
Citation: Bongini, P.; Pancino, N.;

Lachi, V.; Graziani, C.; Giacomini, G.;

Andreini, P.; Bianchini, M. Point-Wise

Ribosome Translation Speed

Prediction with Recurrent Neural

Networks. Mathematics 2024, 12, 465.

https://doi.org/10.3390/

math12030465

Academic Editor: Vince Grolmusz

Received: 19 December 2023

Revised: 22 January 2024

Accepted: 29 January 2024

Published: 31 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Point-Wise Ribosome Translation Speed Prediction
with Recurrent Neural Networks
Pietro Bongini 1,* , Niccolò Pancino 1 , Veronica Lachi 1 , Caterina Graziani 1 , Giorgia Giacomini 2 ,
Paolo Andreini 1 and Monica Bianchini 1

1 Department of Information Engineering and Mathematics, University of Siena, Via Roma 56,
53100 Siena, Italy; niccolo.pancino@unisi.it (N.P.); veronica.lachi@student.unisi.it (V.L.);
caterina.graziani@student.unisi.it (C.G.); paolo.andreini@unisi.it (P.A.); monica.bianchini@unisi.it (M.B.)

2 IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milano, Italy; giacomini.giorgia@hsr.it
* Correspondence: pietro.bongini@unisi.it

Abstract: Escherichia coli is a benchmark organism, which has been deeply studied by the scientific
community for decades, obtaining a vast amount of metabolic and genetic data. Among these data,
estimates of the translation speed of ribosomes over their genome are available. These estimates
are based on Ribo-Seq profiles, where the abundance of a particular fragment of mRNA in a profile
indicates that it was sampled many times inside a cell. Various measurements of Ribo-Seq profiles
are available for Escherichia coli, yet they do not always show a high degree of correspondence, which
means that they can vary significantly in different experimental setups, being characterized by poor
reproducibility. Indeed, within Ribo-Seq profiles, the translation speed for some sequences is easier
to estimate, while for others, an uneven distribution of consensus among the different estimates is
evidenced. Our goal is to develop an artificial intelligence method that can be trained on a small pool
of highly reproducible sequences to establish their translation rate, which can then be exploited to
calculate a more reliable estimate of the translation speed on the rest of the genome.

Keywords: translation speed; ribosomes; Escherichia coli; Ribo-Seq profiles; neural networks; recurrent
neural networks; translation speed prediction

MSC: 68T05

1. Introduction

Recognition of the importance of RNA in biological processes is increasing exponen-
tially. Once considered a simple messenger of information between DNA and proteins, in
recent decades, RNA has proven to be essential for regulation of many cellular processes,
such as the modulation of gene expression, chromatin structure, and various aspects of
genome stability, directly implicated in important pathologies such as tumors and aging.
However, the direct contribution of RNA to a specific biological mechanism is often difficult
to analyze due to the intrinsic fragility of the molecule. Since RNA represents an interme-
diate language between DNA and proteins, an accurate prediction of RNA properties is
important to understand gene regulation and expression of protein products. In fact, it is a
recent discovery that many RNAs also have catalytic properties; they are called ribozymes,
and they are involved in the splicing of tRNA molecules, in the activity of ribosomes, in
the eukaryotic hnRNA processing, etc. Moreover, RNA acts as a structural scaffold for the
DNA, RNA, and polypeptide reactions. Finally, because some viruses, such as HIV, are
encoded in the form of RNA, understanding RNA characteristics can support the process
of discovery and testing of pharmacological agents against such pathogens.

Therefore, the molecular process of translating mRNA into proteins is a cornerstone of
cellular biology, representing a critical intersection between the genetic code and functional
biomolecules. The translation is executed by ribosomes, which are sophisticated molecular
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complexes composed of RNA and protein components. These complexes function as the
sites of protein synthesis, interpreting the genetic information encoded in mRNA sequences
and assembling corresponding amino acids into polypeptide chains, which subsequently
fold into functional proteins essential for cell life.

Translation is not merely a mechanical process but is intricately regulated, playing a
pivotal role in the control of gene expression. This regulation is essential for maintaining
cellular homeostasis, enabling cells to adapt protein production to suit specific tissue re-
quirements and to respond to a wide variety of internal and external stimuli. The fidelity
and efficiency of translation are critical, and disruptions in these processes are frequently
implicated in disease mechanisms [1], highlighting the importance of understanding trans-
lation at a molecular level. A central aspect of translation that has garnered significant
interest is the speed of ribosomal protein synthesis. This rate is not constant but varies
based on several factors. The interaction dynamics between the ribosome, mRNA bases,
and the amino acids incorporated into the growing polypeptide chain are crucial deter-
minants of this rate. The chemical composition of the mRNA sequence and the encoded
amino acid sequence are known to significantly influence translation speed. For instance,
the presence of certain amino acids, such as those that are positively charged, can have a
pronounced effect on the rate of translation [2].

The complexity of translation extends beyond the ribosome-mRNA interactions. The
ribosome itself is a dynamic entity, capable of various interactions with the mRNA molecule,
the emerging peptide chain, and external molecular factors [3]. These interactions are not
merely mechanical but are intricately regulated, contributing to the efficiency of protein
synthesis. Recognizing these interactions is crucial for a comprehensive understanding of
translation and its role in cellular function and pathology.

In order to understand if biological signals exist to suggest how ribosomes move on
the mRNA strand, we decided to process the mRNA sequences with machine learning
models. The objective is to predict the translation speed of each nucleotide, codon, or
amino acid inside a sequence. The models are trained, validated, and tested on a dataset
of E. coli Open Reading Frames (ORFs), obtained from a consensus pool of nine source
datasets. Once trained and successfully validated, the model can then be exploited to
predict the translation speed of all the E. coli ORFs for which the consensus threshold
was not reached, thus marking the uncertainty in determining the translation speed with
traditional methods. On the one hand, this method can help build models for reliable
predictions of mRNA translation speed, reducing the future need for more costly Ribo-Seq
experiments. On the other hand, ablation studies and attention mechanisms can help
explain the models’ decisions, thus identifying the factors that determine the speed in
nature and their importance.

The main contributions of this work are the following:

• We have developed, optimized, and rigorously compared four advanced machine
learning models, each designed to process and interpret E. coli mRNA sequences;

• We have explored and evaluated four distinct encoding strategies to determine the
most effective method for representing these sequences, ensuring that our models
receive data in a format that maximizes their predictive capabilities;

• We conducted an in-depth analysis of the impact of context length on model perfor-
mance; this analysis aims to identify the optimal context length that provides the most
complete and informative data to predict translation speed;

• We have implemented and analyzed an attention mechanism within our models. This
mechanism is designed to identify and quantify the parts of the mRNA sequence
that are most influential in determining translation speed, offering insights into the
molecular determinants of this key biological process.

The rest of the paper is organized as follows. In Section 2, we introduce the dataset
and the methodology. In particular, in Section 2.1, we briefly introduce the procedure used
to build the dataset and the encoding techniques; in Section 2.2, we define the problem
and how we propose to solve it; in Section 2.3, we describe the models employed and
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how they can help solve our task; in Section 2.4, we summarize the experimental setup.
In Section 3, we describe the results of the experiments and introduce their significance.
Finally, in Section 4, we discuss the results and give conclusions, identifying interesting
directions for future research.

2. Materials and Methods
2.1. Dataset

Our dataset was obtained as a consensus pool of sequences from 9 different Ribo-Seq
profile sources. The source datasets were collected from the GEO repository [4]. Each
of them was built as a result of Ribo-Seq experiments carried out by culturing wild-type
Escherichia coli in different setups, and each was obtained from a different GEO sample. See
Table 1 for reference. The consensus pool was obtained using the algorithm described in [5]
and consisted of 49 sequences. The other E. coli ORFs did not show a sufficient consensus
between the sources to be used as supervision for our models. The objective was to train
the model on the 49 reliable ORFs and then exploit the acquired knowledge to make a more
reliable estimation of the rest of the ORFs.

Table 1. Reference information for the 9 datasets used to build our pool of consensus sequences.

Dataset ID GEO Series ID GEO Sample ID Ref

Dataset 1 GSE64488 GSM1572266 [6]
Dataset 2 GSE90056 GSM2396722 [7]
Dataset 3 GSE72899 GSM1874188 [8]
Dataset 4 GSE53767 GSM1300279 [9]
Dataset 5 GSE51052 GSM1399615 [10]
Dataset 6 GSE58637 GSM1415871 [11]
Dataset 7 GSE77617 GSM2055244 [12]
Dataset 8 GSE35641 GSM872393 [13]
Dataset 9 GSE88725 GSM2344796 [14]

The dataset made labels available for the 49 ORF sequences on which we had consensus
among all the sources. In particular, as described in [5,15], we labeled a data point as “fast”
(+1) or “slow” (−1) if 75% of the sources agree, respectively, on a low or high Ribo-Seq
profile for that data point. Data points on which there was no agreement were left with
a 0 label (which corresponded to a neutral supervision for the machine learning models).
All the other E. coli ORFs were unlabeled, and our objective was to formulate reliable
estimations of the translation speed on these latter sequences, using our predictor trained
and tested on the 49 labeled sequences.

Our 49 sequences have variable length, with the longest spanning 4461 nucleotides
and the shortest just 150. The average length is about 1934.6 nucleotides. They amount to a
total of 94,794 nucleotides, encoding 31,598 codons that translate to 31,549 amino acids and
49 stop codons.

Four different encodings of this dataset were used. To assess the informativity of each
encoding and select the best one, we used:

• A nucleotide encoding (N), in which the mRNA nucleotides are treated separately,
using a one-hot encoding of length 4;

• A codon encoding (C), in which codons are encoded by concatenating the 3 one-hot
encodings of their components, for a total length of 12;

• A spread codon encoding (S), in which codons are encoded one by one with a one-hot
encoding of length 64;

• An amino acid encoding (A), in which codons are encoded using the one-hot encoding
of the amino acids they code for, plus the stop codon, therefore using a one-hot
encoding of length 21.
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As a consequence, N encodings have a triple sequence length with respect to all other
encodings. Also, context lengths will always be tripled in experiments carried out on N
encodings to match the same sequence portion used in the other experiments.

2.2. Point-Wise Speed Prediction with Deep Neural Networks

Being determined by the sequence of mRNA bases, the speed of translation can be
predicted with a neural network model capable of processing sequential data. Sequential
models such as LSTMs [16] and 1D-CNNs [17] seem particularly fit for this task, as well as
more general models that can be adapted to this case, namely GNNs (GNNs can process
any graph, and sequences are particular cases of graphs) [18]. The objective is to formulate a
point-wise prediction of ribosome translation speed over the input sequence. We exploited
the Ribo-Seq profiles of the 49 sequences with high consensus among the sources as our
supervisions. These allowed us to train and validate our models before using them to
predict the translation speed over the rest of the E. coli ORFs. The point-wise prediction
was formulated on every element of the sequence: each nucleotide, amino acid, or codon
(depending on how the problem is formulated) has its speed value predicted.

Since the models take into account the dependencies between nearby sequence ele-
ments, it is important to evaluate the best context width before making the predictions.
The context is the window of sequence positions surrounding the position for which we
are predicting the speed. It can be as large as the whole sequence or as small as the single
sequence position itself. Previous biological studies suggest that the span of the mRNA
sequence interacting with the ribosome (and therefore capable of influencing the translation
speed) has a length of about ten codons [19] and is slightly unbalanced towards the tail:
4 codons forward, 5 codons backward, with respect to the one being translated.

We carried out a comparison between the three models introduced above and a hybrid
version of GNNs, which uses an LSTM to aggregate nodes (which will be referred to as the
hybrid model). To build, train, and validate the models, we used the TensorFlow Keras
Python framework [20,21]. All the models were trained using the Adam optimizer [22].

2.3. The Models

The Long Short-Term Memory (LSTM [16]) model is a type of recurrent neural network
(RNN) designed for processing sequences of data to capture long-term dependencies
between elements. The central role of a common LSTM unit is held by the “cell”, a
unit acting as a memory, capable of maintaining its state over time. Information can
be added to or removed from the cell state in LSTMs and is regulated by three gates,
namely the Forget Gate, Input Gate, and Output Gate, to selectively store, discard, and
output information, by means of a mechanism based on point-wise multiplications and
sigmoid activation functions. Bidirectional LSTMs represent an advancement beyond
LSTMs since each training sequence is processed both forward and backward, effectively
employing separate LSTM networks. As a result, a Bidirectional-LSTM model possesses
comprehensive information about every element in a given sequence, both before and
after it.

Convolutional Neural Networks (CNNs [17]) in 1D operate by leveraging convolu-
tional layers to analyze sequential data. These layers use filters that slide along the input
sequence, capturing local patterns and hierarchies and enabling automatic feature extrac-
tion without manual engineering. They efficiently learn and identify relevant features,
making them adaptable to diverse applications. The inclusion of pooling layers aids in
downsampling and maintaining essential information while enhancing computational
efficiency. In essence, 1D-CNNs work by autonomously recognizing and utilizing mean-
ingful features in one-dimensional sequences, providing a powerful tool for analyzing and
extracting patterns from sequential data.

Based on an information diffusion mechanism, GNNs can process graph-structured
data [18,21]. Specifically, GNNs create an encoding network, a recurrent neural network
that replicates the input graph’s topology. This network comprises two MLP units: one
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implementing a state transition function for each node and the other the output function (on
specific nodes or edges). The GNN employs a message-passing algorithm for exchanging
information between nodes and their neighbors, either for a predetermined number of
iterations T or until the state computation dynamics converge to a stable equilibrium
point at t ≤ T. The final versions of the node states, xT

n , ∀n ∈ N, are fed in input to the
output network, which approximates a function that can be defined on single nodes, edges,
or the whole graph. To produce an output, the GNN replicates the MLP units on each
node of the input graph and unfolds itself in time and space, generating a feedforward
architecture known as the unfolding network, in which each layer contains copies of all
the elements of the encoding network and represents an iteration of the implemented
algorithm. Connections between neurons belonging to subsequent layers reproduce exactly
those of the encoding network. Through a series of iterations, the information associated
with each node can be effectively propagated throughout the entire graph.

In the hybrid model setting, an LSTM model is incorporated within a GNN archi-
tecture as a mechanism for aggregating messages exchanged between nodes and their
neighborhood to capture complex relationships and dependencies.

2.4. Experimental Setup

To perform the machine learning experiments, the 49 sequences were divided into a
training set (42 sequences), a validation set (3 sequences), and a test set (4 sequences). All
experiments used the same split of the dataset.

The first experiments were devoted to finding the best model layouts. For every model,
multiple configurations were tested using a grid search-like procedure. The objective was
to find the best model capable of processing our mRNA sequences and to learn the best
hyperparameters for the task. All the models have an early stopping procedure that
evaluates the loss function on the validation set to prevent overfitting. When this occurs,
the best configuration is restored based on the best validation loss value. In this phase, with
respect to the C encoding, we use a context based on the literature [19], which includes 4
codons in the forward context and 5 codons in the backward context, for a total length of
10 codons (including the one being predicted). Appropriate padding was applied to the
head and tail of each sequence (4 vectors of zeros before the head, 5 after the tail). The grid
search was carried out using the validation set for model evaluation. In particular, we used
the hyperparameters reported in Table 2.

After the grid search had produced the best model configurations on all the dataset
encodings, we proceeded with a comparison between them in order to determine the best
model for our task. In this case, the test set was used for measuring the performance. The
best architecture of each model on each of the encodings was used in this set of experiments.
Each experiment was repeated five times, and we calculated the average value and standard
deviation for each metric.

Once the best model had been selected, we tuned the context length to the task at
hand. We varied the context radius from 1 to 15 codons in order to encompass a growing
number of sequence positions in our context. A context radius of X corresponds to a total
length of 2X + 1 because the context unfolds in both directions, and we also consider the
central element for which the predictions are formulated. The padding was also adjusted
accordingly for each experiment. On the one hand, reducing the context too much could
bring a loss of valuable information, as close neighbors likely have a certain influence on the
speed at which our central position is translated. On the other hand, spreading the context
too much could lead to the introduction of data that do not convey useful information
because far positions have very little to no influence on the translation speed of our central
position. The context variation experiments were carried out with the LSTM only, as this
was identified as the best model in the previous set of experiments. Again, each experiment
was repeated five times, measuring the average value and standard deviation of the metrics
over the five runs.
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Table 2. Best model configurations obtained with the grid search. Hyperparameters are explained in the following. E: epochs (All), R: learning rate (All), L1: units in
LSTM layer 1 (Hybrid and LSTM), L2: units in LSTM layer 2 (Hybrid), D: units in dense layer (Hybrid, LSTM, and CNN), S1: units in layer 1 of state updating
network (GNN), S2: units in layer 2 of state updating network (GNN), O: units in output network layer (GNN), St 1: Stride of layer 1 (CNN), St 2: Stride of layer 2
(CNN), K 1: Kernel size in layer 1 (CNN), K 2: Kernel size in layer 2 (CNN), F 1: Number of filters in layer 1 (CNN), F 2: Number of filters in layer 2 (CNN). The #P
row gives the total number of parameters of each model.

Model LSTM Hybrid GNN CNN
Encoding C N A S C N A S C N A S C N A S

E 500 800 800 800 500 800 800 800 500 800 800 800 500 800 800 800
R 1 × 10−3 1 × 10−3 1 × 10−3 1 × 10−3 1 × 10−3 5 × 10−3 1 × 10−3 1 × 10−3 1 × 10−3 1 × 10−4 1 × 10−3 1 × 10−3 1 × 10−3 5 × 10−3 1 × 10−3 1 × 10−3

L1 12 12 12 7 7 8 5 3 - -
L2 - 7 8 5 3 - -
D 50 30 30 30 30 50 36 18 - 32 32 30 16
S1 - - 35 38 33 31 -
S2 - - 35 38 33 31 -
O - - 30 30 30 30 -

St 1 - - - 1 1 1 1
St 2 - - - 1 1 1 1
K 1 - - - 5 7 7 3
K 2 - - - 3 5 5 3
F 1 - - - 16 16 16 16
F 2 - - - 8 8 8 8
#P 3262 3014 3826 4444 3162 3270 3436 4630 3275 3054 3619 4027 3002 3002 3636 4170
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3. Results

After having determined the best-performing configurations with the grid search,
which resulted in the architectures described in Table 2, a comparison was carried out with
the objective of determining the best model. The results of these experiments on the four
different dataset encodings are summarized in Table 3.

Table 3. Comparison of model performance on the four different dataset encodings. Precision, recall,
accuracy, and F1 Score were measured on five experiment repetitions on the same dataset split for
each model. The average value and standard deviation are reported. The letter following each model
accounts for the encoding: C stands for codon, N for nucleotide, A for amino acid, and S for spread
codon. Please refer to Section 2.1 for an explanation of the encodings and to Section 2.4 for the model
configurations.

Model Precision Recall Accuracy F1 Score

LSTM-C 82.87% ± 0.15% 74.07% ± 0.16% 78.14% ± 0.11% 78.22% ± 0.11%
Hybrid-C 84.57% ± 1.50% 72.53% ± 1.04% 78.27% ± 0.70% 78.21% ± 0.91%
GNN-C 71.04% ± 3.55% 79.75% ± 2.94% 75.15% ± 3.14% 75.12% ± 2.90%
CNN-C 82.75% ± 2.40% 72.01% ± 1.81% 77.17% ± 1.26% 76.98% ± 1.15%

LSTM-N 75.66% ± 0.38% 63.69% ± 0.59% 71.47% ± 0.14% 69.16% ± 0.25%
Hybrid-N 74.09% ± 0.53% 62.87% ± 0.53% 70.31% ± 0.38% 68.02% ± 0.42%
GNN-N 66.76% ± 1.18% 74.45% ± 3.23% 68.81% ± 1.22% 70.36% ± 1.55%
CNN-N 73.73% ± 2.42% 62.58% ± 1.52% 69.96% ± 1.17% 67.66% ± 0.85%

LSTM-A 79.17% ± 0.38% 76.26% ± 1.11% 76.78% ± 0.29% 77.68% ± 0.45%
Hybrid-A 78.17% ± 0.84% 76.56% ± 0.78% 76.23% ± 0.40% 77.35% ± 0.31%
GNN-A 72.67% ± 0.97% 73.39% ± 1.19% 74.52% ± 0.86% 73.03% ± 0.94%
CNN-A 78.61% ± 0.56% 77.51% ± 0.96% 76.89% ± 0.48% 78.05% ± 0.51%

LSTM-S 83.15% ± 1.77% 73.55% ± 0.60% 78.06% ± 1.00% 78.05% ± 0.79%
Hybrid-S 83.71% ± 0.43% 73.77% ± 0.99% 78.46% ± 0.50% 78.45% ± 0.61%
GNN-S 71.29% ± 2.79% 81.16% ± 4.15% 75.65% ± 1.20% 75.79% ± 0.90%
CNN-S 83.51% ± 0.77% 74.14% ± 0.71% 78.52% ± 0.49% 78.54% ± 0.48%

As shown in Table 3, the models are all capable of learning the task from the available
data. General models like GNNs clearly cannot reach the same performance levels as
more specialized ones. Even the hybrid GNN with an LSTM aggregation mechanism is
outperformed by the 1D-CNN and, more importantly, by the LSTM. Overall, this latter
model has the best performance levels and clearly represents the best model for our task.
The encodings are also very important in determining the model performance: when using
nucleotide encodings, we got an F1 Score just above 70%, while all the other three encodings
brought at least one model above 78%. This suggests that what determines the translation
speed of a mRNA sequence is mainly the peptide chain it codes for, while the nucleotide
sequence itself plays a secondary role. This might be due to drag levels and chemical bonds
formed between the peptide chain and the ribosome, while forces between the ribosome
and the mRNA sequence could be significantly weaker.

To further explore the correlation between the sequence and its translation speed, we
carried out a series of context variation experiments. In this scope, we varied the length
of the context on the two encodings, which were associated with the best results in the
grid search (S and A), using the best model resulting from the comparison: the LSTM. The
architecture has the same configuration described in Table 2. The context variation results
are summarized in Figure 1 (for the amino acid encoding) and Figure 2 (for the spread
codon encoding).
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Figure 1. Context variation results with the amino acid encoding.

As we can see in Figure 1, the context that maximizes the performance includes
12 amino acids, corresponding to a total window width of 25 amino acids (12 forward,
12 backward, plus the central one). This suggests that the region of interaction with the
translating ribosome spans for a similar length over the sequence. A similar observation
can be made for codons: as per Figure 2, the optimal context length is 11 codons for a total
window width of 23 codons.

Figure 2. Context variation results with the spread codon encoding.

Moreover, we carried out an additional experiment with the two LSTM configurations
resulting from these experiments. We inserted an attention layer in the models in order to
measure the importance given by the model itself to each sequence position and each possible
amino acid/codon. After training the model with the attention layer, the attention levels
can be measured by feeding data to it and recording the response of the attention layer. We
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realized a heat-map for each input sequence position and then averaged the results over the
whole test set, as shown in Figure 3 for amino acids and in Figure 4 for codons.

Interestingly, the position one step forward (1) with respect to the current translating
spot (0) is evaluated as the most important in both cases. The first backward position (−1)
is also under the focus of the attention layer, with position 0 often coming third in order of
attention level. Moreover, in both heat maps, it can be observed that the backward context
has a higher level of attention, which also reaches positions further away than the forward
context.

In order to finalize the work, we then used the “optimal” models obtained in the
previous experiments to actually make predictions on all the other E. coli ORFs for which
the source dataset did not show a sufficient level of consensus. To demonstrate the quality
of the methodology, we show how the model performs on a sequence taken from the test
set (EG11982): Figure 5 displays our predicted speed in comparison with the level assigned
by the consensus pool.

Finally, we illustrate how our model behaves on the unlabeled ORFs. In Figure 6, we
demonstrate the speed prediction on ORF “azoR” as an example. All the predictions on the
other E. coli ORFs are available in the Supplementary Materials, both as plots and as source
data in text format.

Figure 3. Attention heat-map obtained with the amino acid encoding and a context length of 12.
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Figure 4. Attention heat-map obtained with the spread codon encoding and a context length of 11.

Figure 5. Prediction realized with the spread codon encoding and a context length of 11 on test
sequence EG11982. The prediction is shown in blue, while the target calculated from the consensus
pool is shown in red for comparison.

Figure 6. Prediction realized with the spread codon encoding and a context length of 11 on ORF
“azoR”. The prediction is shown in blue.

4. Conclusions

In this paper, we described a methodology for the point-wise ribosome translation
speed prediction of mRNA sequences. Four machine learning models were applied to
the task and compared: 1D Convolutional Neural Networks, Long Short-Term Memories,
Graph Neural Networks, and hybrid Graph Neural Networks with LSTM aggregation. The
models were trained, validated, and tested on a dataset of 49 high-confidence sequences
obtained from a consensus pool of nine source datasets of Ribo-Seq profile lab measure-
ments on the complete set of E. coli ORFs. In particular, the objective was to produce a
point-by-point estimate of the translation speed on every sequence element. The problem
was presented to the model as a classification one, with a + 1 target for fast points, a − 1
target for slow points, and a 0 target for points with a speed close to the average. The
model could also be exploited as an estimator of the speed, as it produced a prediction in a
continuous domain through a sigmoid output unit, which could take any value from −1 to
+1. The dataset was presented to each model in four different encodings, accounting for
nucleotides, amino acids, codons (as triples of nucleotides), and split codons (64-bit one-hot
encodings). We carried out a grid search, obtaining the optimal configuration of every
model, which demonstrated that networks with a relatively small number of parameters
are capable of processing the sequences with very good results. Moreover, a comparison
between the different architectures showed that LSTMs are the best models for this task,
thanks to their natural way of processing sequential inputs. We subsequently employed
LSTMs to carry out experiments on our sequences with contexts of different lengths. The
length of the context was the width of the sliding window we took into account when
making predictions on every sequence point. These experiments allowed us to determine
that the best context length is 11 codons or 12 amino acids, depending on the encoding.
Future work will focus on better understanding the mechanism that brings the networks to
take into account this span. An LSTM model with attention layers allows measuring the
importance of each context element and each amino acid, codon, or nucleotide. Finally,
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further experiments on the lengths of asymmetric contexts would allow us to more precisely
determine the region that actually interacts with the ribosome during translation, thus
contributing to its translation speed.

Supplementary Materials: The following supporting information can be downloaded at: www.mdpi.
com/xxx/s1, Translation speed predicted on all the E. coli ORFs.
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