Software Tool for Evaluation of Multi-Sensor
Object Tracking in ADAS Systems

A.Medaglini, S. Bartolini

Department of Information Engineering and Mathematics, University of Siena, Via Roma 56, Siena,

Italy; email: {alessio.medaglini, sandro.bartolini} @unisi.it

V. Di Massa

Thales Italy, Via Lucchese 33, Sesto Fiorentino, Italy; email: vincenzo.dimassa@thalesgroup.com

F. Dini

Magenta srl, Via B. Pasquini 6, Florence, Italy; email: fabrizio.dini @magentalab.it

Abstract

Nowadays, the innovations of Al and other automated
decision-making software are spreading to many differ-
ent areas. The automotive field in particular is rapidly
shifting towards the concepts of Advanced Driver As-
sistance Systems (ADAS) and Obstacle Detection and
Avoidance Systems (ODAS), which could bring huge
benefits in the future. However, before being able to
use these tools, many assurances are required regard-
ing their functioning and safety. To this end, several
control techniques exist to evaluate the performance of
these software, but a reliable and repeatable method for
evaluating complex scenarios and corner cases is still
lacking. In this paper we propose a suite of tools for
the generation and analysis of synthetic tests, aimed at
evaluating and analyzing the functioning of autonomous
driving systems in order to measure their effectiveness
and to drive their development.

Keywords: synthetic test, autonomous driving, software
tool.

1 Introduction

In the past ten years there was an exponential growth in the
use of electronic components and software in automotive sys-
tems. Driven by the revolutions in Al and machine vision, the
automotive field has been profoundly renewed by inserting
an ever-increasing number of driving aid tools inside cars,
from lane keeping to complete autonomous driving systems.
In particular, thanks to the huge amount of data that can
be collected, taking advantage of inertial platforms, sensors,
and so on, automated decision-making systems are becoming
increasingly popular. This huge amount of innovations is
shifting the market towards Advanced Driver Assistance Sys-
tems (ADAS), with the aim of developing fully autonomous
vehicles in the future. In such scenario, to verify the operation
and evaluate the performance of this new kind of vehicles, a
very broad and thorough analysis is required. In fact, as stated
in [1], "Autonomous vehicles would have to be driven hun-
dreds of millions of miles and sometimes hundreds of billions

of miles to demonstrate their reliability in terms of fatalities
and injuries". As one can imagine, it is not possible to verify
such a requirement with tests done with real vehicles only,
but it must also be accomplished by exploiting simulation
tools to fully evaluate the reliability of these kind of vehicles.
With regard to tests with real vehicles, there are also some
drawbacks that make their use not recommended. The main
of them are shown below:

* there is a too wide variety of scenarios to be explored
and it would require an unimaginable amount of time,
and resource.

* it could be difficult to exactly replicate a specific test
scenario to verify if an improvement can help in facing
it correctly.

e it is difficult to obtain quantitative measurement of per-
formance using real collected data since as it does not
gives us any reference about the desired behavior.

 danger for the personnel involved during the testing pro-
cedure is too high to take a chance, especially in edge
cases [2].

Nowadays, for all these reasons, simulated tests seem to be an
essential way for automotive industry to provide the safety re-
quirements of autonomous vehicles, reducing the mentioned
costs and giving a speed up to the testing procedure. Never-
theless, performing tests that produce quantitative, repeatable
and comparable results remains challenging for autonomous
vehicles, since the reliability of the results is strongly depen-
dent on the accuracy of the simulated information used as
input for the software. In particular, one of the crucial parts
of the systems for autonomous driving is managing the prob-
lem of Object Tracking and Obstacle Detection (OTOD) [3],
which is the focus of this paper. The situation awareness is
indeed a crucial aspect to be able to develop properly working
decision-making systems that are fully reliable in urban traffic
scenarios. For this reason, we focus on the study of generating
scenarios for such critical activities. In fact, our work aims at
evaluating and measuring OTOD features and performance
through a modular and efficient simulated approach.

Ada User Journal

Volume A, Number B, February 2022

2 Software Tool for Evaluation of Multi-Sensor Object Tracking in ADAS systems

In this area, there are some proposals that have been made
to manage such issue, which can be split into two categories.
The first is more oriented to the generation of test scenarios
starting from real data, while the other is based on the use of
mathematical models. The approaches in the first category
gather data from real-world runs, to obtain a database of sce-
narios that can be used for building the simulated scenarios.
On the other hand, approaches in the second category rely
on abstract scenario generation, defined by mathematical or
semantic languages which are then translated into test scenar-
i0s. Unfortunately, these methods can be expensive in some
respects or requires a huge base of data to combine. Further-
more, the problem of evaluating the final results of the elab-
oration of these product scenarios is not always completely
addressed, and many evaluation criteria are often based on
different performance indicators whose interpretation and
composition is not uniquely determined [4].

We propose a methodology, within the second category, that
models the salient aspects of tracking and sensing objects, to
effectively abstract the necessary facets to test OTOD behav-
ior in ADAS systems. Our tool generates synthetic scenarios
that replicate the sensors’ perception of the objects around a
vehicle, so that they are representative and effective without
burdening the model with unnecessary information, promot-
ing high modularity and flexibility. The main contribution of
this paper can be summarized as follows:

* amethod for the simulated evaluation of object detection
and tracking submodules of an ADAS system.

* asynthetic scenario generation tool configurable through
a simple scripting language that allows to describe sce-
narios quickly and concisely.

* aperformance evaluation of the results obtained, through
automatic calculation of aggregated Key Performance
Indexes (KPIs), to produce comparable and easy-to-
understand reports from test execution.

2 Related works

As already said in the previous section, it is possible to cat-
egorize the systems that deal with the evaluation of OTOD
systems substantially in two macro categories, one more ori-
ented to the generation of test scenarios starting from real
data and another that instead bases the generation on math-
ematical models. An example of work related to the first
category is proposed in [5]. In this paper they proposed an ap-
proach for scenario generation based on a scenario database.
In particular, their schema builds upon the generated scenario
database structure that clearly identifies the key components
of a given autonomous paradigm. This abstraction enables the
creation of parameterized test cases to test the autonomous
functions under various adaptive conditions. Their scenario
database consists of data collected from multiple sources,
and store information about real world sensor data, param-
eters required to create the setup for testing and scenario
definitions related to the functions supported. Similarly, de
Gelder and Paardekooper [6] propose a method for evaluating
the performance of the functions in an ADAS system based
on real-life scenarios, taken from the Streetwise database,

combined with Monte-Carlo simulations. Another possible
approach, proposed in [7], is based on the use of advanced
perception systems for obtaining reference data used for the
automated generation of simulated driving scenarios. In this
case the data provided by their referenced sensor system can
be transferred into a simulation tool, to obtain virtual scenar-
ios from real world scenarios. The second category instead
relies on abstract scenario generation. For instance, in [§]
the scenes and the related assertions are defined by a matrix-
based semantic language and translated into test scenarios in
simulation. They developed a semantic language for breaking
down the factors that define a scenario, taking the input from
the command line and parsing the formal grammar to generate
tokens. Then, using a matrix based system they generalize
the scenario characteristics. The numerical matrix is read
as input where each row is a different assertion describing a
single road piece or actor that can then be parsed to generate
the scenario. In [9] they generate both static, i.e. scenarios
where objects just follow a predefined trajectory, and hybrid
scenarios where the vehicles need to to deviate due to the in-
fluence of other vehicles in order to avoid a crash. In order to
do that they use a combinatorial interaction-testing algorithm
together with a backtracking algorithm and a motion planner.

Our approach is mainly related to the category based on math-
ematical models, but we differ from the reported works for
some main reasons:

* our scenario definition language is simple and easily
human readable, it does not involve matrix definition or
other complex mathematical formalization of the items
present on the scene.

* in our case complex algorithms are not required to create
scenario data starting from its representation, requiring
a great computational power, but the output is automati-
cally generated starting from the objects involved, and
based on the sensors used, lightly and quickly.

* our tool also model how different sensors perceive the
environment, replicating their transducer characteristics
and specific format of data and meta-data, along with
the different kind of noises that can affect them.

3 The ADAS system:

case

Thales Italy (TH-ITA) industry has developed a multi-sensor
ADAS system for city trams for the obstacle detection and
collisions avoidance. The system assists and supports the
driver in avoiding collisions by detecting and tracking obsta-
cles in real-time, thereby compensating for driver errors. The
aim of TH-ITA is to enhance the safety for trams and light
rail vehicles, to the benefit of passengers, service operators
and other traffic participants. Although technology cannot
replace human drivers, it can complement human perception
and decision making — often deciding between life and death.
Indeed, the system will be able to significantly reduce the
number of rear-end collisions involving tram vehicles and, as
a result, help to avoid high follow-up costs.

a real-world use-

The complexity of city traffic requires cognitive capabilities
to improve vehicle reactivity and perception of near- and

Volume A, Number B, February 2022

Ada User Journal

A. Medaglini, S. Bartolini, V. Di Massa, F. Dini

long-range obstacles. The development of this technology
and its impact in light rail transit will result in improved
safety of daily operations. In fact, tramways are a challenging
application for autonomous driving systems for many reasons.
First of all, compared to mainline railways, trams rails are
not always segregated from road traffic and pedestrians. For
this reason, while in mainlines any detected obstacle on the
track has to be considered a threat to safety [10], for a tram
driving system it is not so straightforward to discriminate
whether an object on the track rails can constitute a safety
threat or not, depending on the specific situation. For example
a car could drive on the rail, in front of the tram, preceding
it while driving the same direction. In the same way it is
common to find people crossing the rails or in close proximity
of them, for instance in all those cases where the tram is
approaching to a platform with people standing and walking
in the surroundings. These tramway scenarios are normal
and should not cause an alert. In contrast, when the ADAS
system detects a car or pedestrian whose future trajectory can
be predicted to intersect the tram’s one, it shall generate an
alert so that the driver can stop or slow down the tram to avoid
collision. In fact, in a typical use case, there are many vehicles
that can move around the tram, which is also moving. This
situation generates a variety of possible scenarios, according
to the different obstacles, weather, lighting and other spatial
contour conditions around the tram. Moreover, along its path
the tram meets some dangerous conditions like traffic lights,
crosswalks, crossroads and cars parked on the street sides
with people walking around them.

In addition, the same driving situation is certainly much more
dangerous for a tram vehicle than an automobile. This is
mainly caused by the high braking distance required by a
tram, which is very different with respect to the one of a
car, due to the great difference in weight and coefficient of
friction with the respective transit surfaces between the two
types of vehicles. For instance, as highlighted in Figure 1,
to stop a tram traveling at 35km/h are needed about 20m,
which is the same distance required to stop a car running at
more than 60km /h. This produce a large increase in risk in
the management of a tram with respect to a car, due to the
absolutely relevant momentum of the former even at relatively
low speeds, which can create safety hazards for other road
users during its operating.

Braking Time and Distance for Tram and Car

70m 100 sec
90 sec
80 sec

50m 70 sec

60 sec

50 sec

40 sec

20m 30 sec
20 sec

10 sec

0m 0 sec
10kmmh 20kmh 30kmh 40kmh S0kmvh 60kmh 70 km/h

= distance car distance tram = e——time car —=——time tram

Figure 1: Braking time and distance for tram and car.

In Figure 2 some possible everyday scenarios are reported,
with different objects moving around the tram. Each image
within the figure shows different types of objects and road
topologies that the tram encounters along its path. In fact,
there are crossroads, crosswalks, platforms with people, cars
moving parallel to the rail tracks or intersecting them. De-
pending on the evolution of their behavior all these objects
can become obstacles for the tram. We consider an obstacle
any possible object (including cars, bicycles, animals, human
beings, things) which can collide with the tram because it
stands between the rails or because it stands nearby and its
shape and trajectory is suitable with a collision. The fact that
both the tram and the surrounding objects can move poses crit-
ical issues from the point of view of the correct identification
of the objects and the nature of their movement. In particular,
there are situations in which the tram is stationary and has
objects moving around it and other where the tram is moving
and this affects the relative speed of the other objects (both
moving and stationary). This latter case can produce critical
effects for the object tracking algorithm. For instance when
the tram curves, especially if the turn has a narrow radius,
all the objects rapidly shift on the scene, and their speed and
position change anomalously.

(a) Vehicles around the tram

(b) Motorbike crossing tracks

(d) Crossroads

(c) People at the tram stop

Figure 2: Typical urban scenarios taken from real tramway

The images in Figure 2 are taken from the camera mounted on
the real tram. In fact, to be able to perform object detection
and tracking algorithms, the vehicle must be equipped with
a heterogeneous set of sensors. In particular, in the TH-
ITA case, each tram has been equipped with two cameras, a
radar sensor and a lidar one. The way these sensors perceive
reality is critical to obtain good performance from ADAS
systems [11].

The overall architecture of the TH-ITA ODAS system can
be represented as depicted in Figure 3, where the entire data
pipeline is reported. The ODAS system is composed of three
main subsystems: a set of sensors that are installed on the
tram vehicle, a data association and tracking (DAT) module,
and a collision checker module (CCM). First of all, the sen-
sors collect raw data from the real world, which are then
analyzed by the respective pipelines to provide the system
with bounding boxes representing detected objects. These
data are then propagated to the DAT module, which is in
charge of elaborating the raw data collected by the sensors

Ada User Journal

Volume A, Number B, February 2022

4 Software Tool for Evaluation of Multi-Sensor Object Tracking in ADAS systems

and associating them with the traces tracked by the system.
This submodule traces the targets’ evolution and produces
estimates on the future positions of the objects, which are sent
to the CCM of the system. This last module deals with the
driving logic of the tram, deciding whether the future position
of an object will be critical to the system, causing a collision,
and if so providing an alert to the tram driver. As can be easily
understood, the DAT module is the core of the ODAS system
and, within it, we mainly focus on the detection and tracking
aspects. In fact, the reliability of the system is based on the
correctness of the object detection and tracking phase.

Sensars pipeline

Data Association and Tracking Tram driving lagic

Camera |sensor | oy | detestsd

HW msg i objects | | o
mnm‘

Radar |sanser detacted Dets Tracking | |estimatea| | Collision

[T Slustering [i Association iy - L) Genagar
objects & objects

oY, | - i Matia Module bj kel
. track

Lidar | sensor| . dotected jpredict

HW | mag || Clustering [opects |

Figure 3: Architecture of an ADAS/ODAS system

4 Proposed approach

Developing a multi-sensor ADAS requires evaluating the
behavior of association and tracking algorithms, which are
fed with data from sensor fusion. To track real-world objects
it is crucial to model how they are perceived by sensors.
Therefore, we addressed both the simulation of reality, in
a faithful but synthetic way, and also how this reality is
perceived by the different sensors. Our proposal hence
focuses on a method to generate scenarios that replicate
as precisely as possible the trajectories of the objects and
the sensor’s perception of reality. In this way, it is possible
to feed the data association and tracking algorithms with
realistic and accurate data, for producing meaningful results
that can then be analyzed. Indeed, the generation of test
scenarios and the evaluation of the results obtained are two
critical aspects that must be addressed jointly to be able of
properly steering the development of an autonomous driving
system. For this reason, we propose a software tool to guide
the development of an autonomous driving system and to
measure its effectiveness, starting from the description of
a synthetic scenario to its implementation and evaluation.
The first part of this proposal is dedicated to identifying a
novel procedure to generate synthetic scenarios, while in
the second part we deal with the evaluation of the obtained
results using an automatic report generator based on reliable
KPIs previously defined. To define the different scenarios and
cases of study we follow an incremental approach. Initially,
we classify all the possible behavior of a single object moving
around the vehicle, distinguishing them according to the
direction, trajectory, and position of the object. Then, we
model the behavior of each possible sensor used for sensing
the environment (camera, radar, and lidar in our case), speci-
fying the typical characteristic of each one and modeling the
noise that can affect them. In this way, by combining all the
possible trajectories of objects and the way they are perceived
by the different sensors, thousands of randomized variation

of each specific scenario can be easily and effectively run.
Lastly, the tool aggregates the results from multiple runs and
can automatically produce reports summarizing the setup
parameters, for experiment repeatability, and the achieved
results through easily specifiable KPIs.

4.1 Objects movements

Regarding the first aspect, simulation of real objects, we
identified some macro scenarios of typical configurations
for the tramway system and the objects around, based on
data collected by Thales Italy. A classification of these basic
macro-scenarios is presented below:

¢ Static obstacle on the track rails: such obstacle could be
a car blocked on the rails, a fallen bicycle or motorbike,
a branch of a tree, or other unexpected things.

* Obstacle moving along the rail: a car or other vehicles
moving along or beside the rail, from a side or the other
one. This obstacle should have a size that is sufficient
for impacting the tram or a trajectory too close and dan-
gerous.

* Obstacle moving at a distance from the tram, but with
trajectory and speed that are compatible with a future
collision. This can happen when approaching a cross-
road or a roundabout where vehicles cross the railway
track.

* Obstacle moving in the nearby of the tram, but with
trajectory and speed that are compatible with a future
collision. This can happen for instance when the tram
is stopped near a traffic light or a tramway station and
other vehicles intersect the train tracks, passing close to
the tram.

All these scenarios are very frequent during the travel of the
tram since it is moving in a city area crowded with people and
different typologies of vehicles in the surrounding of it. In
particular, for the trajectories that move in front of the vehicle,
it is important to make a distinction based on the distance
from it, as it has an impact on the response time required to
the vehicle. Furthermore, the direction in which the differ-
ent trajectories are traveled is also relevant as it affects the
vehicle’s field of view. The above scenarios can be combined
with each other to generate more complex situations, building
new scenarios starting from multiple specific behaviors of
different objects on the basis of the superposition principle or
generating interference between them.

The taxonomy of basic behaviors we found for the objects, as
reported above, is summarized in Fig. 4. This figure depicts
the trajectories as plan views, with the trajectories as they
would appear when viewed from above the tram. At the
bottom of the figure the reference system is reported, which is
centered in the front part of the tram with the x-axis directed
along the direction of travel of the tram, the y-axis directed
on the left, and the z-axis upwards. In particular, each of the
lines represents one of the main categories of trajectories
that we have identified as basic trajectories that an object can
follow in the urban environment around a tram. In fact, from
the analysis we carried out, each object around the tram can

Volume A, Number B, February 2022

Ada User Journal

A. Medaglini, S. Bartolini, V. Di Massa, F. Dini

4
Y

Figure 4: Basic trajectories of objects around the tram.

have different behaviors and therefore follow trajectories that
can make it an obstacle for the train. These trajectories cover
lateral movements with respect to the vehicle (num. 1,2),
which does not intersect its trajectory, and movements that
instead intersect its trajectory, both perpendicularly (num.
3,4) or with different angles (num. 5,6). Some examples of
these trajectories can be seen in Fig. 2: the cars in Fig. 2a are
moving following the trajectories of type 1 and 2; type 3 and
4 trajectories can happen in scenarios like the one reported
in Fig. 2d; and in Fig. 2b an instance of the trajectory 5 is
reported, but you can easily imagine similar scenarios for the
type 6 trajectory. All the trajectories in Fig. 4 can be traveled
in both directions, as underlined by the arrows drawn on both
ends.

4.2 How to model objects

To model the behavior of objects on the scene, as explained
above, it is necessary to estimate the temporal progression
of their kinematic characteristics, just as sensors would cap-
ture them in the real case. Each sensor collects different
information from the environment, and we identified that
the movement of an object can effectively be described by
a limited set of basic motion patterns like uniformly accel-
erated rectilinear motion or circular motion. In fact, each
sensor allows to collect different information, but it is always
possible to describe an object through its position, speed,
and acceleration at different instants of time. We, therefore,
decided to model the behavior of objects based on the de-
scription of these three kinematic characteristics, evolving
them over time according to appropriate physical laws. In
our model, each object is defined by specifying its initial po-
sition (assumed in the origin of the Cartesian system if not
specified) and an initial speed and/or acceleration (assumed
null if not specified). From that moment on the motion of
the object is modeled using uniform or uniformly accelerated
rectilinear motion laws using the set parameters. Providing
different inputs for each of them at different instants of time it
is therefore possible to accurately describe arbitrary motions
of the different objects. Motion parameters (e.g. direction,
acceleration) can also be changed, even randomly, at each
time instant within the object’s lifetime, so that even more
complex motion laws can be easily modeled. Furthermore,
such scenarios can be combined with each other to generate
more articulated situations encompassing multiple objects

and evaluating the consequent interaction effects in the object
detection and tracking algorithm.

The object description is based on a formal language used to
define each case. It is implemented in a human-readable form
so that it is easy to write and immediately understood at first
glance, as can be seen in the following snippet:

GLOBAL_END_TIME,40000
1,0,P0OS,2,—-20,0
1,0,VEL,1,1,0
2,0,P0S,2,20,0
2,0,VEL,1,-1,0
1,300,ACC,1,0.5,0
2,450,VEL,1,-2,0

The language exploits a comma-separated value format,
where the first element in each line is the object id, the
second one is the time instant (in millisecond) at which
the following property is applied, the third is a kinematic
keyword (POS for position, VEL for velocity and ACC for
acceleration) representing the property we want to specify
and, finally, there are the values of that property for each
Cartesian coordinate (x,y,z) of the previously specified
property. This triplet is expressed as meter (m) for position
property, meter per second (m/s) for velocity, and meter
per square second (m/s?) where the property is equal to
acceleration. We also create two other reserved words which
are GLOBAL_END_TIME to define the last time instant in
our scenario (on a reserved line) and END which is used
instead of the kinematic property of an object to remove
such object from the scenario at the specified time instant.
Through this language, it is possible to define the position,
speed, and acceleration along every Cartesian direction
(x, y, z) for each involved object. These properties can be
specified at each time instant within the lifetime of the object
so that we can create even complex varying motion laws
in a few steps. A specific part of our software is then in
charge to verify that the described scenario is consistent,
in order to avoid unexpected or not feasible behaviors.
Using this procedure it is possible to describe every feasible
scenario, and then obtain automatically an output file for
each simulated sensor. The output file is created again in a
CSV format, easily readable by both humans and machines,
containing the kinematic properties of every object at each
time instant, with a frequency corresponding to the specific
simulated sensor’s characteristic period. The output file
can then be used to test each scenario within the specific
application under development.

4.3 How to model sensors

During the scenario generation procedure we allow modeling
of each sensor, accounting for its output data format,
transducer characteristics, as well as the noise that can
affect it. In particular, the output data format comprises
the type and variety of positional data and meta-data (radar
cross-section, probability of existence, object class, and so
on) provided by the sensor. In fact, our system takes care
of modeling each different kind of sensor in use, because
sensors are one of the most relevant parts of ADAS systems.
They are in charge of capturing information from the

Ada User Journal

Volume A, Number B, February 2022

6 Software Tool for Evaluation of Multi-Sensor Object Tracking in ADAS systems

environment, and therefore the final results strictly depend
on their functioning. Moreover, since sensors also capture
noise in their measurements, coming from poor external
conditions or electromagnetic interference depending on
the kind of sensors, it must be considered in the model.
Consequently, our tool allows easy modeling of different
possible measurement noises like additive zero-mean
Gaussian noise, the type of noise that most commonly affects
sensors, with a range of variances estimated from real data,
and also some random zero/saturation/missing values can be
simulated according to arbitrary statistical distributions. The
features described above allow you to have high repeatability
and controllability of the test scenarios, to make a huge
number of experiments in many different conditions with
the opportunity of easily steering the software development.
Through this procedure, however, some approximations
are introduced. These approximations mainly concern the
dynamics of objects and the model used for the sensors,
which however accurate cannot be the same as the real one. A
fundamental aspect is in fact the trade-off between accuracy
fo the scenario and computational power required to realize
it, which must be optimized in order to make the designed
scenario computable, as well as reliable, and significant.

4.4 Report generation

Another aspect covered by our tool is system evaluation.
In fact, to evaluate the performance of the system it is of
paramount importance to be able to compare the obtained re-
sults with a ground truth measurement of the specific scenario
used. If the scenario comes from real-world data, a ground
truth reference can be obtained only if we perform manual
data inspection and labeling. This manual inspection and
labeling procedure is prohibitively expensive to be performed
extensively and accurately. Instead, using synthetic data, we
describe the scenario we want to test and then simulate equiv-
alent sensors to produce the information used to feed the data
association and tracking components. Finally, we can com-
pare the results with the known ground truth. Moreover, when
we produce simulated sensor data we are able to inject known
noise into the simulated data to model real-world noise. This
way we can not only analyze and measure the performance
of the implemented algorithms, but we can also infer proper-
ties about sensors’ noise and test the resiliency of the system
against them.

Once the scenarios have been tested, the final stage is to col-
lect the produced results and aggregate them into meaningful
KPIs. This phase is extremely important and comparative
reports play an important role in each industry, for evaluating
the performance level of a software application and for driving
its evolution. Typically, those kinds of reports are manually
composed from large amounts of information provided by
various heterogeneous sources. Processing this information is
tedious, time-consuming, and error-prone. For all these rea-
sons, we have developed an automatic tool that aggregates the
results from multiple runs of the tested software, executed on
different scenarios or with different functioning parameters,
and produce a comprehensive report which summarizes the
environmental setup of the specific execution and the obtained

results evaluated using some previously defined KPIs.

5 Performed experiments and evaluation

5.1 Methodology

Our synthetic model is based on the analysis of data collected
on real trams. We carried out qualitative tests by analyzing
videos of cars, pedestrians and other objects to empirically
estimate their motions and the parameters to be used. Using
our generation language it is possible to specify the initial con-
ditions of each object and modify them during its movement.
Object positions evolve according to discrete-time cinematic
equations of uniform or constant accelerated rectilinear or cir-
cular motions, possibly with varying parameters over time. In
time periods between two changes to the dynamic of a specific
object its evolution is based on the physical laws of uniformly
accelerated rectilinear motion. Obviously, if the acceleration
is not present in the input parameters it is assumed equal to
zero and the two equations reduce to a uniform rectilinear
motion.

An important aspect to evaluate the behavior of the system
is represented by the performance metrics to be used. In this
work, we decide to focus on evaluating the performance of
the multi-object tracker inside the ADAS system. In order
to do so, we need to understand what qualities we expect
from it. In an ideal world, such a tracker should, at all points
in time, be able to identify the correct number of objects
on the scene and estimate the position of each of them as
accurately as possible. Additionally, we expect the tracker
to be able to consistently track each object over time. This
means that, if each object has been assigned to a unique trace
ID, it remains constant throughout the entire sequence (even
after a temporary occlusion). This leads to the following
evaluation criteria for performance metrics:

1. They should allow to judge a tracker’s precision in de-
termining exact object locations.

2. They should reflect its ability to consistently track object
configurations through time, that is, to correctly trace
object trajectories, producing exactly one trajectory per
object.

3. They should be clear, easily understandable, and behave
according to human intuition.

4. They should be few in number and yet expressive, so that
they can be used, for example, in evaluating complex
systems.

Based on the above criteria, we adopt the MOT Metrics [12]
performance evaluation of the multi-object tracker inside
the ADAS. The two most used metrics in this area are the
Multiple Object Tracking Precision (MOTP) and the Multiple
Object Tracking Accuracy (MOTA). In particular, we have
chosen to calculate the MOTP also for each sensor used.
This allows us to understand how each individual sensor
contributes to the overall performance of the system, by
varying the noise level modeled for each sensor. Then, we
decided to add another metric to our KPIs: since we are
mainly interested in evaluating the behavior of our tracker
in the immediate surroundings of the tram, i.e. the areas

Volume A, Number B, February 2022

Ada User Journal

A. Medaglini, S. Bartolini, V. Di Massa, F. Dini

with the greatest risk of collision, we have decided to also
use the Root Mean Square Error (RMSE) as a performance
index. To this aim, we have divided the tram’s field of view
(FOV) into sectors, based on the distance and angle of objects
relative to the tram, using a plan view of the scenario, and we
compute the RMSE value for each of them. This is useful for
understanding how the position of an object, its distance and
angle with respect to the tram, affect the ability of the system
to track it correctly. Indeed, performance evaluation has
different levels of interest based on the location of sectors,
with those close to the vehicle being the most critical for
collision detection. For this reason, the FOV of the tram
has been divided in such a way to focus the attention on the
bands closest to it, with circular sections of increasing width
as the distance increases. Furthermore, the FOV has been
divided into four lateral slices according to the angle of the
objects with respect to the tram, to separate the objects that
are located in front of the tram from peripheral ones, which
may be more difficult to follow. Lastly, it is worth noticing
that thanks to the modularity and flexibility of our tool, it is
easy to add and tune new KPIs to manage specific situations
if needed.

5.2 Experiments and results discussion

The test framework we developed allows us, through scenario
design and test’s reports generation, to have deep insight into
the system operations. There are a lot of parameters that an
ADAS system depends on, and in this way we can evaluate
the effects of each of them. Among the various analyzed
trajectories and scenarios, we focus here on two of them,
reported in Fig. 5:

1. In the first case an object is simulated moving in front of
the tram with a curvilinear trajectory that goes around
a roundabout (real case, for example in Batoni square,
Florence).

2. The second case instead deals with a multi-object sce-
nario where two objects move from each side of the tram
with intersecting trajectories (any road intersection with
vehicles coming from different directions).

En = E

(a) Roundabout motion (b) Crossing trajectory

Figure 5: Example of test scenarios

In the first test we performed, reported in Fig. 6, the sen-
sors are modeled without noise, i.e. the ADAS system was
fed with "exact" synthetic data, in order to evaluate their
performance and behavior characteristics regardless of other
influences. This is not realistic, but it is useful to tune the co-
variances of errors in the model we adopted so that it can cope
with the dynamics of the objects. In fact, different sensors

sense the environment differently, and this brings some differ-
ence in the measures they provide, even if they are referred to
the same object. These differences in the measured position of
the same object become noise for the system, and this needs
to be accounted for in the measurement models. Thanks to
our scenario generator we can simulate the behavior of the
real sensors, and this allows us to visualize the differences
between, for example, the lidar and the radar view of the same
object. In Fig. 6, the image above shows the trajectory esti-
mated with lidar measures only, instead in the image below
the trajectory is estimated with radar measurements only. As
the figure shows, the two trajectories are slightly different,
because measurements from the two sensors are different in
many ways: different timing, different estimated positions
and different measurement models.

an
® gt_iidar
354 @1
30 - SR -
25 o
" 4 H L.
s204.° /S T
» / =
154/ _-
104/ .
54 \
\
0
0 -30
40
® gt_radar
35| @1

30 4

23 1

20l / P

X axis

Y axis

Figure 6: Single object track against GT, without noise. Above:
lidar only. Below: radar only.

In this case, the track based on radar measures is more precise,
as confirmed by the MOTP metrics value, which in the radar
and lidar cases is equal to 84,3% and 90,8% respectively. This
is due to the fact that the higher radar sensing ratio helps the
system to correctly track the object. Therefore the different
behavior in different conditions of the various sensors gives
us the possibility of fusing their output, in order to enhance
the overall performance of the system.

A second important feature we tested through our scenario
generator regards the noise in the data, which we can control
by varying the covariance of an additive zero-mean Gaussian
noise that we inject into the input data. For different levels of
noise estimated position of the targets appears farther from
the ground truth and few measurements are left unassociated.

Ada User Journal

Volume A, Number B, February 2022

8 Software Tool for Evaluation of Multi-Sensor Object Tracking in ADAS systems

This can cause the tracker to lose its target and, if the unas-
sociated measurements are enough, they could be used to
instantiate a new tracker following the same target. By carry-
ing out various tests we are able to investigate the sensitivity
of MOTP values to noise variation. In Fig. 7 are reported the
plots from two different simulations, with increasing noise
covariance in sensor positions going from 0.5 to 0.9. A high
level of noise in the measures degrades tracking performance,
increasing the MOTP metric value from 53,7% to 69,3%. It
is worth noting that these injected noise levels are larger than
those usually recorded on sensor data, and we decided to
apply them as a stress test for the system.

a0
& gt_objl
35 A o1
L)
304 @3 »
L. o
25 s
o L N
m 20 /S
> 4
154/ .
104/
/ \
54 | \
|
0 | 3= S N |
30 20 10 0 -10 -20 -30
Y axis
40
® gt _objl
35 A e 1
e 2
30 e 3
254 - ol
i 2y
%
L]
>

Y axis

Figure 7: Effects of increasing noise in measurement data.
Above: 0.5 covariance noise. Below: (0.9 covariance noise.

As a result, not only estimated position of the targets appears
more noisy and far from the GT, but also a few measurements
are left unassociated to the tracked object. This may have
two effects: it may cause a tracker to lose its target and, if the
unassociated measurements are enough, they could be used
to instantiate new trackers which follow the same target. We
have examples of this in both the plots, where orange and
dark green dots are used for tracks different from the first
one (blue). By carrying out this kind of experiments, we can
investigate the sensitivity of the system to sensors’ noise vari-
ation, measuring how much the accuracy of a single sensor
affects the overall tracking results of the ADAS system.

Another key aspect addressed by our test framework is the
sensitivity of the system to misdetections, i.e. cases when an
object is present in the scene but sensors do not detect it. In
fact, we define "misdetection" the event in which an object
present in the scene does not cause a corresponding signal in

a sensor’s scan. When this happens the object is non-existent
for that sensor. Actually, there are quite a few reasons why
an object can be misdetected: the sensor may suffer from a
temporary or local failure that prevent it from functioning
correctly, there may be interference from external sources or,
more likely, the object may be occluded by other objects or by
the environment. Moreover, an object can also be mistakenly
categorized as clutter and removed by decluttering filters. To
test the system’s sensitivity to objects’ misdetections, our tool
can simulate the random loss of measurements by defining the
desired rate of misdetections for each sensor and evaluating
the tracking robustness of the system. In this way, each time a
measurement is supposed to be given as input by the system,
there is a certain probability that the measurement will be
simply dropped and not used by the system. In the plots in
Fig. 8 we simulated an increasing misdetection probability of
20% and 40% on all sensors.

40
@ gt_objl
3541 #1

30

25 e BN

X anis

o gtobjl
35 e6
@ 4
304 2 =

X axis

Y axis

Figure 8: Effects of increasing probability of misdetection.
Above: 20% misdetection probability. Below: 40% misdetec-
tion probability.

As shown from the figures, the system tolerates a high rate
of misdetections, up to 20%, and this is probably due to the
sequential approach we use to process the sensors’ scans. In
fact, although there is not a single sensor with a very high
sampling rate, processing them when they arrive, one after
the other, allows us to perform as if the system was fed by a
single sensor having a sampling rate equal to the sum of each
sensor’s sampling rate. In the end, when the percentage of
misdetections increases up to 40% the system cannot track
the objects correctly anymore.

Single-target scenarios are useful to isolate specific issues

Volume A, Number B, February 2022

Ada User Journal

A. Medaglini, S. Bartolini, V. Di Massa, F. Dini

that could affect the core of the ADAS system, and can give
important information about the performance of the system
in terms of intra-track performance, such as those measured
by the MOTP metric. They may also give some informa-
tion about simple data association errors, as we have seen by
simulating misdetection. However, they are not sufficient to
investigate more complex scenarios where different associa-
tion errors may occur, such as identity mismatch. In order to
do this, we need to define multi-object scenarios where two
or more objects may interfere with each other. A very simple
example of this can be seen in the second scenario we want to
discuss, reported in Fig. 5b. There, two objects start moving
from each side of the tram, with intersecting trajectories. The
objects’ velocity is about 2.8 m/s, which is compatible for
example with bikes or scooters.

In this multi-object scenario, repeating the experiments about
misdetection probability, we can observe an interesting be-
havior. In Fig. 9 we can see that increasing the misdetection
probability has no effect on the two predicted trajectories
until 30% value is reached. Then, with this percentage of
measurement loss, when the two objects intersect each other’s
trajectory, an identity mismatch occurs, as the plot clearly
shows.

50
® gt_objl e 2
45 1 gtobz @1
40 -
35
30 A
.
% 254
=
20
3ty =
10
\|
54 \
0
30 -30
50
® gt _objl L]
45 1 gtobjz ®1
40 .
35
30 -
(] "
% .
m 25 .
> ___

Y axis

Figure 9: Effects of increasing probability of misdetection on
multi-object scenario. Above: 20% misdetection probability.
Below: 30% misdetection probability.

What happened here is that one of the two trackers suffered
from a lack of measures close to the intersection, and at some
point the association algorithm has associated it with mea-
sures originating from the other object. These measurements
were stolen by their "legal owner", who was later forced to
associate with the measurements originated from the other
object. In the last part of the trajectories, although other mis-
detections surely occurred, the two objects are too far away to
interfere with each other, and the tracking proceeds smoothly
up to the end.

Lastly, when the misdetection probability reaches 40%, some-
thing different happens as reported in Fig. 10. Only the object
moving from left to right suffered an association problem,
while the other presented a continuous track. In this case,
the association error is simply a misdetection error: one ob-
ject suffered from a lack of measurements that elapsed long
enough for the system to decide that the tracker had to be
deleted, while the other continued to be fed with the cor-
rect measurements. This caused measurements from the first
object to be left unassociated, and these were used to start
another tracker.

50

@ gtobi2 @4 @1
45 gt objl @ 3
40 - #
.)./
a5 g s
. 7z
\‘
30 4 Y _\'
i A f/ ~—
x -~ 3
o 25 / P R
= P J N
20 / ',..--"";}' . "\\
15 4 P (i I \\\ N o
- g = 2 N
104/ : - \
/ \
/ \
54 \
0

¥ axis

Figure 10: Objects on intersecting trajectories, with 40% mis-
detection probability.

The overall result is two-fold. On the one hand, the object
has changed its "identity" (from 1 to 4, see the legend) and
therefore we could not reconstruct the object’s history, should
we need to. On the other hand, the actual physical object has
been undetected for a while, and this is surely a more severe
problem for an ADAS system. In other words, this kind of
error leads to identity changes between objects and apparently
strange paths, posing challenges in the obstacle-evaluation
algorithms of the system.

As a final note, it has to be pointed out that the previous effect
does not only depend on the increase of the misdetection prob-
ability. The phenomena we have described above could also
occur with a lower level of misdetections, since it all depends
on the particular realization of the stochastic processes we are
simulating in the test framework. For sure, higher levels of
misdetections make that event more likely to occur, and this
explains why we observed it in that particular experiment, but

Ada User Journal

Volume A, Number B, February 2022

10 Software Tool for Evaluation of Multi-Sensor Object Tracking in ADAS systems

there is a non-zero probability that such an event could occur
in any of the synthetic test.

6 Conclusions and future work

Nowadays, the verification of the behavior of autonomous
driving systems is critical for their deployment in everyday
life and the importance of synthetic test environments is in-
creasing. In this paper we tackled the problem of testing
the behavior of ADAS systems throw a flexible tool for gen-
erating synthetic scenarios and evaluating KPIs. We have
proposed a methodology for identifying test scenarios and
presented a simulation framework for generating and running
such scenarios and evaluating the system performance. Our
scenario generation procedure uses a simulation model based
on a simple scripting to describe the different scenarios, which
are then run modeling sensors’ behavior. Then, our tool can
evaluate the overall system performance by aggregating exe-
cution results from multiple different runs. Our methodology
brings complementary features compared to existing ones
for the evaluation of object detection and tracking systems in
ADAS systems, as it allows modular, effective, and repeatable
simulation of representative scenarios with limited effort.

As we explained in a few examples in the previous section,
our performance measurement tools allow us to make a very
deep investigation about the problems that may relate to the
Thales Italy ADAS system and, more in general, each au-
tonomous driving system. Furthermore, after the data pro-
cessing, through our tools it is possible to evaluate the results
produced both qualitatively and quantitatively, using well-
defined KPIs and graphical representations of the objects’
trajectories. However, even if our framework works as ex-
pected, it needs to be tested more extensively, for assessing
completely its functionality and optimize it. In this respect,
thanks to a new feature we are developing, in the future also
the tram with its motion will be represented in the scenar-
ios. This will allow us to take into account also the possible
trajectories of it in order to make our simulation tool more
realistic and powerful. Moreover, we want to enrich the level
of automation inside our scenario generation tool, exploiting
a statistical approach to automatically derive the object mo-
tion parameters from real world use-cases, generating then
many small variations of them to test the system behavior
extensively. Lastly, we also want to compare our work with
other strategies based on real-world data, trying to apply them
jointly to exploit the strength points of each one.

References
[1] N. Kalra and S. M. Paddock, Driving to Safety: How
Many Miles of Driving Would It Take to Demonstrate
Autonomous Vehicle Reliability? Santa Monica, CA:
RAND Corporation, 2016.

[2] C.-H. Yu, Y.-Z. Chen, and I.-C. Kuo, “The benefit of
simulation test application on the development of au-
tonomous driving system,” in 2020 International Auto-
matic Control Conference (CACS), 2020, pp. 1-5.

[3] L. Liu, S. Lu, R. Zhong, B. Wu, Y. Yao, Q. Zhang, and
W. Shi, “Computing systems for autonomous driving:
State of the art and challenges,” IEEE Internet of Things
Journal, vol. 8, no. 8, pp. 6469—6486, 2021.

[4] L. Li, W.-L. Huang, Y. Liu, N.-N. Zheng, and F.-Y.
Wang, “Intelligence testing for autonomous vehicles: A
new approach,” IEEE Transactions on Intelligent Vehi-
cles, vol. 1, no. 2, pp. 158-166, 2016.

[5] A. Erdogan, E. Kaplan, A. Leitner, and M. Nager,
“Parametrized end-to-end scenario generation architec-
ture for autonomous vehicles,” in 2018 6th International
Conference on Control Engineering Information Tech-
nology (CEIT), 2018, pp. 1-6.

[6] E. de Gelder and J.-P. Paardekooper, “Assessment of
automated driving systems using real-life scenarios,” in
2017 IEEE Intelligent Vehicles Symposium (1V), 2017,
pp- 589-594.

[7] U. Lages, M. Spencer, and R. Katz, “Automatic scenario
generation based on laserscanner reference data and
advanced offline processing,” in 2013 IEEE Intelligent
Vehicles Symposium Workshops (IV Workshops), 2013,
pp. 146-148.

[8] C.Medrano-Berumen and M. 1. Akbas, “Abstract simu-
lation scenario generation for autonomous vehicle veri-
fication,” in 2019 SoutheastCon, 2019, pp. 1-6.

[9] E. Rocklage, H. Kraft, A. Karatas, and J. Seewig,
“Automated scenario generation for regression testing
of autonomous vehicles,” in 2017 IEEE 20th Interna-
tional Conference on Intelligent Transportation Systems

(ITSC), 2017, pp. 476-483.

[10] P. Hyde, C. Ulianov, J. Liu, M. Banic, M. Simonovic,
and D. Ristic-Durrant, “Use cases for obstacle detection
and track intrusion detection systems in the context of
new generation of railway traffic management systems,”
Proceedings of the Institution of Mechanical Engineers,
Part F: Journal of Rail and Rapid Transit, vol. 236,
no. 2, pp. 149-158, 2022.

[11] S. Sivaraman and M. M. Trivedi, “Looking at vehicles
on the road: A survey of vision-based vehicle detection,
tracking, and behavior analysis,” IEEE Transactions on
Intelligent Transportation Systems, vol. 14, no. 4, pp.
1773-1795, 2013.

[12] R. Stiefelhagen, K. Bernardin, R. Bowers, J. Garofolo,
D. Mostefa, and P. Soundararajan, “The clear 2006 eval-
uation,” vol. 4122, 04 2006, pp. 1-44.

Volume A, Number B, February 2022

Ada User Journal

