)

where νmax = 1/(Q − η
(TE)
1 Q′

1). It is important to observe that the above expression changes

whenever We < Wm; in such a case, in accordance with (C.7) in Appendix C, it is only neces-

sity to swap the Q′
n with Q′′

n at resonance (We = Wm). The field coefficients for Q-bounded

maximum gain are given by

Ci = δi
η
(TE,TM)
n

√
2n+ 1

ν0(η
(TE,TM)
n Q′′

n −Q) + 1
(4.33)
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where ν0 is the value that maximize the series in (4.32) and δi is defined in (4.14).

(a)

(b)

(c)

Figure 4.13: Q-bounded maximum gain in (4.32) as a function of the antenna size calculated

for Q = 10 (a), Q = 100 (b), and Q = 1000 (c) and different values of the ohmic losses resistance

RΩ; the curves tend smoothly to the Q-bounded maximum directivity (black dash-dotted lines)

when the losses tend to zero, i.e., the curve RΩ = 0Ω corresponds to the maximum Q-bounded

super-directivity in (3.15).

In Figure 4.13 the Q-bounded maximum gain obtained using (4.32) is compared with a numerical
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convex optimization obtain by expanding electric and magnetic currents in terms of spherical

waves expansions (dotted lines); it can be noticed the excellent agreement between the numerical

and the analytical results. Here it is important to emphasize the complex relationship between

bandwidth and losses. For a fixed-size antenna, increasing the bandwidth may require a slight

increase in losses to reduce the difference between maximum gain and maximum directivity. As

losses decrease, the maximum gain tends to match the maximum directivity. The acceptable

level of losses depends on the required Q. The gap between maximum directivity and maximum

gain decreases for smaller losses when Q is larger. This can be mathematically represented

by calculating the percentage error between the Q-bounded maximum gain in (4.32) and the

Q-bounded maximum directivity in (3.15), namely

ϵ =
Dmax −Gmax

Dmax
. (4.34)

(a)

(b) (b)

Figure 4.14: Percentage difference between maximum Q-bounded directivity in (3.15) and

maximum Q-bounded gain in (4.32) for different values of the loss resistance. The green curves

correspond to an efficiency larger than 93% in the overall range from the Chu-limit. (a) Q = 10;

(b) Q = 100; (c) Q = 1000. The horizontal scale start form the corresponding Chu-limit for the

different values of Q.

The latter corresponds to 1− η, where η is the efficiency. Figure 4.14 show the percentage error
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for Q = 10, 100, 1000. It can be observed that for ϵ less than 7%, which correspond to an overall

radiation efficiency of 93%, the relationship between the Q-factor and ohmic loss resistance RΩ

can be expressed as the following inequality

Q <
9

R0.8
Ω

+ 3. (4.35)

This means that in this range one can calculate the maximum gain using the maximum directiv-

ity formula in (3.15). The situation is graphically illustrated in Figure 4.15. We should also

emphasize that the inequality in (4.35) is not valid for We < Wm, where one has to interchange

Q′
n and Q′′

n to get the right maximization.

Figure 4.15: Region of validity of the various formulas for Q-bounded maximum gain with

losses in (4.32) and Q-bounded maximum directivity without losses. For Q < 9/R0.8
Ω + 3,

eq.(4.32) can be used with a maximum error less than 7% for all antenna sizes.

4.6 Maximum Gain calculated by the discretization of the

radiation operator

The determination of the maximum gain can be accomplished by discretizing the radiation op-

erator, resulting in a numerical process. The discretization of the radiation operator permits

to express the far-fields in matrix representation. In Appendix D the formulation has been

presented and led to the final expression in (D.12) between the far field radiation vector [Vm]

and the current vectors [In], i.e., [V ] = [F ][I]. In the following this procedure is applied to a

spherical shape and to a parallelepipal box shape.

4.6.1 Maximum Gain for Spherical Shape

Let’s consider a minimum sphere and another sphere surrounding the minimum sphere as an

observation for the far-field, as can be seen in Figure 4.16(a). On the minimum sphere has
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been placed a pair of orthogonal electric dipoles as point sources (Figure 4.16(b)). The choice

to consider a pair of mutually orthogonal dipoles is motivated by the existence of the two

polarizations (TE and TM). These dipoles are located at the center of regions on the sphere,

each having equal area. To divide the sphere into regions of equal area, we utilized the algorithm

proposed by Leopardi in [71]. Same considerations has been done for the observation spherical

surface. Let 2N be the total number of sources (N being the number of orthogonal dipole

pairs) and let 2M the total number of observation points at far-field (M being the number of

orthogonal dipole pairs on the observation sphere). In this case, an equal number of source

and observation points will be considered, i.e., N = M . The rows of matrix [F ] correspond to

the number of observation points, while the columns correspond the number of source points.

Indeed, the far-field matrix [F ] will be a square matrix.

For the maximization of the gain is necessary to establish a specific observation direction and

(a) (b)

Figure 4.16: (a) Graphical representation of the source region sphere (small green sphere) and

of the observation far-field sphere (big blue sphere); (b) Graphical representation of the source

region sphere, the red dot are the location of the two orthogonal electric dipoles.

locate the currents that will optimize the maximization in that particular direction. Without

losing generality, we may assume that this direction r̂1 is corresponding to m = 1, 2 in the

previous notation. We can therefore define

[

V1, V2

]†
=
[

Fm,n

]

m=1,2;n=1,2N

[

In
]

n=1,2N
→
[

V ′
]

=
[

F ′
] [

I
]

(4.36)

where [V ′] = [V1, V2]
† is a two-component vector column and [F ′] is a 2 × 2N matrix obtained

by the first two rows of [F ].

The corresponding radiation intensity in direction r̂1 can be expressed in a matrix form as

U(r̂1) =
1

2ζ

[

V ′
]† [

V ′
]

=
1

2ζ

[

I
]† [

F ′
]† [

F ′
] [

I
]

(4.37)
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The radiated power can be calculated as the integration of the radiation intensity in every

directions of the space or, in matrix form, as

Prad =
4π

N

1

2ζ

[

V
]† [

V
]

=
4π

2ζN

[

I
]† [

F
]† [

F
] [

I
]

(4.38)

The power dissipated in matrix form is

Prad =
1

2
RΩ

[

I
]† [

I
]

(4.39)

Hence, from the general definition of gain in (4.2), we can write the antenna gain in the prefer-

ential direction r̂1 as

G(r̂1) = 4π
U(r̂1)

Prad + PΩ
=

[I]†[F ′]†[F ′][I]

[I]†
(

[F ]†[F ]
N + ζ

4πRΩ[1]

)

[I]

(4.40)

To maximize the gain we can simply maximize the ratio in (4.40) with respect to the current

[I] namely,

G(r̂1) = max
[I]

{

[I]†[F ′]†[F ′][I]

[I]†
(

[F ]†[F ]
N + ζ

4πRΩ[1]

)

[I]

}

(4.41)

Consequently, the maximization of the gain can be formulated as the following optimization

problem, where the total power (denominator of (4.40)) is normalized to unity:

max
[I]

[I]†[F ′]†[F ′][I]

s.t. [I]†
(

[F ]†[F ]

N
+

ζ

4π
RΩ[1]

)

[I] = 1
(4.42)

The solution of the optimization problem in (4.42) can be determined via the following gener-

alized eigenvalue problem

[F ′]†[F ′][I] = λ

(

[F ]†[F ]

N
+

ζ

4π
RΩ[1]

)

[I] (4.43)

By multiplication both member of (4.43) for the matrix [F ′]
( [F ]†[F ]

N + ζ
4πRΩ[1]

)−1
we can rewrite

it as the following 2× 2 problem

[F ′]

(

[F ]†[F ]

N
+

ζ

4π
RΩ[1]

)−1

[F ′]†[V ′] = λ[V ′] (4.44)

Finally, the resolution of the maximization of the original problem in (4.41) is reduced to find the

maximum eigenvalues between { λ1, λ2} of the matrix [F ′]
( [F ]†[F ]

N + ζ
4πRΩ[1]

)−1
[F ′]†, namely

Gmax = λmax
.
= { λ1, λ2} (4.45)

We can also derive the optimal currents that realized this gain

[I]opt =

(

[F ]†[F ]

N
+

ζ

4π
RΩ[1]

)−1

[F ′]† (4.46)
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This procedure illustrated is purely numerical and very easy to solve, below a different procedure

using the SWs harmonics to expand the radiated field, which lead to similar results presented

in Section 4.3.

4.6.2 Maximum Gain for Parallelepipal Box Shape

Figure 4.17: Graphical representation of the box shape, the pair of orthogonal dipoles are

located on the six faces of the box and separated by a distance d to each other.

Let’s assume we consider a parallelepipal box shape. On each of the six faces of the box,

a pair of electric dipoles is positioned, with their orientations perpendicular to each other and

separated by a distance d (refer to Figure 4.17). The box is surrounded by spherical region,

which constitute the observation region at the far-field (Figure 4.16(a)), divided in sub-regions

of equal area using Leopardi algorithm [71]. The electric far-field radiated by every pair of

elements is calculated for every θ and ϕ directions, and gathered into a matrix [F ] of dimensions

2M × 2N , where M is the number of observation points at the far-field, and N is the number

of sources (numbers of electrical dipoles (see Appendix D). For the maximization of the gain

we fix a certain direction of observation r̂1. The far-field in maximum directions r̂1 is gathered

into a matrix [F ′] of dimensions 2 × 2N . To solve the problem we use the numerical approach

described in Section 4.6.1, which consist on finding the maximum eigenvalue of a 2 × 2 matrix

(4.45).

(a) (b)

Figure 4.18: Graphical representation of the study case of the box circumscribed to the sphere

(a) and of the box inscribed within the sphere (b).

To compare the outcomes, we examined both a box that circumscribes a sphere (refer to Figure

4.18(a)) and a box that is inscribed within a sphere (refer to Figure 4.17(b)). The maximum

gain for the box that circumscribes a sphere and the box that is inscribed within a sphere are
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reported in Figure 4.20 and Figure 4.15, respectively. The results are highly alike because the

volumes of the box and the sphere are nearly equal, particularly in the instance of the box

inscribed within the sphere.

Figure 4.19: Maximum gain of the box circumscribed to the sphere (continuous lines) compared

with the one of the sphere (dotted lines) for different values of RΩ.

Figure 4.20: Maximum gain of the box inscribed within the sphere (continuous lines) compared

with the one of the sphere (dotted lines) for different values of RΩ
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4.7 Conclusions

In this paper has shown several general properties of the maximum gain of arbitrary antennas

of given electrical sizes. Analytical forms for the maximum antenna gain as a function of the

losses and in absence and presence of Q-bounds have been presented for both resonant and

non-resonant (externally tuned) cases. The exact solution is given in terms of a series that

should be minimized wrt a single parameter. For small antennas a closed form is provided that

is accurate till maximum gain equal to 7. An interesting interpretation in terms of magnetic

and electric dipoles has been provided. Numerical solution for the maximum gain through the

democratization of the radiation operator has been also derived for a spherical region, the results

are also extent to a parallelepipal box shape.



Chapter 5

Degrees of Freedom and relationship with

Super-Directivity

5.1 Introduction

This Chapter introduces the concept of the degrees of freedom (DoF) of the field. The DoF

number is the minimum number of parameters necessary to describe the electromagnetic

field at a certain distance from a minimum surface enclosing the sources, so that the reactive

field is negligible. This number is based on the limited spatial bandwidth of the EM fields and is

directly proportional to the square of the minimum sphere radius in terms of wavelength. The

maximum antenna super-directivity is investigated in relationship with the number of DoF of

the field.

5.2 Degrees of Freedom and Maximum Directivity of non-

super-directive antennas

The number of Degrees of Freedom (NDoF ) of the field radiated by an arbitrary sources in a

given domain, contained within a minimum surface S, is the minimum number of independent

scalar parameters sufficient to describe the field and its evolution, i.e., the number of scalar

coefficients needed for an accurate and non-redundant description of the field, in that domain.

In eq.(3.1) of Chapter 3 the maximum directivity in absence of super-reactive source has been

defined as the one of a large illuminated circular aperture of area and the same radius of the

sphere surrounding the sources. Consider for instance a spherical surface S with an electrically

large radius rmin surrounding the sources and an observation domain given by the entire space

outside S except for a small region close to S, where very reactive fields originating from the

source region within S may dominate. In this case, the number of degrees of freedom is given

by [31]

NDoF = 2Dmax (5.1)

where the factor 2 is a result of the two orthogonal polarizations, corresponding to TE (transverse

electric) and TM (transverse magnetic) modes. From eq. (5.1) we can interpret the maximum

directivity of a system as a measure of the degrees of freedom of the power density radiated by

the system. Hence, NDoF /2 can be seen to be the maximum number of non-overlapping pencil

beams that can be radiated by the sources contained in the minimum sphere. It is convenient

to introduce the definition of the beam solid angle ΩA, defined as the solid angle through which
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all the power of the antenna would flow if its radiation intensity were constant and equal to its

maximum value Umax. The idea, illustrated in Figure 5.1(a), gives the following expression [62]

ΩA =

∫∫

(θ,φ)

U(θ, ϕ)

Umax
sinθdθdϕ (5.2)

where U(θ, ϕ) is the radiation intensity per unit solid angle and Umax is its maximum value. For

directive antennas (with directivity larger than 20 dB) the solid beam angle can be approximated

as the product of the 3 dB angles in the two principal planes. The solid beam angle is also related

(a) (b)

Figure 5.1: (a) graphical illustration of the solid beam angle for a highly directive antenna.

This angle is approximately equal to the product of the 3dB angles in the two principal planes.

(b) illustration of the DoF as the number of beam angles coming from the maximum area of the

sphere in independent directions.

to the directivity in the direction of the maximum intensity (see Figure 5.1(b)) as

Dmax = 4π
Umax

Pr
= 4π

Umax
∫∫

4π
U(θ, ϕ)dΩ

=
4π

ΩA
(5.3)

The Degrees of Freedom can be also seen as the number of non-overlapped solid beams angles

produced by any rotating, constant phase and equi-amplitude illuminated circular areas inside

the minimum sphere. Therefore, the ratio between the total solid angle and the beam angle

associated with a constant-amplitude-phase dish is also the number of degrees of freedom (except

for a factor 2 due to the polarizations); that can be written by applying eq.(3.1) of Chapter 3 as

NDoF = 2
4π

Ωrmin

= 2Dmax = 2(krmin)
2 (5.4)

where Ωrmin
= ΩA=πr2

min
. It can be noticed that the maximum directivity in (5.4) is valid

for a large radius (namely, asymptotically) and for non-super-reactive sources [31]. Indeed,
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it is well known that if one is able to excite a strong reactive field close to the antenna, the

equivalent area of the antenna can be larger than its physical area [70]. Nevertheless, the trade-

off for this advantage is the antenna’s typically low efficiency due to its low radiation resistance.

Additionally, the resulting bandwidth is extremely limited. It is important to mention that

the maximum directivity and DoF equivalence expressed in equation (5.4) justifies (5.1) as

asymptotic concept, namely valid for large sphere in terms of the wavelength. However, we can

argue that the relation in (5.1) can be valid even for intermediate and small radii. To this end,

the process suggested by Hansen [61] can be followed, which is anyway valid for non super-

reactive cases. The process suggested by Hansen in eq.(2.225) page 57, brings to the following

expression of the maximum directivity:

Dmax = n0(n0 + 2) (5.5)

where n0 is the maximum polar spherical harmonics index that can be excited over the minimum

sphere. Due to the cut-off behaviour of the spherical harmonics one has n0 = ⌈krmin⌉, where ⌈·⌉
denotes the smallest integer larger or equal to its argument; hence, the following formula holds

Dmax = ⌈krmin⌉2 + 2⌈krmin⌉ =
NDoF

2
(5.6)

where we have identified the DoF with the max directivity, without motivating it. Eq.(5.6)

is valid even for very small antennas, where we know that the degrees of freedom are 6 (3

orthogonal electric and three orthogonal magnetic dipoles) and the maximum directivity is the

one of a Huygens source. We can argue that formula in (5.6) is valid even for intermediate-size

source regions.

5.2.1 Degrees of Freedom for a limited angular region

For a reduces solid angular region Ω the degrees of freedom of the field are given by the number

of solid beam angle Ωrmin
contained in Ω as depicted in Figure 5.2, namely

NΩ
DoF =

Ω

Ωrmin

=
Ω

4π
NDoF (5.7)

In defining (5.7) it is seen that the peripheral beams does not fit perfectly into the cone, especially

if the beams are large (small sphere). This approximation in (5.7) is indeed asymptotic, its

rigorous value can be found on as using the Singular Value Decomposition that will shown in

the following Sections.

5.2.2 Approximate expression of DoF for convex minimum region

When the source is included in a minimum surface different form a sphere, provided the shape

is convex, the NDoF can be approximated as suggested in [72], namely

NDoF ≃ 2
Σ

(λ/2)2
.
= N

(Σ)
DoF (5.8)

where Σ is the surface bounding the support sources. In case of spherical support, (5.8) does not

give exactly the expression in (5.1), and the ratio between the two formulas in (5.1) and (5.8)
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Figure 5.2: Graphical illustration of the independent beams of beam angles Ωrmin
contained

in a finite solid angle Ω. The number of these independent beams gives the degrees of freedom

of the field in the solid angle Ω.

(a) (b)

Figure 5.3: Graphical illustration of eq. (5.8). The NDoF of sources contained in a given

surface is interpreted as the number of sub-surfaces of area (λ/2)2 that can be distributed over

the surface. (a) actual surface; (b) minimum spherical surface.

is NDoF /N
(Σ)
DoF = π/4. Equation (5.8) is the space-domain counterpart of eq. (5.4) (see Figure

5.3(a)). The idea behind eq. (5.8) is that details smaller than λ/2 cannot be distinguished by

the radiation operator. The factor 2 again depends on the fact that two possible orthogonal

sources can be located over the surface.

5.2.3 DoF calculation by means of SVD

A rigorous value of the DoF number can be found by means of the Singular Value Decomposition

(SVD), introduced in Appendix E, of the radiation operator in (5.16) of Appendix D, which maps

the currents on the source boundary onto the radiated field in the observation domain. In the
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following, the SVD method is employed to determine the degrees of freedom initially for a generic

surface and for a spherical surface.

General limiting surface

Considering a general limiting surface as the one in Figure 5.3(a), once one has found the

matrices [V ] and [I] through the SVD of [F ] has indicated in Appendix E, it is possible to

find the NDoF through the rank of [F ] (number of non-negligible singular values), and also the

characteristic modes of the minimum surface S in both space (currents) and spectral (far-field)

domains. In fact, the columns of [V ] define the coefficients of far-field orthogonal modes in the

chosen spectral (far-field) basis, while the columns of [I] define the coefficients of the orthogonal

currents in the chosen spatial basis.

Denoting by [Vmq]
q=1,2M
m=1,2M and [Inq]

q=1,2N
n=1,2N the orthogonal matrices coming from the SVD of [F ],

one has

[

Vmq

]q=1,2M

m=1,2M
=
[

V (1)
m , ...V (q)

m , ...V (2M)
m

]

m=1,2M
(5.9a)

[

Inq
]q=1,2M

n=1,2N
=
[

I(1)n , ...I(q)n , ...V (2N)
n

]

n=1,2N
(5.9b)

σq

[

V (q)
m

]

m=1,2M
=
[

Fm,n

]

m=1,2M ;n=1,2N

[

I(q)n

]

n=1,2N
(5.9c)

From the unitary of [V ] and [I] matrices one has

2N
∑

n=1

|I(q)n |2 = 1 (5.10a)

2M
∑

n=1

|V (q)
m |2 = 1 (5.10b)

Therefore, the coefficients of the characteristic modes of currents and fields can be defined as

J (q)(r′) =

N
∑

n=1

[

I(q,1)n f (1)
n (r′)(p)

(1)
n + I(q,2)n f (2)

n (r′)(p)
(2)
n

]

(5.11a)

V (q)(r̂) =

M
∑

m=1

[

V (q,θ)
m θ̂ + V (q,φ)

m ϕ̂
]

ηΩm
(r̂) (5.11b)

with

f (i)
n (r′) = 0 for r′ /∈ ∆Sn (5.12a)

ηΩm
(r̂) =

{

0 for r̂ ∈ ∆Ωm

1 for r̂ ̸ ∆Ωm

(5.12b)

q = 1, ..., NDoF (5.12c)

where we have renumbered the SVD-based column coefficients according to the original definition

in (D.5) and (D.7) in Appendix E. In (5.11), J (q)(r′) represents the q-th characteristic mode
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of the currents, and V (q)(r̂) its relevant radiation vector. We observe that all the quantities in

(5.11) can be derived from the SVD of the Green’s function [F ]-matrix in (E.2) of Appendix D.

From (5.11) we can also derive the physical meaning of the singular values. To this end, we

define the average current of the mode I
(q)
0 by

∣

∣I
(q)
0

∣

∣

2
=

∫∫

S

J (q)(r′) · J (q)∗(r′) dS =
N
∑

n=1

[

∣

∣I
(q,1)
0

∣

∣

2
+
∣

∣I
(q,2)
0

∣

∣

2

]

= 1 (5.13)

where the last step is motivated by the fact that the [I] matrix is unitary. On the other hand,

the power radiated by the q-th mode can be defined as the integral of the radiation intensity,

namely

P (q)
r =

1

2ζ

∫∫

σ2
q

∣

∣

∣
V (q)(r̂)

∣

∣

∣

2

dΩ =
1

2ζ
σ2
q

M
∑

m=1

[

∣

∣V (q,θ)
m

∣

∣

2
+
∣

∣V (q,φ)
m

∣

∣

2

]

4π =
4π

2ζN
σ2
q (5.14)

where the last equality is due to the fact that the matrix [V ] is unitary. We may define a

radiation resistance of the characteristic mode as

R(q)
r =

P
(q)
r

1
2

∣

∣I
(q)
0

∣

∣

2 =
4π

ζN
σ2
n (5.15)

The above equation identifies the square of the singular values with the radiation resistance of

the characteristic mode up to a multiplicative constant. Since the singular values decrease with

the mode index, this means that it will be more and more difficult to excite characteristic modes

with increasing index over the S domain.

5.2.4 Spherical surface case

The particular case of a spherical source region (see Figure 5.3(b)) and a spherical observation

domain can be conveniently treated with spherical wave (SW) expansion introduced in Appendix

A.

In the limit of infinite density of test and source points, the singular vectors become continuous

functions, and are called singular modes or singular functions [73]. In that case the radiation

operator L takes the following integral form

Et(R, θ, ϕ) = L{J(rmin, θ
′, ϕ′)} = −r̂× r̂×

∫ 2π

0

∫ π

0

G
ee
(r, r′) ·J(rmin, θ

′, ϕ′)r2min sin θ
′ dθ′ dϕ′

(5.16)

where the subscript t denotes the radially transverse component, G
ee

is the dyadic Green’s

function, rmin is the radius of the source sphere, and R is the radius of the observation sphere.

Note that we are not obliged to assume that R id in the far region wrt the source region.

In [59] is shown that for spherical source and observation domains spherical waves represent

the singular functions of the radiation operator. Furthermore, the self-adjoint operator LLH

and LHL, where LH is the adjoint of the operator L in (5.16), are diagonalizable with positive

eigenvalues

σ2
q = k4ζ2

∣

∣r2minR
(3)
s,n(kR)R(1)

s,n(krmin)
∣

∣

2
(5.17)
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where q = 2[n(n+ 1) +m− 1] + s convert the triple spherical-wave index (s,m, n) in a unique

index q, and R
(c)
s,n is the function describing the radial dependency of the spherical harmonics

defined in Appendix A. By definition, the singular values of the operator L in (5.17) are the

square roots of the eigenvalues of the self-adjoint operators LLH and LHL, namely

σq = k2ζ
∣

∣r2minR
(3)
s,n(kR)R(1)

s,n(krmin)
∣

∣ (5.18)

which can be rewritten in terms of spherical Bessel’s and Hankel’s functions as

σq = k2ζ
∣

∣r2minhn(kR)jn(krmin)
∣

∣ (5.19)

and approximated as

σq =
kζr2min

R

∣

∣jn(krmin)
∣

∣ (5.20)

For a finite number of test points and current functions, the identification of the singular

functions with the Sws is no more exact; however, the physical interpretation of the outcome of

the SVD remains the same. To illustrate the concept, consider a partition of the source sphere

in N small regions of equal areas and define at each point rn at the center of these regions a

couple of orthogonal elementary electric dipoles to be used as basis for the current expansions

(see the inset of Figure 5.4). Referring to eq. (5.16), this is equivalent to choose

f (1)
n (r′) = f (2)

n (r′) = δ(r′ − rn) (5.21a)

p(1)
n = θ̂(rn) (5.21b)

p(2)
n = ϕ̂(rn) (5.21c)

(5.21d)

The field radiated by these sources is tested at a similar set of points on the observation sphere.

When the samples on the equivalence surface S and on the test surface are sufficiently dense,

the product between the Green’s function matrix and the current vector can be interpreted as

a discretization of the radiation integral in (5.16) after multiplication by the elementary area

dA = 4πr2min/N . In this case, the significant singular values of the Green’s function matrix for

N → ∞ stabilizes to the value

σq = k2ζ

∣

∣

∣

∣

r2minR
(3)
s,n(kR)R

(1)
s,n(krmin)

dA

∣

∣

∣

∣

= k2ζ

∣

∣

∣

∣

r2minR
(3)
s,n(kR)R(1)

s,n(krmin)
N

4π

∣

∣

∣

∣

(5.22)

This is illustrated in Figure 5.4, where the red curve stepped curve represents on a logarithm scale

the magnitude of the singular values σq in (5.22) normalized to the largest one for rmin = 2λ and

R = 7λ. In the same Figure, the other colored curves represent the numerical singular values of

the square matrix of Green’s functions of different dimensions 2N . As expected, numerical and

analytical values tend to coincide for N → ∞, while for any finite value of N the first N ′ < N

singular values are stabilized to the corresponding analytical value. For instance, with a number

of dipoles equal to 2N0 the corresponding the first N0 singular values are retrieved with a relative

error less than 2%. The corresponding discrete singular vectors should be in principle correspond

to sampled spherical harmonics. However, since 2n + 1 modes characterized by a given couple

of indices (s, n) have the same singular value, i.e., the modes are degenerate wrt to the index m,

the j-th left and right singular vectors generated by the SVD can be the sampling of any linear

combination of all the spherical harmonics characterized by the corresponding indices (s, n).
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Figure 5.4: Singular values of the radiation operator for rmin = 2λ and R = 7λ, showing the

analytical solution and the solutions with different number of dipole sources.

5.3 DoF link with correlation parameter

Multiple-Input-Multiple-Output (MIMO) technology is a key player in new wireless commu-

nication, enhancing data speed and coverage while reducing signal fading caused by multipath

propagation [74]. The Envelope Correlation Parameter (ECC) plays a crucial metric role for

MIMO antenna system [75–77] due to the presence of more antennas both in transmission and

reception. It quantifies the correlation between two antennas’ radiation patterns, namely in a

2× 2 MIMO antenna array system, indicating the degree of similarity or dissimilarity between

their signal propagation characteristics. The ECC does not consider only of the radiation pattern

shape, but also of the polarization, and the relative phase of the fields between two antennas.

A low ECC signifies that the antennas’ patterns are largely independent, minimizing the risk of

interference and ensuring optimal performance in scenarios like MIMO systems. On the other

hand, a high ECC value implies a greater likelihood of correlated radiation patterns, which can

lead to undesirable signal overlaps and decreased system efficiency. The ECC value varies in a

range from 0 to 1, this means that an ECC equal to indicates that the antennas are completely

independent and a perfect performance for MIMO applications is achieved, while an ECC equal

to 1 indicates that the antennas are highly correlated.

The Envelope Correlation Coefficient can be calculated through the radiation patter [78–82]as

the following formula

ρECC =

∣

∣

∣

∣

∫∫

4π
E1(θ, ϕ) ·E2(θ, ϕ)dΩ

∣

∣

∣

∣

2

∫∫

4π
E1(θ, ϕ) ·E∗

1(θ, ϕ)dΩ
∫∫

4π
E2(θ, ϕ) ·E∗

2(θ, ϕ)dΩ
(5.23)

where E1(θ, ϕ) and E2(θ, ϕ) are the far-field radiation patterns for antenna 1 and antenna 2

in MIMO antenna system; the superscript ∗ states for the conjugate and the · denotes the
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Hermitian product. In absence of losses, the ECC can be also expressed by a simple closed form

equation that relates the scattering parameters [81] [82] of the elements in an antenna array

configuration, namely for two antenna elements this equation becomes

ρECC =

∣

∣S∗
11S12 + S∗

21S22

∣

∣

2

(

1− |S11|2 − |S21|2
)(

1− |S22|2 − |S12|2
) (5.24)

In the following eq. (5.23) will be used since from our analysis we have a complete knowdleg of

the radiation pattern.

5.3.1 DoF-compliant beams and minimum ECC

In the calculation of the ECC (5.23) the spherical far-field radiation pattern, in (A.5a) of Ap-

pendix A, has been used. To examine the correlation between two patterns, we can consider two

beams providing the maximum directivity. For this purpose we considered one beam directed

along the broadside direction, i.e., (θ, ϕ) = (0, 0), and as second beam rotated by an angle α

wrt the broadside direction. In Figure 5.5 we can observe graphically the two beams: one in

Figure 5.5: Graphical representation of the two beams rotated by an angle α.

the broadside direction and the other one rotated by α-angle. The two pattern associated to

the broadside beam and to the rotated beam are E1(θ, ϕ) and E2(θ−α, ϕ) with (θ, ϕ) = (0, 0),

respectively.

For a spherical source region, we can generate a certain number of independent beams with a

certain maximum directivity. There exist a relationship between the NDoF and the number of

independent beams, namely

Nbeam = NDoF /2 (5.25)

where the factor 2 at the denominator is due to the two polarizations (TE and TM).

In the previous Section the relationship between maximum directivity and the number of de-

grees of freedom has been emphasized. The maximum number of spherical waves (SWs) that

contribute to the calculation of maximum directivity, denoted as Nmax, can be approximated

as krmin, referring to equation (3.3). Consequently, from the previous expression in (5.25), the
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number of beams, Nbeam, can be expressed as Nbeam = (krmin)
2 + 2(krmin). Observing the

Figure 5.5 we can define the angle α as

α =

√

4π

Nbeam
[rad.] (5.26)

Setting the dimension of the spherical region (krmin), we can calculate from (5.25) the number

of beams and from (5.26) the value of the angle α. In the following to cases are reported, the first

one for non-super-directive antennas (without Q-bound) and the second one for super-directive

antennas (with Q-bound); for both cases the Nmax = krmin = 20, with Nbeam = 440. In Figure

5.6 the ECC for non-super-directive antenna is plotted versus the angle α, the vertical dashed

line correspond to the angle α = 9.6828 [Deg.] and ECC is ECC[%] = 0.45322. Considering

Figure 5.6: ECC for non-super-directive case varying the angle α; the vertical dashed line

correspond to the angle α corresponding to a krmin = 20.

the case of Q-bounded maximum directivity, the analytic formula (3.15) of Chapter 3 will be

used. In Figure 5.7 the ECC is reported for different values of Q (Q = 10, Q = 100, Q = 1000).

We can notice that the ECC shape are similar to each other, but the ECC approach zero value

for different values of α angle. In Figure 5.8 the radiation patterns for the broadside direction

beam, the rotated beam by the angle α, and the resulting one from the sum of the two has been

reported, both for the non-super-reactive and Q-bounded with Q = 100 case. We can observe

that the intersection between for the broadside direction beam and the rotated beam occurs

at −3.5 dB. This result arises for non-super-directive case and for Q-bounded case. In Figure

5.8(a) is shown the results for non-super-directive case with krmin = 20; the blue and the red

curves approaches the maximum directivity of Dmax = 440 = 26.4345 dB; while the green curve,

which correspond to the sum of the two beams, does not reach the maximum directivity value:

it shows a peak at Dmax = 25.4924 dB (there is a difference of −1 dB). In Figure 5.8(b) is shown
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Figure 5.7: ECC for super-directive case varying the angle α for krmin = 20 and for Q =

10, 100, 1000.

the results for the Q-bounded case with a Q = 100; the blue and the red curves approaches

the maximum directivity of Dmax = 675 = 28.2930 dB with Nmax = krmin = 20; while the

green curve shows a peak at Dmax = 27.3052 dB, exhibiting like the case for non-super-reactive

antenna a difference of −1 dB.

X 0

Y 26.4343

X 4.5

Y 25.4924

X 4.5

Y 27.1896

X 0

Y 28.278

(b)

Figure 5.8: Radiation Pattern for non-super-directive case (a) and for Q-bounded case with

Q = 100 (b), for krmin = 20. The blue curves correspond to the radiation pattern for the

broadside beams, the red curves correspond to the radiation pattern for the rotated beams,

and the green one to the sum of the two beams. The blue and the red curves approaches the

maximum directivity, while the green curve does not reach the maximum directivity value.
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From Figure 5.8(a) and (b) we have seen that with only the sum of the two beams (the one in

the broadside direction and the rotated one) we cannot reconstruct the maximum directivity

value. It is because we should consider the four contiguous beams. For this purpose we should

consider the beams rotated by an angle of ±α/2 along x and along y axis.

In Figure 5.9(a) are reported the radiation patterns for non-super-directive case with krmin = 20.

The blue curve corresponds to the broadside beam, while the red curve to the summation of

the four rotate beams. The blue beam exhibits a peak at Dmax = 26.4343 dB, and the red

beam exhibits a peak at Dmax = 26.0898 dB, observing a very small difference between the two

maximum values. Then, as been predicted the maximum directivity value can be reconstructed

summing the broadside beam with the four rotated beams. Similar results are also obtained

for the Q-bounded case with krmin = 20, as can be observed in Figure 5.9(b). In this case (for

Q = 100) the blue beam exhibits a peak at Dmax = 28.278 dB, and the red beam exhibits a

peak at Dmax = 27.8642 dB.

(a) (b)

Figure 5.9: 2D radiation patterns of the broadside beam (blue curves) and of the sum of the

four rotated beams (red curves), both for non-super-reactive case (a) and Q-bounded case with

Q = 100 (b).

5.3.2 Universal ECC

The process of deriving the ECC results in a universal ECC, indicating with this terms that the

ECC values remain unaffected by the size of the source. To provide evidence of this principle, we

have examined two different source sizes case: krmin = 20 and krmin = 25. We conducted these

investigations for both the non-super-directive case and the bandwidth-limited case. Our results

reveal that the plots illustrating the ECC behavior exhibit minimal fluctuations based on the

source size. To achieve this demonstration, we normalize the angle α by multiplying it by the

square root of Nbeam. The outcomes for the non-super-directive situation have been graphically

depicted in Figure 5.10, while those for the bandwidth-limited scenario for Q = 10, 100, 1000

are shown in Figure 5.11. Figure 5.10 and Figure 5.11 highlight the robustness of the universal

ECC across varying conditions and source sizes.
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Figure 5.10: ECC % for the non-super-reactive case. The corresponding ECC is equal for two

different values of the source size, i.e., krmin = 20 (blue curve) and krmin = 25 (red curve).

(a)

(b) (c)

Figure 5.11: ECC % for the Q-bounded case with Q = 10 (a), Q = 100 (b), and Q = 1000

(c). The corresponding ECC is equal for two different values of the source size, i.e., krmin = 20

(blue curves) and krmin = 25 (red curves).
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5.4 Conclusions

This Chapter has explored various fundamental properties related to the Degrees of Freedom of

radiated fields. Additionally, a connection was established between the super-directivity and the

number of degrees of freedom near the minimum sphere. Furthermore, this chapter delved into

exploring the relationship between the Q-bounded maximum directivity, derived in Chapter 3,

and the Envelope Correlation Parameter.



Chapter 6

Conclusions

S
uper-directive antennas, characterized by their unique features, are exceptionally well-suited

for a various antennas applications. The versatility and advanced capabilities of super-

directive antennas position them as a pivotal component in the future landscape of wireless

communication. This crucial feature enhances signal strength during transmission and recep-

tion, proving particularly valuable in specific application scenarios. Their ability to focus the

radiated signals is essential, particularly in space applications, making communication between

spacecraft and Earth more efficient. As the demand for faster data transmission rises and

frequency spectrum interference becomes more prevalent, researchers are increasingly direct-

ing their efforts toward advanced communication systems like 5G and beyond. Super-directive

antennas are crucial for reducing signal loss at higher frequencies by densely packing many

antennas into small spaces. Within the domain of Massive MIMO, super-directive antennas,

particularly in densely packed arrays, make substantial contributions to achieving significant

realized gains. Super-directive antennas are gaining attention due to their unique capabilit-

ies and potential applications in THz communication technologies. In the field of the Internet

of Things (IoT), these antennas facilitate the high-data-rate services. This is especially ad-

vantageous in high-speed environments where maintaining stable connectivity is of importance.

Furthermore, super-directive antennas find applications in radar systems, exploiting their high

directivity and gain for precise target detection and tracking.

In conclusion, super-directive antennas have the potential to revolutionize various fields due

to their ability to concentrate radiation in a selected preferential direction. Consequently, it

contributes to an overall improvement in system efficiency and signal quality. Additional im-

provements extend to increased coverage at high frequencies and elevated power performance,

allowing concentrated power allocation to provide users with a more reliable received signal. Ex-

ploring the intricate connection between antenna super-directivity and Degrees of Freedom in

MIMO communication systems can result in enhanced channel capacity. Within this framework,

the numbers of Degrees of Freedom represent the quantity of independent signals that can be

transmitted and received through orthogonal field modes (characteristic modes). The simultan-

eous transmission of these signals without interference becomes feasible when one successfully

excites and receives these independent modes, thereby augmenting the channel capacity.

Under these conclusions, it is crucial to delve into the potential of super-directive antennas.

This PhD thesis aims to investigate potential physical limitations in connection with band-

width, which are treated in terms of the quality factor. Furthermore, an exploration of the

relationship between losses and the quality factor has been undertaken, providing additional

insights into the practical realization of antennas. This effort has the purpose to offer a compre-

hensive understanding of the interplay between antenna characteristics, bandwidth constraints,
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and losses, thereby contributing valuable information for practical implementation. The re-

search journey embarked upon in this study has led to significant advancements and important

findings, consolidating the understanding of antenna behavior in various contexts.

The upper limit on the directivity of self-resonant antennas that fit within a minimum sphere

is determined for a given quality factor. This formulation is obtained by rigorously solving a

convex problem and is expressed as a rapidly converging analytical series. The total quality

factor, which is the inverse of the relative frequency bandwidth, is formulated by considering

the quality factors of individual spherical waves. From the exact series, approximate closed-form

formulas have been derived, exhibiting high accuracy in complementary ranges of the minimum

circumscribed sphere’s radius. These ranges encompass small antennas as well as intermediate

to large antennas. Special emphasis is given to small antennas, where the solution is interpreted

as a combination of dipolar and quadrupolar Huygens’ source contributions with appropriate

closed-form coefficients. This solution in this range provides continuity to the maximum dir-

ectivity between 3 and 8 while maintaining a constant Q.

The investigation of the bound on super-gain assumes small losses in terms of surface resist-

ance over the metalized surface of the minimum sphere circumscribing the antenna. The final

closed-form formula shows that the maximum gain is obtained by a summation resembling Har-

rington’s sum for maximum directivity, except that the expansion coefficients are weighted by

the radiation efficiency of each spherical harmonic. The formulation is then generalized to the

case of self-resonant antennas, providing a tighter bound for any losses. For small antennas,

we offer a simple interpretation of the field corresponding to the maximum gain in terms of

dipolar and quadrupolar source contributions, weighted by the appropriate efficiency, providing

a physical insight into the phenomenon. The formulation is extended to account for a Q-bound,

deriving a final series expression as a function of the loss resistance and the antenna electrical

size. This expression seamlessly merges with the previously derived Q-bounded maximum dir-

ectivity as losses tend to zero and converges to Q-unbounded maximum Gain for Q values that

tend to very large values. The diagram in Figure 4.15 in Chapter 4 summarizes the presented

formulas, specifying the validity region on the (Q,RΩ)-plane. The diagram permits to visualize

the validity region of the Q-bounded maximum directivity and Q-bounded maximum gain, rev-

eling the range of losses and Q (bandwidth) values wherein the super-directivity corresponds to

super-gain.

In the last Chapter, the relationship between the degrees of freedom of the field, the maximum

directivity has been investigated. The relationship between the degrees of freedom and max-

imum directivity in antennas is a fundamental aspect of antenna theory. The concept is that the

Degrees of Freedom of the field radiated by arbitrary sources within a minimum sphere must

be twice the maximum directivity in (5.1). This relationship is applied to non-super-reactive

antennas of any size that fit within a minimum sphere of any given radius [31]. The DoF

of the field has been calculated for a limited angular region and for convex minimum region.

Moreover, an analysis has been conducted on the relationship among the degrees of freedom,

maximum directivity, and the envelope correlation parameter. This analysis has led to a broader

understanding of this relationship, illustrating that it is independent of the source size.
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Future Perspective

This Section explores the potential advancements and extensions of the current work, providing

a foundation upon which new ideas can be built. It outlines the areas where the existing work

can be improved or expanded, and suggests new directions for exploration based on the findings

and limitations of the present study, are listed below:

• In Chapter 3, we focused on small antennas, interpreting the radiation pattern as a com-

bination of dipolar and quadrupolar Huygens’ sources. Investigating the potential of elec-

trically small Huygens’ source antennas could be a promising approach to achieving super-

directive levels.

• The limitation on super-gain has been examined in terms of bandwidth constraints, ex-

pressed as the Q-factor. A more comprehensive limitation on super-gain could consider

the constraints introduced by losses, which involves evaluating the total efficiency of the

system and imposing a-priori limitations on it. This would establish an efficiency bound

on super-gain.

• In Chapter 3and Chapter 4 the bounds on super-directivity and super-gain are analyzed

in terms of Q-factor. Alternatively, it is also possible to restrict the number of harmonics

that can be excited over the minimum sphere based on the degrees of freedom of the field.

The concept of degrees of freedom, meanwhile, offers a new perspective on antenna design.

It refers to the number of independent parameters that can be adjusted in a system. In the

context of antennas, this could include aspects such as the shape, size, and orientation of

the antenna elements. Understanding and manipulating these degrees of freedom can lead

to more flexible and efficient antenna designs. The theory of Degrees of Freedom (DoF),

which is linked to super-directivity, could be expanded into the theory of DoF free ports

architecture. This would enable the maximization of usable DoF for large array antennas.

• The results presented here open new perspectives on the design of intermediate to small

antennas. These insights can be extended to the arbitrary shape of the minimum surface

enveloping the sources, leading to better antenna bounds.
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Appendix A

Spherical Wave Function

This Appendix contains the general expression for the Spherical Wave Functions of fundamental

importance to understand the presented composition. Here we adopt the Hansen’s notation in

[61], except for a different time dependency (which is here exp(jωt)), and for the notations of the

expansion coefficients, we denote the letter C in place of Q, to avoid confusion with the Q-factor.

In this notation, the superscript “3” corresponds to the spherical Hankel outgoing (second-type)

r-dependent function. The polar index n (n = 1, 2, ..., N) refers to the order of the Hankel

function and the index m refers to the azimuthal angular wave number (m = −N, ..., 0, ..., N).

The subscript s = 1, 2 denotes TE and TM polarization with respect to r, respectively.

F
(c)
1,m,n(r, θ, ϕ) = cm,n

{

R
(c)
1,n(kr)

−jmP̄
|m|
n (cos θ)

sin θ
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−R
(c)
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|m|
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(A.1a)
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where P̄
|m|
n (·) is the normalized associated Legendre function, and

cm,n =
1√
2π

1
√

n(n+ 1)

(

− m

|m|
)m

. (A.2)

The R
(c)
s,n(kr) are the radial functions:
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The electric and the magnetic fields in terms of spherical wave can be expressed as

E(r, θ, ϕ) = k
√

ζ
∑

c,s,m,n

C(c)
s,m,nF

(c)
s,m,n(r, θ, ϕ) (A.5a)

H(r, θ, ϕ) =
jk√
ζ

∑

c,s,m,n

C(c)
s,m,nF

(c)
s,m,n(r, θ, ϕ) (A.5b)

The radiated power is

Pr =
1

2

∑

s,m,n

∣

∣C(3)
s,m,n

∣

∣

2
(A.6)

The far-field can be expressed as an asymptotic form of F
(c)
1,m,n(r, θ, ϕ) and F

(c)
2,m,n(r, θ, ϕ) as kr

tends to infinity, where the r-dependence is cancelled, namely

Ks,m,n(θ, ϕ) = lim
kr→∞

[√
4πkrejkrF (3)

s,m,n(r, θ, ϕ)
]

(A.7)

In the text, we will frequently encounter the use of the index i which summarizes the triplet of

indices s,m, n as

i = 2[n(n+ 1) +m− 1] + s (A.8)

where i = 1, 2, ..., J , with J = 2N(N + 2).
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Equivalent Currents using SWs

The objective of this appendix chapter is to find the spherical wave expansion and radiation

resistance of a general distribution of currents on the minimum sphere enclosing all the sources,

used for the derivation of the analytical closed-form formulas in Chapter 3 and 4. In both the

procedure we will apply the equivalence principle to the minimum sphere surface S. From the

equivalence principle it is known that we can replace an arbitrary set of source by equivalent

currents distributed over a virtual closed surface S enclosing all the real sources. This permits

to have the same field outside the minimum sphere surface S.

Two cases will be described: one considering only electric currents which radiate in the free-

space; one considering a magnetic currents which radiate in presence of a lossy conducting

material.

Figure B.1: Graphical representation of the Equivalent Theorem. The sources can be enclosed

by a minimum surrounding sphere S of radius rmin.

B.1 Equivalent Currents Derivation in presence of electric

currents

The equivalent problem in Figure B.1 can be replaced with the one in Figure B.2. This implies

field and reactive energy different from zero inside the sphere, thus requiring an internal com-

pensation of energy at resonance. The equivalent electric currents of the equivalent problem in

Figure B.2 is written as

J =
jk√
ζ

∑

s,m,n

Cs,m,nr̂ × F
(3)
3−s,m,n(r, θ, ϕ) (B.1)
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Figure B.2: Graphical representation of the Equivalent Theorem considering only a set of

electric currents J .

These currents can be conveniently represented through the transverse (θ, ϕ)-dependent or-

thonormal basis functions, i.e.,

f i(θ, ϕ) =
T i(θ, ϕ)

rmin
(B.2)

where T i(θ, ϕ) is defined through the factorization of the spherical wave harmonics [61] as

r̂ × F (c)
s,m,n(r, θ, ϕ) = R(c)

s,n(kr)r̂ × T s,m,n(θ, ϕ) (B.3)

In (B.2) we have introduced the index i which renumbers the tern of the indexes s,m, n in a

single index i = 2[n(n+ 1) +m− 1] + s; when possible, we will use it to compact the notation.

The function T s,m,n ≡ T i are the (θ, ϕ) dependent transverse-to-r function in the spherical

wave factorization. With the choice of the normalization adopted, the basis functions f i are

orthonormal over the minimum surface; this means that the following normalization it is satisfied
∫∫

S

f i · f∗
jdS = δi,j (B.4)

since (A1.69 in [61])
∫∫

S

f i · f∗
j dS =

=

∫ 2π

0

∫ π

0

T s,m,n(θ, ϕ) · T ∗
σ,µ,ν(θ, ϕ)

r2min

r2min sin θ dθ dϕ =

= δs,σδm,µδn,ν

(B.5)

Moreover, since the orthogonality, the i-th current SW basis function radiates a i-th field only,

which is related with the SW current by a coefficient obtained by projection given in eq.A1.77

of [61], namely

Ci = (−1)m+1k
√

ζR(1)
s,n(krmin)

∫ 2π

0

∫ π

0

T s,−m,n(θ, ϕ) · f i(θ, ϕ)

rmin sin θ dθ dϕ = −rmink
√

ζR(1)
s,n(krmin)

(B.6)

We note that the coefficient Qi in (B.6) does not depend on the azimuthal index m, but only

on the polar index n and on the polarization index s. The electric field on top of the basis SW

current f i in direction (rmin, θ, ϕ) can be obtained as

Ei(rmin, θ, ϕ) = −r2mink
2ζR(1)

s,n(krmin)R
(3)
s,n(krmin)T s,m,n(θ, ϕ) (B.7)
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Therefore, for a current of amplitude Ii, the radiated power can be obtained by

P (i)
r =

1

2
ℜ
{

∫∫

S

Ei(rmin, θ, ϕ) · J∗
i (rmin, θ, ϕ) dS

}

=

=
1

2
ℜ
{

∫∫

S

CiR
(3)
s,n(krmin)IiI

∗
i f if

∗
i dS

} (B.8)

where the current density J i is J i = Iif i, with Ii current coefficient. Equaling eq.(B.8) with the

general definition of the radiated power P
(i)
r = δi,j

1
2

∑

j R
(i)
rad

∣

∣Ii
∣

∣

2
, we can derive the expression

for the radiation resistance,

R
(s)
rad,n =

{

−r2mink
2ζ
[

R
(1)
s,n(krmin)

]2
for i = j

0 for i ̸= j
(B.9)

B.2 Equivalent Currents derivation in presence of electric

and magnetic currents

Applying the Love’s formulation of the equivalence theorem (Figure B.3-(a)) to the original

problem in Figure B.1. In this configuration the internal fields is equal to zero; the external field

is the same as that provided by magnetic currents on a perfect conducting sphere (Schelkunoff’s

formulation) (Figure B.3)-(a)). The equivalent electric and magnetic currents are written as

J =
jk√
ζ

∑

s,m,n

Cs,m,nr̂ × F
(3)
3−s,m,n(r, θ, ϕ) (B.10a)

M = k
√

ζ
∑

s,m,n

Cs,m,nF
(3)
s,m,n(r, θ, ϕ)× r̂ (B.10b)

These currents can be conveniently represented through same the transverse (θ, ϕ)-dependent

orthonormal basis functions defined in (B.2), which have the same orthogonality properties

illustrated in (B.4) and (B.5). Using (B.2), the expression of the magnetic and electric current

densities in (B.10) can be rewritten as

J =
∑

i

Iif i(θ, ϕ) (B.11a)

M =
∑

i

Mif i(θ, ϕ)× r̂ (B.11b)

with coefficients

Ii =
jkrmin√

ζ
(−1)sCiR

(3)
3−s,n(krmin) (B.12a)

Mi = krmin

√

ζ(−1)sCiR
(3)
s,n(krmin) (B.12b)

Since the orthonormality of the basis functions the current coefficients Ii represents the average

integral over the minimum sphere of the squared electric currents of the i-th spherical mode,

i.e.,

|Ii|2 =

∫∫

S

|J i|2 dS (B.13)
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(a) (b)

(c)

Figure B.3: (a) Graphical representation of Love’s formulation of the equivalent currents;

(b) the magnetic currents radiating on a perfect conducting sphere; (c) the magnetic currents

radiate in presence of lossy conductor material with resistivity RΩ.

where J i = Iif i.

From eq.(B.12a), setting an unitary coefficient Ii we can derive the expression of the field

coefficients Ci, namely

Ci =

∣

∣

∣

∣

(−1)s
jk√
ζ
R

(3)
3−s,n(kr)

∣

∣

∣

∣

−1

(B.14)

Therefore, the radiate power can be obtained as

Pr =
1

2

∑

i

|Ci|2|Ii|2 =
1

2

∑

i

∣

∣

∣

∣

(−1)s
jk√
ζ
R

(3)
3−s,n(kr)

∣

∣

∣

∣

−1

|Ii|2 (B.15)

Equaling eq.(B.15) with the general definition of the radiated power P
(j)
r = δi,j

1
2

∑

j R
(i)
rad

∣

∣Ii
∣

∣

2
,

we can derive the expression for the radiation resistance,

R
(s)
rad,n =

{

ζ(krmin)
−2
∣

∣R
(3)
3−s,n(krmin)

∣

∣

−2
for i = j

0 for i ̸= j
(B.16)

The problem depicted in Figure B.3(a) is equivalent to the one shown in Figure B.3(b). This

equivalence arises because it is possible to assume that only magnetic currents radiate in the

presence of a Perfect Electric Conductor (PEC) material. Due to the presence of the PEC

material, electric currents are supported. This latter equivalent problem can also be replaced by

the one in Figure B.3(c), where magnetic currents radiate in the presence of a lossy conductor
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with resistivity for the square surface denoted as RΩ. This assumption is made under the

condition that the electric currents induced on the conductor by the magnetic forced currents

will not change significantly compared to the currents on a PEC.





Appendix C

Quality Factor

The Q-factor is defined as the ratio between the time-average stored energy (We or Wm) and

radiated energy Pr, i.e.,

Q =

{

2ωWe

Pr
We > Wm (capacitive antenna)

2ωWm

Pr
Wm > We (inductive antenna)

(C.1)

In general, the Q-factor can be interpreted as the reciprocal of fractional bandwidth BW = 1/Q

for a sufficient value of Q (Q > 10) [21] [14]. If the antennas is at a self-resonant state there is a

balancing between the electric and the magnetic stored energies, this means that We = Wm at

resonance. Hence, when the self-resonant condition is fulfilled, the Q-factor of the system can

be rewritten as

Q =
2ωWe

Pr
=

2ωWm

Pr
(C.2)

The calculation of the stored energy of a general spherical wave expansion is a debated topic

[22] [28] [60] [83] [84]. Essentially, the most used approaches are the ones provided by Chu [25],

Collin and Rothschild [21] and Fante [85]. Fante generalized to the case of arbitrary field internal

to the minimum sphere in [84]. In [21], the quality factor of each individually tuned spherical

wave is defined for a unit power as

Q′
i =

{

2ωWe,i (TM modes)

2ωWm,i (TE modes)
(C.3)

In [85], Fante introduced also additional terms needed for the calculation of the Q-factor of a

generic antenna

Q′′
i =

{

2ωWm,i (TM modes)

2ωWe,i (TE modes)
(C.4)

The exact expressions of Q′
i and Q′′

i defined by Fante in [85] are reported below

Q′
n = krmin −

∣

∣hn(krmin)
∣

∣

2

[

(krmin)
3

2
+ krmin(n+ 1)

]

+

− (krmin)
3

2

∣

∣hn+1(krmin)
∣

∣

2
+ (krmin)

2 2n+ 3

2
·

·
[

jn(krmin)jn+1(krmin) + yn(krmin)yn+1(krmin)
]

(C.5)

Q′′
n = krmin − (krmin)

3

2

[

∣

∣hn(krmin)
∣

∣

2−

jn−1(krmin)jn+1(krmin)
]

(C.6)
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where hn(krmin), jn(krmin), and yn(krmin) are the spherical first type Hankel, Bessel and

Neumann functions of order n, respectively. It is noted that they are independent form the

azimuthal index m.

Using the SW expansions the total quality factor can be written as:

Qtot =



















(

∑

TM
|C′

i|
2Q′

i+
∑

TE
|C′′

i |2Q′′
i

)

∑

i
|C′

i
|2+|C′′

i
|2 We > Wm

(

∑

TE
|C′′

i |2Q′
i+

∑

TM
|C′

i|
2Q′′

i

)

∑

i
|C′

i
|2+|C′′

i
|2 Wm > We

(C.7)

where C ′
i and C ′′

i are the coefficients of the TM and TE modes, respectively.

Under condition of self-resonance, it turn out [85] that TE and TM modes with the same

indices have coefficients of equal magnitude, so that the two summations at both numerators

and denominators reduce to a single summation, i.e.,

Qtot =

∑

n |Cn|2Qn
∑

n |Cn|2
(C.8)

where Cn are the field expansion coefficients for maximum directivity (C ′
i + C ′′

i ) and the Qn,

introduced by Fante in [85], are

Qn ≡ 1

2
(Q′

n +Q′′
n) (C.9)

Expression in (C.8) depends only on the index n since the coefficients’ magnitude is considered,

surpassing the dependence on the azimuthal index m. The adoption of (C.8) automatically

Figure C.1: Fante’s Qn coefficients. The used log-log scale emphasizes the different behaviour

of Qn with corner at krmin ≈ n.

assumed a self-balancing of reactive energy. Therefore, the limit that we derive in the following
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adopting (C.8) is relevant to self-resonant antennas, namely antennas where you should not

provide energy through an external circuit to achieve the resonance.

In Figure C.1 the Fante’s Qn are plotted as a function of krmin for some values of n. The

asymptotic behaviour for small values of krmin has been explored in [83], which is very fast-

growing function for decreasing krmin when krmin < n; in the following we extend the behaviour

also for large values of krmin, namely

Q ∼







n
2

(

(2n)!
n!2n

)2
1

(krmin)2n+1 for krmin → 0

an(krmin)
−1 for krmin → ∞

(C.10)

where an = an−1+n with a0 = 1 by definition. The Q-factors show a rapid change of behaviour

from kr−1
min to kr

−(2n+1)
min for krmin ≈ n. It is important to note the Fante’s Qn for n = 1 and

n = 2 give exactly

Q1 ≡ 1

2(krmin)3
+

1

krmin
(C.11)

Q2 ≡ 9

(krmin)5
+

9

2(krmin)3
+

3

krmin
(C.12)

which are related to the Chu-limit.





Appendix D

Discretization of the radiation operator

Consider an arbitrary set of impressed currents (Ji,Mi) and scatterers enclosed by a fictitious

surface S with outward normal, surrounded by a homogeneous medium, that for the sake of

simplicity we will assume to be free space Figure D.1(a). Let us denote by (E,H), the elec-

tromagnetic field radiated by this system. We can consider that a spherical surface of radius

rmin encapsulates these sources. This sphere has been denoted in the previous paragraph as

minimum sphere. Since our intention is to extend the concept to a general minimum surface,

here the sources are supposed to be inside a minimum surface S which is inside the minimum

sphere. Consider the equivalent problem in Figure D.1(b), where the interior of S is source-free

and filled by free space and a set of equivalent currents (Jeq,Meq) is distributed on S. Assume

that these currents radiate in the external region the original field (E,H) and in the internal

region an arbitrary field (J1,M1) satisfying the homogeneous Maxwell’s equations. By unique-

ness theorem, the equivalent currents (Jeq,Meq) are unequivocally defined in such a way to

compensate for the discontinuity of the tangential components of the fields, i.e,

Jeq = n̂× (H −H1) (D.1a)

M eq = (E −E1)× n̂. (D.1b)

We will assume to choose an internal field such that the equivalent magnetic currents Meq

vanish [86]. In such a case, (D.1) implies that the tangential component of the electric field

across S must be continuous:

E1 × n̂ = E × n̂. (D.2)

Thus, the internal electromagnetic field (E1,H1) is the solution of the homogeneous Maxwell’s

equations in the internal region with boundary conditions E1 × n̂ = E × n̂. For the uniqueness

theorem, this solution is unequivocally defined unless resonant solutions are present in S. By

assuming vanishingly small losses inside S, the solution is unique.

We notice that this is an unusual version of the Equivalence theorem, that is normally not used

in method of moments (MoM), but it will be useful here. Notice also that the electric currents

generate inside the surface a non-zero field, in contrast with what happens in Love formulation

of the equivalence theorem.

Using the equivalent problem of Figure D.1(c) we can define the electric field outside the surface

S as

E(r) =

∫∫

S

G(J)

E
(r, r′)J(r′) dr′ = L[J ] (D.3)

where G(J) is the Green’s Function (GF) of free space if no other object is present around. If

additional boundary conditions are present outside the surface (see Figure D.2(a)) the Green’s
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(a) (b) (c)

Figure D.1: (a) Original problem, (b) Love’s equivalent problem, and (c) the equivalent prob-

lem with only electric currents.

function should be split in two parts, as

GJ

E
(r, r′) = G(inc)

E
(r, r′) +G(s)

E
(r, r′) (D.4)

where G(inc)

E
(r, r′) is the GF of the free space and G(s)

E
(r, r′) takes into account the additional

boundary conditions outside the object. Assuming to observe the field in the far region (see

Figure D.2(b)) for both the radiating sources and the objects around, we approximate the

radiation integral in the following form

GJ

E
(r, r′) ≈ jkζ

e−jkr

4πr

[

g(s)

E
(r − r̂ · r′, r′) + r̂ × (r̂ × 1)e−jkr̂·r̂′

]

(D.5)

where 1 is the unitary dyad, r̂ is the unit radial vector of the spherical coordinate, and r is the

distance of the observation point from the origin of the reference system inside the minimum

surface.

In order to discretize the radiation operator in (D.3), the unknown J(r′) is expanded in terms

of arbitrary basis functions f
(i)
n (r′), i.e,

J(r′) =

N
∑

n=1

[

I(1)n f (1)
n (r′)p(1)

n + I(2)n f (2)
n (r′)p(2)

n

]

(D.6)

where p
(i)
n ; i = 1, 2 are two orthogonal directions of the basis function over the surface and

f
(i)
n (r′) are scalar basis functions with dimension length−1 non-zero over a sub-wavelength area

∆Sn over the surface S, and zero elsewhere. The functions are normalized in such a way that
∫∫

∆Sn

f (i)
n f (i)∗

n dS = 1 (D.7)

∫∫

∆Sn

f (i)
n dS = δn (D.8)
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The number N of basis function in (D.6) should be much larger than the expected number

of degrees of freedom, namely N >> NDoF . The best choice for arbitrary surface could be

sub-wavelength functions with triangular support, like Rao-Wilton-Glisson basis functions [87].

However, since here we are not dealing with the near field, even simple pulse type function with

rectangular support would work (i.e., it not is not strictly necessarily, even if suggested, that

the basis functions are div-conforming like in MoM problems). We also notice that for spherical

minimum surface the basis can also be constituted by spherical modes.

(a)

(b)

Figure D.2: Equivalent currents radiating in presence of an object and different Green’s

function contributions (incident and scattered contributions) in both near (a) and far (b) zone.

D.1 Discretization of the radiation operator in terms of

Spherical Modes

The radiated far-field can be expanded in terms of spherical modes; here, instead, we simply

take a lattice of directions r̂m; m = 1, ..M in the far zone (see Figure D.3, where M is much

larger than the expected DoF. We denote this lattice as spectral lattice. It would be better

to define the spectral lattice at the center of a small triangular domains, in which all triangles

possess as much as possible equal areas. The division of the spectral sphere can be done using

the Leopardi algorithm [71]. The number of triangles should be much larger than the expected
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DoF. We also denote as ∆Ωm the solid angle subtended by the m-th triangle. If the Leopardi

equal-area algorithm is used, one has ∆Ωm ≈ ∆Ω << 2π NDoF where ∆Ω is constant and NDoF

are the expected degrees of freedom. Using discretization functions for currents and spectral

lattice for the far field sampling, we obtain from (D.3) the following expressions

Em =
e−jkr

r

N
∑

n=1

F (1)
mnI

(1)
n + F (2)

mnI
(2)
n ,m = 1, ...,M (D.9)

F (i)
mn =

jkζ

4π
δn

[

g(s)

E
(r − r̂m · rn, rn · p̂(i)

n + r̂m × p̂m × p̂
(i)
n e−jkr̂·r̂′

]

(D.10)

which can be written in terms of scalar polar components in matrix form

[

Eθ,m

Eφ,m

]

=
e−jkr

r

[

F (1)
mn · θ̂ F (2)

mn · θ̂
F (1)

mn · ϕ̂ F (2)
mn · ϕ̂

][

I
(1)
n

I
(2)
n

]

(D.11)

Figure D.3: Spectral lattice of directions r̂m; m = 1, ...,M for the definition of the far field.

For simplicity, the figure is referred to free-space Greens function.

All the equations can be cast in a unique 2M × 2N linear system counting the two components

of the fields and the two polarizations of the currents for each individual index. Denoting still

the indexes as n and m for simplicity, we have:

[

Vm

]

m=1,2M
=
[

Fm,n

]

m=1,2M ;n=1,2N

[

In

]

n=1,2N
(D.12)

where Vm represents the m-th field sample of the radiation vector, (radiation vector is obtained

through the far-field components after dividing by e−jkr

r ) due to an arbitrary combination of

current components of coefficients In. We note that, when N = M , the inversion of the system

in (D.12) for a given vector, Vm provides the distribution of currents that generates that far-field.

However, this does not take into account the non radiative part of the currents.



Appendix E

Singular Value Decomposition

The Singular Value Decomposition (SVD) of a rectangular matrix is a widely used method

in numerical linear algebra and it generalizes the Spectral Theorem from symmetric n × n

matrices to any m × n matrix. One of the most important applications of the SVD method

is in Principal Component Analysis (PCA), based on low rank approximation via SVD. The

SVD is also extremely useful in all areas of science, engineering, and statistics, such as signal

processing, least squares fitting of data, and process control. SVD is a particular factorization

of a given matrix by means of eigenvalues and eigenvectors. Given a real or complex matrix F

of dimension 2M × 2N , we can state that:

[

F
]

=
[

V
][

Σ
][

I
]†

(E.1)

where [V ] is a 2M × 2M unitary matrix, [Σ] is a 2M × 2N rectangular diagonal matrix, and

[I]† is the conjugate transpose of the 2N × 2N unitary matrix [I] (see Figure E.1).

Figure E.1: Visualization of the matrix multiplication in singular value decomposition.

In our case the [F ] matrix is the GF matrix of elements Fmn defined in (D.9). The two matrices

[V ] and [I] are both unitary; it means that the product between them and their transpose

conjugate provides the identity matrix (see Figure E.2). This also means that their columns are

orthogonal vectors. The diagonal entries σi of [Σ] are the singular values of [F ] in decreasing

order of magnitude, which can be also seen as the square-root of the eigenvalues of the square

Hermitian matrix [F ][F ]†. The number of significant (non-zero) singular values is equal to the
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rank of [F ]. The columns of [V ] and the columns of [I] are called the left-singular vectors and

right-singular vectors of [F ], respectively. Non-degenerate singular values always have unique

left- and right-singular vectors, up to multiplication by a unit-phase factor ejφ. In general, the

SVD is unique up to arbitrary unitary transformations applied uniformly to the column vectors

of both [V ] and [I] spanning the sub-spaces of each singular value, and up to arbitrary unitary

transformations on vectors of [V ] and [I] spanning the kernel and co-kernel, respectively, of [F ].

Then, we can assert that [Σ] is uniquely determined by [F ].

(a)

(b)

Figure E.2: Visualization of the matrixes [V ] (a) and [I] (b) showing their orthogonality.

By right multiplying at the both members of (E.2) by [I] one has

[

F
][

I
]

=
[

V
][

Σ
][

I
]†[

I
]

=
[

V
][

Σ
]

(E.2)

This means that the matrix [F ] maps the basis vector column Ii into the vectors σiIi, (see

Figure E.3). Then, one can state that Vi and Ii are orthonormal bases for fields and currents,

respectively, when this is applied to the Green’s function matrix and to the basis described in

the previous section.
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Figure E.3: Mapping of the vector columns of [I] onto the vector columns of [V ] through the

[F ] matrix.
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The thesis focuses on the definition of bounds for maximum directivity and gain

of antennas. The main goal is to establish an analytical formula for maximum

super-directivity considering specific parameters like bandwidth and antenna size.

The upper limit on directivity for self-resonant antennas within a minimum sphere

is determined based on a given quality factor. The formulation, obtained through

rigorous convex problem-solving, is expressed as a rapidly converging analytical

series. Approximate closed-form formulas are derived, showing high accuracy in

various ranges of the minimum circumscribed sphere’s radius, including small and

intermediate to large antennas. Special attention is given to small antennas, inter-

preting the solution as a combination of dipolar and quadrupolar Huygens’ source

contributions with closed-form coefficients. The solution maintains continuity to the

maximum directivity between 3 and 8 while holding a constant Q. The challenge

of achieving super-gain is addressed by assuming small losses in terms of surface

resistance over the metalized surface of the minimum sphere circumscribing the

antenna. The final closed-form formula indicates that maximum gain results from

a summation similar to Harrington’s sum for maximum directivity, with coefficients

weighted by the radiation efficiency of each spherical harmonic. The formulation

is extended to self-resonant antennas, providing a tighter bound for any losses.

The thesis further explores the relationship between maximum directivity and the

Degrees of Freedom (DoF) of the fields.
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