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Abstract: The appearance of a new coronavirus, SARS-CoV-2, in 2019 kicked off an international
public health emergency. Although rapid progress in vaccination has reduced the number of deaths,
the development of alternative treatments to overcome the disease is still necessary. It is known
that the infection begins with the interaction of the spike glycoprotein (at the virus surface) and the
angiotensin-converting enzyme 2 cell receptor (ACE2). Therefore, a straightforward solution for
promoting virus inhibition seems to be the search for molecules capable of abolishing such attachment.
In this work, we tested 18 triterpene derivatives as potential inhibitors of SARS-CoV-2 against the
receptor-binding domain (RBD) of the spike protein by means of molecular docking and molecular
dynamics simulations, modeling the RBD S1 subunit from the X-ray structure of the RBD-ACE2
complex (PDB ID: 6M0J). Molecular docking revealed that at least three triterpene derivatives of
each type (i.e., oleanolic, moronic and ursolic) present similar interaction energies as the reference
molecule, i.e., glycyrrhizic acid. Molecular dynamics suggest that two compounds from oleanolic and
ursolic acid, OA5 and UA2, can induce conformational changes capable of disrupting the RBD-ACE2
interaction. Finally, physicochemical and pharmacokinetic properties simulations revealed favorable
biological activity as antivirals.

Keywords: triterpenes; SARS-CoV-2; spike protein; RBD; molecular docking; molecular dynamics

1. Introduction
The emergence of a novel coronavirus, SARS-CoV-2, was identified in Wuhan, China,

in December 2019. Since then, around 6.7 million of human deaths worldwide have been
associated with the disease caused by SARS-CoV-2, namely COVID-19, according to the
World Health Organization (WHO; January 2023, https://covid19.who.int/). Although
vaccination is now a reality, its effect depends on physical characteristics of vaccinated
individuals. For instance, it is known that vulnerable groups could exhibit a weak response
to vaccination and still be prone to serious complications [1–5]. Therefore, the development
of alternative treatments for COVID-19 is still necessary. In this regard, in recent years,
there has been a growing interest in carrying out in silico studies for designing new drugs
or repurposing the existing ones. In fact, for the specific case of drug design strategies for
identifying potential anti-SARS-CoV-2 inhibitors, computational approaches have proven
advantageous not only in speeding up the time to study large sets of potential candidates
but also in allowing rational design through an understanding of the action mechanism
of virus inhibition [6–24]. Although most of the reported methodologies consist of the
combination of a screening step with molecular docking and a refining step with molec-
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ular dynamic (MD) simulations, there is current growing interest in the development of
automated high-throughput machine learning (ML) approaches [13,16].

To date, several proteins have been proposed as a target for drug design against
SARS-CoV-2. Among them, spike protein (S protein) is considered one of the principal ob-
jectives because it mediates the entrance of coronavirus into the host cell by cell recognition
and membrane fusion. The S protein is composed of two functional subunits, namely the S1
subunit, which includes the receptor-binding domain (RBD), and the S2 subunit, which is
also called the membrane fusion domain [25]. Considering that the RBD mediates the first
step of infection by the recognition of angiotensin-converting enzyme 2 (ACE2) in human
cells, a promising alternative for COVID-19 treatment is the search for small molecules
capable of blocking the RBD-ACE2 interaction [12,21,22,24,26]. In this regard, key amino
acid residues mediating such interactions, hereinafter referred to as a “hot spot”, have been
resolved by structural analysis [27–30].

More specifically, both in vitro experiments and in silico studies have revealed hot spot
amino acid residues that intermediate the RBD-ACE2 specific recognition site [27,31–33].
For instance, Xu et al. found, by site directed mutagenesis, two important sites in the RBD
domain for specific ACE2 recognition. They report that a T470–T478 loop mutation showed
a complete loss to the ACE2 binding. Moreover, a single-mutation Y505A also abolishes
the interaction [27]. On the other hand, Maffucci et al. found two hot spot binding sites by
molecular dynamics and in silico alanine scanning corresponding to BS1—L455, F456, F486,
N487, Y489 and Q493—and BS2—Y449, Q498, T500, N501 and Y505 [32]. According to
these studies, there is a specific region that contributes to the binding affinity of RBD-ACE2
and could be used for in silico drug design by the search of small molecules interacting in
this region. Although the first attempt is to block the protein–protein interactions with the
presence of small peptides or other molecules, a promising alternative is to find allosteric
modulators that could induce conformational changes in the RBD capable of breaking the
protein–protein interaction [12,34,35]. These molecular modulators could come from plants
as secondary metabolites (SM) or their semi-synthetic derivatives, specifically those that
exhibit antiviral properties. Indeed, it is a matter of fact that natural compounds present
potential anti-SARS-CoV-2 properties [12,24,36–40].

Triterpenoids, widely used in traditional herbal medicine, represent an interesting case
of natural compounds playing an important role in plant defense. The antiviral activity
of these molecules against human immunodeficiency virus 1 (HIV-1), hepatitis B virus
(HBV), hepatitis C virus (HCV), influenza A virus (IAV), Ebola virus (EBOV) and SARS-CoV
has been reviewed [41–46]. Interestingly, it has been demonstrated that it is the potential
anti-SARS-CoV-2 activity of triterpenoid molecules that makes them a target for drug
development against COVID-19 disease [47,48]. Remarkably, the inhibitory potential of
glycyrrhizic acid (GA) and licorice-saponin against S protein has been identified by means
of in silico and in vitro experiments [47,49]. Additionally, Li et al. found that triterpenoid
derivatives with the 3-Ob-chacotriosyl oleanolic acid skeleton were potent inhibitors of the
S2 subunit from the spike protein, blocking the membrane fusion [50]. Furthermore, the
Food and Drug Administration (FDA) has approved the emergency use of vaccines against
COVID-19, and the use of antiviral drugs, i.e., remdesivir, for adults and some pediatric
patients, as well as the immune modulators baricitinib and tocilizumab (1 February 2023,
https://www.fda.gov). However, there are no in vitro experiments that support these
approved drugs as inhibitors of the S1 subunit of the S protein of SARS-CoV-2.

In this work, we evaluate whether 18 triterpene derivatives from oleanolic (OA), mo-
ronic (MA) and ursolic (UA) acids present either similar or enhanced-potential antiviral
activity against SARS-CoV-2 compared with the reference GA. To this aim, we combined
molecular docking and molecular dynamics simulations to study the effect of the triter-
pene derivatives against the RBD domain of the S1 subunit at the S protein. The latter
was modeled from the X-ray structure of the SARS-CoV-2 RBD–ACE2 complex (PDB ID:
6M0J [51]) elucidated by Lan et al. Molecular docking suggests that at least one derivative
of each triterpenic acid presents docking scores in the range of the reference molecule GA,

https://www.fda.gov
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which suggests the probable inhibition effect of these compounds against the S protein.
Moreover, molecular dynamics simulations revealed that OA and UA derivatives can
induce conformational changes at the interaction site similar to GA, indicating its potential
effect for blocking the RBD-ACE2 interaction.

2. Results and Discussion
As mentioned above, several studies revealed that the RBD subunit S1 of the

SARS-CoV-2 S protein mediates the first step of COVID-19 infection by the recognition of
the angiotensin-converting enzyme 2 (ACE2) in human cells. In this work, we explore the
potential antiviral activity of 18 triterpene derivatives, hereinafter referred as ligands, from
oleanolic (OA), moronic (MA) and ursolic (UA) acids by evaluating their possible role in
blocking the RBD-ACE2 interaction through the formation of a more stable RBD–ligand
complex. The 18 ligands, listed and illustrated in Table 1 were selected from previous
reports of antidiabetic studies [52–54] searching for a new use of these molecules against
COVID-19, and triterpenoids were reported as good antivirals. As observed, OA, MA
and UA were included as a control, with GA as the reference molecule, for a total of
22 compounds. The GA molecule was chosen for reference since its structure corresponds
to a triterpenoid derivative and has been proven, by in vitro experiments, as an inhibitor of
the RBD-ACE2 interactions.

Table 1. Docking scores, interacting residues (5 Å cutoff) and chemical structure of the studied
compounds and the reference compound (GA). Docking scores are reported in kcal/mol.

Compound
Key Name Chemical Structure BS1

Docking Score
BS2

Docking Score
Residues at a 5 Å Sphere

of Interaction

GA
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Table 1. Cont.

Compound
Key Name Chemical Structure BS1

Docking Score
BS2

Docking Score
Residues at a 5 Å Sphere

of Interaction

OA4

 

�5.1 �6.9

BS1: K417, L455, F456, E484,
G485, F486, N487, C488,

Y489, F490
BS2: R403, Y453, S494, Y495,

G496, Q498, T500, N501,
G502, Y505

OA5

 

�5.3 �7.3

BS1: K417, L455, F456, E484,
N487, Y489, F490, L492, Q493
BS2: G446, Y453, S494, Y495,

G496, Q498, T500, N501,
G502, Y505

OA6

 

 

�5.6 �6.8

BS1: K417, L455, F456, E484,
G485, F486, N487, C488, Y489
BS2: R403, Y453, Y495, G496,
Q498, T500, N501, G502, Y505

MA

 

�5.3 �6.6

BS1: K417, L455, F456, E484,
G485, C488, Y489, F490, Q493
BS2: R403, Y453, S494, Y495,

G496, Q498, T500, N501,
G502, Y505

MA1

 

�5.2 �6.4

BS1: K417, L455, F456, E484,
G485, C488, Y489, F490, Q493
BS2: R403, Y453, S494, Y495,

G496, Q498, T500, N501,
G502, Y505

MA2

 

 

�5.2 �6.3

BS1: K417, L455, F456, Y473,
A475, E484, N487, Y489

BS2: R403, Y453, S494, Y495,
G496, Q498, T500, N501,

G502, Y505

MA3

 

�5.4 �6.2

BS1: L455, F456, E484, G485,
F486, C488, Y489, Q493

BS2: R403, Y453, S494, Y495,
G496, Q498, T500, N501,

G502, Y505

MA4

 

�5.9 �7.4

BS1: K417, L455, F456, A475,
E484, N487, Y489, Q493

BS2: R403, Y453, S494, Y495,
G496, Q498, T500, N501,

G502, Y505

MA5

 

�5.8 �6.3

BS1: K417, L455, F456, E484,
Y489, F490, Q493

BS2: R403, Y449, Y453, S494,
Y495, G496, Q498, T500, N501,

G502, Y505
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Table 1. Cont.

Compound
Key Name Chemical Structure BS1

Docking Score
BS2

Docking Score
Residues at a 5 Å Sphere

of Interaction

UA

 

 

�5.2 �7.0

BS1: K417, L455, F456, E484,
G485, C488, Y489, F490, Q493
BS2: R403, Y453, S494, Y495,

G496, Q498, T500, N501,
G502, Y505

UA1

 

�5.3 �7.1

BS1: K417, L455, F456, E484,
G485, C488, Y489, F490, Q493
BS2: R403, E406, Y453, S494,

Y495, G496, Q498, T500, N501,
G502, Y505

UA2

 

�5.4 �7.3

BS1: K417, Y453, L455, F456,
E484, G485, F486, C488, Y489,

F490, Q493
BS2: R403, E406, Y453, S494,

Y495, G496, Q498, T500, N501,
G502, Y505

UA3

 

�5.2 �7.0

BS1: K417, L455, F456, E484,
G485, F486, C488, Y489,

F490, Q493
BS2: R403, E406, Y453, S494,

Y495, G496, Q498, T500, N501,
G502, Y505

UA4

 

�5.3 �7.0

BS1: K417, Y453, L455, F456,
E484, G485, F486, C488, Y489,

F490, Q493
BS2: R403, E406, Y453, S494,

Y495, G496, Q498, T500, N501,
G502, Y505

UA5

 

�5.7 �7.1

BS1: K417, Y421, L455, F456,
R457, Y473, A475, E484,

Y489, Q493
BS2: R403, E406, Y453, S494,

Y495, G496, Q498, T500, N501,
G502, Y505

UA6

 

�4.8 �7.0

BS1: L455, F456, E484, G485,
C488, Y489, Q493

BS2: R403, E406, Y453, S494,
Y495, G496, Q498, T500, N501,

G502, Y505

UA7

 

�5.2 �7.0

BS1: K417, L455, F456, E484,
C488, Y489, F490, Q493

BS2: R403, E406, Y453, S494,
Y495, G496, Q498, T500, N501,

G502, Y505

2.1. Molecular Docking Modeling

In order to explore the possible binding modes and identify low-energy binding poses
that lead to the formation of a complex between the RBD and the target ligands, molecular
docking calculations for each of the 22 aforementioned molecules against the RBD subunit
S1 of SARS-CoV-2 spike protein were performed. As an attempt to mimic the structural
conditions determined experimentally to favor the RBD-ACE2 interaction (i.e., considering
each target ligand rather than the ACE2 receptor), the geometry of the RBD used for
docking calculations was extracted from the crystallographic structure of the RBD-ACE2
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complex [51] (see Section 3.2). Since a semiflexible docking was performed, during the
simulations the geometry of the RBD was fixed to the crystallographic coordinates, while
the ligands were able to be movable and flexible. This setup is widely employed, allowing
the ligand to adapt to conformational changes during the interaction with the receptor [12].
Moreover, two hot spots of the RBD S1 subunit proposed by Maffucci et al. [32], namely
BS1 (L455, F456, F486, N487, Y489 and Q493) and BS2 (Y449, Q498, T500, N501 and Y505),
were selected as binding sites.

After protein and ligand preparation (see Sections 3.1 and 3.2), each of the 22 ligands
were docked into both the BS1 and BS2 hot spots by using the procedure described in
Section 3.3. We remark that in molecular docking calculations, the selection of the box size
parameter is crucial for obtaining meaningful results in terms of docked pose prediction.
While a narrow search space might not provide all the probable poses, a large-size docking
box might promote the formation of unrealistic conformations. In our simulations, we
followed the strategy reported by Feinstein and Brylinski [55], namely that by using an
optimized dimension of the search space 2.9 times larger than the radius of gyration (Rg),
the accuracy of the docked compound improves, enhancing the compound ranking (see
Equation (1), Section 3.3).

Table 1 and Figure 1 report the docking scores, which correspond to the lowest-energy
binding pose computed for each of the 22 (i.e., 18 target triterpene derivatives, OA, MA,
UA and GA) compounds docked with either the BS1 or BS2 hot spots. The corresponding
interacting residues of the RBD with the target ligand using a cutoff of 5 Å are also shown.
These results provide complementary information on two main points: (i) the potential
efficacy of the target ligands in blocking the RBD-ACE2 complex formation by the pro-
duction of a stable RBD–ligand interaction, and (ii) the most favorable hot spot mediating
such an interaction. The first point is rationalized by means of comparison with a reference
molecule, i.e., glycyrrhizic acid (GA), that has been experimentally demonstrated to exhibit
an antiviral activity against SARS-CoV-2 by blocking the RBD-ACE2 interaction [47]. The
second point is achieved by comparing the docking binding scores of each target ligand,
including GA, with respect to both BS1 and BS2, selecting the hot spot producing a lower
binding energy.

Figure 1. Autodock Vina docking scores for BS1 and BS2 sites for all the studied compounds.
Docking scores are given in kcal/mol. Yellow, blue and red color boxes represent UA, MA and OA
sets, respectively.
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We first analyze the docking scores of all the ligands in terms of the most favorable
hot spot for hosting the respective RBD–ligand interaction. At a first glance, as observed in
Figure 1, it is possible to notice that in all the cases, the docking scores of BS2 (i.e., �6.2 to
�7.6 kcal/mol) are lower (more negative) than the ones of BS1 (i.e., �4.8 to �6.7 kcal/mol).
This holds true for the case of the reference molecule GA, with docking scores of �6.2
and �7.6 kcal/mol for BS1 and BS2, respectively. This can be explained according to the
number of hydroxyl groups presented in the molecule that could form H-bonds with the
protein. Moreover, the results found in all the compounds suggest that BS2 is the hot spot
that contributes to a more favorable RBD–ligand energy interaction, with the RBD-GA
complex the most favorable one. We remark that in the selected docking poses GA is the
only compound interacting with the five amino acids composing BS2, while none of the
other 21 compounds interact with Y449 (see Table 1). In the following, we will focus our
analysis exclusively on the binding site BS2 of the RBD.

We now analyze the BS2 docking scores of the 18 target compounds and compare them
with the values of the control molecules, i.e., UA �7.0 kcal/mol, OA �6.8 kcal/mol and
MA �6.6 kcal/mol. As reported in Table 1, the set of UA derivatives present the overall
highest docking scores (�7.0 to �7.3 kcal/mol), followed by OA (�6.5 to �7.3 kcal/mol)
and finally MA (�6.2 to �7.4 kcal/mol). It is worth noting that in both OA and UA sets,
most of the six derivatives present scores equal to or higher than the respective control
compound, except for OA1 (�6.5 kcal/mol). In contrast, in the case of MA set, the com-
pound MA4 (�7.4 kcal/mol) is the only one with an enhanced score. In light of these
observations, the most straightforward strategy could be to focus on the six ligands of the
UA set for further investigations on RBD-UA-based interactions. However, as discussed
below, we decided to study a single derivative representative of each set by selecting the
one with the docking binding score similar to GA (�7.6 kcal/mol) and analyze in detail
their similarities/differences with respect to the latter in terms of the stability and struc-
ture of their RBD–ligand complex. Accordingly, we selected OA5 (�7.3 kcal/mol), MA4
(�7.4 kcal/mol) and UA2 (�7.3 kcal/mol).

We now turn to comparing the structural features of the RBD(BS2)-X complex, with
X = OA5, MA4 and UA2, with the structural features of the RBD(BS2)-GA complex, in
order to gain a further understanding of the interactions that lead to the top-ranked docking
scores among all the studied compounds. In this regard, we analyze the GA-BS2, OA5-BS2,
MA4-BS2 and UA2-BS2 docked structures, as well as the type of molecular interactions.
As illustrated in Figure 2, for each case, we generated an interaction diagram that shows
the amino acid residues of RBD interacting with the ligand in the most favorable (lowest-
energy) binding pose. For further information about the contact residues in the BS2 site for
all derivatives, see Figure S1.

When focusing on the reference compound GA, an interesting observation is that it
interacts not only with all the five residues composing the binding site BS2 (i.e., Y449, Q498,
T500, N501, Y505) but also with seven other residues of the RBD (none of them belonging
to BS1) (see Table 1). Moreover, the most relevant molecular interactions between RBD and
GA when docking BS2 can be summarized as follows (see Figure 2a). GA presents four
H-bond interactions with Y453, S494, G496 and N501 at 2.6, 2.5, 2.4 and 2.6 Å, respectively
(measured between the donor and the acceptor atoms). In addition, it displays Pi–sigma
interactions with Y505 at 3.6 Å distance (Figure 2a). Although GA displays four hydrogen
bonds that contribute to favor the total energy interaction, it presents two unfavorable
interactions, the first one between the oxygen of the hydroxyl group in the aromatic ring of
Y449, with the second between the oxygen of one hydroxyl group in the GA structure. Both
oxygen atoms are placed 2.9 Å away from each other, generating repulsive interactions.
On the other hand, the oxygen atom from the carbonyl group of the backbone in the N501
amino acid residue presents repulsive interactions with a hydroxyl group of GA, with
both oxygen atoms at a 3 Å distance (Figure 2a, red lines). These repulsive interactions are
unfavored the energy interaction of the complex; however, due to the attractive interactions,
they are still the most favorable among all the studied compounds.
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Figure 2. 2D (left) and 3D (right) interaction diagram for: (a) GA reference molecule, (b) OA5,
(c) MA4 and (d) UA2 derivatives. Residue–ligand distances are shown. All diagrams were con-
structed with Discovery studio 2021. Interaction-type color labels are displayed.

A similar analysis of the top three selected compounds revealed the following: the
OA5 derivative showed one Pi–sigma at 3.7 Å and three Pi–alkyl interactions at 5 Å, with
an average distance between the aromatic ring of Y505 and the oleanolic skeleton of OA5
(see Figure 2b). Additionally, MA4 only presents one Pi–alkyl interaction with Y505 at 4.7
Å (Figure 2c). Finally, UA2, displays one hydrogen bond with N501 at 2.7 Å, as well as
Pi–alkyl and Pi–sigma interactions with Y505 (4.9 Å and 3.9 Å, respectively), and one
Pi–alkyl with Y453 at 5.0 Å (Figure 2d). Although the interactions of the three top com-
pounds with the RBD S1 subunit seem to be less complex than in the case of GA, one
interesting finding is that all of them present interactions (either Pi–sigma or Pi–alkyl)
with the residue Y505. Remarkably, in vitro experiments that comprise single-point muta-
tions [27] have identified Y505 as a hot spot amino acid in the interaction between RBD
and ACE2, and it has been suggested that such a residue plays a key role in blocking the
interaction among proteins, inhibiting virus replication.

On the other hand, as an attempt to evaluate whether the inclusion of the top selected
ligands influences the stability of the RBD-ACE2 complex, we have computed the binding
affinity between RBD and ACE2 before and after the formation of the RBD(BS2)-X interac-
tions. To this aim, we performed protein–protein (i.e., RBD-ACE2) docking calculations
based on the knowledge-based iterative scoring function ITScorePP, employing the HDOCK
server [56,57]. Afterwards, the binding free energy for the docked poses was estimated
with the so-called molecular mechanics energies combined with the generalized Born and
surface area continuum solvation (MM/GBSA) method, implemented in the HawDock
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Server [58–61]. Interestingly, we found that in all the cases the presence of the ligands at the
BS2 site of the RBD and those located in the interface with the ACE2 (Figure 3) unfavored
the interaction energy of the RBD-ACE2 complex (less negative value). More specifically,
the MM/GBSA-based binding free energy of the RBD-ACE2 complex in the absence of any
ligand is �86.73 kcal/mol, and this value increases to �73.66, �73.89, �65.26 and �72.80
kcal/mol for complexes with GA, OA5, MA4 and UA2, respectively. These binding energy
values give us an estimation about the effect of the ligand in protein–protein interactions,
suggesting that the complex connections at the BS2 site could be disrupted by the presence
of the selected top ligands.

Figure 3. Protein–protein docking poses of the top selected compounds: (a) RBD-ACE2 complex,
(b) RBD-ACE2 GA complex, (c) RBD-ACE2 OA5 complex, (d) RBD-ACE2 MA4 complex,
(e) RBD-ACE2 UA2 complex. The RBD subunit is highlighted in magenta color, the ACE2 in cyan
color and the ligand is shown in ball-and-stick representation in green color.

Summarizing, a molecular docking screening of 22 ligands allowed us to select BS2
as the more favorable binding site of the RBD S1 subunit to induce an interaction with
triterpene acid derivatives. Furthermore, although many docking poses with favorable
energetic interactions between the studied ligands and BS2 were identified for the 18 target
compounds in the RBD-ACE2 interface, we selected the three top derivatives (i.e., OA5,
MA4 and UA2) and the reference compound GA for further analysis. As shown below,
in order to study in detail the stability and dynamical behavior of the predicted docked
RBD(BS2)–ligand complexes, we carried out molecular dynamics calculations. We investi-
gate whether or not MD confirms our hypothesis that Y505 plays a key role in the formation
of the RBD(BS2)–ligand complexes. Future work will be devoted to expanding the number
of candidates for MD simulations.

2.2. Molecular Dynamics Simulations

Molecular dynamics (MD) simulations are crucial to evaluate the protein–ligand
stability of the RBD(BS2)-X complexes predicted with molecular docking (see Section 2.1).
Unlike the semiflexible approach used in docking (see above), MD allows to model the
protein flexibility in a fully hydrated environment. Therefore, starting from the GA-BS2,
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OA5-BS2, MA4-BS2 and UA2-BS2 docked structures, we performed two independent MD
100 ns replicas following the procedure described in Section 3.4. In parallel, to measure the
induced conformational changes in the protein structure due to the presence of the ligand,
the unbonded RBD domain was also modeled.

We first evaluated the structural stability of the RBD protein by means of the root-mean-
square deviation (RMSD) measure, illustrated in Figure S2 of the Supporting Information
(SI). As shown in this figure, all modeled systems reach equilibrium at the simulated
time (100 ns). The average backbone RMSD for unbound RBD, OA5-RBD and GA-RBD
complexes was found to be 2.7 Å, whilst the MA4-RBD complex was 2.4 Å and UA2-RBD
was 2.6 Å, with maximum movements around 4.0 Å in all compounds. Although the GA
molecule induces higher movements in the protein, it remains stable during the last 40 ns
of simulation (Figure S2, SI). Moreover, as reported in Table S1, the secondary structure of
the RBD was not perturbed by the presence of the ligands.

In addition to measuring the conformational stability of the RBD(BS2)-X complexes,
we calculated the radius of gyration (Rg). This property gives us an idea of the compactness
of the protein structure and the folding stability during MD simulation. We found that,
for all the complexes, the Rg is lower than the RBD subunit in the last 40 ns of simulation
(Figure 4), indicating a greater compactness of the system. Additionally, the values in all
the complexes remained relatively constant, hence the complex is considered to be stably
folded, and the overall protein structure is stable after ligand binding [26].

Figure 4. Radius of gyration computed along the MD simulation time.

Once we ensured that the system reached equilibrium, an analysis of the stability of the
interactions predicted by molecular docking calculations was performed. We found that all
the studied compounds maintained interactions with the protein in both replicas; however,
as illustrated in Figure 5, some molecules lose contact with the amino acids from the RBD-
ACE2 interface, i.e., the first attempt to block protein–protein interactions. In this regard,
an estimation of the new contacts must be interpreted in order to establish if the protein
interaction inhibition could take place due to conformational changes in the RBD subunit
by an allosteric site. In the case of GA, we observed a different interaction pattern in the
two replicas. In the first replica, GA unbinds the docked position (Figure 6a, left, magenta
representation) after around 15 ns of simulation; interestingly, in the remaining simulation
time, it was positioned at the BS1 site (Figure 6a, left, blue and green representation),
interacting with the residues of L455 and N487-Y489. In the second replica, GA also
abandoned the initial position after 24 ns of simulation; however, it reaches another position
near the BS2 site with contact amino acids: A372-S375, G404-G407 and G502-Y505 (Figure 6a,
right, blue and green representation). One interesting finding is that, even though this
molecule did not last at the docked position, GA remains near the two hot spot regions,
which could contribute to preventing the interactions between RBD and ACE2.
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Figure 5. Ligand positions at 0 ns (magenta), 50 ns (blue) and 100 ns (green) of first (left) and second
(right) replica of: (a) GA reference molecule, (b) OA5, (c) MA4 and (d) UA2 derivatives. All diagrams
were constructed with PyMOL. BS1 site is colored in red and BS2 in blue.

Figure 6. Trajectory snapshots at 0 ns (magenta), 50 ns (blue) and 100 ns (green) of first (left) and
second (right) replica of: (a) GA reference molecule, (b) OA5, (c) MA4 and (d) UA2 derivatives. All
diagrams were constructed with PyMOL. Grey ribbons represent RBD domain while interacting
residues are displayed as sticks and labeled; red labels represent the amino acids at BS1 and blue
labels the amino acids at BS2.

Remarkably, the OA5 derivative was found to be the compound that prevails most of
the time in the docked region. In the first replica, OA5 stayed at the BS2 site until 65 ns of
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simulation (Figure 6b, left, magenta and blue representation); afterwards, it moved to the
region composed of the residues N437-N439 and A372-S375, which is not far from the BS2
region (Figure 6b, left, green representation). Notice that GA also reached a position in close
contact with residues A372-S375. Moreover, in the second replica, the compound keeps its
position under the 100 ns simulation, moving only at the end of the MD at a region between
BS1 and BS2 (F490-S494) but always at the interface of RBD-ACE2 (Figure 6b, right). Hence,
MD simulations support our hypothesis that OA5 could be a potential molecule to inhibit
protein–protein interactions and avoid SARS-CoV-2 infection.

On the other hand, MA4 is the molecule whose interactions with the amino acids at
the interface of RBD-ACE2 last for less time, with less than the 80% of the time (200 ns)
at this region. In the first replica, it goes to the region near the residues G404-E406 and
G504-Y505 (Figure 6c, left, blue and green representation), whilst in the second replica,
it remains at the BS1 F486-Y489 (Figure 6c, right, blue and green representation). Finally,
UA2 in the first replica does not leave the docked position at BS2 (Figure 6d, left), whilst
in the second replica, it moves away at the 7 ns simulation, interacting with A344-A352
residues at 16 Å from the BS2 (Figure 6d, right, blue and green representation). These
results indicate that, although BS2 seems to be the most favorable hot spot, BS1 could play
an important role in the RBD-ACE2 interaction, as predicted by Maffucci et al. [32].

Furthermore, among all the ligand interactions with the protein, the existence of hy-
drogen bonds (H-bond) is crucial for the stability of the protein–ligand complex. Therefore,
the analysis of the H-bond during the MD simulation reveals that GA presents a major
number of this kind of interaction, with an average of three and two H-bonds for the first
and second replicas, respectively (see Figure 7a). On the other hand, MA4 shows a lower
number of H-bonds, being completely lost in the second replica after 50 ns of simulation
(Figure 7c). OA5 presented the most stable H-bond number in both replicas with at least
1 H-bond, and UA2 also had stable interactions in the first replica; however, in the second
replica after 10 ns simulation, only occasional H-bonds are present. From these results, we
can conclude that GA and OA5 form the most stable complexes among the four systems,
with MA4 forming the least stable.

Afterwards, to have a deeper understanding of the potential influence of these
molecules in RBD-ACE2 interactions by altering the protein conformation of the RBD,
we analyze the effect on the protein flexibility by means of the root-mean-square fluctuation
(RMSF). The obtained values are displayed in Figure 8a and correspond to an average of the
two replicas; the individual RMSF is presented in Figure S3 of the SI. For all protein–ligand
complexes and the unbonded RBD domain, a higher-flexibility region was found at the re-
gion composed of amino acids A475-Y487 (values are presented in Table S2 of the SI). These
results are in agreement with the work of Williams et al., who also found great flexibility in
such a region corresponding to the E471-P491 loop within the RBD domain [62].

In order to compare the effect of the ligand, the DRMSF relative to the unbonded
RBD was calculated and presented in Figure 8b; positive values correspond to an in-
crease in the protein flexibility whilst negative values represent a decrease in the protein
flexibility. We found that GA, OA5 and UA2 induce higher fluctuations in the region
composed of the N481-E484 amino acids. Likewise, Alvarado et al. found deviations in the
N481-V483 amino acids due to the interaction of the RBD with the luteolin molecule.
They proposed that this higher oscillation affects protein–protein interactions between
RBD and ACE2, consequently inhibiting virus infection. Related to this, we found for
the reference molecule (GA) a maximum increase of 3.3 Å at the G482, with 2.2, 2.4 and
1.6 Å for N481, V483 and E484, respectively (see Figure 7). GA remains for almost all the
simulated time at the interface of RBD-ACE2, but not in the region reported as crucial
for protein–protein interaction [27]; nonetheless, it induces a conformational change near
the residues T470-T478 that could provoke the loss of protein–protein interactions and
therefore the inhibition of the virus infection.
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Figure 7. Number of H-bonds during MD for: (a) GA, (b) OA5, (c) MA4 and (d) UA2. Black
representation corresponds to replica 1, and red to replica 2.

Indeed, as already reported, GA has been demonstrated to avoid SARS-CoV-2 infec-
tion by in vitro experiments [47]. Moreover, Li et al. demonstrated, by surface plasmon
resonance measurements, that GA is capable of preventing the contact between RBD
and ACE2 by interacting with a recombinant S protein. In this work, among the studied
compounds, OA5 and UA2 showed comparable RMSF deviations to GA at the N481-E484
region (Figure 8 and Table S2). In this regard, the OA5 compound presents a 2.9 Å deviation
at G482, and UA2 presents an DRMSF of 3.2 Å in this position. On the other hand, MA4
does not show a difference in the protein flexibility at this region, giving an DRMSF of 0.2 Å
considering a cutoff of 0.3 Å for a ligand-induced fluctuation, as reported previously [22,63].

Related to the interaction region (Figures 5 and 6) and the DRMSF (Figure 8), the two
replicas of GA show different RMSF values, Figure S3b, with the second replica showing
larger movements than the first replica. Since the first replica presented lower flexibility at
the T470-P490 region, as shown in Figure 6a, because of the interaction of GA in this case
near the BS1 site, the ligand interaction appears not to induce an effect on mobility. On the
other hand, the second replica shows the highest amounts of fluctuation and interactions
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in the region, including A372-S375 and G404-V407. Furthermore, the OA5 derivative
shows the same fluctuations (Figure S3c) in both replicas presenting interactions at the
interface of RBD-ACE2 (F490-Y505) and the residues of A372-S375 out of the interface.
These results from GA and OA5 suggest that the site at the A372-S375 residues is an
allosteric modulator site that contributes to the flexibility at the region A475-N487 and
could disrupt protein–protein interactions [34]. Additionally, MA4 displays diverse effects
in each replica (Figure S3d). The first one shows higher movements at the region S477-P479
and interactions near the BS2 site (G404-E406, V503-P507), while the second replica does
not show differences with the unbonded RBD when interacting in the F486-Y489 region.
Finally, the UA2 derivative shows the highest influence on the flexibility when it interacts
at the BS2 site (replica 1, Figure S3e), although it presents fewer fluctuations when the
contact occurs at the residues A344-S349 (replica 2, Figure S3e).

 
Figure 8. (a) RMSF values for the unbonded RDB domain and all the studied complexes of the
protein–ligand; (b) DRMSF values relative to unbonded RBD domain of RMSF. Values are given in Å.

In order to confirm the observed motion in the T475-P487 region, principal component
analysis (PCA) was used to study the flexible region by the essential motions of the protein.
It is known that PCA is a dimensionality reduction technique widely used for analyzing the
motion of complicated systems with many degrees of freedom [64], allowing the efficient
representation of each point in the MD trajectory as a point in an essential plane [65].
As shown in Figure 9, our analysis indicates that the key motions of the RBD(BS2)-X
complexes were examined. PCA revealed that the first mode explains the flexibility in the
T475-P487 loop, showing a highly dynamic component in this region. For instance, the
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second replica of GA presented higher square fluctuations, related to the T475-P487 loop
shown in Figure 9b (black circle), than the first one.

 
Figure 9. PCA mode 1 and square fluctuations, performed with ProDy application, for: (a) RBD,
(b) GA reference molecule, (c) OA5, (d) MA4 and (e) UA2 derivatives. All diagrams were constructed
using NMWiz plugin in VMD. T475-P487 is marked by a circle. Black representation corresponds to
replica 1, and red corresponds to replica 2.
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Summarizing, we found two hot spots for the potential inhibition of RBD-ACE2 inter-
actions by triterpenoid derivatives. The first region corresponds to the BS2 site, proposed by
Maffucci et al., located at the RBD-ACE2 interface, whose connection could be blocked by
ligand interactions with the RBD amino acids. Moreover, the presence of the OA5 molecule
in this site provoked higher flexibility at the N481-E484 region (Figure 3). This increase
in flexibility was also observed when the compounds interact with the A372-S375 amino
acids, the latter representing a potential allosteric modulator site. Alvarado et al. also
reported a distal binding region, composed of the residues Y369, F377 and K378, inducing
a conformational change in the residues N481-V483 and provoking a lower number of
contacts between the S protein and the ACE2 receptor, disrupting RBD-ACE2 interactions.
In this regard, triterpenoids that induce conformational changes in this region could act as
potential S protein inhibitors.

2.3. Physychochemical and Pharmacokinetic Properties

In silico predictions of the physicochemical and the pharmacokinetic properties of
potential molecules as therapeutic structures could save time and money when performing
evaluations in preclinical trials. The comparison with the parameters proposed by Muegge,
Veber, Ghose and Egan are made to complement the values of properties that are not found
in the rule of five, and because, currently, not all commercial drugs exactly resemble the
values proposed by Lipinski; therefore, when there is a discrepancy with Lipinski values,
there is the possibility of justifying use through other empirical rules.

The calculations of the physicochemical and the pharmacokinetic properties were
performed for the top three selected compounds (OA5, MA4 and UA2), the GA reference
molecule, and two additional references: (i) remdesivir (RS), an approved FDA antiviral
drug which acts as an RNA polymerase inhibitor, and (ii) umifenovir (arbidol (UM)), an
indole derivative which has proven anti-influenza activity but is not an FDA-approved
drug in western countries; however, it has shown favorable results against COVID-19 [66]
and was proposed as a potential inhibitor of the S1 subunit of the spike protein by in silico
studies [67].

As shown in Figure 10, the bioavailability radars of the selected compounds OA5,
MA4 and UA2, as well as the reference molecule GA, are out of range in at least two
physicochemical properties, such as lipophilicity and insolubility. According to these
results, and also considering the Egan diagram (Figure S4, SI), the reference molecules
and the triterpene derivatives present low bioavailability for oral absorption, except for
UM. As shown in Tables 2 and 3, ADME properties for GA, RS, OA5 and MA4 derivatives
exceed the limits of the molecular weight. Moreover, the reference molecules GA and RS
presented a TPSA higher than 140 Å2, indicating a low cell membrane permeability, whilst
the selected derivatives showed TPSA values suitable for cell permeability. According to
the LogPo/w values, all the studied compounds (except UM) exhibited no gastrointestinal
absorption with respect to Egan (WLOGP) and Lipinski (MLOGP). Moreover, GA reference
and the selected derivatives (OA5, MA4 and UA2) presented poor solubility due to their
LogS values (ESOL). The low bioavailability and LogPo/w for oral adsorption shown by
the studied derivatives GA and RS are based on the rule of five, considering only passive
diffusion as a transport mechanism. However, some of these structures may use the
ATP-dependent mechanism, which would facilitate their passage through the membrane
or even suggest a different route of administration than an oral one. Physicochemical and
pharmacokinetic properties for all the studied compounds are found in Tables S3 and S4 of
the SI.
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Figure 10. Bioavailability radars for GA, RS, UM, OA5, MA4 and UA2. The pink area represents the
optimal range for each property.

In order to evaluate the possible biological activities, focusing particularly on antiviral
activities, such as influenza and 3CLpro inhibitors, bioactivity parameters were calculated.
Considering that the range of probability for favorable activity is found with values greater
than 0.69, discrete values greater than or equal to 0.40, and non-favorable values below
0.30 [68], we calculated the bioactivity by using the PASS online server. As shown in Table 4,
the compounds GA, OA5, MA4 and UA2 were the ones that showed the best results
as antivirals, particularly as anti-influenza, with favorable probability values of activity
(Pa of 0.737–0.833), being better than RS and UM. Additionally, related to the probability of
acting as an inhibitor of 3CLPro from SARS-CoV2, the OA5 derivative displayed a discrete
probability of activity, while UA2 presented an unfavorable probability. It is important to
highlight that RS and UM did not report this biological activity on the used platform.
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Table 2. Structural and physicochemical properties of the top selected derivatives and the reference
molecules.

Compound M. Wt
g/mol

TPSA
Å2

Log P o/w LogS
(ESOL) HBA HBD Rotatable

Bonds

Druglikeness * Bioavailability
ScoreWLOGP MLOGP Lipinski Ghose Veber Egan Mugue

OA5 546.02 46.53 8.74 6.83 �8.94 3 1 4 2 4 0 1 1 0.17

MA4 535.84 46.17 7.52 5.90 �8.62 2 1 3 2 4 0 1 1 0.17

UA2 484.75 46.53 8.13 6.20 �7.64 3 1 3 1 4 0 1 1 0.85

GA 833.01 279.68 �0.20 �0.67 �6.05 16 12 7 3 3 1 1 4 0.17

RS 602.58 213.36 2.21 0.18 �4.12 12 4 14 2 3 2 1 3 0.17

UM 477.41 80.00 4.87 3.59 �5.45 4 1 8 0 0 0 0 0 0.55

* Number of rule violations. Red numbers indicate out of range values.

Table 3. Pharmacokinetic and medicinal chemistry properties.

Compound
Pharmacokinetics Medicinal Chemistry

GI
Absorption

BBB
Permeant

P-gp
Substrate

CY1A2
Inhibitor

CYP2C19
Inhibitor

CYP2C9
Inhibitor

CYP2D6
Inhibitor

CYP3A4
Inhibitor PAINS Brenk Leadlikeness

OA5 Low No No No No No No No 0 1 2

MA4 Low No No No No No No No 0 1 2

UA2 Low No No No No No No No 0 1 2

GA Low No Yes No No No No No 0 2 1

RS Low No Yes No No No No Yes 0 1 2

UM High No No No Yes Yes Yes Yes 1 0 3

Table 4. Biological properties of the top selected derivatives and the reference molecule. Values
predicted with PASS online server.

Compound Antiviral (Influenza) 3CLpro (Human Coronavirus) Inhibitor

Pa Pi Pa Pi

OA5 0.764 0.004 0.361 0.005

MA4 0.746 0.004 NR NR

UA2 0.737 0.004 0.278 0.041

GA 0.833 0.002 NR NR

RS 0.216 0.174 NR NR

UM 0.740 0.004 NR NR
Pa: Probability of activity. Pi: Probability of inactivity. NR: Not reported.

3. Materials and Methods
3.1. Triterpene Derivatives DFT Calculations

Geometry optimization and harmonic frequency calculations of all ligand compounds
(SMILES at Table S5, SI) were performed at the DFT level of theory [69–71], employing
the functional hybrid B3LYP [72,73] and 6 � 31 + G(d,p) basis sets using the Gaussian
16 quantum chemistry package (G16) [74]. Optimized minima were verified with the num-
ber of imaginary frequencies, determined as zero (NImag = 0) in all cases. All calculations
were carried out in gas phase.

3.2. Protein Model Preparation

The structure of RBD subunit from SARS-CoV-2 was extracted from the crystallo-
graphic structure PDB ID 6M0J [51]. The RBD subunit was prepared using the Protein
Preparation Wizard tool in Maestro software (release 2019.2) to add hydrogen atoms and
delete crystallographic water, counterions (Zn2+ and Cl�) and NAG ligands. Standard
protonation states were assigned for all the ionizable residues by setting a pH of 7.4 using
PROPKA [75,76]. After macromolecular preparation, the molecular charge was +2.
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3.3. Molecular Docking Calculations

Molecular docking calculations were carried out using a proposed protocol that relies
on the use of the open-source program AutoDock Vina [77]. Such a protocol can be
described as follows. First, optimized ligand and RBD xyz structures were converted to
pdbqt files using MGL tools version 1.5.6. The search space was set around two hot spots
reported by Maffucci et al., namely BS1 with coordinates x: �38.621, y: 39.731, z: 1.564 and
corresponding to amino acids L455, F456, F486, N487, Y489 and Q493, and BS2 centered
at x: �36.355, y: 20.471, z: 2.322, related to residues Y449, Q498, T500, N501 and Y505.
The interaction box size was fit according to the ligand size, as reported by [55], using
Equation (1) to establish xyz cubic dimension.

Box size (x,y,z) = 2.857 ⇥ Rg, (1)

where Rg is the radius of gyration of the docking compound, computed with the measure
rgyr analysis tool of VMD [78], which uses the Equation (2).

𝑟𝑔𝑟𝑦
2 = (∑ 𝜔(𝑖)(𝑟(𝑖) − �̅�)2𝑛

𝑖=1 )
(∑ 𝜔(𝑖)𝑛

𝑖=1 )⁄  

𝑖𝑡ℎ  �̅�

(2)

where r(i) is the position of the ith atom and r is the weighted center.
Exhaustiveness was set to 10 in all calculations with an energy range of 3.0 kcal/mol.

In total, N = 10 replicas were carried out for each ligand, with a maximum of 20 number
modes. The N = 10 replicas were produced from 10 independently generated random seeds
to guarantee an exhaustive search of the conformational space. Best pose according to the
function score for each triterpene derivative docked with RBD subunit was selected for
further molecular dynamics simulations analysis.

The above-described protocol was implemented in a command-line Python3-based
driver that automates the whole procedure, requiring as only input the files of the optimized
structure for RBD and target ligand. The docking score values of the N = 10 replicas of each
top selected compound are reported in Table S6 of the SI.

Protein–protein docking was performed using the prepared model (see Section 3.2)
with the ACE2 chain as receptor and the RBD as ligand. Calculation was carried out
with the HDock server [56,57]. Using the docked poses, the binding free energy was
estimated based on molecular mechanics energies combined with the generalized Born and
surface area continuum solvation (MM/GBSA) method, implemented in the HawDOCK
Server [58–61].

3.4. Molecular Dynamics Simulation

MD simulations were performed using the Desmond package from Schrödinger
suite 2019-2 [79]. Periodic boundary conditions were set using a cubic box of 15 Å from
the protein surface, with a 7.4 working pH and 0.15 M ion strength. Explicit solvent
molecules were treated with the TIP3P water model. Two replicas of 100 ns were carried
out for each ligand complex using the OPLS_2005 force field [80]. Prior production run,
a minimization–relaxation protocol was carried out, composed by five steps: (a) 100 ps
Brownian dynamics NVT simulation with solute heavy atoms restrained at 10 K; (b) 12 ps
NVT simulation with heavy atoms restrained at 10 K; (c) 12 ps NPT with restrains on solute
heavy atoms at 10 K; (d) 12 ps NPT simulation at 300 K and solute heavy atoms restrained;
(e) 24 ps NPT simulation with no atoms restrained at 300 K. For steps (b–e), the Berendsen
algorithm for thermostat/barostat was employed [81]. Production run was performed at
310 K and 1 bar using the NPT ensemble with the Berendsen thermostat and barostat to
maintain temperature and pressure, applying 1 ps and 2 ps relaxation time, respectively.
The RESPA integrator was used with 2 fs time step, and short-range interactions were
modeled with a 12 Å cutoff.
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3.5. In Silico Prediction of Physicochemical and Pharmacokinetic Properties of Triterpene

Acid Derivatives

Cheminformatics and bioactivity prediction data (including ADMET, pharmacokinet-
ics and medicinal chemistry properties) were calculated using canonical SMILES (Simpli-
fied Molecular Input Line Entry Specification) sequences retrieved from the pdb files of
the DFT optimized structures (Section 3.1 using Maestro software (release 2019.2). The
chemical space analysis was focused on four physicochemical properties (PCP) of phar-
maceutical relevance, molecular weight (MW), TPSA (Topological Polar Surface Area),
cLogP (octanol/water partition coefficient) and solubility (ESOL) predicted with the Swis-
sADME web tool (http://www.swissadme.ch/index.php; accessed date: 10 November
2022). Bioavailability radars and Lipinski’s [82], Ghose’s [83], Veber’s [84], Egan [85] and
Muegge’s [86] rules were also calculated using SwissADME. Additionally, the toxicolog-
ical profile and the antiviral activity against influenza and 3-chymotripsin-like protease
inhibitor were computed using the Prediction of Activity for Substance (PASS) online
software (http://www.way2drug.com/passonline/; accessed date: 10 November 2022).

3.6. Data Analysis

Two-dimensional interaction diagrams for molecular docking analysis were analyzed
with the Ligand Interaction Diagram tool in Maestro (Schrödinger 2019.2 release). Simu-
lation Interaction Diagram tool from Desmond (Schrödinger 2019.2 release) was used to
compute the root-mean-square deviation (RMSD) and the root-mean-square fluctuation
(RMSF) of the trajectories. Principal component analysis (PCA) was performed using the
Desmond trajectories and converted to dcd format using the ProDy open-source pack-
age [87–89], and the Normal Mode Wizard (NMWiz) plugin in VMD was used for visual
comparative analysis [87,88].

4. Conclusions
Eighteen triterpene derivatives from oleanolic, ursolic and moronic acids were studied

against SARS-CoV-2 inhibition by molecular docking and molecular dynamics simulations.
The docking scores of 10 out of 18 studied compounds showed similar values of around
�7.0 kcal/mol as the reference molecule (glycyrrhizic acid, �7.6 kcal/mol) in the most
favorable interaction site (i.e., BS2) formed by Y449, Q498, T500, N501 and Y505. The top
selected compounds displayed interaction energies of �7.3, �7.4 and �7.3 kcal/mol for
OA5, MA4 and UA2 derivatives, respectively. Since the GA molecule has been reported
to block the RBD-ACE2 interaction by in vitro and in silico experiments, the selected
triterpenoids could also have a potential inhibition effect. Furthermore, molecular dynamics
simulations showed that the reference molecule, GA, induced a conformational change
at residues N481-E484 that could disrupt protein–protein interactions. OA5 and UA2
derivatives presented comparable movements with the reference molecule at this site and
could act as potential inhibitors through this mechanism. The change in the flexibility of the
RBD S1 subunit was related to the interaction of these three compounds (GA, OA5 and UA2)
with the region composed of the A372-S375 amino acids, which could act as an allosteric
modulator of movement in the N481-E484 site, disrupting the RBD-ACE2 interactions
and consequently inhibiting virus replication. According to their physicochemical and
pharmacokinetic predicted properties, the OA5, MA4 and UA2 derivatives and GA show a
low oral bioavailability and low gastrointestinal adsorption. Nevertheless, all the selected
compounds presented favorable potential as antivirals. The results found in this work open
the possibility to perform further in vitro experiments to validate the anti-SARS-CoV-2
activity of OA5, MA4 and UA2 derivatives for use as COVID-19 therapeutics.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28052333/s1, Figure S1: 2D interaction diagram for all
triterpene derivatives. All diagrams were constructed with Discovery studio 2021. Interaction-
type color labels are displayed; Figure S2: RMSD protein backbone values: (a) RBD domain,
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(b) GA-RBD complex, (c) OA5-RBD complex, (d) MA4-RBD complex, (E) UA2-RBD complex. Black
representation corresponds to replica 1, and red corresponds to replica 2; Figure S3: RMSF CA
values: (a) RBD domain, (b) GA-RBD complex, (c) OA5-RBD complex, (d) MA4-RBD complex,
(e) UA2-RBD complex. Black representation corresponds to replica 1, red corresponds to replica 2;
Figure S4. Egan’s boiled egg diagram for all the studied compounds and the reference molecule.
Neither molecule is a substrate of the P-gp; Table S1: secondary structure percentage from the final
frame in the 100 ns molecular dynamics simulation; Table S2: RMSF values, in Å, for the region
T470-F490 for both replicas; Table S3: structural and physicochemical properties for all the derivatives
and the reference molecule. Table S4: pharmacokinetic and medicinal chemistry properties for all the
studied compounds; Table S5: SMILES of the studied compounds and the reference compound (GA);
Table S6: Molecular docking scores of the top selected compounds with N = 10 from 10 independently
generated random seeds. The most favorable energy binding is shown for each seed.
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