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Quantitative imaging decision support
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Abstract

Objective: To evaluate the consistency of the quantitative imaging decision support (QIDSTM) tool and radiomic analysis using
594 metrics in lung carcinoma on chest CT scan.

Materials and Methods: We included, retrospectively, 150 patients with histologically confirmed lung cancer who underwent
chemotherapy and baseline and follow-ups CT scans. Using the QIDSTM platform, 3 radiologists segmented each lesion and
automatically collected the longest diameter and the density mean value. Inter-observer variability, Bland Altman analysis and
Spearman’s correlation coefficient were performed. QIDSTM tool consistency was assessed in terms of agreement rate in the
treatment response classification. Kruskal Wallis test and the least absolute shrinkage and selection operator (LASSO) method
with 10-fold cross validation were used to identify radiomic metrics correlated with lesion size change.

Results: Good and significant correlation was obtained between the measurements of largest diameter and of density among the
QIDSTM tool and the radiologists measurements. Inter-observer variability values were over 0.85. HealthMyne QIDSTM tool
quantitative volumetric delineation was consistent and matched with each radiologist measurement considering the RECIST
classification (80-84%) while a lower concordance among QIDSTM and the radiologists CHOI classification was observed
(58-63%). Among 594 extracted metrics, significant and robust predictors of RECIST response were energy, histogram entropy
and uniformity, Kurtosis, coronal long axis, longest planar diameter, surface, Neighborhood Grey-Level Different Matrix
(NGLDM) dependence nonuniformity and low dependence emphasis as Volume, entropy of Log(2.5 mm), wavelet energy,
deviation and root man squared.
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Conclusion: In conclusion, we demonstrated that HealthMyne quantitative volumetric delineation was consistent and that
several radiomic metrics extracted by QIDSTM were significant and robust predictors of RECIST response.
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Introduction

In recent decades, clinical research and the interpretation of the

results deriving from it have brought to the fore the need to

build a common language internationally for the purpose of

diagnosis, staging and evaluation of the effectiveness of a

treatment.1

Nowadays the evaluation of the oncological therapy tumor

response was conventionally provided using the Response

evaluation criteria in solid tumors (RECIST) based on the long-

est diameter of the lesions; however, in the context of target

therapies and immunotherapy, these evaluation criteria indicate

the limits linked to the inability to fully highlight the effects of

molecular target therapies. Conventionally, radiologists have

measured tumor extent by the longest dimension on a single

image rather than performing a full segmentation of the tumor

volume.2

Based on these insights, several authors have proposed alter-

native methods by combining morphological-dimensional

criteria with physiological-metabolic characteristics in order

to overcome the limitations of traditional criteria. These alter-

native criteria allow to highlight the response to treatment by

evaluating “functional” rather than purely “morphological”

parameters by providing information relating to perfusion,

vascularization, diffusion and metabolic properties of the tis-

sues, which are more appropriate especially in the case of

monitoring of “Target therapies.”3-9 Choi et al in 2007,10

proposed to include the reduction of tumor density in the eva-

luation of the response to molecular target agents as an indirect

indicator of reduced angiogenesis, defining as a response

criterion the reduction of 10% of the sum of the diameters

and/or at least 15% reduction in density value.

Currently, in the absence of standardized and internationally

validated quantitative parameters, the limit of diagnostic ima-

ging remains linked to the subjective interpretation of the

changes undergone by the treated tissue. Jaffe et al.1 in their

manuscript “Quantitative Imaging in Oncology Patients”

reported that 93% of oncologists think that patient management

is influenced by the subjective assessment of the size of the

tumor. In this scenario, the use of automatic tools for monitor-

ing the response to cancer therapies is fundamental.

Two major categories of computer-aided segmentation tech-

niques can be considered based on the user interaction: fully

automated techniques without user input and semi-automated

techniques that require user interaction. Semi-automated tech-

niques outperform automatic approaches obtaining accurate

and robust results.2,11 Additionally, image analysis techniques

have been used to provide prognostic biomarkers and to assess

the treatment response with ever greater accuracy in order to

provide personalized therapy. In particular, radiomic analysis

methods,12,13 which describe a region of interest using multiple

quantitative features derived by images, have shown great

potential to predict the survival in lung cancer patients.14-19

In this study we used HealthMyne® Quantitative Imaging

Decision SupportTM (QIDS) platform that provides a tool

through which it is possible semi-automatically to recognize

and segment the target lesions identified by the radiologist, to

obtain automatically the treatment response based on several

radiological criteria including RECIST and CHOI criteria and

to extract automatically numerous quantitative metrics.

The aim of this manuscript was the consistency evaluation

of the QIDSTM platform of Healthmyne® and of the radiomic

analysis in order to identify the quantitative robust metrics in

treatment evaluation of lung carcinoma on chest CT scan.

Materials and Methods

Patient Selection

In this retrospective study, we selected 150 patients (median

age 67 years, range 19-88 years) with histologically confirmed

lung cancer who underwent chemotherapy and baseline and

follow-ups CT examinations. This retrospective study was

approved by the National Cancer Institute of Naples Local

Ethical Comittee as a multicentric observational retrospective

spontaneous study. In addition to the promoter center (National

Cancer Institute—IRCCS of Naple—G. Pascale Foundation),

2 other structures (Careggi University Hospital of Florence and

University Hospital of Siena) were involved. Each center

included 50 patients.

Inclusion criteria: lung cancer confirmed histologically,

lung nodule size � 10 mm; patients undergoing both first and

second line cancer treatment; baseline CT in a time window of

30 + 6 days before the start of treatment (CT 0); the second CT

performed before the second cycle of therapy (CT 1); the third

CT performed at the end of the last cycle of therapy (TC 2); CT

with slice thickness � 3 mm; CT must have the venous phase

(70-90 seconds post contrast injection). Exclusion criteria:

patients undergoing radiotherapy; patients undergoing

Immunotherapy.

The gold standard to assess the consistency of the software

is the radiological consensus between 3 radiologists who

2 Cancer Control



assessed the response according to RECIST and CHOI criteria

before independently blinded to each other and after in

consensus.

CT Acquisition and Analysis

CT images were acquired with 3 different scanners: 2 GE

scanners with 64 detectors (Optima 660, and Discovery

750 HD General Electric Healthcare, Milwaukee, USA) and

a Philips CT scanner (ICT SP 128 slice, Philips, Amsterdam,

Netherlands).

The scan data was 120-140 kVp, 200–600 mA, slice thick-

ness 1.25-2.5 mm and table speed 0.938-0.984/1 mm/rotation.

Contrast-enhanced CT images were acquired in the portal

venous phase (start delay 70–80 s) from pelvic brim to thoracic

inlet, after the intravenous injection of 2 mL/kg of a non ionic

contrast material (iodine concentration � 350 mg/ml), fol-

lowed by 40 mL of saline solution, using a semi-automated

power injector (3,5–4 mL/s flow rate). Images reconstruction

was performed by using a reconstruction algorithm.

Clinical and Radiological Measurements

Three radiologists with different experience in reading and

interpreting of chest CT (low experience �5 years, medium

experience from 5 to 15 years and high experience > 15 years)

performed the evaluation collecting the measurement of longest

diameter and of the Hounsfield Unit (HU) density of the target

lesions in 2D on the CT venous phase. The target lesions were

selected according to their size, considering those with a larger

diameter clearly visible and outlined, based on the intrinsic

reliability in the measurement repeatability. In the case of pri-

mary carcinoma, only 1 target lesion were considered; in the

presence of lung metastases, up to 5 target lesions were consid-

ered. The longest diameter was calculated on the axial plane.

The density was measured on the region of interest (ROI)

obtained by surrounding the entire lesion including both the

hypervascular and necrotic parts excluding the atelectasis

pulmonary parenchyma. Each radiologist classified the treat-

ment response of the 2 follow-ups according to the RECIST

1.1 criteria.8 Objective therapeutic responses according to

RECIST 1.1 are as follows: complete response (CR) is the com-

plete target lesion disappearance; partial response (PR) is a

reduction of at least 30% in tumor diameter; progressive disease

(PD) is at least a 5 mm increase in tumor diameter, and percent

change from nadir is at least 20% and stable disease (SD) is

neither PR nor PD target lesions’ diameter has neither decreased

at least 30% from baseline nor has increased at least 20% from

nadir. Moreover, the response was evaluated according to the

Choi criteria10: CR is disappearance of target lesion; PR is a

decrease in tumor size � 10% or decrease in tumor density

� 15% on CT; SD is neither PR nor PD, target lesions’ diameter

has neither decreased at least 10% from baseline longest dia-

meter nor has increased at least 10% from nadir and the decrease

in the average of all Target lesions’ Mean HU value has also not

met nor exceeded 15%; and PD is an increase in tumor size

� 10% from nadir and does not meet PR criteria by tumor

density.

Radiologists performed the CT analysis before, blinded to

each other, and then in consensus on the dedicate post process-

ing workstations of the CT scanners and then on HealthMyne®

QIDSTM platform. To reduce recall bias, all 3 readers main-

tained a gap of more than 2 weeks between the 2 interpretation

sessions (blinded to each other and consensus assessment).

CT Post Processing With QIDSTM Tool

Among HealthMyne® QIDS™ functionalities, there is the

capability to extract the target lesion volume implementing

an interactive Rapid Precise Metrics (RPM™) algorithm with

user interaction and control: the user initializes the lesion seg-

mentation by drawing a long axis on a plane of the multiplanar

reconstruction (MPR). Then a 2D segmentation updates in

real-time for interactive feedback11 and then the 2D segmenta-

tion happens immediately on the other MPR planes. When the

contours on a MPR plane is unsatisfactory, the user can

upgrade the segmentation by either drawing long axes on this

plane or using the ball tool. When the segmentation is satisfac-

tory, the user can initiate 3D segmentation by a single click. 3D

segmentation occurs quickly (approximate time ¼ 1–2 s), and

the user may examine the segmentation contours by scrolling

through slices. If unsatisfied, the user can delete the segmenta-

tion or alternatively edit it using a 3D sphere tool, otherwise the

user clicks a button to confirm the 3D segmentation (Figure 1).

Therefore, using the HealthMyne® QIDSTM platform, the

following procedures was performed: advanced semi-automatic

segmentation of target lesions identified by the radiologist includ-

ing 3D outlines; propagation of regions of interest segmented

through scans acquired at different times; semi-automatic identi-

fication and segmentation of new lesions; classification of

response to treatment using the RECIST and CHOI criteria by

means of the “Therapy Response Assessment Module “of the

software (Long/Short axis are registered instantly).

Using the HealthMyne® QIDSTM platform, we recorded for

each target lesion and for each time (baseline, follow-up 1 and

follow-up 2) the longest diameter and the mean value of density

in Hounsfield unit on the 2D slice with the longest diameter

(2D density) and on the entire segmented volume (3D density).

The average elapsed time for each target lesion segmenta-

tion was collected along with the percentage of cases for which

the radiologists had to make changes.

Moreover, using QIDSTM platform we extracted 594 radio-

mic metrics (see Appendix 1): 28 delta radiomic features con-

sidered to obtain radiological response according to RECIST

and CHOI criteria (measure of change over time, percent

growth, projected doubling time, and other metrics determined

by comparing change in 1st and 2nd order metrics across mul-

tiple time points); 66 first Order profile features based on inten-

sity values (statistical distribution of image value); 50 second

order profile features based on lesion shape (geometric analysis

of shape, volume, curvature, and volumetric lengths); 393 third

order profile features based on texture (analysis of voxel
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sub-environments—voxel neighborhood statistical distribu-

tions—to show location-specific characteristics within a lesion

or tumor) and 57 features with higher order profiles (statistical

metrics after transformations and wavelet analysis).

We extracted each radiomic metrics on the lung nodules

and for each feature (except that delta radiomic features) and

we calculated the percentage change respect to baseline

value.

Figure 1. Semi-automated identification of the lesion: (A) A first step consists of the manual indication of the ROI to segment. The blue line
represents the initial drag of an axis crossing the lesion manually delineated by the radiologist. As the blue line is drawn an intensity-based
estimation of the lesion boundary is displayed with a red contour. On the right: the initial long axis delineated by the radiologist and the 2D
contour on the axial plane. (B) Additional axes can be dragged on all the orthogonal MPR views. From left to right: the 2D contours on the axial,
coronal and sagittal views of the lesion used as a starting point for the HealthMyne RPM™ algorithms. (C) HealthMyne RPM™ algorithms
combine intensity gradients with statistical sampling methods for delineation of the volumetric 3D contour of the lesion (light blue contour). The
blue line represents the longest long axes and the green line represents the longest short axes automatically determined leveraging the 3D
delineation. From left to right: the 3D delineation of the lesion on the axial, coronal and sagittal views. (D) The 3D delineation of the lesion is
automatically determined on current studies through the lesion propagation across studies. From left to right: the longest diameters of the lesion
in axial plane for the diagnostic study and the 2 follow-ups.
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Statistical Analysis

The correlation (Spearman’s correlation coefficient) between

the measurements of the target lesions diameter and density

provided by the QIDSTM software and the measurements pro-

vided by radiologists was calculated.

The assessment of observer variability for the 3 chest CT

readings was performed by calculating the intraclass correla-

tion coefficient.20

The consistency of the QIDSTM tool in defining the treat-

ment radiological response was assessed in terms of agreement

rate of the response (according to RECIST and CHOI criteria)

respect to the single reader and compared with the radiological

consensus of 3 readers.

Chi square test was applied to detect differences statistically

significant among percentage values in different groups.

Kruskal Wallis test was applied to identify the radiomic

features that had significant differences in median value in the

groups based on RECIST response (PR, SD and PD). More-

over, the robust features were selected by the least absolute

shrinkage and selection operator (LASSO) method to best pre-

dict the classification response based on RECIST response (PR,

SD and PD).21 In the LASSO method, 10-fold cross-validation

was used to select the optimal regularization parameter alpha,

as the average of mean square error of each patient was the

smallest. With the optimal alpha, features having nonzero coef-

ficient in LASSO were considered robust predictors of RECIST

response.

Median and range values were reported for significant quan-

titative metrics.

A value of p <0.05 was considered statistically significant.

All analyzes was performed using Matlab’s Statistics Tool-

box (The Math-Works Inc., Natick, MA).

Results

Median size of lung nodules were 29.87 mm + 26.14 mm

(10-164 mm). No patient with complete response was observed

in the selected cases for both RECIST and CHOI criteria;

42 patients resulted in in PR, 82 in SD and 26 in PD according

to RECIST criteria while 62 patient resulted in PR, 40 in SD

and 48 in PD according to CHOI criteria.

Tables 1 and 2 reports Spearman’s Correlation coefficients

between the measurements of the longest diameter and of HU

density of the target lesions provided by the HealthMyne

(HM) QIDSTM software and the measurements provided

Table 1. Spearman’s Correlation Coefficients Between the Measurements of the Diameter of the Target Lesions Provided by the QIDSTM

Software and the Measurements Provided Individually by the 3 Radiologists.

Reader1 size Reader2 size Reader3 size HM size

Spearman’s Correlation Reader1 size Correlation Coefficient 1.00 0.98** 0.99** 0.82**
P value – 0.00 0.00 0.00

Reader2 size Correlation Coefficient 0.98** 1.00 0.99** 0.82**
P value 0.00 – 0.00 0.00

Reader3 size Correlation Coefficient 0.99** 0.99** 1.00 0.82**
P value 0.00 0.00 – 0.00

HM size Correlation Coefficient 0.82** 0.82** 0.82** 1.00
P value 0.00 0.00 0.00 –

** The correlation is significant at the 0.01 level (2-tailed).
* The correlation is significant at 0.05 level (2-tailed).

Table 2. Spearman’s Correlation Coefficients Between the HU Density of the Target Lesions Provided by the QIDSTM Software and the
Measurements Provided Individually by the 3 Radiologists.

Reader1 2D
density

Reader2 2D
density

Reader3 2D
density

HM 2D
density

HM 3D
density

Spearman’s
Correlation

Reader1 2D density Correlation Coefficient 1.00 0.96** 0.98** 0.75** 0.79**
P value – 0.00 0.00 0.00 0.00

Reader2 2D density Correlation Coefficient 0.96** 1.00 .96** 0.74** .78**
P value 0.00 – 0.00 0.00 0.00

Reader3 2D density Correlation Coefficient 0.98** 0.96** 1.00 0.76** 0.80**
P value 0.00 0.00 – 0.00 0.00

HM 2D density Correlation Coefficient 0.75** 0.74** 0.76** 1.00 0.96**
P value 0.00 0.00 0.00 – 0.00

HM 3D density Correlation Coefficient 0.79** 0.78** 0.79** 0.96** 1.00
P value 0.00 0.00 0.00 0.00 –

** The correlation is significant at the 0.01 level (2-tailed).
* The correlation is significant at 0.05 level (2-tailed).
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individually by the 3 radiologists. Tables 3 and 4 reports

Spearman’s Correlation coefficients between the measure-

ments of the longest diameter and of HU density of the target

lesions provided by the QIDSTM software and the measure-

ments of radiological consensus. Good and significant corre-

lation was obtained between the measurements of longest

diameter and of density among the QIDSTM tool and the radi-

ologists: the correlation coefficient between measurements of

the longest diameter provided by radiologists compared with

those provided by QIDSTM ranges from 0.82 to 0.83; the

correlation coefficient between measurements of the 2D den-

sity provided by radiologists compared with those provided

by QIDSTM ranges from 0.74 to 0.76; the correlation

coefficient between measurements of the 3D density provided

by radiologists compared with those provided by QIDSTM

ranges from 0.78 to 0.79. Figure 2 reports the Bland-Altman

plots for the comparison between the longest diameter pro-

vided by radiological consensus and by QIDSTM tool (a), for

the comparison between 2D density provided by radiological

consensus and by QIDSTM tool (b) and for the comparison

between 3D density provided by radiological consensus and

by QIDSTM tool (c).

We found that the ICC was over 0.85 among measurements

provided by 3 radiologists both for longest diameter and for

density value (Table 5); however a variability among the radi-

ologists measurements determined a different treatment

Table 3. Spearman’s Correlation Coefficients Between the Measurements of the Diameter of the Target Lesions Provided by the QIDSTM

Software and the Measurements of Radiological Consensus.

Radiological consensus size HM size

Spearman’s Correlation Radiological consensus size Spearman Correlation Coefficient 1.00 0.83**
P value – 0.00

HM size Spearman Correlation Coefficient 0.83** 1.00
P value 0.00 –

** The correlation is significant at the 0.01 level (2-tailed).
* The correlation is significant at 0.05 level (2-tailed).

Table 4. Spearman’s Correlation Coefficients Between the Measurements of HU Density of the Target Lesions Provided by the QIDSTM

Software and the Measurements of Radiological Consensus.

Radiological
consensus density

HM 2D
density

HM 3D
density

Spearman’s
Correlation

Radiological consensus density Spearman Correlation Coefficient 1.00 0.76** 0.79**
P value – 0.00 0.00

HM 2D density Spearman Correlation Coefficient 0.76** 1.00 0.91**
P value 0.00 – 0.000

HM 3D density Spearman Correlation Coefficient 0.79** 0.91** 1.00
P value 0.00 0.00 –

Figure 2. Bland-Altman plots. In (A) comparison between the longest diameter provided by radiological consensus and by QIDSTM tool; in
(B) comparison between 2D density provided by radiological consensus and by QIDSTM tool; in (C) comparison between 3D density provided
by radiological consensus and by QIDSTM tool.
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response classification based on RECIST and CHOI criteria

(see Table 6).

HealthMynes’ quantitative volumetric delineation was con-

sistent and matched with each individual radiologist measure-

ment considering the RECIST classification (80-84% of

agreement). Instead, a lower concordance among QIDSTM

results and the radiologists was obtained considering CHOI

classification (58-63%) (Table 6). For this aspect, the radiomic

analysis and extracted metrics were non compared with density

measurement change.

No significant difference was observed considering the dif-

ferent experience grade of radiologist (p value > 0.05 at Chi

square test, Table 6). Moreover, no difference in the agreement

rate was observed considering the radiological consensus and

Table 6. Evaluation of Agreement Among Radiologists and Between Radiologists and HM QIDSTM Tool Based on RECIST and CHOI Criteria.a

Rate (%) RECIST response CHOI response P value*

Reader 1 versus Reader 2 94.67 83.00 > 0.05 for both RECIST and CHOI
Reader 1 versus Reader 3 92.33 85.67
Reader 2 versus Reader 3 89.67 84.67
Reader 1 versus radiological consensus (gold standard) 98.33 92.33 > 0.05 for both RECIST and CHOI
Reader 2 versus radiological consensus (gold standard) 95.67 89.67
Reader 3 versus radiological consensus (gold standard) 93.33 92.67
HM QIDSTM versus Reader 1 82.33 57.67 > 0.05 for both RECIST and CHOI
HM QIDSTM versus Reader 2 81.00 59.00
HM QIDSTM versus Reader 3 80.00 60.00
HM QIDSTM versus radiological consensus (gold standard) 84.33 62.67

aThe table reports the rate of patients with the same treatment response categorized using RECIST and CHOI criteria.
* P value at Chi square test.

Table 7. Robust Metrics Correlated to RECIST Classification.

Robust metrics correlated to
RECIST classification Description

1st order profile metrics
based on intensity values
(intensity features)

energy percentage change A measure of the magnitude of raw voxel values in an image.
A greater amount of larger values implies a greater sum
of the squares of these values

intensity histogram entropy percentage change Entropy of discretized voxels
intensity histogram uniformity percentage

change
Uniformity of discretized voxels

HU Kurtosis percentage change A measure of the “peakedness” of the distribution of HU
values in the ROI. A higher kurtosis implies that the mass
of the distribution is concentrated toward the tail(s) rather
than toward the mean. A lower kurtosis implies the
reverse, that the mass of the distribution is concentrated
toward a spike the mean

2nd order profile metrics
based on lesion shape
(morphological features)

Coronal long axis percentage change A measure of the longest straight line that can fit entirely
inside an XZ-planar slice of the 3D structure (from edge
to edge, without ever leaving structure)

Longest planar diameter percentage change A measure of the longest straight line that can fit entirely
inside an XY-planar slice of the 3D structure (from edge
to edge, without ever leaving structure)

Surface percentage change Surface area of the specified ROI of the image
3 rd order profile metrics based

on texture (textural features)
NGLDM Dependence Nonuniformity by Slice

percentage change
Dependence nonuniformity from merging matrices by each

slice and averaging the result
NGLDM Low Dependence Emphasis as

Volume percentage change
Low dependence emphasis from merging matrices by each

slice and averaging the result
Higher order features Entropy of Log(2.5 mm) percentage change Entropy of 2.5D LoG transformed voxels at 2.5 mm

smoothing
Wavelet energy percentage change Energy of voxels under wavelet transforms with filters HHL
Wavelet mean deviation percentage change Absolute deviation from the mean of voxels under wavelet

transforms with filters HHL
Wavelet root man squared percentage change Root mean squared of voxels under wavelet transforms with

filters HHL

8 Cancer Control



the QIDSTM tool measurements (p value > 0.05 at Chi square

test). These results strengthen the consistency proof between

the software measurements and the measurements made by the

radiologists.

The average elapsed time for each target lesion segmenta-

tion was estimated to be 4.5 min; this was a weighted average

computed over 6 categories of lesions: central or peripheral

with regular or irregular shape and nodules with size � 3 cm

and > 3 cm (Table 5). The percentage of the patients with

modifications of segmentation implemented by radiologists

using the QIDSTM platform was of 28/150 (18.7%) of cases

mainly in peripheral nodules with irregular shape (Table 5).

For all cases the software allowed to segment the target

lesions using the long and short axis drawing by the radiolo-

gists and allowed to propagate automatically the lesion seg-

mentation in the follow-up CT scan.

Among intensity features, the significant and robust metrics

correlated to RECIST response (PR, SD or PD) were energy

percentage change, intensity histogram entropy percentage

change, intensity histogram uniformity percentage change, and

HU Kurtosis percentage change (Table 7 and Figure 3).

Among morphological features, the significant and robust

metrics correlated to RECIST response (PR, SD or PD) were

coronal long axis percentage change, longest planar diameter

percentage change and surface percentage change (Table 7 and

Figure 4).

Among textural features, the significant and robust metrics

correlated to RECIST response (PR, SD or PD) were Neigh-

borhood Grey-Level Different Matrix (NGLDM) Dependence

Nonuniformity by Slice percentage change and NGLDM Low

Dependence Emphasis as Volume percentage change (Table 7

and Figure 5).

Among Higher order features, the significant and robust

metrics correlated to RECIST response (PR, SD or PD) were

entropy of Log(2.5 mm) percentage change, wavelet energy

percentage change, wavelet mean deviation percentage change

and wavelet root man squared percentage change (Table 7 and

Figure 6).

Figure 3. Lasso results and boxplots of robust metrics among intensity features group: in (A) is visualized the trace plot of LASSO fit. Each line
represents a trace of the values for a single predictor variable. The parameters under the zero line are the redundant predictors. The dashed
vertical lines represent the Lambda value with minimal mean squared error MSE (on the right), and the Lambda value with minimal mean squared
error plus 1 standard deviation. The upper part of the plot shows the degrees of freedom (df), meaning the number of nonzero coefficients in the
regression, as a function of Lambda. This latter value is a recommended setting for Lambda. In (B), (C), (D) and (E) were represented the
boxplots of the robust metrics: energy percentage change, intensity histogram entropy percentage change, intensity histogram uniformity
percentage change and HU Kurtosis percentage change.

Fusco et al 9



Table 8 reports the median values and range for the signif-

icant and robust metrics correlated to RECIST response (PR,

SD or PD). In PR group, median values of energy percentage,

intensity histogram entropy percentage change, intensity histo-

gram uniformity percentage change, HU Kurtosis percentage

change, coronal long axis percentage change, longest planar

diameter percentage change, surface percentage change,

NGLDM Dependence Nonuniformity by Slice percentage

change, NGLDM Low Dependence Emphasis as Volume per-

centage change, entropy of Log(2.5 mm) percentage change,

wavelet energy percentage change, wavelet mean deviation

percentage change and wavelet root man squared percentage

change were respectively of �60,77%; 4,71%; �9,30%;

�25,32%; �21,39%; �26,71%; 25,22%; �35,00%; 16,50%;

�9,89%; �37,61%; 14,26%; 15,67%.

Figure 7 reports an example of segmentation using the

QIDSTM tool for each time of a partial responder patient.

Discussions and Conclusions

The HealthMyne® Quantitative Imaging Decision SupportTM

platform provides a tool through which it is possible to

semi-automatically recognize and segment the target lesions

identified by the radiologist, to obtain automatically the treat-

ment response based on several radiological criteria including

RECIST and CHOI criteria and to extract automatically numer-

ous quantitative metrics useful in the evaluating and in the

prediction of the treatment response.

The use of automatic tools for monitoring the response to

cancer therapies is fundamental in order to obtain quantitative

measurements automatically and to reduce the intra and inter

observer variability. We demonstrated that a good and signif-

icant correlation was obtained between the measurements of

longest diameter and of density among the QIDSTM tool and

the radiologists. However, some few cases showed a variability

of 40% between the QIDS tool and radiologist measurements

as reported by Bland-Altman plots; this variability could be

linked to the intrinsic variability of the measure of the longest

diameter that influences mainly on the lesions with less size.

The measurement of the longest diameter has the highest cor-

relation and the 3D density had a greater correlation than the

2D density probably because the average density value calcu-

lated on a slice by the radiologist could be different from that

automatically identified by the QIDSTM tool. However, Health-

Myne quantitative volumetric delineation was consistent and

matched with each individual radiologist measurement

Figure 4. Lasso results and boxplots of robust metrics among morphological features group: in (A) is visualized the trace plot of LASSO fit. Each
line represents a trace of the values for a single predictor variable. The parameters under the zero line are the redundant predictors. The dashed
vertical lines represent the Lambda value with minimal mean squared error MSE (on the right), and the Lambda value with minimal mean squared
error plus 1 standard deviation. The upper part of the plot shows the degrees of freedom (df), meaning the number of nonzero coefficients in the
regression, as a function of Lambda. This latter value is a recommended setting for Lambda. In (B), (C) and (D) were represented the boxplots of
the robust metrics: coronal long axis percentage change, longest planar diameter percentage change, surface percentage change.
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considering the RECIST classification (80-84% of concor-

dance). A lower concordance among HM results and the radi-

ologists was obtained considering CHOI classification

(58-63%). No significant difference was observed considering

the different experience grade of radiologist and no difference

in the agreement rate was observed considering the radiological

consensus and QIDSTM tool measurements. This as a proof of

learning ease in the platform use and of consistency of the

automatic tool. Moreover, for all cases the software allowed

to segment the target lesion using the long and short axis

drawing by the radiologists and allowed to propagate automat-

ically the segmentation in the follow-up CT scan.

With improved consistency of lesion measurement, Health-

Myne eliminates the need for user to go back and to re-measure

previous lesions saving additional time and effort. The average

elapsed time for each target lesion segmentation was estimated

to be 4.5 min and the percentage of the patients with modifi-

cations of segmentation implemented by radiologists using the

HM platform was of 18.7%. The correct segmentation was

clearly linked to the localization and shape of the target lesions,

Figure 5. Lasso results and boxplots of robust metrics among textural features group: in (A) is visualized the trace plot of LASSO fit. Each line
represents a trace of the values for a single predictor variable. The parameters under the zero line are the redundant predictors. The dashed
vertical lines represent the Lambda value with minimal mean squared error MSE (on the right), and the Lambda value with minimal mean squared
error plus 1 standard deviation. The upper part of the plot shows the degrees of freedom (df), meaning the number of nonzero coefficients in the
regression, as a function of Lambda. This latter value is a recommended setting for Lambda. In (B) and (C) were represented the boxplots of the
robust metrics: NGLDM Dependence Nonuniformity by Slice percentage change and NGLDM Low Dependence Emphasis as Volume per-
centage change.

Fusco et al 11



in fact we reported that the prevalence of segmentation changes

was in peripheral nodules with irregular shape.

Gering et al11 in their study designed an experiment to

simulate the level of user interaction in semi-automatic

segmentation using the HealthMyne platform mimicking the

radiologist process to perform segmentation with real-time

interaction.22 Clicks and drags were positioned only where

needed in response to the deviation between real-time segmen-

tation results and assumed radiologist’s goal. Results of accu-

racy for various levels of interaction are presented using the

Dice similarity coefficient (DSC) to quantity the similarity

between 2 sets of segmentations: DSC values range from

0.857-0.943.22

Moreover, another aim of the study was the identifica-

tion of the robust metrics, by radiomics analysis, correlated

to RECIST criteria, able to follow size change and that

could be used to monitor or evaluate oncological treat-

ments with quantitative and objective approaches, consid-

ering that RECIST criteria is influenced by radiologist

measure that suffer from intra and inter observer

variability.

Several studies23-28 have examined the correlations between

features extracted from X-ray images and lung cancer. The first

complete application of radiomic in lung cancer was reported

by Aerts et al in 2014.16 In this study 1019 cancer patients were

enrolled, 788 with non-small cell lung tumors and the other 231

with head-neck district tumors. 404 parameters that quantify

the signal strength of the tumor, the shape, the structure and the

wavelet were extracted from a single CT scan. Together with

clinical information and gene expression data, a radiomic map

was developed to show patient clusters with similar radiomic

expression patterns. The results of this study showed that radio-

mic is able to identify the tumor prognostic phenotype in lung

and head-neck district tumors by a single CT scan. In another

study,24 583 radiomic characteristics of 127 pre-treatment lung

nodules were extracted to measure the shape, intensity and

heterogeneity of the nodule. The results showed satisfactory

accuracy (80%) in the distinction between primary and

Figure 6. Lasso results and boxplots of robust metrics among higher order features group: in (A) is visualized the trace plot of LASSO fit. Each
line represents a trace of the values for a single predictor variable. The parameters under the zero line are the redundant predictors. The dashed
vertical lines represent the Lambda value with minimal mean squared error MSE (on the right), and the Lambda value with minimal mean squared
error plus 1 standard deviation. The upper part of the plot shows the degrees of freedom (df), meaning the number of nonzero coefficients in the
regression, as a function of Lambda. This latter value is a recommended setting for Lambda. In (B), (C), (D) and (E) were represented the
boxplots of the robust metrics: entropy of Log(2.5 mm) percentage change, wavelet energy percentage change, wavelet mean deviation
percentage change and wavelet root man squared percentage change.
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malignant primary lung nodules with a sensitivity and specifi-

city of 85.5% and 82.7% respectively.

Another challenge in lung cancer is predicting the response

to therapeutic treatment or survival and the onset of local recur-

rence or distant metastasis. A radiomic model capable of effec-

tively identify patients whose tumors do not respond to

treatment would be desirable and could be used to direct

patients to personalized treatments.25-27 Coraller et al.25 built

a radiomic model with 635 parameters; 35 predictors of distant

metastasis and 12 predictors of overall survival and in a further

analysis of the response to neoadjuvant chemo-radiotherapy

showed that 7 radiomic characteristics were predictive of

macroscopic residual pathological disease and one characteris-

tic was predictive of the complete pathological response; it has

been shown that tumors with a more rounded shape and hetero-

geneous texture are more likely to have a poor response to

neoadjuvant chemo-radiotherapy. Huang et al.27 reports that

the “radiomic signature” is a biomarker of independent

estimate of disease-free survival and that the combination of

radiomic metrics with traditional staging and high clinical-

pathological risk factors allows a better estimate.

These results suggest that radiomic has the potential to be

used as a decision-making tool in evaluating treatment in

patients with lung cancer. However, a complete analysis of the

variance has shown that predictive accuracy depends on the

lesion segmentation and of selection of the characteristics and

of the analysis techniques, therefore suggesting that standar-

dized methods are needed for further investigations.27 A recent

paper by Langlotz et al29 noted that inter- and intra-observer

variability can occur at rates as high as 37% and that diagnostic

errors could play a role in up to 10% of patient deaths.

We demonstrated that different features were correlated

with reduction or increase of the target lesion and then to

RECIST response: among 594 extracted metrics the robust

predictors of size change were energy that measures the mag-

nitude of raw voxel values in an image; the histogram entropy

Figure 7. Semi-automated identification of the target lesion in baseline and follow-ups CT scans for a partial responder.
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and uniformity; the HU Kurtosis that measures the “peakedness”

of the distribution of HU values in the ROI; coronal long axis

that measures the longest straight line that can fit entirely inside

an XZ-planar slice of the 3D structure; the longest planar dia-

meter that measures the longest straight line that can fit entirely

inside an XY-planar slice of the 3D structure; the surface of

volume of interest; the NGLDM Dependence Nonuniformity

by Slice linked to the dependence nonuniformity from merging

matrices by each slice and averaging the result; the NGLDM

Low Dependence Emphasis as Volume that measures the low

dependence emphasis from merging matrices by each slice and

averaging the result; the entropy of Log(2.5 mm); the wavelet

energy; the wavelet mean deviation and the wavelet root man

squared that were statistical metrics obtained after log and wave-

let transformations. Among the morphological characteristics,

the long coronal axis and the percentage variations of the longest

planar diameter were clearly correlated to the RECIST response

and are therefore less interesting than the other correlated

metrics.

These 13 radiomic metrics have been identified as robust

parameters in order to quantitatively and objectively track the

reduction or increase in tumor size over time and therefore

could be used to assess or predict the response to cancer

treatment in the lung. Moreover, these features could be

linked to other physiological-metabolic processes (tissue vas-

cularization changes, cellular density changes, etc . . . ), dif-

ferent to lesion size changes, and could be able to follow the

temporal changes of these processes determining a possible

major performances in the monitoring and in the evaluation

of the treatments response. The future endpoint of the study

is to verify whether these radiomic characteristics could fol-

low the response to treatment even independently of a reduc-

tion in tumor size.

A limit of the study can be the absence of an analysis about

the robustness of the QIDSTM measurements and of extracted

metrics by varying the parameters of the CT acquisition. How-

ever, the radiomics analysis was made considering the percent-

age change of parameters that can be considered less dependent

upon the acquisition settings.

In conclusions, we demonstrated that HealthMyne quantita-

tive volumetric delineation was consistent and matched each

individual radiologist and that several radiomic metrics

extracted by QIDSTM were significant and robust predictors

of RECIST response.
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