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Introduction

Growth and development are at the basis of our society. Companies and organizations in all

industries must grow. It’s an imperative that drives all these entities to create new products and

services, enter new regions, move into new businesses. The existence of competition among all

these actors leads them to pursue a continuous improvement of their operations in order to increase

their profits while guaranteeing, or improving, the quality of their products and services, and being

subject to the multitude of constraints deriving from the interconnection with authorities and other

organizations. In other words, in order to be competitive. As they improve, they inevitably become

more complex. Growth creates complexity and complexity may kill growth, if not properly man-

aged. More and more business challenges arise every day and with them the need to make complex

decisions involving many factors. It is not possible to optimally make such decisions without proper

tools and analysis and that’s why Decision Science is becoming more and more important. In gen-

eral, Decision Science is the collection of quantitative techniques used to inform decision-making.

It includes decision analysis, risk analysis, cost-benefit and cost-effectiveness analysis, simulation

modeling, as well as microeconomics, statistical inference, management control, computer science

and operations research. By focusing on decisions as the unit of analysis, decision science provides

a unique framework to face the complexity of the decision-making process in real-world problems.

5



The motivation for this work is to study complex real-world scenarios and provide tools that can

actually improve decision-making in those problems. To do so, we mainly adopt techniques from

the fields of Operations Research and Combinatorial Optimization. As it is well known, operations

research is a scientific method for providing executive departments (or decision makers) with a

quantitative basis for decisions. Its object is, by the analysis of past operations and the data avail-

able, to find means of improving future operations. Operations research is important because it

creates implementable solutions to complex business challenges. It uses data to create information,

which can then be used as insights to improve results and make better decisions about the future of

the business. Combinatorial Optimization, in particular, is a subfield of mathematical optimization

that consists of finding an optimal solution from a finite set of solutions, where the set of feasible

solutions is discrete or can be reduced to a discrete set. This field is strictly interconnected with

Linear programming and Integer Programming. In typical combinatorial optimization problems,

exhaustive search is not tractable, and so specialized algorithms that quickly rule out large parts

of the search space or approximation algorithms must be resorted to instead. Techniques from the

field of operations research and combinatorial optimization are very powerful because they can be

adopted in a variety of industries and scenarios and want to find a solution to the question ªwhat

is the best decision?º. These decisions may be very complex to make and they can be of different

kinds. Applications of combinatorial optimization include, but are not limited to:

• Logistics.

• Supply chain optimization.

• Developing the best airline network of spokes and destinations.
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• Deciding which taxis in a fleet to route to pick up fares.

• Determining the optimal way to deliver packages.

• Allocating jobs to people optimally.

• Designing water distribution networks.

• Earth science problems (e.g. reservoir flow-rates).

Decision making in these application may be so complex that it is generally easier to build

methods able to make such decisions for us. The development of solution approaches for combina-

torial optimization problems usually requires different phases: the analysis of the problem and the

data, the establishment of a model of the problem and the design and implementation of efficient

methods able to help taking the best decisions.

In the following section, the organization of this dissertation is presented, together with a brief

description of the problems addressed. Most of the material in this work is based on research that

has been published or submitted to publication. In the last part of this introduction, the list of

publications related to the work presented in the dissertation is reported.

Contributions and Organization

In this dissertation we focus on three real-world applications from different industries that can

be modeled as combinatorial optimization problems and address them with operations research

techniques. The dissertation is divided in chapters, each of which is related to a different topic.

In chapter 1, a problem concerning the transportation of biological samples from draw centers

to a main laboratory for analysis is presented. The problem arises from a healthcare application in
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Bologna, Italy, where the healthcare authority decided to centralize the analysis of all biological

samples of the area to a main laboratory, in order to exploit economies of scales and reduce the costs

for samples’ analysis. Of course, such an improvement goal also created a new complex problem:

all the samples must be transported from draw centers to the main lab. A fleet of vehicle is available

for the transportation and must collect the samples from draw centers during given times of the day

and deliver them within a certain time, since samples are perishable. Vehicles can also exploit the

existence of dedicated centers that can extend the lifespan of the samples and where samples can be

transferred from one vehicle to another. It is clear from this brief description how hard it could be to

decide which is the routing of all the vehicles which minimizes the traveling costs while delivering

all samples on time. For this problem we developed different mixed integer linear programming

models, metaheuristic algorithms, and grouping policies for the samples that are able to tackle the

complexity of the problem and improve routing decisions. All methods have been tested through an

extensive computational campaign using real-world data, showing the effectiveness of the proposed

approaches.

In Chapter 2 a problem related to the agricultural industry is presented. The problem arises

from a real-world application in Italy and it is that of planning the use of the available land of a

farm for a given number of years, given a set of crops that can be grown. The objective is to maxi-

mize the farmer’s profit, but the farmer is subject to several rules both from an agronomic and from

a regulation point of view. In fact, many constraints exist regarding agronomic principles, such

as maximum replanting, botanical family constraints and crop rotation issues. One of the goals of

this work is indeed that of evaluating the risks and benefits of following or not the best practices

regarding crop rotation issues in the Mediterranean pedo-climatic context. Furthermore, we want
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to evaluate the effectiveness of public and private initiatives regarding sustainable agriculture. In

fact, it is more and more important nowadays to face these challenges in the food supply chain,

which is one of the most discussed industries when it comes to sustainability. In particular, we

analyze two different initiatives, namely the Common Agricultural Policy by the European Union

and ªLa Carta del Mulinoº by Barilla Group S.p.A.. Both initiatives introduce economic incen-

tives for the farmers following virtuous behaviors from a sustainability point of view. Practically,

these behaviors are constraints increasing the complexity of the problem and the difficulty in the

decision-making process. For this problem, we will give a formal characterization and study its

complexity, also analyzing special cases. We will also present a network-flow based model to solve

a special case of the problem and integer linear programming models developed to solve three vari-

ants accounting for different sustainability scenarios. Real-world data from 23 Italian farms were

used in an extensive computational campaign. The analysis of the results shows that the models can

be helpful tools for farmers to plan their production and for authorities to evaluate the effectiveness

(and efficiency) of their sustainability initiatives.

In Chapter 3 we discuss a problem concerning the sequencing of unreliable jobs on parallel

machines. Even if the problem is not taken from a specific application, it may have several applica-

tions in real-world scenarios, such as in manufacturing and planning of complex computations on

multi-processors computers. In this problem, we have n unreliable jobs providing a reward when

successfully completed, but each job has a probability of not being carried out. We have m parallel

identical machines at our disposal, and we want to schedule the jobs on the machines in order to

maximize the total expected reward. To increase the probability of completing the jobs, we create m

copies of each job and schedule each copy on a different machine. For this problem, we will present
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a complexity analysis showing that the problem is NP-complete for two machines. For the problem

with two machines, we derived some theoretical properties and developed a quadratic integer pro-

gramming model, a tabu search algorithm, and an upper bound based on the Three-Dimensional

Assignment problem. A computational campaign on different sets of instances shows that the tabu

search outperforms the model. Then we focused on the general case with m machines. In particu-

lar, we developed several heuristics and proved some theoretical results, including the worst case

performance guarantee of two heuristics. We also devised a generalized tabu search algorithm and

a new, improved, upper bounding scheme based on a relaxation of the problem. Computational

experiments are performed for the new methods on the problems with two and three machines. The

results show that good optimality gaps are reached on all the instances.

At the end of these three chapters, some conclusions will be drawn.

List of Publications

Part of the work of this dissertation has been published and part of it is submitted for publication.

In the following, the papers related to this work are reported.

• Benini M., Detti P., Zabalo Manrique de Lara G., Mathematical programming formulations

and metaheuristics for biological sample transportation problems in healthcare, Computers

& Operations Research, Volume 146, 2022.

• Benini M., Detti P., Zabalo Manrique de Lara G., A milp model for biological sample trans-

portation in healthcare, In: M. Paolucci et al. (eds), Advances in Optimization and Decision

Science for Society, AIRO Springer Series, 3:81±94, 2019.

• Detti P., Zabalo Manrique de Lara G., and Benini M., A metaheuristic apporach for biological
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sample transportation in healthcare, In: G. Gentile et al. (eds), Graphs and Combinatorial
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• Agnetis A., Benini M., Detti P., Hermans B., Pranzo M., Replication and sequencing of

unreliable jobs on parallel machines. Computers & Operations Research 139, 105634, 2021.
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Chapter 1

Mathematical Programming Formulations

and Metaheuristic Algorithms for Biological

Sample Transportation in Healthcare

In this chapter, a transportation problem is addressed, arising from a real world healthcare

application [5] in Italy. The problem consists in satisfying transportation requests of biological

samples: blood and other biological samples must be collected from different blood draw labs (or

centers) and routed to the main laboratory, hereafter called HUB, where all samples are analyzed.

Starting in 2012, a reorganization plan for the territorial network of the Bologna Analysis Lab-

oratories was conducted. The reorganization consists in the activation of the Single Metropolitan

Laboratory (LUM) that includes the HUB center, 11 laboratories from hospitals of Bologna city

and the province of Bologna, called spoke centers, the Ortopedico Rizzoli Institute and 68 sampling

points. The main objective of the LUM project is reorganizing and optimizing laboratory processes.
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Thus, one of the main strategic decisions of the project is the centralization of the analysis of bi-

ological samples in the area. More precisely, the analysys of all samples is entirely moved to the

HUB laboratory (Ospedale Maggiore di Bologna), enabling the standardization of procedures and

introducing a single control system. If on one hand the centralization and standardization of anal-

ysis processes lead to advantageous economies of scales, on the other hand it opens up to a new

issue: the reorganization of the transportation of biological sample tubes from the sampling points

to the HUB.

Samples are drawn from patients in different centers during morning hours, and have to be

transported to the HUB by a fleet of vehicles located in geographically distributed depots. Each

sample must be delivered to the HUB within its lifetime, in order to be correctly analyzed. However,

samples can get an extra lifetime, useful for their on time delivery, by a stabilization process that can

be performed in dedicated facilities called spoke centers, or spokes. Each sample can be stabilized

at most once. After the stabilization, samples must be delivered to the HUB within the extra lifetime

provided by the stabilization process. In particular, after the stabilization, a sample can be taken

in charge by a vehicle that is different from the one that delivered it to the spoke. Hence, spokes

may also act as transfer points in which (only) the stabilized samples may be transferred from one

vehicle to another.

The problem is to find a transportation plan minimizing the total traveled distance, in such a

way that all samples are delivered within their lifetimes to the HUB. Real historical data provided

by the Local Healthcare Authority of Bologna, Italy, show that currently around 40% of the samples

are not delivered on time, each day.

The problem can be formulated as a new variant of the Vehicle Routing Problem with the
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following new features: i) Each transportation request has a limited lifetime and must be delivered

to the HUB within that time; ii) Specific locations exist (i.e., the spokes), devoted to provide extra-

lifetimes to the requests; iii) At the spokes, requests can be transferred from a vehicle to another.

The problem under study has been first addressed in [4; 8]. In [4], the problem is formally

defined and a first mathematical model is provided, while in [8] a simple metaheuristic method is

presented based on the Adaptive Large Neighborhood Search (ALNS) framework [26].

In this chapter, three Mixed Integer Linear Programming (MILP) formulations are proposed

and compared on benchmark instances. Furthermore, metaheuristic algorithms are also proposed

to tackle with real size instances. Two of the MILP formulations employ time indexed variables

and the third one uses classical routing variables. A computational campaign on relatively small

instances shows that the time indexed formulations outperform the standard formulation and are

able to solve instances up to 20 transportation requests and 10 vehicles. As already stated, the

metaheuristics have been developed to face with real-life instances. In the algorithms, the Adap-

tive Large Neighborhood Search method (first proposed by Ropke and Pisinger in [26]) has been

combined with techniques used in other metaheuristic frameworks, such as Tabu Search (TS) and

Variable Neighborhood Search (VNS). More precisely, while only feasible solutions are typically

selected during the search in ALNS approaches, in our hybrid algorithms infeasible solutions can

be also explored, and infeasibilities are properly taken into account by penalty terms into an eval-

uation function, as in TS and VNS methods (e.g., see [10], [21]). The hybrid ALNS (H-ALNS)

algorithms proposed in this chapter are different and improved versions of the algorithm presented

in [8]. The algorithm in [8] only employs four heuristics to generate the neighborhood at each

iteration, and the possibility of stabilization is not considered during the search process (but only
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evaluated by a post processing procedure at specific algorithm steps). Instead, the proposed new

H-ALNS algorithms employ thirteen different heuristics that can also handle sample stabilization

at each iteration and have been enriched by new components. As a computational campaign shows,

the proposed H-ALNS algorithms are able to find optimal solutions on all the small instances and

solutions in which all sample are delivered on time in real-life problems. On the other hand, the

algorithm presented in [8] was not able to find feasible solutions for many real-life instances.

Finally, to face with the high dimension of the real instances, in which hundreds of samples

must be delivered on time each day, a study is also presented to evaluate different grouping poli-

cies. By grouping samples in batches, we get instances with a smaller number of transportation

requests, but with stricter lifetime requirements. The aim is to evaluate what are the batching poli-

cies on which the H-ALNS algorithms attain the best performances, in terms of solution quality

and computational time. Such grouping policies may also give useful insights from an operations

point of view.

The work presented in this chapter has been published on Computers & Operations Research

[3]. The chapter is organized as follows. In Section 1.1, we review results from the literature. In

Section 1.2, a detailed description of the problem is presented. In Section 1.3, the MILP formu-

lations are presented. Section 1.4 describes the H-ALNS algorithms developed to solve real-life

instances of the problem. The description of the real-life data and the computational results are

reported in Section 1.6. Finally, conclusions are gathered in Section 1.7.
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1.1 Literature review

Blood transportation and logistics are topics addressed by several works in the literature, and

many problems have been modeled as vehicle routing problems (VRPs) [2]. Doerner et al. [9]

address a vehicle routing problem with multiple interdependent time windows arising from the

Austrian Red Cross blood program. A mixed-integer programming formulation and heuristics are

proposed for solving the problem. In [1], a biomedical sample transportation problem is modeled

as a vehicle routing problem, with precedence constraints and samples’ lifetime, and solved by

an iterated local search algorithm. Liu et al. [16] address a periodic vehicle routing problem

concerning the transportation of drugs and blood samples.

Grasas et al. [11] present a study to improve the logistics of blood sample collection at two

important clinical laboratories in Catalonia, Spain. The collection and transportation problem is

solved by a heuristic method based on a genetic algorithm. In [27], a problem concerning the

transportation of blood samples from blood mobile draw centers to a central depot is addressed and

solved by a matheuristic algorithm. In [12], a metaheuristic algorithm is proposed for a problem

in which blood have to be transported between hospitals or donor/client sites. In [28], the problem

concerning the allocation of blood units to the hospitals for transfusion is addressed and solved as

a multi-objective transportation problem.

Many works in the literature address the management and optimization of supply chain net-

works in different healthcare contexts. For a review on models and methods for blood supply chain

management we refer to [22]. In [13], the problem of designing a blood supply chain network is

considered. A multi objective mixed integer mathematical programming model is presented that

aims to simultaneously minimize the total cost of the supply chain network and the total envi-
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ronmental impact. In [15] a multi-start iterated local search algorithm is proposed for delivering

pharmaceutical products to healthcare facilities. Moussavi et al. [20] proposed a matheuristic to

find vehicle routings and worker assignments to provide home healthcare services. In [14], the

optimization of supply chain for CAR T-cell therapies has been considered, including the opti-

mization of samples transportation. A mixed-integer linear programming model is presented and

a General Variable Neighborhood Search to tackle larger problem instances is proposed. Liu et

al. [17] propose metaheuristic approaches for a special vehicle routing problem with simultaneous

delivery and pickup and time windows. The problem concerns the delivery of drugs and medical

devices from the home care company’s pharmacy to patients’ homes, delivery of special drugs from

a hospital to patients, pickup of bio samples and unused drugs and medical devices from patients.

Shi, Y. et al. [30] address a vehicle routing problem with fuzzy demand for scheduling home health

care services, and propose a hybrid genetic algorithm. The optimization of patients transportation

systems have been considered in many works (e.g., see [7; 31]).

In the problem addressed in this chapter, samples can be transferred from one vehicle to another

at the spoke centers. In the literature, transportation problems with ªtransfersº have been considered

by different authors [6; 18; 25]. The usefulness of transshipment is investigated in [25]: The

computational results show that transfers can indeed enhance optimization in pick up and delivery

problems.

In [18], an Adaptive Large Neighborhood Search algorithm is proposed for the pick up and

delivery problem with transfers (PDPT).

In [6], a solution method based on Benders decomposition is presented for Dial-a-Ride prob-

lems with transfers, in which passengers may be transferred from one vehicle to another at specific
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locations. Note that, unlike the general scheme of the PDPT, in the problem addressed in this chap-

ter only the requests that are stabilized at the spoke centers can be transferred between vehicles.

From the above literature review, we can conclude that none of the previous works attempt to

deal with transportation problems where common vehicle routing features simultaneously coexist

with perishable item (e.g., biological samples) issues, and restoring and transfer facilities (i.e., the

spoke centers). These problem characteristics introduce very challenging difficulties, both at the

formulation and solving steps, as it will be clarified in the following sections.

1.2 Problem Description

In the addressed problem, a set of blood and biological samples are produced each day in

geographically distributed blood draw laboratories, and must be picked up and delivered to a main

laboratory (called HUB) by vehicles located in different depots. Each sample is available to be

loaded by a vehicle within a time window, starting at the time of its withdrawal from a patient and

ending at the closure time of the draw lab. Each sample has a specific lifetime, that is the time

beyond which the sample cannot be analyzed anymore. Hence, all the samples have to arrive at

the HUB within their lifetime. When this is not possible, samples can be stabilized to gain an

extra lifetime. Different centers, i.e., the spokes, are devoted to perform the stabilization on the

samples. Each sample can be stabilized at most once and, after the stabilization, samples must be

delivered within the extra lifetime. Multiple visits of the spoke centers are allowed for the vehicles.

Furthermore, after the stabilization, samples can be taken in charge and delivered to the HUB by a

vehicle that is different from the one that delivered them to the spoke. It is important to notice that

the transfer of samples between vehicles is allowed only for stabilized samples. In other words, the
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spoke centers cannot be used for transfer only. A service time is needed to load or unload samples

at draw labs, spokes or the HUB.

The problem is to define the routing of each vehicle so that all samples are delivered within

their lifetime and the total distance traveled by the vehicles is minimized.

In what follows, we refer to samples as to transportation requests or simply requests. In Figure

1.1, the two possible transportation modes of a request (i.e. a sample) are shown (with or without

stabilization).

Draw Center HUB
Lifetime LT

Spoke Center

Lifetime LT

Extra

lifetime ET

Figure 1.1: Transportation modes of a sample.

A formal definition of the problem is given in the following.

Let R = {1, . . . ,n} and K = {1, . . . ,m} be the sets of transportation requests and vehicles, re-

spectively. The transportation network can be modeled as a complete directed graph G = (N,A),

where N = {1, . . . ,n,n+ 1,n+ 2, . . . ,n+ s+ 2,n+ s+ 3, . . . ,n+ s+m+ 3} is the node set and

A = {(i, j) : i, j ∈ N} is the arc set. The pickup locations of the requests are the nodes in P =

{1, . . . ,n} and the delivery node is n + 1, also denoted as H, corresponding to the HUB. The

spoke centers corresponds to the nodes in S = {n + 2, . . . ,n + s + 2}. Finally, nodes in D =
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{n + s + 3, . . . ,n + s + m + 3} correspond to the depots where vehicles are located. In the fol-

lowing, we denote by p(r) ∈ P the pickup node of the request r ∈ R and by d(k) the depot of

vehicle k ∈ K. Each request r ∈ R has a lifetime LTr, and a time window [er, lr]. Hence, request

r ∈ R can be picked up from its pickup location p(r) between time er and lr. If a vehicle arrives at

a pickup location p(r) before er, then it will wait er to begin the load of the sample. The service

time to load/unload requests at each node is st. If a request r is not stabilized, then it must be

delivered to the HUB at a time not bigger than er +LTr. If r is stabilized at a spoke center, it must

be delivered to the spoke center at a time not bigger than er +LTr. ETr is the extra lifetime gained

by r with the stabilization. After the stabilization, request r must be delivered to the HUB within

a time ser +ETr, where ser denotes the end time of the stabilization process. The time needed to

perform the stabilization process is the same for all spokes and requests, and is denoted as stbt.

The problem consists in finding a set of at most m routes on G such that:

• each route starts and ends at the same depot;

• each route visits the main hospital right before the arrival to the depot;

• the service at node p(r) ∈ P begins in the interval [er, lr], for each request r ∈ R;

• each request can be stabilized in a spoke center at most once;

• all the requests arrive to the spokes (if stabilized) and to the main hospital on time;

• the total length of the routes is minimized.
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1.3 Mixed Integer Linear Programming formulations

In this section, MILP models of the problem are presented. In the formulations, a modeling

issue concerns the tracking of two different flows: the flow of vehicles and the flow of requests.

The first represents the route followed by each vehicle from its depot to the HUB and back to its

depot. The second is related to the path of each request from its origin to its final destination. Since

the problem allows transshipment of requests at the spoke centers, in general the two flows can be

decoupled at the spokes. So, it is important to keep track of both flows and to make sure that the

they are consistent with each other. Another modeling issue is related to the possibility of visiting

multiple times a given spoke center by the same vehicle. As an example, multiple visits of a spoke

center may occur when a vehicle drops a request at a spoke for stabilization, departs from the spoke

and returns to pick up that request after the end of the stabilization. Also requests may visit a spoke

multiple times, even if they can be stabilized at most once.

In what follows, three Mixed Integer Linear Programming formulations are presented for the

problem. Two of them, denoted as MILP1 and MILP2, use time indexed variables to deal with

multiple visits. As explained in Section 1.3.2, the main difference between the two formulations is

that MILP2 has a smaller number of variables than MILP1. The third formulation, called MILP3,

employs standard routing variables and uses multiple copies of each spoke so that each copy can

be visited at most once. The computational campaign on small instances reported in Section 1.6.2

shows that MILP1 and MILP2 are able to solve problems up to 20 requests, while MILP3 fails to

find feasible solutions within the time limit in all the instances, suggesting that the time-indexing

is more effective to deal with multiple visits at the spokes.
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1.3.1 Formulation MILP1

As already stated, in MILP1, time indexing is used to properly address routes visiting more than

once the same spoke center. At this aim, let t ∈ T T be the time index, where T T is the time horizon

considered. In the formulations MILP1 (and also MILP2), we denote by loc(i) the location of node

i ∈ N. In MILP1 the following variables are used:

• xkt
i j ∈ {0,1} is equal to 1 if vehicle k traverses arc (i, j) arriving in j at time t and 0 otherwise;

• ykrt
i j ∈ {0,1} is 1 if vehicle k traverses arc (i, j) carrying request r arriving in j at time t and 0

otherwise;

• zkrt
j ∈ {0,1} is equal to 1 if vehicle k arrives in spoke j at time t to drop request r for stabi-

lization and 0 otherwise;

• wkrt
j ∈ {0,1} is equal to 1 if vehicle k arrives in spoke j at time t to pick up request r and 0

otherwise.

• Ar+n is the arrival time of request r to the HUB.

The objective function is to minimize the total traveled distance:

min ∑
t∈T T

∑
k∈K

∑
(i, j)∈A

di jx
kt
i j (1.1)

where di j is the travel distance between nodes i and j of N.

The constraints of the model can be divided into three groups: (i) Flow Constraints, modeling

both the flow of requests and the flow of vehicles; (ii) Spoke Constraints, modeling the dynamic of
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the stabilization at spoke centers; (iii) Time Constraints, imposing the time windows and lifetime

restrictions of the problem as well as the consistency of the time indexing.

The Flow Constraints read as follows.

∑
t∈T T

∑
j∈N, j ̸=d(k)

xkt
d(k) j ≤ 1,∀k ∈ K (1.2)

∑
t∈T T

xkt
Hd(k) = ∑

t∈T T
∑

i∈N,i̸=H

xkt
iH ,∀k ∈ K (1.3)

∑
t∈T T

xkt
i j + ∑

t∈T T

xkt
ji ≤ 1,∀i ∈ D,∀ j ∈ S,∀k ∈ K (1.4)

∑
t∈T T

∑
j∈N, j ̸=d(k)

xkt
d(k) j = ∑

t∈T T
∑

j∈N, j ̸=d(k)

xkt
jd(k),∀k ∈ K (1.5)

∑
t∈T T

∑
j∈N, j ̸=i

xkt
i j − ∑

t∈T T
∑

j∈N, j ̸=i

xkt
ji = 0,∀k ∈ K,∀i ∈ N (1.6)

xkt
p( j)p(i) = 0,

∀k ∈ K,∀t ∈ T T,∀ j, i ∈ R : loc(p(i)) = loc(p( j)),ei < e j (1.7)

∑
t∈T T

∑
k∈K

∑
j∈N, j ̸=i

xkt
i j = 1,∀i ∈ P (1.8)

∑
t∈T T

∑
k∈K

∑
j∈N, j ̸=p(r)

ykrt
p(r) j = 1,∀r ∈ R (1.9)

∑
t∈T T

∑
k∈K

∑
i∈N,i̸=H

ykrt
iH = 1,∀r ∈ R (1.10)

∑
t∈T T

∑
k∈K

∑
j∈N, j ̸=i

ykrt
i j − ∑

t∈T T
∑
k∈K

∑
j∈N, j ̸=i

ykrt
ji = 0,∀r ∈ R,∀i ∈ S (1.11)

∑
t∈T T

∑
j∈N, j ̸=i

ykrt
i j − ∑

t∈T T
∑

j∈N, j ̸=i

ykrt
ji = 0,

∀r ∈ R,∀k ∈ K,∀i ∈ P\ p(r) (1.12)

∑
t∈T T

∑
k∈K

∑
j∈N, j ̸=p(r)

ykrt
jp(r) = 0,∀r ∈ R (1.13)

∑
t∈T T

∑
k∈K

∑
j∈N, j ̸=p(r)

ykrt
p(r) j− ∑

t∈T T
∑
k∈K

∑
j∈N, j ̸=p(r)

ykrt
jp(r) = 1,∀r ∈ R (1.14)

ykrt
i j ≤ xkt

i j ,∀r ∈ R,∀k ∈ K,∀(i, j) ∈ A,∀t ∈ T T (1.15)
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Constraints (1.2) and (1.3) impose vehicles to leave at most once from their depot and to return

to their depots right after the visit of the HUB, respectively. Constraints (1.4) forbid a vehicle to

depart from its depot and consecutively visit a spoke and its depot again, since this would certainly

not involve the transportation of requests. Constraints (1.5) impose each route to begin and end

at the same depot. Equalities (1.6) ensure the conservation of the flow of vehicles at nodes, while

Constraints (1.7) forbid sub-cycles between pickup nodes. Constraints (1.8)±(1.10) state that each

transportation request must be served exactly once. Constraints (1.11) and (1.12)±(1.14) ensure

the conservation of the flow of requests at pickup nodes and spoke nodes, respectively. Note that

Constraints (1.11) allow transfers of requests at spoke nodes. Finally, Constraints (1.15) link the

request flow and the vehicle flow.

Now, the Spoke Constraints are presented.

∑
t∈[er,er+LTr]

∑
k∈K

∑
j∈S

zkrt
j ≤ 1,∀r ∈ R (1.16)

zkrt
j ≤ ∑

i∈N,i̸= j

ykrt
i j ,∀ j ∈ S,∀k ∈ K,∀r ∈ R,∀t ∈ [er,er +LTr] (1.17)

∑
t∈[er,lr+LTr]

∑
k∈K

zkrt
j = ∑

t∈[er,er+LTr+stbt+ETr]
∑
k∈K

wkrt
j ,∀ j ∈ S,∀r ∈ R (1.18)

xkt
i j ≤ ∑

r∈R

zkrt
j +

T T

∑
τ=t+st

∑
r∈R

wkrτ
j ,

∀ j ∈ S,∀k ∈ K,∀i ∈ N, i ̸= j,∀t ∈ T T (1.19)

∑
i∈N,i̸= j

y
kr(t+t ji)
ji ≥ wkrt

j ,

∀r ∈ R,∀ j ∈ S,∀k ∈ K,∀t ∈ [er,er +LTr + stbt +ETr] (1.20)

zkrt
j ≤ ∑

q∈K

er+LTr+stbt+ETr

∑
τ=t+st+stbt+st

w
qrτ
j ,

∀ j ∈ S,∀k ∈ K,∀r ∈ R,∀t ∈ [er,er +LTr] (1.21)
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w
qrt
j ≤ ∑

q∈K

t−st−stbt

∑
τ=er

z
qrτ
j ,

∀ j ∈ S,∀k ∈ K,∀r ∈ R,∀t ∈ [er,er +LTr + stbt +ETr] (1.22)

∑
i∈N,i̸= j

∑
τ≥t+st+t ji

xkτ
ji ≥ zkrt

j −M[(1− zkrt
j )]

∀r ∈ R,∀k ∈ K,∀ j ∈ S,∀t ∈ [er,er +LTr] (1.23)

∑
i∈N,i̸= j

t2−1

∑
τ=t+st+t ji

xkτ
ji ≥ 1−M[(1− ∑

l∈N,l ̸= j

xkt
l j)+(1− ∑

l∈N,l ̸= j

x
kt2
l j ],

∀k ∈ K,∀ j ∈ S,∀t, t2 ∈ T T, t > er, t2 > t (1.24)

∑
i∈N,i ̸= j

∑
τ≥t+st+t ji

ykrτ
ji ≥ ∑

i∈N,i ̸= j

ykrt
i j − zkrt

j ,

∀ j ∈ S,∀r ∈ R,∀k ∈ K,∀t ∈ T T, t > er (1.25)

∑
t∈T T

∑
j∈S

zkrt
j ≤ ∑

h∈N

∑
t∈T T

xkt
hi(r),∀r ∈ R, i ∈ P (1.26)

Constraints (1.16) impose the maximum of one stabilization per request. Constraints (1.17)

link the flow of requests with their possibility of stabilization. Constraints (1.18) impose that a

stabilized request must be collected from the spoke where it was processed.

Constraints (1.19) ensure that a vehicle can visit a spoke node only if it has either to leave a

request for stabilization or to withdraw a stabilized request. Constraint (1.20) links the variables y

and w while Constraints (1.21)±(1.22) link the timing between the z and w variables. Constraints

(1.23)±(1.24) contribute to define the exit time of a vehicle from a spoke node and to manage the

multiple visits at a spoke node by imposing that each vehicle has to depart from a spoke node within

the time interval between two different visits of the node. Constraints (1.25) impose that transfers

at spoke centers are not allowed for non-stabilized requests. Lastly, Constraints (1.26) state that a

request can be left at a spoke node for stabilization only by the vehicle that loaded it from its pickup
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node.

Finally, the Timing Constraints are reported in the following.

er ≤ Bp(r)≤ lr,∀r ∈ R (1.27)

B j ≥ ∑
k∈K

T T

∑
t=td(k)

∑
i∈N,i ̸= j

txkt
i j ,∀ j ∈ P (1.28)

txkt
i j ≥ Bi + st + ti j−M(1− xkt

i j),

∀t ∈ T T, t > minrer,∀k ∈ K,∀i ∈ P,∀ j ∈ N, loc(i) ̸= loc( j) (1.29)

txkt
i j ≤ Bi + st + ti j +M(1− xkt

i j),

∀t ∈ T T, t > minrer,∀i ∈ P,∀ j ∈ N, loc(i) ̸= loc( j) (1.30)

txkt
i j ≥ Bi−M(1− xkt

i j),

∀t ∈ T T, t > minrer,∀k ∈ K,∀i ∈ P,∀ j ∈ N, loc(i) = loc( j) (1.31)

txkt
i j ≤ Bi +M(1− xkt

i j),

∀t ∈ T T, t > minrer,∀i ∈ P,∀ j ∈ N, loc(i) = loc( j) (1.32)

Ar+n = ∑
t∈T T,t>er

∑
k∈K

∑
i∈N,i ̸=H

tykrt
iH ∀r ∈ R (1.33)

Ar+n + st− er ≤ LTr(1−
er+LTr

∑
t=er

∑
k∈K

∑
j∈S

zkrt
j )+M

er+LTr

∑
t=er

∑
k∈K

∑
j∈S

zkrt
j ,

∀r ∈ R (1.34)

Ar+n + st−
er+LTr

∑
t=er

∑
k∈K

∑
j∈S

(t + st + stbt)zkrt
j ≤

M(1−
er+LTr

∑
t=er

∑
k∈K

∑
j∈S

zkrt
j )+ETr

er+LTr

∑
t=er

∑
k∈K

∑
j∈S

zkrt
j ,∀r ∈ R (1.35)

er+LTr

∑
t=er

∑
k∈K

∑
j∈S

(t + st)zkrt
j − er ≤ LTr,∀r ∈ R (1.36)
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Constraints (1.27) impose the compliance with the time windows restriction, while Constraints

(1.28) describe the relationship between the beginning of the service at a node and the arrival time

at that node. Constraints (1.29)-(1.32) ensure the correct timing between two pickup nodes while

Constraints (1.33) define the arrival at the HUB variables. Compliance of lifetimes is ensured

by Constraints (1.34) when a request is not stabilized at a spoke, while Constraints (1.35)±(1.36)

ensure the lifetime and extra lifetime compliance when a request is stabilized at a spoke node.

1.3.2 Formulation MILP2

The formulation MILP2 is basically obtained by removing variables ykrt
i j from formulation

MILP1, and adjusting some constraints accordingly. Hence, MILP2 has a considerably smaller

number of variables, since it only employs the variables xkt
i j , zkrt

j , wkrt
j and Ar+n already introduced

at the beginning of Section 1.3.1.

In MILP1, variables ykrt
i j are used to keep track of the flow of the requests by their pickup

locations to the HUB. However, it is possible to do it by only employing variables xkt
i j , zkrt

j and wkrt
j .

In particular, let us consider a request r and its pickup location p(r). If r is not stabilized (i.e.,

zkrt
j = wkrt

j = 0 ∀ j ∈ S,k ∈ K, t ∈ T T ), then the request will simply follow the route of the vehicle

picking it at p(r) up to the HUB. On the other hand, if r is stabilized at a given spoke s, than it

will be: (i) on the route of the vehicle withdrawing it at p(r), from the pickup location p(r) to the

spoke s; (ii) on the route of the vehicle picking it up at s, from the spoke s to the HUB. In all the

above cases, the vehicles transporting the request r can be identified by the only variables xkt
i j , zkrt

j
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and wkrt
j .

In the following the MILP2 model is presented. Since MILP2 shares many constraints with

MILP1, only the new constraints are reported. As for MILP1, also in MILP2 the constraints of the

model can be divided into three groups. The Flow Constraints of the model are the Constraints

(1.2)±(1.8) of MILP1 and those reported in the following.

∑
t∈T T

∑
j∈N, j ̸=i

xkt
jH ≤ 1,∀k ∈ K (1.37)

Constraints (1.37) state that a vehicle can visit the HUB at most once.

In MILP2, the set of the Spoke Constraints is composed by the Constraints (1.16), (1.18), (1.19),

(1.21)±(1.24) and (1.26) of MILP1 and by the Constraints (1.38)±(1.41) reported in the following.

zkrt
j ≤ ∑

i∈N,i̸= j

xkt
i j ,∀ j ∈ S,∀r ∈ R,∀k ∈ K,

∀t ∈ [minr∈Rer,maxr∈Rer +maxr∈RLTr] (1.38)

∑
i∈N,i̸= j

x
kr(t+t ji)
ji ≥ wkrt

j ,∀ j ∈ S,∀k ∈ K,∀r ∈ R

∀t ∈ [minr∈Rer,maxr∈Rer +maxr∈RLTr + st + stbt +maxr∈RETr] (1.39)

∑
τ≤t+st+min jtp(r) j

zkrτ
j ≤M(1− ∑

i∈N,i̸=p(r)

xkt
ip(r)),∀k ∈ K,∀r ∈ R,

∀t ∈ [er,er +LTr + stbt +ETr− st] (1.40)

∑
i∈N,i̸=H

∑
t∈T T

xkt
iH ≥ ∑

i∈N,i̸=H

∑
t∈T T

xkt
ip(r)−

∑
j∈S,i ̸=H

∑
t∈T T

zkrt
j + ∑

j∈S,i ̸=H

∑
t∈T T

wkrt
j ,∀r ∈ R,∀k ∈ K (1.41)

Constraints (1.38) and (1.39) replace (1.17) and (1.20) of MILP1, respectively, ensuring con-
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sistency between the flow of vehicles and the download/withdraw of requests at a spoke node.

Constraints (1.40) impose the minimum time needed for a request to be left at a spoke node after

its withdrawal from its pickup location. Lastly, Constraints (1.41) force a vehicle to reach the HUB

if it has withdrawn a request at its pickup location and the request is not stabilized, or if it picks up

a request after stabilization at a spoke node.

Finally, the Timing Constraints are

(1.27)− (1.32) and (1.34)− (1.36)

Ar+n ≥ ∑
i∈N

∑
t∈T T

txkt
iH−M(1− ∑

h∈N

∑
t∈T T

xkt
hi(r))−M ∑

q∈K
∑

t∈T T
∑
j∈S

z
qrt
j ,

∀r ∈ R,∀k ∈ K (1.42)

Ar+n ≥ ∑
i∈N

∑
t∈T T

txkt
iH−M(1− ∑

t∈T T
∑
j∈S

wkrt
j ),

∀r ∈ R,∀k ∈ K (1.43)

Constraints (1.42)±(1.43) replace (1.33) of MILP1 and set the arrival at the HUB of a request ac-

cording to the vehicle that will carry it.

1.3.3 Formulation MILP3

Formulation MILP3 is similar to the one proposed in [25] for the pickup and delivery problem

with transfers, with modifications to fit our problem. As already stated, MILP3 employs multiple

copies of the spokes, and allows at most one visit of each copy by each vehicle. More precisely, 2n
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identical copies are considered for each spoke, where n is the number of requests. (In practice, a

single vehicle may visit the same spoke center at most 2n times, i.e., 2 times for each request.)

The formulation employs the following decision variables:

• xk
i j ∈ {0,1} is equal to 1 if vehicle k traverses arc (i, j) and 0 otherwise;

• ykr
i j ∈ {0,1} is 1 if vehicle k traverses arc (i, j) carrying request r and 0 otherwise;

• skl
jpr ∈ {0,1} is equal to 1 if request r arrives at the spoke copy j with vehicle k and departs

after stabilization with vehicle l (possibly k = l) from spoke copy p, and 0 otherwise. Notice

that j and p are copies of the same spoke.

• Ak
i is the arrival time of vehicle k at node i.

• Bk
i is the beginning of service of vehicle k at node i.

• Ar+n is the arrival time of request r to the HUB.

The objective function is to minimize the total traveled distance, as in the other two formula-

tions.

Hereafter, the constraints modeling the visits to the spokes are reported, that mainly differentiate

this model from the one proposed in [25]. In the following, we denote with S the set of spokes and,

given a spoke s ∈ S, with SC(s) the set of copies of s.

∑
j∈N, j ̸=i

ykr
ji + ∑

j∈N, j ̸=i

ylr
h j ≤ skl

ihr +1,

∀r ∈ R,∀k, l ∈ K,k ̸= l,∀s ∈ S,∀i,h ∈ SC(s) (1.44)

∑
j∈N, j ̸=i

ykr
ji ≥ ∑

h∈SC(s)

skl
ihr,∀r ∈ R,∀k, l ∈ K,∀s ∈ S,∀i ∈ SC(s) (1.45)
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∑
j∈N, j ̸=i

ylr
i j ≥ ∑

h∈SC(s)

skl
hir,∀r ∈ R,∀k, l ∈ K,∀s ∈ S,∀i ∈ SC(s) (1.46)

∑
i∈N,i ̸= j

xk
i j ≤ ∑

l∈K

∑
r∈R

∑
h∈SC(s)

skl
jhr + ∑

l∈K

∑
r∈R

∑
h∈SC(s)

slk
h jr,

∀k ∈ K,∀s ∈ S,∀ j ∈ SC(s) (1.47)

∑
j∈SC(s),l∈K

skl
h jr ≤ ∑

i∈N,i̸=p(r)

xk
ip(r),

∀r ∈ R,∀k ∈ K,∀s ∈ S,∀h ∈ SC(s) (1.48)

∑
i∈N

xk
i j ≤ 1,∀k ∈ K,∀k ∈ K,∀s ∈ S,∀ j ∈ SC(s) (1.49)

∑
k,l∈K

∑
i,h∈SC(s),s∈S

skl
ihr ≤ 1,∀r ∈ R (1.50)

Constraints (1.44) link variables s and y imposing variables s to be equal to 1 when two different

vehicles drop and withdraw a request from a spoke. Constraints (1.45) and (1.46) link variables y

and s in the other way around. Constraints (1.47) state that a vehicle can visit a spoke only to drop

or withdraw a request. Constraints (1.48) impose that only the vehicle that loaded the request at

its pick-up location can transport it to a spoke for stabilization. Finally, Constraints (1.49) impose

for each vehicle a maximum of one visit of each spoke copy, while Constraints (1.50) state that a

request can be stabilized at most once.

1.4 Hybrid ALNS algorithms

In this section, the algorithmic framework developed for the problem is presented, hereafter

called Hybrid ALNS (H-ALNS). It is based on the ALNS framework proposed in [26] but, differ-

ently from [26], in which only feasible solutions are explored, in our approach we also allow the

exploration of infeasible solutions. As also proposed in other metaheuristic frameworks from the
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literature (e.g., see the Tabu Search [10] and the Variable Neighborhood Search [21] techniques), in

H-ALNS infeasibilities are handled by introducing them, as penalty terms, in the evaluation func-

tion f (·) used to assess the quality of the solutions (the details are reported in Section 1.4.2). The

impact of these penalty terms is then adjusted during the algorithm execution.

Furthermore, ad-hoc developments have been designed for the problem, including heuristics

able to deal with spokes and stabilization and a post-processing procedure useful for reducing

lifetime violations of infeasible solutions.

The remainder of this section is organized as follows. First, in Section 1.4.1 the general structure

of the proposed algorithms is presented. Then, in Section 1.4.2, the evaluation function used to

assess the quality of the solutions is introduced. From Section 1.4.3 to 1.4.7, the five phases (briefly

described in Section 1.4.1) of the iterative core of the algorithms are shown into detail. Finally, in

Section 1.4.8, the procedure for finding an initial solution is presented.

1.4.1 General structure of the H-ALNS

The developed H-ALNS algorithms are composed of two main parts. The first part is devoted

to the generation of an initial solution s0. The initial solution is built with specific procedures

involving several heuristics embedded in an ALNS framework, as explained in Section 1.4.8. The

solution s0 resulting from this part is set as current solution scurr. The second part is the iterative

core of the algorithms, which is performed until a maximum number of iterations is reached. In

this part, each iteration is divided into five phases, executed consecutively, that are explained in the

following.
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• Phase 1: Destroy. In this phase the current solution scurr is destroyed by removing a given

number of requests from it, resulting in a partial solution s′. The removal of such requests is

regulated by one of the destroy heuristics introduced in Section 1.4.3. The destroy heuristic

to employ during each iteration i is chosen with a probability depending on the performances

of the heuristic up to i. To keep track of these performances some parameters are used, as

explained in section 1.4.6

• Phase 2: Repair. In this phase the partial solution s′ is repaired by reinserting all the un-

planned requests, i.e., the requests that were removed in the previous phase, generating a

new solution snew. The removed requests are inserted by one of the repair heuristics intro-

duced in Section 1.4.4. As in Phase 1, in this phase the repair heuristic to employ at a given

iteration i is chosen with a probability depending on the performances of the heuristic up to i.

To keep track of these performances some parameters are used, as explained in section 1.4.6.

• Phase 3: Evaluate. In this phase the new solution snew is evaluated. If it is feasible and better

than the best known feasible solution, it is kept as a new best feasible solution. Similarly,

if snew, not necessarily feasible, is better than the best known solution, it is kept as a new

best solution. Finally, if snew meets the acceptance criteria specified in Section 1.4.5, it is

accepted as new current solution for the next iteration.

• Phase 4: Update. In this phase, some parameters of the algorithm are adjusted for the next

iteration, based on the performances of the current iteration. In particular, two different

sets of parameters are updated: (i) penalty parameters and (ii) adaptivity parameters. The

first set of parameters are updated at each iteration according to the ability of the current
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iteration to generate a feasible solution. The adaptivity parameters, related to each heuristic,

are updated after every block of I consecutive iterations according to the performances of the

specific destroy/repair heuristic employed during the iteration. This procedure is explained

into detail in Section 1.4.6.

• Phase 5: Post-Segment Procedure. This phase is not executed at each iteration, but only after

every I consecutive iterations. In what follows, a block of I consecutive iterations is called

segment. In this phase, a procedure designed to reduce the lifetime violations of the current

solution scurr, if any, is executed. A detailed description of Phase 5 is given in Section 1.4.7.

Algorithm 1 reports a general scheme of our H-ALNS approach.

Algorithm 1 H-ALNS Algorithm general framework

First Part: Initial Solution

Generate the initial solution s0;

Set sbest = s0 and scurr = s0 f (sbestFeas) = +∞;

Second Part: Iterative Core

l = 0;

Repeat

Phase 1: Destroy

Select a destroy heuristic;

Use the destroy heuristic to remove r requests from scurr:

s′← Destroy(scurr)
Phase 2: Repair

Select a repair Heuristic;

Use the repair heuristic to insert r requests:

snew← Repair(s′)
Phase 3: Evaluate

If snew is feasible and f (snew)< f (sbestFeas)
Set sbestFeas := snew

If f (snew)< f (sbest)
Set sbest := snew

If Accept(snew) = true

scurr = snew

Phase 4: Update

Update the penalty parameters and If (l = I) Update the adaptivity parameters;

l = l +1;

If l = I

Phase 5: Post-Segment Procedure

Execute the Post-Segment Procedure; l = 0;

Until Itmax iterations are performed

return sbest and sbestFeas.
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1.4.2 Evaluation Function

As already stated, the proposed algorithms allow the exploration of infeasible solutions. More

precisely, solutions may violate the time window and lifetime constraints, and these violations

are properly taken into account in an evaluation function. Given a solution s of the problem,

the evaluation function is defined as f (s) = f1(s) + f2(s), where f1(s) corresponds to the total

traveled distance of all routes, i.e., the problem objective function, and the second component is

a penalization term of the form f2(s) = αt(s) + βw(s), where t(s) and w(s) represent the total

lifetime and time windows violation of solution s, respectively, and α > 0 and β > 0 are penalty

parameters. The violations are computed as in (1.51) and (1.52). Given a solution s, we denote by

[ei, li] the time window of a request i ∈ P and by pi and di the times in which i is collected from its

pickup location and is delivered to the HUB, respectively. Let δ (i) be 1 if i is stabilized in a spoke

in solution s and 0 otherwise. In the first case, let sai be the arrival time of i at the spoke and let sei

be the end of the stabilization.

Then

t(s) = ∑
i∈P

((di− ei−LTi)
+(1−δ (i))+(sai− ei−LTi)

+δ (i)+

(di− sei−ETi)
+δ (i)) (1.51)

w(s) = ∑
i∈P

(pi− li)
+ (1.52)

(Where (a)+ = a if a > 0 and 0 otherwise.)

In f2(s), the parameters α and β are initially set to given values α0 and β0 respectively. (In

our experiments (Section 1.6) we set α0 = 1 and β0 = 1.) infeasible solutions. At Phase 4 of each
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iteration of the algorithms, α and β are increased (decreased) if lifetime or time windows constrains

are violated (not violated) in solution s.

1.4.3 Phase 1: Destroy

This phase takes as an input a solution scurr (feasible or not) and is composed by two main steps:

First, one destroy heuristic is selected among a pool of six different procedures, with a probability

depending on its previous performances, as explained in Section 1.4.6; In the second step, the

selected heuristic is used to remove a given number of requests from the solution scurr, generating

a partial solution s′.

When a stabilized request is removed from scurr, all the information related to the request and

to the spoke in which it is stabilized is deleted and all involved routes are updated.

Three of the six destruction heuristics have already been introduced in the literature and have

been adapted for the problem under study. They are the Worst Removal, the Random Removal [26]

and the Related Removal [29], and are briefly described in the following.

• The Worst Removal heuristic iteratively removes requests that cause the biggest detour in the

current solution in a semi-random way. More precisely, a request is removed from the solu-

tion with a probability related to the evaluation function improvement produced by removing

that request. The randomization is regulated by a parameter p≥ 1, the smaller p is, the more

randomness is allowed.

• The Random Removal heuristic randomly selects the requests to remove.

• The Related Removal (or Shaw Removal) heuristic aims to remove requests that are more
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related with each other in order to give them the chance to be re-routed more efficiently. A

specific measure of relatedness between requests have been developed ad-hoc for the problem

under study and is described into detail in Section 1.4.3.

The other three heuristics were developed ad-hoc for the problem and are denoted as Vehicle

Removal, Spoke Removal and Late Requests Removal. They are briefly described in the following,

and in more detail in Sections 1.4.3±1.4.3:

• The Vehicle Removal heuristic removes all the requests of a randomly selected vehicle.

• The Spoke Removal heuristic removes all the requests stabilized at a randomly selected spoke

center.

• The Late Requests Removal removes the requests with the higher lifetime violations.

Related Removal and relatedness function

As suggested by Shaw [29], the removal of requests that are very different from each other

may not help in improving the solution when re-inserting them. In fact the solution obtained after

the re-insertion will probably be close to the previous solution, because the requests will likely be

re-inserted in their original positions if not even in worse positions. Therefore, the general idea

of this heuristic is to remove requests that are somehow related to each other, in order to give

them the chance to be re-routed efficiently. Let R(i, j) be the relatedness function of requests i and

j. The bigger R(i, j) is the more related are the two requests. For the problem under study, we

developed an ad-hoc measure of relatedness between a pair of requests, which takes into account

three pieces of information: the distance between pick-up locations, the (possible) overlap of the
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time windows, and whether they are routed on the same vehicle in the current solution or not.

More precisely, the relatedness function employed in the Related Removal heuristic is computed as

R(i, j) = 1/(Di j +Ei j +Vi j), where Di j is the distance between request i and request j (normalized

according to the maximum distance between locations), Ei j = 1/(100(li− e j)) if li− e j ≥ 0 and

Ei j = 1 + 1/(100(li − e j)) if li − e j ≤ 0, and Vi j is equal to 1 if the requests are on the same

vehicle and 0 otherwise. The value li−e j is a measure of the overlap between the time windows of

requests i and j. If the two time windows overlap with each other, then li−e j ≥ 0 and Ei j is smaller,

otherwise li− e j ≤ 0 and Ei j is bigger. (Recall that, li is the end of the time window of request i,

and e j is the beginning of the time window of request j.) Hence, R(i, j) is bigger when Di j, Ei j and

Vi j are smaller. Observe that, two requests are more related when are not on the same vehicle (i.e.,

Vi j = 0), but have close pick-up locations and similar time windows. Hence, requests with higher

relatedness are those currently in different vehicles, but that could be more appropriately assigned

to the same route.

Vehicle Removal

The Vehicle Removal heuristic simply removes a route from the solution. In this way, the re-

quests carried on the removed vehicle have the chance to be re-routed with another vehicle, possibly

through a spoke center. In fact, since the stabilization increases the lifetimes of the requests, it is

often possible to reduce the number of used vehicles by routing some requests through a spoke

center.

More precisely, the heuristic deletes from the solution the route with the largest total violation

of the time windows and lifetime constraints is removed. If all routes in the current solution are

38



feasible, then a random route is removed. Even if the requests will not be reassigned in already ex-

isting routes, by removing the route with the largest violations, after the re-insertion of the removed

requests the solution will likely be better than before. Note that the number of requests removed by

the heuristic is not known a priori but depends on the route selected.

Spoke Removal

This heuristic is inspired from a neighborhood for a pickup and delivery problem with transfers

proposed in [18]. The idea is to remove all the requests using a given spoke center, in order to give

them the chance to be re-routed through a different spoke center or without stabilization. Spoke

Removal first selects a random spoke among the active ones in the solution. If the number of

requests using that spoke is less than or equal to the number of requests to be removed, all these

requests are removed from the solution. As a consequence, the spoke is also deleted from the

current solution. If the number of requests using the selected spoke is greater than the number of

requests to be destroyed, only a subset of requests is removed. This subset is iteratively generated

as explained below. At the first iteration, the first request of the subset is selected randomly among

the requests using the spoke center and is removed. Then, at each iteration, an already removed

request i is randomly selected and the next request to remove, say j, is chosen among the requests

using the spoke center, with a probability increasing with the proximity of the pickup locations of i

and j. The randomization is regulated by a parameter p≥ 1, the bigger p is, the more randomness

is allowed.
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Late Requests Removal

This heuristic aims at reducing the violations of the lifetime constraints of the current solution.

It removes the requests with the highest lifetime violations, if any, in order to give them the chance

to be re-routed with no lifetime violation or at least a smaller one. If the solution has no late

requests, this heuristic cannot be selected by the ALNS. On the other hand, if the number of late

requests of the current solution is smaller than the number of requests to remove, the heuristic

removes the late requests only.

1.4.4 Phase 2: Repair

This phase takes as an input the partial solution s′ generated in Phase 1 and a set of unplanned

requests. The phase is divided into two main steps: First, one repair heuristic is chosen among

a pool of seven different procedures with a probability depending on its previous performances,

as explained in Section 1.4.6; In the second step, the selected heuristic is used to insert all the

unplanned requests in the partial solution s′, generating a new solution snew.

In the algorithms, we implemented both repair heuristics that do not consider stabilization and

heuristics in which the use of stabilization at spokes centers is evaluated for the insertion. The five

following heuristics, denoted as Best Insertion and Regret-k (with k = 2, . . . ,5), do not exploit the

stabilization and have been already successfully employed in the literature:

• Best Insertion is a construction heuristic in which the insertion cost of each unplanned request

is calculated for each possible position. Then, the request with the minimum insertion cost

is inserted in its best position. The heuristic terminates when all the unplanned requests are

added to the solution [26].
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• The Regret-k heuristic have been used for example by Potvin and Rousseau [24] and by

Ropke and Pisinger [23] for the Vehicle Routing Problem with Time Windows. Let R be the

set of unplanned requests and, for each request i ∈ R, let ∆ f
p
i be the lowest cost of inserting i

in the p-th best route at the best position. In the Regret-k heuristic, the following procedure is

iteratively performed until all the requests are inserted. At each iteration, the request selected

for insertion at its best position is

i∗ = argmaxi∈R{
k

∑
p=1

(∆ f
p
i −∆ f

p
i )},

where
k

∑
p=1

(∆ f
p
i −∆ f

p
i ) is the regret value of request i. In our algorithm, we consider Regret-k

heuristics with values of k between 2 and 5, resulting in four different heuristics.

The following two heuristics have been developed to evaluate the insertion of requests both

with and without stabilization at the spoke centers. These heuristics, denoted as Best Insertion

with spokes and Best Request-spoke Insertion, are adaptations of repair heuristics proposed for the

pick-up and delivery problem with transfers [18; 19].

Best Insertion with spokes

This heuristic evaluates the insertion of each unplanned request both with stabilization (i.e.,

by delivering it to a spoke center) and without stabilization (i.e., by delivering it directly to the

HUB). More precisely, for each unplanned request i, first the best insertion cost without the use of

stabilization is calculated. Then, the best insertion with stabilization of the request is evaluated. At

this aim, the stabilization of request i at a given spoke is modeled by adding two new distinct nodes:
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the delivery spoke node, where the request is delivered for the stabilization, and the pick-up spoke

node, where the request is picked up after the stabilization. Obviously, the delivery spoke node

must be visited before the pick-up spoke node. The best insertion with stabilization is evaluated

as follows. For each spoke, we first evaluate the best positions of the pair pick-up node (of the

request i) and of the delivery spoke of i. Of course the two will be on the same route. Then, the

best insertion for the pick-up spoke of request i is computed. Note that, recalling that transfers are

allowed at the spoke centers, the delivery spoke node and the pick-up spoke node could be inserted

in different routes. The best insertion with stabilization is the one involving the spoke that gives

the smallest overall insertion cost. On the other hand, the best insertion without stabilization of

the request i is evaluated as in the Best Insertion heuristic. Finally, the insertion costs of i with or

without stabilization are compared and the insertion with the smallest cost is performed.

Best Request-spoke Insertion

The Best Request-spoke Insertion heuristic inserts each unplanned request with stabilization. In

fact, even if in some cases the insertion without stabilization could be cheaper, in terms of traveled

distance, the insertion of one or more spokes in the solution may help future insertion operations.

More precisely, for each unplanned request i, the heuristic evaluates and performs the best

insertion with stabilization as in the heuristic Best Insertion with spokes. It is important to notice

that the stabilization of unplanned requests can be performed in spokes already used in the solution.
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1.4.5 Phase 3: Evaluate

This phase takes as an input the solution snew obtained in Phase 2. As already mentioned, if

snew is feasible and better than the best known feasible solution, it is kept as the new best feasible

solution. Similarly, if snew, not necessarily feasible, is better than the best known solution, it is kept

as the new best solution. Then, the solution snew is evaluated to check whether it should be accepted

as the new current solution for the next iteration. More precisely, the current solution is updated if

snew meets given acceptance criteria. To escape local minima, we employ the simulated annealing

acceptance criterion used in [26].

1.4.6 Phase 4: Update

This phase is composed of two main steps. First, the penalty parameters used in the evaluation

function are updated. Recall from Section 1.4.2 that these parameters are denoted as α and β , and

that they are initially set to the values α0 = 1 and β0 = 1. As already mentioned in Section 1.4.2, the

parameter α regulates the weight that total lifetime violation have on the evaluation function, while

β is used to weigh the total time windows violation. If the solution snew resulting from Phase 3 is

feasible, α and β are decreased. On the other hand, if snew violates both lifetime and time windows

constraints, then α and β are increased, in order to further penalize the violations in the objective

function. Finally, if snew only violates lifetime constraints (time windows constraints) parameter α

is increased and parameter β is decreased (parameter β is increased and parameter α is decreased).

In the second step of Phase 4, the adaptivity parameters are updated, which are used to adapt the

algorithm to the performances of the heuristics. These parameters are only updated at a end of each

block of I consecutive iterations, called segment. Each heuristic has two adaptivity parameters: the
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weight and the score. Recall that, at the beginning of Phase 1 (Destroy) and Phase 2 (Repair), the

heuristics to employ are selected with a probability that depends on their historical performances

during the previous iterations.

As proposed in [26], the selection is made using the roulette wheel selection principle where,

at each iteration, the heuristic j is chosen with probability

w j

k

∑
i=1

wi

,

where w j is the weight of heuristic j. These weights are updated according to the performances

of the heuristics. As in [26], we keep track of these performances by assigning scores to the

heuristics. At the beginning of the iterative core of the algorithms, all heuristics have the same

scores and weights. At each iteration, in Phase 4, the scores of the destroy and repair heuristics

selected in Phases 1 and 2 are increased by σ1, σ2 or σ3, as explained below.

Let snew be the solution produced by the pair of destroy and repair heuristics used in the last

iteration. If snew is better than the best known solution, their score is increased by σ1; if snew has not

been accepted yet and is better than the current solution, then the scores are increased by σ2; finally,

the scores are increased by σ3 if snew, completely new, has not been accepted yet and is worse

than the current solution. The scores of the destroy and repair heuristics used during an iteration

are updated equally, since we cannot give the credit for the new solution to just one between the

destroy or repair heuristic used. In our experiments, we set σ1, σ2 and σ3 as in [26]. As already

mentioned, the iterative core of the algorithms is divided into segments of I consecutive iterations

(we set I = 100 in our experiments). At the beginning of the first segment all the heuristics have
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the same weight.

At the end of each segment, Phase 4 updates the weight of each heuristic, on the basis of the

score gained by that heuristic during the segment, and sets all the scores to zero.

More precisely, the weight that will be used for heuristic i in the segment j+1 reads as follows,

wi, j+1 = wi j(1− r)+ r
πi

θi

where πi is the score obtained by the the i-th heuristic during the last segment and θi is the number

of times the heuristic was used. Parameter r controls how fast the algorithm reacts to the weight

change. If r = 0 the same weights will be used during all the algorithm, instead if r = 1 the scores

attained in the last segment will entirely determine the weights to use in the following segment.

1.4.7 Phase 5: Post-Segment Procedure

This phase is executed at the end of each segment of I iterations. A procedure, called Spoke

Insertion heuristic, is executed with the aim of reducing lifetime violations of the current solution

s, if any. Spoke Insertion tries to stabilize some requests in order to remove or reduce lifetime

violations. For each route, the last request rl violating the lifetime constraints and not already

stabilized in a spoke center is detected, if any. Afterward, the spoke center j that minimizes the

sum of the distances to the pick-up node of rl and to the subsequent node in the route is chosen.

The spoke is then inserted in the route right after the pickup-node of rl . In practice, the insertion

of j in the route may generate new lifetime violations in the requests that were picked up by the

vehicle before rl . Hence, also such requests, if not already stabilized in a spoke, are re-routed
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through j for stabilization. Once all the routes with lifetime violations have been processed, the

Spoke Insertion procedure terminates and a check on the output solution is performed. If the output

solution is better than the input solution (i.e., the current solution s) in terms of evaluation function,

it is taken as a new current solution. Otherwise, the current solution is not changed. Furthermore,

if the solution produced by Spoke Insertion is also better than the best known solution (best known

feasible solution), the best solution (best known feasible solution) is updated.

1.4.8 Initial Solution

Different Large Neighborhood Search (LNS) procedures have been used to produce an initial

solution with small lifetime violations. In fact, for the problem under study, we observed that a

too high total lifetime violation of the initial solution may negatively affect the performances of

the overall algorithm. At this aim, different starting solutions are generated by employing each

of the repairing heuristics described in Section 1.4.4. In this case, the repair heuristics are used

as constructive heuristics for routing all the requests to the vehicles. Then, a 5-iterations LNS

is applied to each starting solution generated as described above, with the aim of reducing the

lifetime violations, if any. More precisely, at each iteration of the LNS procedures, the destruction

heuristic Late Requests Removal (see Section 1.4.3) is first applied to remove late requests. Then,

the solution is repaired with an heuristic randomly chosen among the pool of repairing heuristics

and, finally, the post processing procedure Spoke Insertion (introduced in Section 1.4.7) is applied.

At the end of each iteration, the new generated solution is kept only if it is better than the previous

solution. In a preliminary experimental campaign, it has been observed that these small LNS

procedures are able to sensibly reduce the lifetime violations of the starting solutions. Obviously,
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the LNS procedures are not applied to starting solutions with no lifetime violation. After applying

the LNS to each starting solution with lifetime violations, the best solution obtained so far is chosen

as initial solution of the ALNS algorithm.

1.5 Real-world data and instance description

In 2011, the ASL (Local Healthcare Authority) of Bologna, Italy, began a reorganization in-

volving all processes related to the management of blood and biological samples collected in the

draw labs of the metropolitan area of Bologna. In this context, in 2015, a single Laboratory for

the analysis of all samples was established, called ªLaboratorio Unico Metropolitanoº (or HUB),

located in Bologna.

Currently, the metropolitan area of Bologna includes 46 blood draw labs, with different opening

days and hours (ranging from 7 am to 10 am, from Monday to Saturday). Real data show that,

during working hours, a new sample is drew from a patient approximately every 3 minutes in each

draw lab. In Table 1.1, the number of draw labs opened each day and the related average opening

hours (in minutes) are given. Each sample must be delivered to the main hospital or to a spoke

center within 120 minutes (i.e., the sample lifetime is 120 minutes). For the transportation 26 and

16 vehicles are available on weekdays and on Saturday, respectively, located in 8 different depots.

Each day, the stabilization process can be performed in 12 spoke centers and requires about 30

minutes. The extra lifetime gained by a stabilized sample is of 90 minutes (starting from the end

of the stabilization process). The service time required by a vehicle to load or unload samples at a

draw labs or a spoke is about 10 minutes.

Figure 1.2 reports the geographical distribution of the draw labs, spokes and depots in the
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Monday Tuesday Wednesday Thursday Friday Saturday

# Draw labs 31 33 30 36 30 16

Av. Time (min) 100.65 100.00 100.00 99.17 100.00 108.75

Table 1.1: Number of draw labs and average opening hours (in minutes).

metropolitan area of Bologna. More precisely, each area highlighted in grey contains at least one

of the above mentioned centers. The location of the main hospital (HUB), denoted by H, is also

shown.

Small and large instances have been generated from real data. More precisely, 10 small instances

have been produced in order to compare the performances of the MILP formulations introduced in

Section 1.3 and the H-ALNS algorithms. Furthermore, 32 large instances have been generated for

solving the real problem. In the small instances, the number of transportation requests (i.e., sam-

ples) and vehicles range from 5 to 20 and from 3 to 10, respectively, while the number of spokes

is one or two. The details of the ten small instances are reported in Table 1.2, where Column 2

reports the time step used in the two time-indexed formulations MILP1 and MILP2 (i.e., one or five

minutes). Obviously, the bigger the time step is, the smaller the number of variables of the formu-

lations is. Columns 3±5 respectively report the number of requests |R|, vehicles |K| and spokes |S|

of the instances. These instances have been designed to also test the different transportation modes

of the samples (i.e., directly to the main hospital, or first to a spoke and then to the hospital). For

example, in Instance 2 a feasible solution can be obtained only by using stabilization at the spokes,

while in Instance 7 an optimal solution exists that does not require sample stabilization.

In the large instances, all vehicles, draw labs and spokes of the real case have been considered. Fur-

thermore, since the daily number of samples to manage is extremely high (i.e., more than 500 and

1000 on Saturday and weekdays, respectively), different instances have been generated in which
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samples have been grouped in batches according to different time spans. More precisely, samples

have been grouped in batches every either 30, 45 or 60 minutes of activity of a draw lab. Hence, as

an example, recalling that a biological sample is produced every 3 minutes at each draw center, by

grouping them using a time span of 30 minutes, we get batches containing about 10 samples. The

earliest limit of the time window assigned to each batch is set equal to the production time of the

youngest sample of the batch. The latest limit of the time window is always set to 30 minutes after

the closing time of the draw lab. Thus, the time window width of a batch varies depending on the

batch dimension.

Id Time step |R| |K| |S|
1 1 5 3 1

2 1 8 3 1

3 1 9 4 1

4 5 9 4 1

5 5 12 6 1

6 5 12 6 2

7 5 12 7 2

8 5 15 8 1

9 5 15 9 2

10 5 20 10 2

Table 1.2: Characteristics of the small instances.
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((a)) Spoke Centers

((b)) Depots

((c)) Draw labs

Figure 1.2: Locations of draw centers, spoke Centers and Depots.

The lifetime assigned to each batch is set to 120 minutes after the production time of the oldest
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sample of the batch, i.e., the sample of the batch produced first. Hence, if a batch is delivered within

its lifetime to the HUB, every sample contained in the batch is delivered on time, too. Note that,

the bigger the time span used for grouping the samples is, the shorter the lifetimes of the batches

are, since the cardinality of each batch is bigger.

In general, given a time span, the number of batches generated at a draw lab may vary according

to the opening hours of the lab and, if the time span and the opening hours are not divisible numbers,

to the rounding procedure used. Formally, let ts be the time span used and ok be the opening hours

(in minutes) of the draw lab k. If ts does not divide ok, the batches generated may be ⌈ok/ts⌉ or

⌊ok/ts⌋. In the first case (second case), the last batch generated at each draw center may contain

a smaller (bigger) number of samples, resulting in a batch with a longer (shorter) lifetime. As an

example, let us assume that the draw lab k has a opening hours ok = 300 minutes and that ts = 45

minutes. Hence, ⌈ok/ts⌉ = 7 and ⌊ok/ts⌋ = 6. Recalling that a sample is approximately produced

every 3 minutes, in the first case, we get 7 batches: the first 6 batches have a lifetime of 78 minutes

and contain 15 samples each, while the last batch contains 25 samples and has a shorter lifetime of

48 minutes. In the second case, we get 6 batches: the first 5 batches contain 15 samples and have a

lifetime of 78 minutes, and the last batch contains 10 samples and has a lifetime of 93 minutes.

According to the above criteria, for each time span ts ∈ {30,45,60}, we generated two sets of

large instances, denoted as Set A and Set B, containing ⌈ok/ts⌉ and ⌊ok/ts⌋ batches for each draw

lab k, respectively. Table 1.3 shows the number of requests/batches in the instances of Set A and

Set B, generated by a time span ts of 60, 45 and 30 minutes, for each day of the week. As already

stated, instances of Set A generally contain a bigger number of batches than the instances of Set B,

but possibly with longer lifetimes. Furthermore, the number of requests varies according to the day
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of the week, since the opening hours of the draw labs depend on the day. Finally, note that, when

a time span of 30 minutes is considered, the number of requests in the instances of Set A and Set

B related to Monday, Wednesday, Friday and Saturday are the same, resulting in exactly the same

instances. Hence, sets A and B contain 32 different instances.

Set Time Span (ts) Monday Tuesday Wednesday Thursday Friday Saturday

A1 60 61 65 60 71 59 34

A2 45 76 81 72 87 73 42

A3 30 104 111 100 120 100 58

B1 60 43 45 40 48 41 24

B2 45 62 66 61 72 60 35

B3 30 104 109 100 118 100 58

Table 1.3: Number of requests/batches per time span and day in instances of Sets A and B.

1.6 Experimental Results

In this section, the experimental results on the instances described in the previous section are

presented. All tests have been performed on a PC equipped with Intel i5 processor and 8 Gb of

RAM. This section is organized as follows. In Section 1.6.1, a tuning experimental campaign

devoted to properly set parameters and some components of the H-ANLS algorithms is presented.

In Sections 1.6.2 and 1.6.3 , the computational results on small and large instances are respectively

reported.

1.6.1 Tuning of the H-ALNS metaheuristic

In the tuning experimental campaign, two test phases have been carried out. In the first test

phase, preliminary experiments have been performed to set the main parameters of the algorithms.

This phase showed that most of the parameters proposed in [26] performs well, i.e., σ1 = 33,
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σ2 = 9, σ3 = 19, Crate = 0.99975 and w = 0.05. On the other hand, in this phase, it turned out that

the performances of the H-ALNS algorithms improve when the percentage of requests removed

and reinserted at each iteration, denoted as rem in the following, depends on the number of the

transportation requests |R|. In fact, we observed that the algorithm benefits of large values of rem

when |R| is small and (sensibly) smaller rem values for larger |R|. As also noted in [26], such a

behavior could be due to the fact that insertion heuristics work fairly well when they must insert

a limited number of requests into a partial solution (while, when a fixed rem is used, the number

of requests to insert becomes large when |R| is large). As a consequence, in our experiments we

set rem as follows: rem = 0.7 if |R| ≤ 20, rem = 0.3 if 20 < |R| ≤ 40 and rem = 0.05 if |R| > 40.

Another aspect affecting the performances of the algorithm is how the weights assigned to each

heuristic change during the algorithm. In the algorithm, such a feature is controlled by parameter

r ∈ (0,1): the smaller r is the more importance is given to the whole performance history of the

heuristics during the algorithm when updating their weights. In the first test phase, it turned out

that the algorithms attain better performances when r is high. As a consequence, we set r = 0.8 in

the second test phase of the tuning experiments.

In the second test phase, a set of experiments has been performed to evaluate how some new

ad-hoc developed components affect the performances of the H-ALNS algorithms. In particular,

we test different variants of the insertion heuristics Best Insertion with spokes and Best Request-

spoke Insertion (see Section 1.4.4), designed to insert requests both with and without stabilization

at the spoke centers, and the procedure called at the end of each segment (see Section 1.4.7).

Furthermore, in this second phase, we also evaluated H-ALNS configurations in which the weights

of all the heuristics are re-initialized to their starting values at given points during the algorithm

53



(similarly to what is done with the scores gained by each heuristic, that are set to 0 at end of each

segment) and configurations using the Post Segment Procedure (Section 1.4.7) or not.

The different variants of the insertion heuristics Best Insertion with spokes and Best Request-

spoke Insertion have been developed in order to evaluate how different accuracy levels in the inser-

tion of the requests affect the algorithm performances. In fact, since the requests can be transferred

from one vehicle to another at the spoke centers, a change in a route may produce changes in other

routes (called affected routes). As an example, let us suppose that request i is delivered by vehicle

k to a spoke sp and is picked up at sp by a vehicle q after the stabilization. Then, a change in the

route k may lead to request i ending the stabilization process at spoke sp earlier or later than before,

implying a possible timing change in the route q. In practice, taking into account the changes on the

affected routes during the insertion of requests increases the accuracy of local insertion decisions

but, at the same time, increases the complexity of the heuristics. More precisely, the following two

variants of the heuristics Best Insertion with spokes and Best Request-spoke Insertion have been

considered:

• Variant 1 (V1): The changes in the affected routes are never taken into account during the

evaluation of the insertion cost of a request. Hence, heuristics evaluate the insertion of a

request in a route k considering route k only.

• Variant 2 (V2): The changes in the affected routes are always taken into account during the

insertion of a request. Hence, the insertion of a request in a route takes into account how that

insertion affects other routes.

The two variants have been evaluated either alone or together. Hence, three algorithm configura-

tions have been developed, two in which either variant V1 or V2 has been used for the heuristics,
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Configurations C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

Features

V1 X X X X X X X X

V2 X X X X X X X X

PostSeg X X X X X X

WI X X X X X X

Table 1.4: Algorithm configurations of the second test phase.

and one in which both V1 and V2 have been included in the algorithm as repair heuristics.

In total, 12 algorithm configurations have been evaluated in the second tuning phase. Table

1.4 summarizes the different configurations components. In the table, PostSeg is the post segment

procedure presented in Section 1.4.7, and WI is the re-initialization of the weights of the heuristics

to 1 after Itw iterations, where Itw has been set to 1000 in the experiments.

The configurations have been tested on 4 real-world instances, i.e., Wednesday and Thursday of

set A2, and Friday and Saturday of Set A3. Five runs of the algorithm have been performed for each

setting. Hence, 240 experiments have been performed in total. The maximum number of iterations,

Itmax, has been set to 20,000 in all the runs. The main indicators used to evaluate the performances

of the different configurations are the number of feasible solutions found, the solution values, and

the computation time. The results are reported in Tables 1.5 and 1.6, where ªAvº and ªbestº report

the average and the best solution values found over the 5 runs, ª# feasº is the number of times a

feasible solution is found (out of the 5 runs), and t is the average computational time in seconds.

As the results show, not all configurations are able to find feasible solutions on some instances, i.e.,

Thursday of set A2 and Friday of Set A3.
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Wednesday A2 Thursday A2

Conf. Av best # feas t Av best # feas t

C1 1787.80 1703 5 465.38 2402 2257 5 786.28

C2 2112.50 2068 2 187.80 - - 0 196.47

C3 2074.67 2070 3 199.82 - - 0 173.27

C4 1716.80 1644 5 317.73 2307 2229 2 496.53

C5 1933.20 1883 5 988.10 - - 0 1444.13

C6 2247.50 2198 2 812.70 - - 0 788.77

C7 2159 2070 4 175.04 - - 0 234.28

C8 1938.60 1762 5 836.94 2614 2614 1 1698.52

C9 1800.60 1644 5 315.51 2466.80 2216 5 491.38

C10 2195 2160 2 191.18 - - 0 257.16

C11 2195 2160 2 191.16 - - 0 257.42

C12 1858.40 1722 5 439.48 2437.33 2358 3 714.46

Table 1.5: Tuning results on instances Wednesday and Thursday of Set A2.

Friday A3 Saturday A3

Conf. Av best # feas t Av best # feas t

C1 1980.60 1816 5 668.59 1227.20 1165 5 236.05

C2 - - 0 258.59 1437.40 1250 5 165.21

C3 - - 0 185.12 1465 1373 5 153.21

C4 2051.20 2022 5 296.37 1234.20 1106 5 119.29

C5 2148.50 1984 4 964.46 1274.60 1221 5 291.32

C6 - - 0 757.08 1439 1318 5 545.66

C7 - - 0 295.75 1420.80 1309 5 150.04

C8 2059 1866 5 1383.01 1205 1148 5 338.93

C9 1999.60 1848 5 329.85 1217.60 1142 5 114.72

C10 - - 0 249.40 1462.20 1407 5 547.09

C11 - - 0 250.17 1440.60 1250 5 160.44

C12 2052.20 1928 5 685.63 1181.80 1053 5 188.42

Table 1.6: Tuning results on instances Saturday and Friday of Set A3.

The results of the second tuning phase are summarized in Table 1.7. They show that C1 and C9

are the only configurations able to find feasible solutions in all the runs. Regarding the quality of

the solutions, both C1 and C9 attain solutions of good quality when compared to the other configu-

rations. Note that C1 requires higher computational times than C9, on average, since it employs the

time consuming spoke insertion heuristics of variant V2.
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Conf. Av best # feas t

C1 1849.40 1735.25 5 539.08

C2 1774.95 1659 1.75 202.02

C3 1769.83 1721.50 2 177.85

C4 1827.30 1750.25 4.25 307.48

C5 1785.43 1696 3.50 922

C6 1843.25 1758 1.75 726.05

C7 1789.90 1689.50 2.25 213.78

C8 1954.15 1847.50 4 1064.35

C9 1871.15 1712.50 5 312.87

C10 1828.60 1783.50 1.75 311.21

C11 1817.80 1705 1.75 214.80

C12 1882.43 1765.25 4.50 507

Table 1.7: Average results of the tuning phase.

In the following sections, computational experiments are presented in which configurations C1

and C9 are tested on all benchmark instances.

1.6.2 Results on small instances

The MILP formulations and the H-ALNS algorithms selected in the tuning phase have been

tested on the ten small instances introduced in Section 1.5. As already mentioned, these instances

have been generated in order to test the formulations on different aspects of the problem, e.g.,

sample stabilization, multiple visits of the vehicles at spoke centers. The mathematical formulations

have been solved by Gurobi 9.0 on a 3.2 GHz computer with 12 cores, 64 Gb of RAM with a time

limit of 16 hours. The H-ALNS algorithms C1 and C9 have been executed on a 2.5 GHz Quad-

core processor and 16 Gb of RAM with Itmax = 20,000. It is worth noting that MILP3 was not

able to find any feasible solution within the time limit in all the 10 small instances, suggesting that

the time-indexing introduced in MILP1 and MILP2 is more effective to deal with multiple visits.

As a consequence, Table 1.8 reports a summary of the results of MILP1, MILP2 and of the H-

ALNS algorithms. In the table, for each instance, Columns 2±4 and 5±7 respectively report the

results related to MILP1 and MILP2. More precisely, ªLBº is the lower bound found at the root
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MILP1 MILP2 C1 C9

id LB Sol t LB Sol t Av. best # Opt. t Av. best # Opt. t

1 227 227 601.53 184 227 526.83 227 227 5 2.42 227 227 5 2.58

2 366 366 1.024.73 322 366 1,171.99 366 366 5 6.99 366 366 5 5.86

3 385 385 1,862.24 385 385 1,432.54 385 385 5 3.11 385 385 5 3.26

4 328 328 19.02 260 328 19.14 328 328 5 4.32 328 328 5 4.87

5 572 572 39.11 420 572 55.86 572 572 5 4.73 572 572 5 6.42

6 572 572 187.8 311 572 57600* 572 572 5 6.82 572 572 5 7.13

7 572 572 231.62 322 572 57600* 572 572 5 7.17 572 572 5 9.67

8 569 569 87.03 569 569 90.2 569 569 5 7.57 569 569 5 11.35

9 528 528 604.88 390 638 57600* 528 528 5 10.62 533.6 528 3 17.09

10 302 302 1,463.58 211 302 42,088.83 307.4 302 1 71.92 305 302 2 182.77

Table 1.8: Results on the small instances.

node, ªSolº is the value of the best solution and ºtimeº is the computation time in seconds. A ª*º

indicates that Gurobi was not able to certify the optimality of the solution within the time limit.

Finally, Columns 8±10 show the results of the H-ALNS algorithms, in which, for each instance,

ªAv.º is the average solution found over the 5 runs of the algorithms, ª# Opt.º is the number of

times the optimal solution is found out of the five runs and ªtimeº is the average computational

time in seconds.

The results show that MILP1 is able to find the optimal solution in all the small instances. In

most of the cases the optimality is certified at the root node. The computation time required by

MILP1 generally depends on the instance dimension, and ranges from a few dozens of seconds to

about half an hour. It also seems to depend on other characteristics of the instances. In fact, when

the optimal solution requires multiple visits of a vehicle at a spoke center, the computation time

seems to be higher. Also, the number of spokes seems to affect the computation time more than

the number of requests or vehicles. MILP2 performs similarly on the 5 smallest instances but, in

general, as the size of the instances increases, it starts to struggle in finding the optimal solution. In

three of the ten instances, MILP2 was not able to certify the optimal solution within the time limit.

In two of these cases the best solution found is actually the optimal solution, but the optimality gap
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was not filled up. Such a behavior could be mainly due to the strength of the linear relaxation: In

fact, the best lower bound found at root node of MILP1 always equals the optimal solution value,

while the one provided by MILP2 is generally smaller. As for the H-ALNS algorithms, they are

able to find the optimal solution on all the instances within the five runs with computational times

ranging from 3 to 180 seconds. Instance 10 (and 9 for C9) results the hardest instance, on which

C1 and C9 are able to find the optimal solution in only one and two runs out of five, respectively.

However, as the average shows, even the not optimal solutions are in general very close to the

optimum.

1.6.3 Computational results on real-life instances

In this section, the experimental results of the H-ALNS algorithms on the real-life instances of

Sets A and B are presented. We point out that, even on the smallest instances of these sets, Gurobi

running on MILP1 and MILP2 was not able to find a feasible solution in 16 hours of computation.

Tables 1.9 and 1.10 report the results on the two sets. We recall that the instances of Monday,

Wednesday, Friday and Saturday of Sets A3 and B3 are the same. On each instance, five runs have

been performed employing the parameters and the two algorithm configurations selected in the

tuning phase presented in Section 1.6.1, i.e., C1 and C9. The maximum number of iterations Itmax

has been set to 20,000 in all the experiments.

The objective of the experimental campaign is twofold: (1) to assess the ability of the H-ALNS

algorithms to tackle big real-life instances; (2) to evaluate the best policy for batching samples

in such a way that all samples can be delivered on time. Recall that, instances of Sets A and B

present different characteristics: instances in Set A usually have a bigger number of requests, but
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with longer lifetimes, while instances in Set B are smaller but with shorter lifetimes of the requests.

We point out that the algorithm presented in [8] is not able to find any feasible solution (i.e., in

which all samples are delivered on time) in all the instances of Sets A and B, except for instances

of Saturday of Set A3 (and B3), on which it attains solutions of worse quality (with total distance

about 58% bigger) than the solutions found by algorithms C1 and C9. Tables 1.9 and 1.10 show the

results of the H-ALNS algortihms C1 and C9 on the instances of Sets A and B, respectively. In the

tables, ªAvº and ªbestº are the average and the best travel distance, respectively, of the solutions

found on the 5 runs of the algorithms, ª#feas.º is the number of times, out of 5, a feasible solution

is found, and t is the average computational time in seconds. A ª-º in ªAvº and ªbestº indicates that

no feasible solution is found in the five runs. The last row of each table reports on average results.

First of all, note that the H-ALNS C1 and/or C9 are able to find feasible solutions (in which

lifetime and time windows requirements are satisfied) for all the instances of the Sets A1, A2, B2

and B3. In instances of Set A3 the algorithms find feasible solutions except for the biggest instances,

i.e., Thursday and Tuesday. On the other hand, the H-ALNS algorithms are not able to find feasible

solutions for the instances of Set B1, except for Saturday (for which they find the best feasible

solutions for this day). However, note that the instances in Set B1 contain batches with very short

lifetimes, so that the existence of a feasible solution is not guaranteed.

The two H-ALNS configurations attain similar results in terms of solution quality, with C1 (C9)

performing slightly better than C9 (C1) on instances of Set B (Set A). On the other hand, C9 requires

in general shorter computational times than C1: about 300 secs and 490 secs on average for C1 and

C9, respectively.

Regarding the batching policy, the results show that the most reliable policy for grouping sam-
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C1 C9

Set Av best # feas. t Av best # feas. t

Monday 1580 1470 5 378.49 1640.80 1559 5 271.16

Tuesday 1985.40 1863 5 476.74 1911 1815 5 303.05

A1 Wednesday 2134.75 2079 4 146.95 1745 1702 5 251.39

(ts = 60) Thursday - - 0 196.39 2200 1964 5 424.02

Friday 1504.40 1353 5 348.66 1536.80 1368 5 240.70

Saturday 873.60 849 5 170.95 904.40 838 5 112.13

Monday 2049.60 1943 5 489.95 2051.20 1991 5 367.94

Tuesday 2306.20 2141 5 680.16 2270.40 2118 5 437.59

A2 Wednesday 1787.80 1703 5 465.38 1800.60 1644 5 315.51

(ts = 45) Thursday 2402 2257 5 786.28 2466.80 2216 5 491.38

Friday 1731.20 1644 5 471.89 1731.80 1538 5 289.28

Saturday 1038.40 958 5 200.57 971.60 937 5 136.10

Monday 2156.60 2108 5 872.13 2053.40 1938 5 320.56

Tuesday - - 0 732.19 - - 0 411.59

A3 Wednesday 2280.60 2122 5 810.04 2216.20 2110 5 443.36

(ts = 30) Thursday - - 0 1158.78 - - 0 589.55

Friday 1980.60 1816 5 668.58 1999.60 1848 5 330.31

Saturday 1227.20 1165 5 234.92 1217.60 1142 5 114.78

Av 1802.56 1698.07 4.11 516.03 1794.83 1670.50 4.44 325.03

Table 1.9: H-ALNS results on the instances of Set A.

ples is to use a time span of 45 minutes. In fact, on these sets (i.e., A2 and B2) both the H-ALNS

algorithms find five feasible solutions (out of the five runs) for each instance, while on the sets with

time span of 60 and 30 minutes the average number of feasible solutions is 2.6 and 3.6, respectively.

In terms of solution quality, the H-ALNS algorithms attain the best results on the instances of Sets

A1, A2 and B2, suggesting that using a time span of 45 or 60 minutes is the best batching policy

when a feasible solution is found. On these instances, it turns out that C9 finds always feasible

solutions, while C1 is not able to find any solution on Thursday of Set A1, only.

Comparing results on instances A2 and B2, in which a feasible solution is found in all the runs,

it turns out that the H-ALNS algorithms attain the best results on instances of B2, both in terms of

solution quality and computational times. Finally, regarding the biggest instances of Sets A3 and

B3, we observe that the algorithms find feasible solutions in all the runs except for the instances

of Thursdays and Tuesdays. As already stated, this fact could mainly due to the big sizes of these

instances, with a number of requests ranging from 109 to 120 (see Table 1.3).
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C1 C9

Set Av best # feas. t Av best # feas. t

Monday - - 0 326.38 - - 0 255

Tuesday - - 0 325.79 - - 0 235.45

B1 Wednesday - - 0 313.99 - - 0 226.68

(ts = 60) Thursday - - 0 341.95 - - 0 221.54

Friday - - 0 313.86 - - 0 228.79

Saturday 804.20 792 5 153.47 836.40 802 5 106.35

Monday 1744.00 1687.00 5.00 374.22 1697.00 1496.00 5.00 254.16

Tuesday 2077.80 1983.00 5.00 454.48 2096.60 2003.00 5.00 350.16

B2 Wednesday 1567.00 1461.00 5.00 400.47 1596.60 1463.00 5.00 314.38

(ts = 45) Thursday 2123.80 2005.00 5.00 480.27 2152.80 2040.00 5.00 357.66

Friday 1530.20 1392.00 5.00 346.70 1604.00 1493.00 5.00 215.51

Saturday 901.60 835.00 5.00 184.10 951.80 898.00 5.00 115.64

Monday 2156.60 2108.00 5.00 871.66 2053.40 1938.00 5.00 320.69

Tuesday 2369.00 2283.00 2.00 910.77 2534.67 2441.00 3.00 628.46

B3 Wednesday 2280.60 2122.00 5.00 810.04 2216.20 2110.00 5.00 443.36

(ts = 30) Thursday 2501.00 2501.00 1.00 972.50 2546.00 2546.00 1.00 692.30

Friday 1980.60 1816.00 5.00 668.58 1999.60 1848.00 5.00 330.31

Saturday 1227.20 1165.00 5.00 234.92 1217.60 1142.00 5.00 114.78

Av 1789.51 1703.85 3.22 471.34 1807.90 1709.23 3.28 300.62

Table 1.10: H-ALNS results on the instances of Set B.

Summarizing, the developed H-ALNS algorithms are able to find solutions in which all the

samples are delivered on time, using different grouping time spans with limited computational

efforts. Such a result improves the current real case related to the Local Healthcare Authority of

Bologna, in which the specified time requirements are not fully respected. Furthermore, a deeper

analysis of the solutions found by the H-ALNS algorithms provides information that could help to

take decisions at a tactical and/or strategic level. At this aim, we considered the best solutions found

by the H-ALNS Algorithm C9 on the six instances of Set A1, one of the sets in which C9 always

finds feasible solutions (see Table 1.9). Table 1.11 reports the spokes used by these best solutions:

An ªXº in the table indicates that the corresponding spoke (labeled as sp1,sp2, . . . ,sp12) is visited

by at least one vehicle in the solution. The last column of the table reports on the total number of

spokes used by the solutions. Note that, the number of used spokes ranges from 7 to 9, implying

that around 30% of the available spokes is not used. Furthermore, it can be noticed that Spokes sp3,

sp9 and sp12 are not used by any solution. At a managerial level, such a fact could have a relevant
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Spoke sp1 sp2 sp3 sp4 sp5 sp6 sp7 sp8 sp9 sp10 sp11 sp12 # spokes

Monday X X X X X X X X X 9

Tuesday X X X X X X X X X 9

Wednesday X X X X X X X 7

Thursday X X X X X X X X X 9

Friday X X X X X X X X 8

Saturday X X X X X X X X 8

Table 1.11: Number of spokes used by the best solutions of H-ALNS C9 on Set A1.

economic and organizational impact, since it informs healthcare managers that some spokes can be

removed without affecting the system performances. A similar analysis has been performed on the

number of vehicles used by the solutions. It shows that the solutions often employ all the available

vehicles, suggesting that the performances of the system could be sensible to a reduction in the

number of vehicles.

1.7 Conclusions

In this chapter, a transportation problem arising from a real-world healthcare application has

been presented, dealing with the transportation of biological samples from blood draw labs to a

main laboratory. The problem can be modeled as a Vehicle Routing Problem with time-windows

and lifetime constraints, in which transfers and multiple possible visits at specific nodes (i.e., the

spokes) are allowed to get extra lifetimes of the transportation requests. Mixed Integer Linear Pro-

gramming formulations and hybrid ALNS algorithms have been proposed for the problem. Com-

putational experiments on different sets of instances, based on real-life data provided by the Local

Healthcare Authority of Bologna, Italy, have been also presented. A comparison between the so-

lutions obtained by MILP formulations and the H-ALNS algorithms on small instances shows the

effectiveness of the proposed metaheuristics and assesses the superiority of the two time-indexed
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MILP models with respect to the simple MILP one. On real-life instances, due to the big number

of samples to deliver each day, we proposed an experimental study to evaluate different grouping

policies. The computational results show that the H-ALNS algorithms are able to find solutions in

which all samples are delivered on time, while, in the real case, the lifetime requirements of the

samples are not currently satisfied.
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Chapter 2

Solving Crop Planning and Rotation

Problems in a Sustainable Agriculture

Perspective

Climate change patterns and the uncertainty of the availability of global value chain commodi-

ties, due to socio-economic aspects, call for a viable development of resilient agricultural processes

able to ensure sustainability at various levels: economic (including food security), environmental

(relating to resource efficiency, soil and water quality and threats to habitats and biodiversity) and

social (territorial and community level).

Sustainable agriculture aims to address the above challenges highlighting the benefits of crop

planning decisions that include the rotation of crops across growing seasons [38] and crop diver-

sification strategies. As highlighted in [51], crop rotation increases crop revenues, improves soil

structure and decreases farming costs owing to reduced need for fertilizers and pesticides.
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Many countries and organizations promoted sustainable agriculture by ad-hoc policies followed

by specific regulations. In particular, crop rotation was included as a new commitment into the

Good Agricultural Environmental Conditions (GAEC) list published in the last Common Agricul-

tural Policy (CAP) proposal of the European Union (EU), and several times it has been included as

a tool of sustainability in production schemes used by farmers, food producers and retailers [49].

As a result, attention is increasing for decision support tools that can be used to assess the impact

of common policies and private initiatives from one side, and to help farmers to maximize their

revenues, while respecting sustainability principles [41; 39].

In this chapter, the problem of planning the allocation of crops to arable lands is addressed, tak-

ing into account crop rotation principles and diversification strategies promoted by sustainable agri-

culture, and optimization models are proposed for solving multi-period planning problems. From

one side, the models can be embedded in decision support tools able to help farmers maximizing

their revenues in compliance with ecological transition pathways indications. From the other side,

they can be used by decision makers to assess the effectiveness of current regulations and to design

future rules to promote sustainability principles in arable land use, as well as to evaluate farmers

production factors allocation choices.

The optimization models proposed in this chapter allow to decide how to allocate the available

farmland among different crops in each growing season to maximize the total expected profit over

a finite planning horizon. The allocation decisions are made considering the crop rotation bene-

fits and the sustainable requirements stated by regulations. The proposed models, differently from

other works in the literature (e.g., see [50]), allow crop rotation schemes that do not follow the best

agronomic practices, by taking into account and quantifying the agronomic costs and constraints
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deriving from the adoption of the same crop species/type on the same plot. The models’ outputs

will provide information that could be useful to assess, via farm level quantitative economics indi-

cators, the viability of crop rotation schemes taking into account the potential economic impact on

agriculture value chain actors in different pedo-climatic areas.

Numerical experiments have been conducted with real data coming from structured professional

farms specialized in arable crops, located in one of the most intensive agricultural areas of produc-

tion in Europe, the plain area around the Po river basin, called ªPianura Padanaº Valley in northern

Italy [43]. In this pedo-climatic context, farmers plan the use of their arable land by distinguishing

winter crops from summer crops. The types of crops that can be selected change among farms and

across seasons according to structural features (irrigation, machines and work availability), costs

and benefits prediction (potential yields, product prices, input availability, premium prices and sub-

sidies) and specific pedo-climatic constraints (temperatures, pluviometry trends, type of soil).

The main contributions of this work are listed below:

- A formal characterization of the crop planning and rotation problem is given, where the rotation

schemes are based on sequences of k consecutive crops. The risks/benefits of all possible k-crop

rotation schemes are assessed, including those not following the traditional agronomic practices.

- A complexity analysis is performed, showing that the problem is strongly NP-hard when k ≥ 3.

- Polynomial network flow approaches for special cases are proposed.

- A real world application is presented, based on data from Italian farms and current sustainability

rules coming from public (i.e., CAP) and private initiatives (promoted by the Barilla Group). So,

the models are settled up for taking into account constraints and incomes coming from the adoption

of different production schemes.
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- Integer Linear Programming (ILP) models are developed for the case under study (Italian farms of

the Pianura Padana Valley) where k is set to 3, as a consequence of best practices in Mediterranean

pedo-climatic contexts.

- An experimental campaign on real data shows that the models are able to optimally solve the plan-

ning problems under different sustainability scenarios for all the real-life instances, in reasonable

computational times.

The chapter is organized as follows. In Section 2.1, a literature review on crop planning and

solution approaches is presented. In Section 2.2, crop rotation issues and other sustainable require-

ments are described into detail. A formal definition of the problem and a complexity analysis is

reported in Section 2.3. In Section 2.4, a polynomial network flow approach for solving a special

class of crop planning problems is proposed. In Section 2.5, the ILP models related to the case

under study are presented. Sections 2.6 and 2.7 are devoted to describe the real data and the results

of the experimental analysis, respectively. Conclusions follow in Section 2.8.

2.1 Literature review

In the literature, crop planning and rotation problems have received considerable attention from

the operations management and agricultural economics communities. We refer the reader to [33;

45] for reviews on the topic.

In particular, Mathematical Programming approaches have been proposed by different authors

for solving crop planning and rotation problems. Haneveld and Stegeman [50] proposed linear

programming models for farm production planning with crop rotation constraints, where crop suc-

cession information is only given in the form of a set of inadmissible successions of crops. The
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decision variables represent the areas where a certain admissible sequence of crops is cultivated.

In Alfandari et al. [34], the authors focused on the Madagascan context, where the minimization

of cultivated space contributed to the sustainable development of the primary forest in the long

term. An ILP formulation and a graph formulation are provided, and a branch and price and cut

approach is adopted to solve the problem of minimizing the cultivated land necessary to satisfy

demand constraints. Given the different pedo-climatic context, the constraints of the problem are

quite different from the ones considered in this paper. Also crop rotation is handled differently and,

in general, only some rotation schemes are allowed in their problem. In Santos et al. (2015) [58],

an ILP model is presented for the problem of finding the minimum land necessary to satisfy crop

demand. Crop rotation is only considered by imposing a green manuring crop and a fallow period

in the crop schedules. In particular, they use binary variables and assignment constraints to model

the crop schedules on single plots of land and adopt integer variables to minimize the total number

of base-area plots assigned to the different schedules. A Branch and Price and Cut approach is

presented, able to solve instances up to 20 crops and a 2 years planning horizon.

Santos et al. (2010) [56] also presented a binary linear programming model for the Crop Ro-

tation Scheduling Problem (CRSP) aiming to maximize the plots occupation considering demand

constraints. The authors proposed a column generation procedure to solve the model. A similar

procedure was also employed in [57] to solve a variant of CRSP without demand constraints. In

[57], the authors were the first to introduce adjacency constraints for the CRSP, preventing crops

of the same botanical family to be cultivated at the same time in neighboring plots. In [53], a crop

planning problem in the Brazilian area is addressed, with the objective of maximizing plots’ occu-

pation and profit while dealing with adjacency constraints. The authors propose improvements in
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the mathematical model presented by [57] and a detailed set of instances based on real-world data.

In order to find bounds and solutions for the improved model, five different relaxation approaches

are proposed. The results show improvements from the model proposed by [57].

In Fikry et al. [46], ILP models are presented to assign crops to plots to periods with the

objective of maximizing the total profit. The crop rotation is performed by simply forbidding that

two crops of the same family are consecutively planted. However, in the models, the profits earned

by each crop are considered as static, i.e., do not depend by the succession of the previous crops

grown on the same piece of land as in our model.

Boyabatli [38] et al. proposed a stochastic dynamic program model for crop planning in sus-

tainable agriculture, taking into account crop rotation issues. However, only succession between

two crops (i.e., corn and soybeans) are considered in the study. Detlefsen and Jensen [42] consider

the problem of finding an optimal crop rotation for a given selection of crops on a given piece of

land. The problem is modeled and solved as a minimum cost network flow problem for the case in

which sequences of at most three crops are considered. Bachinger and Zander [35] presents a deci-

sion support tool called ROTOR, a static rule-based model in which a set of annual crop production

activities are assembled semi-automatically. However, ROTOR does not include the crop rotation

benefits in the decision process, but it allow to only perform a what if static analysis.

Works from the literature also focus on different planning and coordination problems in agri-

culture. Filippi et al. [47] addressed the problem of crop-mix selection with the objective of

maximizing the farmer’s profit. In particular, they focus on the working phases (and their costs)

required by each crop, rather than on crop rotation issues, and develop two integer programming

models: the first one to solve the problem of maximizing the farmer’s profit, setting costs and prices
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values as the historical average; the second one where consider the risk aversion of the farmer us-

ing the maximization of the Conditional Value-at-Risk as objective function and looking for the

crop-mix that allows to maximize the average expected profit under a predefined quantile of worst

realizations. The models are applied to the real case of a single farm located in Italy.

Volte et al. [60] considered the Differential harvesting problem, consisting in optimizing the

harvest of different grape qualities in a vineyard so that a minimum quantity of good quality grapes

is harvested and directed to a specific bin, while minimizing the total harvesting time. The au-

thors exploit the analogies with the capacitated vehicle routing problem to develop efficient exact

methods using column generation and VRPSolverT M based models.

In Yan et al. [62], the authors propose a method to coordinate a fresh agricultural product

supply chain with the consideration of strategic consumer behavior. In particular, they developed

a decision-making model established on the basis of a two-period newsvendor model under the

centralized and decentralized chain.

Machine learning techniques have also been used in the literature to deal with problems in the

agricultural supply chain. The reader may refer to [59] for a systematic review of such approaches

in the agricultural context.

2.2 Crop planning issues and sustainability requirements in

the European agricultural context

In this section, the concept of crop rotation and the main issues connected to it are introduced.

Then, different variants of the crop planning problem are described, accounting for different sus-
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tainability scenarios. More precisely, real constraints derived from agricultural policies and agri-

food value chain initiatives have been analyzed. The sustainability scenarios are defined on the

basis of the current CAP regulations and the rules of private initiatives promoted by food produc-

ers. As it will be shown in Section 2.7, optimal solutions of the different scenarios can be used to

evaluate the impact of different sustainability policies on the farmers’ revenues.

Crop planning is the problem of deciding the crops to cultivate on a farmland for a given plan-

ning horizon. When dealing with this problem in sustainable agriculture, decision makers, e.g.,

farmers, have to take into account two main aspects: (i) the crop rotation principles, and (ii) the

constraints deriving from legislative frameworks and policies, especially promoted by international

agencies or governments (e.g., CAP for European Union countries) to mitigate natural resources

overexploitation.

In agriculture, crop rotation refers to the succession of different crops on the same piece of

land over consecutive seeding periods. In fact, monoculture schemes, in which the same crop is

assigned to the entire farmland over the whole planning horizon, lead to a series of issues (such as

loss of yield and soil fertility, increase of weed and pest diseases) that can be mitigated by applying

suitable rotation of crops. The problems caused by intensive agriculture and monoculture practices

have been the subject of numerous research over the years, both technical-agronomic and socio-

economic [40; 55]. To overcome these problems, movements of scholars, technicians and civil

society proposed more sustainable arable land use patterns, inspired to agroecology principles [61].

The principles of the International Federation of Organic Agriculture Movements (IFOAM) were

used worldwide to define specific regulatory framework for organic agriculture. In Europe, since

the publication of the first Regulation on organic farming in 1992, the importance of crop rotation
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has been translated into rotation schemes that can be adopted by farmers. Indeed, it was highlighted

the importance of the inclusion of leguminous plants or crops whose management had improving

effects on the structure and, more generally, on the natural fertility of the soil [36; 63]. For instance,

in Italy, the viable crop rotation schemes for organic agriculture are defined by ministerial decree

[44]. The decree states that the same crop species can come back on the same land after two cycles

of different crop species, that must include a nitrogen-fixing crop.

In the Mediterranean pedo-climatic context, which is the case considered in this study, the best

crop rotation practice consists in the consecutive succession of three different types of crop, namely,

a renewal crop, an impoverishing crop and an improver crop, in this order [36]. The characteristics

of renewal, impoverishing and improver crops are described in the following:

• Renewal: these crops (e.g., corn, sugar beet, potato, tomato, sunflower, etc.) require partic-

ular care consisting in excellent soil preparation and balanced organic fertilizations, which

has a positive effect on the structure of the soil. However, in some specific contexts, also a

fallow period could be considered as renewal soil quality practice.

• Impoverishing: these crops exploit the nutritional elements present in the soil and deplete it.

Crops in this class are wheat, oats, barley, rye, rice, corn, sorghum and generally all grain

cereals.

• Improver: these crops increase the fertility of the soil, enriching it with nutrients. Improver

crops mainly are legumes, such as alfalfa or clover, which are able to fix atmospheric nitro-

gen.

As explained above, proper crop rotation schemes may bring many advantages to the farm, both
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of an agronomic and economic-managerial perspective [37]. On the other hand, when crop rotation

does not follow the best agronomic practice, in order to keep their yield stable over time, farmers

will have to compensate for the loss of soil fertility and the increase in weeds and pests’ risks by

employing technical inputs, such as herbicide fertilizers and pesticides. The use of technical inputs

leads to an increase in production costs, directly related on the specific crop succession performed

in the rotation scheme.

Summarizing, all crop successions are viable in general, but additional production costs may

arise when crop patterns do not follow the best agronomic practices [36]. As an example, Figure 2.1

reports 3-crop rotations following and not following best practices. As a consequence of what we

have seen, in the Mediterranean pedo-climatic context it is generally assumed that the production

cost and the profit derived by cultivating a crop on a plot of land is linked to the two previous crops

grown on the same plot.

Best practice rotation  Rotation not following best practice  

Year 1  Year 2 Year 3  Year 1  Year 2 Year 3 

Corn Wheat Soy  Corn Wheat Corn 

Renewal Impoverishing Improver  Renewal Impoverishing Renewal 

Figure 2.1: 3-crop rotations following and not following best practices.

Another issue strongly related to the crop rotation that must be taken into account in crop

planning is the maximum crop replanting, namely the number of times a given crop family can

repeat itself on a plot in a certain period. In fact, although a cost increase occurs when crop rotation

does not follow the best agronomic practice, crops cannot indefinitely be replanted on the same

land, if their succession is not interrupted by other crops, also when this solution is technically

viable.

In this work, we address the problem of assigning crops to the arable land of a farm over a given
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time horizon, taking into account the crop rotation issues described above, with the objective of

maximizing the total profit. In the problem, we also consider the impact of regulations arising from

public sustainable policies (e.g., CAP regulation in EU) and private supply chain initiatives, that

already affect European farmers’ choices on arable land allocation through economic incentives.

At this aim, three different production scenarios are introduced, based on different greening and

sustainability constraints and different incentive levels, leading to different farmers entrepreneur-

ship approaches. The three scenarios are denoted as ªPure farmerº, ªCAP farmerº and ªCAP+SVC

farmerº and are described in what follows.

2.2.1 Pure farmer

The farmer is not involved in any production scheme and does not follow any sustainable reg-

ulation. Therefore, her/his entrepreneurial choices are dictated by the objective of maximizing

income and maintaining land capital. In this case, crop planning decisions are only taken on the

basis of agronomic knowledge, technical features, and machinery.

2.2.2 CAP farmer

The farmer is involved in the greening production schemes of the Common Agricultural Policy

(CAP), promoted by the European Union following the EU regulation 1307/2013. In this scenario,

farmers receive payments based on a set of standard requirements defined at EU level for obtaining

different kinds of incomes which, summed up, generate the CAP economic incentive. The incentive

is mainly based on environmental and climate issues and aims to promote practices which are good

for the environment (soil and biodiversity in particular) and for climate. More precisely, the CAP
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establishes the following rules:

• Crop diversification - Farms with more than 10 ha of arable land have to grow at least two

crops each year, while at least three crops are required on farms with more than 30 ha. Fur-

thermore, a single crop can not cover more than 75% of the arable land, and, for farms with

more than 30 ha, the land assigned to two crops must not exceed 95% of the arable land.

• Ecological Focus Area - Farmers with arable land exceeding 15 ha must ensure that at least

5% of their land is an Ecological Focus Area (EFA). Ecological focus areas may include dif-

ferent kind of features linked to landscapes, grasslands or improving biodiversity crops. For

the farms in the case study, located in an area characterized by the production specialization

of high-income arable crops, we have chosen to introduce EFAs devoted to nitrogen fixing

crops.

2.2.3 CAP+SVC farmer

In this scenario, an income related to a Sustainable Value Chain initiative (SVC) is added to the

CAP incentive. More precisely, in the case study, CAP+SVC farmers are also involved in an ini-

tiative called Carta del Mulino (CdM), introduced by the international Group ªBarillaº to promote

crop diversification and biodiversity and to support the efforts of farmers towards sustainability

through economic incentives [52]. In fact, the CdM incentive is an additional premium price paid

for wheat, in the following denoted as CdM crop, cultivated in compliance with rules involving

strong agroecological principles.

The CdM constraints are of three types:
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• (i) Greening constraints: when a CdM crop is sown on a hectare, then at least one legume or

oilseed must be cultivated in the next four crops on the same hectare.

• (ii) Diversification constraints: if a CdM crop is assigned to a hectare, then at least two

different crops must be cultivated in the next four crops on the same hectare.

• (iii) Repetition constraints: The CdM regulation define a set of crops, that we denoted as CR,

subject to the repetition constraints. They state that, if a CdM crop v is assigned to a hectare,

then at most one repetition of crops in CR can be performed in the crop sequence containing

v and the next four succeeding crops (namely, three crops in CR can not be consecutively

assigned in the sequence of five crops that starts from v).

Finally, to get the CdM incentives, at least 3% of the agricultural area devoted to wheat must be

dedicated to flower strips. This constraint will be implicitly included in the real data provided by

the farmers and, thus, not explicitly imposed by the models.

2.3 Notation, problem definition and complexity

In this section, we formally define the problem of planning crop production on a farmland taking

into account the crop rotation requirements reported in Section 2.2 and the constraints related to

environmental sustainability arising from the CAP regulation and the CdM initiative presented in

Sections 2.2.2 and 2.2.3, respectively.

In what follows we formally define the problem by generally considering k-crop sequences for

any k ≥ 1. Namely, due to the rotation issues introduced in Section 2.2, we assume that the profit

earned by cultivating a crop is affected by the k− 1 crops preceding it on the same piece of land.
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As highlighted in Section 2.2, we focus on the case of k = 3 characterizing the Mediterranean

pedo-climatic context, from which the real case arise.

Let a farmland be defined as a set of hectares H = {1, . . . ,m} to be cultivated. Let C =

{c1,c2, . . . ,cn} be the set of crops available to be sown on farmland’s hectares during a planning

horizon T = {1, . . . , p} composed of p seeding periods. As we are mainly considering the Euro-

pean context, each period in T correspond to a ªfallº (starting in October, devoted to winter crops)

or to a ªspringº (starting in April, devoted to summer crops) semester. Odd (even) periods in T

denote the first (the second) semester of a year. We denote by To the set of odd periods and by

Te the set of even periods in T , with T = Te∪To. The crops in C are classified according to their

seeding periods and time requirements as annual, first semester and second semester crops. Let

CA, CF and CS be the disjoint sets of annual, first semester and second semester crops, respectively,

with C = CA ∪CF ∪CS. These three sets are formally defined in the following. The crops in CA

can only be sown in first semester periods t ∈ To, and need to stay on the land also in the related

second semester t +1 ∈ Te. Moreover, each annual crop c ∈CA has a duration dc (2dc) indicating

the number of years (periods) it need to stay on the land. The crops in CF can only be sown at the

beginning of a first semester periods t ∈ To and the harvest is gathered at the end of the semester.

Finally, the crops in CS can only be sown in a second semester period t ∈ Te and only on hectares

where a crop in CF was cultivated in the first semester t−1 ∈ To. Given a crop c ∈C and a period

t ∈ T , we say that c and t are compatible if t is a possible seeding period for c. We assume that

a crop in C must be always assigned to each odd period t ∈ To on each hectare (fallow periods

can be simply modeled by introducing a dummy fallow crop in C, belonging to a type depending

on specific cases). On the other hand, we assume that an even period t must not be necessarily
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assigned to a second semester crop, when t−1 ∈ To is assigned to a first semester crop. (Note that,

when t−1 ∈ To is assigned to an annual crop, t is not available for a second semester crop.)

As reported in Section 2.2, crops are also classified according to their types, i.e., impoverishing,

renewal and improver. We denote the disjoint sets of impoverishing, renewal and improver crops

as CD, CR and CM, respectively, with C =CD∪CR∪CM. The type is related to the effect produced

by a crop on the soil, and affects the costs, profits and yields of crop successions. In fact, as stated

in Section 2.2, the profit obtained by cultivating a crop c ∈C on one hectare depends on the crop

rotation scheme, i.e., on the types of the crops immediately preceding c, on that hectare. In this

work, we consider a k-crop rotation scheme, in which the profit obtained by assigning a crop c to

a hectare h depends on c and on the types of the k− 1 crops preceding c on h, if k− 1 preceding

crops exist. (If the crops preceding c are smaller than k− 1, then the profit depends on the types

of all the crops cultivated before c). Furthermore, according to the maximum crop replanting issue

(see Section 2.2), limits exist on the number of consecutive repetitions of some crop on the same

piece of land. More precisely, crops are divided into homogeneous replanting groups, and crops in

the same group can not be consecutively repeated on the same hectare a number of times bigger

than the maximum replanting value of the group.

In what follows, we formally define a crop assignment for our problem.

Definition 2.3.1 A crop assignment consists in:

• assigning, on each hectare, an annual or a first semester crop to each odd period in To;

• deciding whether to assign or not, to each hectare, a second semester crop to each empty

even period t, i.e., the periods t ∈ Te such that t−1 is assigned to a first semester crop.
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Note that a crop assignment defines a crop sequence σ = ⟨c1,c2, . . . ,cq⟩ on each hectare, whose

length (i.e., the number of crops in the sequence) depends on how many even periods are used for

second semester crops. In fact, it is easy to see that the longest crop sequence assigns one crop to

each period in T , and, hence, alternates first and second semester crops. On the other hand, the

shortest crop sequence does not assign second semester crops (i.e., contains p/2 annual or first

semester crops, where p is the last period of the time horizon T ).

Let MAXc and MINc respectively be the maximum and the minimum number of hectares that

can be assigned to crop c in each period in T , for all c ∈ C. Recalling the requirements on the

maximum replanting, a feasible crop assignment can be formally defined as follows.

Definition 2.3.2 A crop assignment is feasible if:

• on each hectare, the related crop sequence σ does not contain a subsequence in which crops

of the same homogeneous replanting group are consecutively repeated a number of times

bigger than the maximum replanting value;

• the number of hectares assigned to a crop c in each compatible period in T belongs to the

interval [MINc,MAXc], for all c ∈C;

• each annual crop c ∈ CA sown on a hectare in t ∈ To stays on that hectare for at least 2dc

periods from t (its required duration).

We now formally define the profit of a crop sequence σ = ⟨c1,c2, . . . ,cq⟩ assigned to a given

hectare h. For each crop c ∈ σ , let σk(c) be the subsequence of σ containing the crop c and the

k−1 crops immediately preceding c in σ , if any. If less than k−1 crops precede c, then σk(c) will

contain all the preceding crops. We denote by ph(σk(c)) the profit earned by growing crop c on
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hectare h when the at most k−1 crops immediately preceding c on h are those given in σk(c). The

total profit πh(σ) earned by cultivating the crop sequence σ on hectare h is then given by

πh(σ) = ∑
c∈σ

ph(σk(c)) (2.1)

As an example, assuming that k = 3, the total profit (2.1) produced by the sequence σ =

⟨c1,c2,c3,c4⟩ on a hectare h is given by

πh(σ) = ph(⟨c1⟩)+ ph(⟨c1,c2⟩)+ ph(⟨c1,c2,c3⟩)+ ph(⟨c2,c3,c4⟩).

The k-sequence Crop Rotation Problem (CRP-k) can be now formally defined.

k CROP ROTATION PROBLEM (CRP-k):

Given a set C of crops, a set H of hectares, a set T of periods, the profits per hectare

ph(σk(c)) for all c ∈C and h ∈ H, a minimum MINc and a maximum MAXc number

of hectares to assign to each crop c ∈C in each period, the maximum replanting values

of the homogeneous groups and the duration of annual crops;

Find a feasible crop assignment maximizing the total profit ∑h∈H πh(σ).

Note that, by definition, CRP-k corresponds to the crop planning problem in the ªPure Farmerº

scenario introduced in Section 2.2.1. i.e., sustainability requirements are not considered.

As an example, let us consider a CRP-k instance with k = 3, three crops, C = {c1,c2,c3}, ten

periods, T = {1,2, . . . ,10}, corresponding to five years, and one hectare H = {1}. Let us assume

that c1 and c2 are annual crops, c3 a first semester crop, with MINc = 0 and MAXc = 1 for all c ∈C,

and suppose that each crop belongs to a different homogeneous replanting group with maximum re-

planting equal to two. Hence, the seeding periods are all the odd periods in T , i.e., To = {1,3, . . . ,9}.
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Let us consider the solution in which the crops c1,c1,c2,c3,c2 are respectively assigned to the odd

periods in To on the available hectare, producing the crop sequence σ = ⟨c1,c1,c2,c3,c2⟩. Note

that the crop assignment is feasible, since it satisfies the maximum replanting requirement (no crop

is consecutively repeated more than twice), and the constraints on the minimum and maximum

number of hectares are trivially satisfied. By definition, the total profit of the solution is given by

π1(σ) = p1(⟨c1⟩)+ p1(⟨c1,c1⟩)+ p1(⟨c1,c1,c2⟩)+ p1(⟨c1,c2,c3⟩)+ p1(⟨c2,c3,c2⟩).

The following theorem shows that CRP-k with k = 3 is strongly NP-hard.

Theorem 2.3.1 CRP-3 is strongly NP-hard.

Proof. The proof is by reduction from the strongly NP-hard axial 3-index assignment problem

(3IAP) [48]. 3IAP can be defined as follows.

Instance: We are given 3 sets P, Q and R of equal size n, a profit ai, j,l associated to

each triple (i, j, l) ∈ P×Q×R.

Problem: Find n triples such that: i) each element of P, Q and R belongs to exactly

one triple, ii) the total profit of the selected triples is maximum.

Given an instance of 3IAP, we build an instance of CRP-3 with a time horizon of 3 years (six

periods), a set C with n first semester crops, each crop belonging to a different replanting group,

and a farmland with n hectares. Hence, crops can only be assigned to the odd periods 1, 3 and 5.

Let the maximum replanting value of each crop be equal to 3, i.e., each crop c ∈C can be replanted

in all odd periods on any hectare. Then, we set the maximum and minimum number of hectares to

assign to each crop in each year equal to 1, i.e., MAXc = 1 and MINc = 1. Hence, each crop c ∈C

must be assigned to exactly one hectare in each odd period. Note that, a crop assignment produces
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a crop sequence of length three on each hectare, say ⟨i, j, l⟩, with i, j, l ∈ C, that we associate to

the triple (i, j, l) ∈ P×Q×R of the 3IAP instance. Furthermore, since a crop c can be assigned

to exactly one hectare in each odd period (MAXc = MINc = 1), a feasible crop assignment of the

CRP-3 instance corresponds to a set of triples such that each element of P, Q and R belongs to

exactly one triple of the set.

The profits ph(⟨i⟩), ph(⟨i, j⟩) and ph(⟨i, j, l⟩) obtained by assigning the crop sequence ⟨i, j, l⟩

on hectare h are defined in such way that the total profit of the sequence is πh(⟨i, j, l⟩) = ph(⟨i⟩)+

ph(⟨i, j⟩)+ ph(⟨i, j, l⟩) = 2ai, j,l . Note that, this is always possible by setting:

ph(⟨i⟩) = minu∈Q,v∈R{ai,u,v};

ph(⟨i, j⟩) = minv∈R{ai, j,v};

ph(⟨i, j, l⟩) = 2ai, j,l− ph(⟨i⟩)− ph(⟨i, j⟩).

Hence, by definition of the profits, a feasible solution of 3IAP of total profit M corresponds to a

feasible solution of CRP-3 with total profit 2M, and vice versa. Such correspondence holds even

for an optimal solution of 3IAP, and the thesis follows. □

2.3.1 Variants of the problem accounting for sustainable scenarios

According to the scenarios introduced in Sections 2.2.1±2.2.3, CRP-k basically corresponds to

the ªPure Farmerº scenario, since no greening and/or sustainable constraint is explicitly considered.

However, the ªCAP Farmerº scenario can be formally stated by properly redefining a feasible crop

assignment (given in Definition 2.3.2), in such a way that the CAP constraints specified in Section

2.2.2 are taken into account. Similarly, the ªCAP+SVC farmerº scenario can be formally defined

by changing Definition 2.3.2, in such a way that the CdM rules defined by the Carta del Mulino
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initiative (see Section 2.2.3) are satisfied. In order to introduced the ILP models, Formal notation

for this two latter scenarios is introduced in Section 2.5.

2.4 A network flow model for solving a variant of CRP-k

In this section, we introduce a simplified version of CRP-k, denoted as SCRP-k, and show that

it can be polynomially solved as a minimum cost network flow problem when k = 3 and, in general,

for any k, with k fixed. SCRP-k is defined as CRP-k in which:

• restrictions on the number of hectares to assign to each crop in each period do not exist (i.e.,

MINc = 0 and MAXc = ∞ for all c ∈C);

• the maximum replanting for each group and the duration dc of each annual crop c is at most

k−1.

In Section 2.4.1, we show that the network flow approach described in the following for SCRP-3

can be easily extended to polynomially solve SCRP-k, when k > 3 is fixed.

SCRP-3 can be modeled and solved as a minimum cost network flow problem, as explained

in the following. Recall that n is the number of crops in C and m is the number of hectares in

H. Let G = (V,E) be a graph where V and E are the node and the arc sets, respectively. On G,

we define a minimum cost network flow problem with one source and one demand node, denoted

as s and t, respectively. An amount of flow equal to m has to be sent from s to t. The nodes in

V are partitioned into layers, say L0,L1, . . . ,Ll , where L0 and Ll only contain the source and the

demand node, respectively. The arcs in E only connect the nodes of two adjacent layers Li, Li+1,

for i= 0, . . . , l−1, or a node of a layer with the demand node. A minimum and a maximum capacity
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equal to 0 and m, respectively, is assigned to each arc. Each node of an intermediate layer Li, for

i = 1, . . . , l−1, is denoted as (a,b)p,q and models the assignment of the two crops a and b in C on

the two compatible periods p and q, respectively, with p < q, when no other crop is assigned to

periods p+1, p+2, . . . ,q−1.

An arc between nodes of layers Li and Li+1, with 1≤ i < l−1, models a sequence of four crops,

possibly not all distinct, over four periods, as detailed in the following. Let us denote as (a,b)p,q

and (c,d)u,v two nodes of layers Li and Li+1, respectively, with 1 ≤ i < l−1. The flow on the arc

from (a,b)t,q to (c,d)u,v represents the number of hectares on which the crop sequence ⟨a,b,c,d⟩ is

assigned to the compatible set of periods {t,q,u,v}. Observe that, the arc from (a,b)t,q to (c,d)u,v

allows to keep track of the two crops preceding c and d, i.e., ⟨a,b⟩ and ⟨b,c⟩, respectively. Given

a node (c,d)u,v of an intermediate layer, it may happen that the crop d does not exist (e.g., when

u = p is the last period in T , or when u = p− 1 and c is an annual crop). In such cases, the node

is written as (c,−)u,−. The profit assigned to the arc from (a,b)t,q to (c,d)u,v is equal to the profit

obtained by assigning to one hectare, say h, the crops c and d to the periods u and v respectively,

when the two preceding crops of c and d are those given in the k = 3 crop sequences ⟨a,b,c⟩ and

⟨b,c,d⟩ respectively, i.e.,

ph(⟨a,b,c⟩)+ ph(⟨b,c,d⟩).

The profit assigned to an arc from the source node s to a node (a,b)t,q of the first intermediate

Layer L1 is equal to the total profit obtained by assigning to one hectare, say h, the sequence ⟨a,b⟩

to periods {t,q}, i.e.,

ph(⟨a⟩)+ ph(⟨a,b⟩).
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In what follows, we derive the length of shortest and longest paths on G. Note that, given a

node (a,b)t,q of G, we have either q = t +1 or q = t +2. In fact, if a and b are a first and a second

semester crop, respectively, then t is an odd period and q = t +1. While if nor a nor b are second

semester crops, then t and q are odd periods and q = t +2. By the above observation, and recalling

that the length of a crop sequence in a crop assignment (from period 1 to period p) depends on how

may even periods are assigned to second semester crops, we can easily determine the length of a

shortest and of a longest path on G, in terms of number of nodes. In fact, a path on G can not be

shorter than a path only containing nodes (a,b)t,q, in which a and b are annual or first semester

crops (and consequently in which t and q are consecutive odd periods). Hence, such a path is a

shortest path on G. On the other hand, a path on G can not be longer than a path only containing

nodes (a,b)t,q representing a succession of first and second semester crops in which q = t + 1.

Hence, such a path is a longest path on G.

The two following lemmas provide the number of layers and the number of nodes of each layer

in G.

Lemma 2.4.1 The number of node layers in graph G is
p
2
+2, where p is the last period of the time

horizon T .

Proof. Recall that the time periods in the time horizon T = {1, . . . , p} correspond to first and second

semesters of a given number of consecutive years, where period 1 is the first semester of the first

year and the last period p is the second semester of the last year. Since each node of a path in G

belongs to a different layer, the number of layers is equal to the length of a longest path on G. As

already observed, a path visiting nodes (a,b)t,q, where a and b are first and second semester crops,

respectively, assigned to periods t ∈ To and q = t +1, is a longest path on G. Then, it is easy to see
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that a longest path from the source node to the demand node must contain p/2+ 2 nodes, that by

definition of G belong to distinct layers. □

The following lemma provides the maximum number of nodes contained in each intermediate

layer of G. (Recall that the first and the last layer only contain one node.)

Lemma 2.4.2 The maximum number of nodes contained in each Layer Li of G is 4in2 where n is

the number of crops in C, for i = 1, . . . , p
2
+1.

Proof. By definition, a node (a,b)t,q in each Layer Li, for i = 1, . . . , l− 1, is related to a crop pair

a,b ∈C and to a pair of periods t,q ∈ T , with q ∈ {t + 1, t + 2}. We first compute the number of

possible period pairs t,q associated to nodes in each layer Li. At this aim, given a node (a,b)t,q of

layer Li, we determine the minimum and the maximum values taken by t and q.

Recall that any arc connecting nodes of two intermediate layers Li and Li+1 connects a node

(a,b)t,q with a node (c,d)u,v. As already observed, there exists on G a shortest path Ps only con-

taining nodes related to annual and first semester crops. Let (a,b)t,q and (c,d)u,v be the two (con-

secutive) nodes on path Ps belonging to layers Li and Li+1, respectively. We have that a, b, c and d

are first semester or annual crops, and t,q,u,v, are consecutive odd periods. On such a path, an arc

from (a,b)t,q to (c,d)u,v ªmovesº from period t ∈ To to v = t +6 ∈ To. Note that, no other succes-

sion of four consecutive crops produces a move bigger than this, in terms of number of periods. As

a consequence, the node of layer Li belonging to path Ps, i.e., (a,b)t,q, has the biggest period values

t and q. In fact, we have t = 4i−3 and q = 4i−1.

Similarly, as already observed, a longest path exists on G, say Pl , only containing nodes related

to first and second semester crops. Hence, given two consecutive nodes (a,b)t,q and (c,d)u,v on Pl ,
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we have that t,q,u,v are consecutive periods (with q = t +1, u = t +2, and v = t +3), and the arc

from (a,b)t,q to (c,d)u,v ªmovesº from period t to v = t +3. Note that, no other succession of four

consecutive crops produces a move smaller than this, in terms of number of periods. Hence, the

minimum values taken by the periods associated to nodes of layer Li are the periods t and q of the

node (a,b)t,q on Pl , for which we have t = 2i−1 and q = 2i, respectively.

Let (i, j)t1,tmax and ( f ,g)t2,tmin be the nodes of the intermediate layer Li belonging to the shortest

path Ps and to the longest path Pl of G, respectively. By the above discussion, we have that tmax =

4i−1 and tmin = 2i (hence, tmax− tmin = 2i−1). In fact, tmax = 4i−1 ∈ To is the seeding period of

the 2i-th crop of the shortest crop sequence (containing annual or first semester crops only), while

tmin ∈ Te is the seeding period of the 2i-th crop of the longest crop sequence (alternating first and

second semester crops). As a consequence, the last period q of each node (a,b)t,q in Layer Li can

take at most 2i values, i.e., 2i ≤ q ≤ 4i− 1. Since, in (a,b)t,q, the first period t ∈ {q− 2,q− 1},

the number of possible period pairs associated to nodes of Li is 2× 2i. Recalling that, in the

intermediate layer Li, at most two nodes exist for each crop pair a,b and period pair t,q, i.e.,

(a,b)t,q and (b,a)t,q, the nodes in Li are at most 4in2. □

Lemma 2.4.3 provides the total number of nodes in G.

Lemma 2.4.3 The number of nodes in G is O(n2 p2) for f = 1, . . . ,τ , where n is the number of

crops in C and p is the number of time periods in T .

Proof. The thesis easily follows by Lemmas 2.4.1 and 2.4.2 and since ∑
p/2
i=1 4in2 = 4n2(p/4)(p/2+

1). □

A consequence of Lemma 2.4.3 is that, when MINc = 0 and MAXc = ∞ for all c ∈C, CRP-3 can be
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optimally solved in polynomial time by solving a minimum cost network flow problem on graph

G.

In Figure 2.2, the graph G is reported for a SCRP-3 instance with a three year planning horizon

T = {1,2,3,4,5,6} and 3 crops C = {a,b,c}, where a is an annual crop and b and c are first and

second semester crops, respectively. Hence, a and b can be assigned to periods in To = {1,3,5},

and c to periods in Te = {2,4,6}. Note that, a shortest path on G alternating annual or first semester

crops is s→ (a,b)1,3→ (a,−)5,−→ t. On the other hand, a longest path on G, alternating first and

second semester crops, is s→ (b,c)1,2→ (b,c)3,4→ (b,c)5,6→ t.

(a,b)1,3

(a,a)1,3

(b,a)1,3

(b,b)1,3

(b,c)1,2

(a,-)5,-

(b,-)5,-

(b,c)5,6

(c,a)4,5

(b,c)3,4

(a,a)3,5

(c,b)4,5

(b,c)5,6

(c,-)6,-

(a,-)5,-

t
s

Figure 2.2: The network flow of the SCRP-3 instance.

2.4.1 Extending the network flow approach to SCRP-k

The graph G described in the above section can be suitably modified to model SCRP-k when

k > 3. The graph G used for modeling SCRP-k is a multi-layer graph too, with the difference that

a node in each intermediate layer models the assignment of a subsequence of k− 1 crops to k− 1
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compatible periods. Such a node can be denoted as (c1,c2, . . . ,ck−1)
t1,t2,...,tk−1 .

By exploiting the concepts of shortest and longest paths on the graph G introduced for SCRP-3,

it can be proved that the number of layers and nodes in each layer is polynomial with respect to the

number of crops and periods. This implies that SCRP-k can be polynomially solved as a minimum

cost network flow problem when k is fixed, i.e., it is not part of the input.

2.5 An Integer Linear Programming formulation for CRP-3

In this section, an ILP formulation for CRP-k with k = 3 is presented. As already stated in

Section 2.2, the rationale of considering 3-crop rotation schemes is a consequence of the best

agronomic practice in mediterranean pedo-climatic contexts [36], that is based on the consecutive

succession of three crop types. Hence, in what follows we assume that the profits earned by culti-

vating a crop on a piece of land are affected by the types of the two crops preceding it on the same

piece of land.

Recall that each crop can be classified into the crop types: renewal (set CR), impoverishing (set

CD) or improver (set CM). As reported in Section 2.2, all possible successions of crop types are

allowed, but for each assigned crop c a profit loss may occur depending on the types of c and of

the two immediately preceding crops, if they exist. Hence, since k = 3, to determine the profit of

a crop c assigned to a given time period t ≥ 3 we have to take into account the types of the two

crops immediately preceding c, if any. When c is only preceded by one crop b, the profit of c is

determined by considering the two crop sequence ⟨b,c⟩, only.

From now on, we call 3-rotation (2-rotation) the succession of three (two) crop types. Let R3

and R2 be the sets of all possible 3-rotations and 2-rotations, respectively. Obviously, the number of
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possible 3-rotations (2-rotations) of the three (two) types is 27 (is 9). Given a three crop sequence

σ3 = ⟨c1,c2,c3⟩, let r = ⟨α,β ,γ⟩ ∈ R3 be the corresponding 3-rotation, where α,β ,γ are the types

of the crops c1, c2 and c3, respectively. Similarly, given a two crop sequence σ2 = ⟨c1,c2⟩, let

r = ⟨α,β ⟩ ∈ R2 be the corresponding 2-rotation, where α,β are the types of crops c1 and c2,

respectively. In what follows, given a three crop sequence σ3 = ⟨c1,c2,c3⟩ and the corresponding 3-

rotation ⟨α,β ,γ⟩ ∈ R3, we denote as Cα , Cβ and Cγ the sets of all crops of type α,β ,γ , respectively.

Similarly, we denote as Cα and Cβ the sets of types α and β , respectively, corresponding to the

2-rotation ⟨α,β ⟩ ∈ R2.

Given a three crop sequence σ3 = ⟨c1,c2,c3⟩ and its corresponding 3-rotation r = ⟨α,β ,γ⟩ ∈R3,

we define as L3
r,c3

the loss, in terms of profit, on crop c3 when it activates the rotation scheme r ∈R3,

i.e., the profit loss for a crop of type γ when is preceded by two crops of types α and β . Similarly,

given a two crop sequence σ2 = ⟨c1,c2⟩ and its corresponding 2-rotation r = ⟨α,β ⟩ ∈ R2, we define

as L2
r,c2

the loss, in terms of profit, on crop c2 when it activates the rotation scheme r ∈ R2. Note

that, since we are assuming that a crop is necessarily assigned to each odd period in To, a 3-rotation

is activated by each crop assigned to a period t ≥ 5. On the other hand, when t < 5, a 3-rotation or

a 2-rotation may occur, depending whether second semester crops are assigned or not to the even

periods not bigger than t.

In the following, the decision variables used in the ILP model are listed:

• xt
ch ∈ {0,1} equal to 1 if crop c ∈ C is assigned to hectare h ∈ H in the period t and 0

otherwise.

• yt
rch ∈ {0,1} equal to 1 if crop c ∈ C is assigned to hectare h ∈ H in an odd period t ≥ 5,

activating the 3-rotation scheme r ∈ R3 and 0 otherwise.
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• yrch ∈ {0,1} equal to 1 if crop c ∈C is assigned to hectare h ∈ H in period 3 activating the

2-rotation scheme r ∈ R2 and 0 otherwise.

• wt
rch ∈ {0,1} equal to 1 if the second semester crop c ∈CS is assigned to hectare h ∈H in the

even period t, with t ≥ 4, activating the 3-rotation scheme r ∈ R3 and 0 otherwise.

• wrch ∈ {0,1} equal to 1 if the second semester crop c ∈ CS is assigned to hectare h ∈ H in

period 2, activating the 2-rotation scheme r ∈ R2 and 0 otherwise.

Let Pc be the nominal profit attained by assigning crop c ∈ C on a hectare to one period (or

two periods in the case of annual crops) when the best crop rotation practice is followed (i.e. no

profit loss occurs). Given a sequence σ3 = ⟨c1,c2,c3⟩, let r ∈ R3 be the 3-rotation activated by the

sequence. Then, the profit ph(σ3) earned by crop c3 ∈C when it is preceded by crops ⟨c1,c2⟩ on

hectare h is ph(σ3) =Pc3
−L3

r,c3
. Similarly, we can define the profit earned by assigning the last crop

c2 ∈C of a 2-crop sequence σ2 = ⟨c1,c2⟩ activating the 2-rotation r ∈ R2 as ph(σ2) = Pc2
−L2

r,c2
.

Since in CRP-3 the objective is to maximize the total profit, the objective function is:

max ∑
t∈T

∑
h∈H

∑
c∈C

Pcxt
ch− ∑

h∈H

∑
c∈C

∑
r∈R3

L3
r,c( ∑

t∈To: t≥5

yt
rch + ∑

t∈Te: t≥4

wt
rch)− ∑

h∈H

∑
c∈C

∑
r∈R2

L2
r,c(yrch +wrch) (2.2)

The constraints of the problem are reported in the following.

∑
c∈C

xt
ch ≤ 1,∀h ∈ H,∀t ∈ T (2.3)

∑
h∈H

xt
ch ≤MAXc ∀c ∈C,∀t ∈ T (2.4)

∑
h∈H

xt
ch ≥MINc ∀c ∈C,∀t ∈ T (2.5)
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∑
c∈CF∪CA

xt
ch = 1,∀h ∈ H,∀t ∈ To (2.6)

xt
ch = 0,∀c ∈CF ,∀h ∈ H,∀t ∈ Te (2.7)

xt
ch = 0,∀c ∈CS,∀h ∈ H,∀t ∈ To (2.8)

xt
ch ≤ ∑

k∈CF

xt−1
kh ,∀c ∈CS,∀h ∈ H,∀t ∈ Te (2.9)

xt+1
ch ≥ xt

ch ∀c ∈CA,∀h ∈ H,∀t ∈ To (2.10)

xt+1
ch ≤ xt

ch ∀c ∈CA,∀h ∈ H,∀t ∈ To (2.11)

x
t+2q

ch ≥ xt
ch− xt−1

ch ∀c ∈CA,∀h ∈ H,∀t ∈ To,∀q = 1, . . . ,dc−1 (2.12)

Constraints (2.3) state that, in each period t, i.e., semester, at most one crop can be assigned to each

hectare. Constraints (2.4) and (2.5) impose the minimum and maximum number of hectares assigned to each

crop in each period. Constraints (2.6) state that a first semester or annual crop must be assigned to each odd

period on each hectare. Constraints (2.7)-(2.11) set the seeding periods for annual, first semester and second

semester crops. In particular, Constraints (2.10) and (2.11) impose that an annual crop occupies both the

semesters t and t+1, with t ∈ To, of a given year. Constraints (2.12) state that if the annual crop c is assigned

to period t but not to period t−1, then it must be assigned to periods {t, t +1, . . . ,2dc−2} (it must stay on

the hectare for its duration, corresponding to 2dc consecutive periods).

The Constraints (2.13) and (2.14) reported below impose the requirements on the maximum replanting.

In the constraints, let ng be the number of homogeneous replanting groups, RGi be the set of crops of

the i-th group and repi be the maximum replanting value of RGi, for i = 1, . . . ,ng. Hence, repi is the

maximum number of times that crops in RGi can be consecutively assigned to the same hectare. More

precisely, Constraints (2.13) are related to homogeneous replanting groups with no second semester crops,
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i.e., when RGi∩CS = /0. Given an odd period t, the constraints are active when no second semester crop is

assigned to even periods in {t+1, . . . , t+2repi−1} (i.e., when the sum in the right hand side is 0). Similarly,

(2.14) impose the maximum replanting constraint for homogeneous replanting groups containing also second

semester crops. More precisely, in the left hand side of (2.14), the first term is related to crops of RGi that are

annual or first semester crops (assigned to odd periods), and the second term is related to second semester

crops of RGi (assigned to even periods).

∑
c∈RGi

t+2repi

∑
q=t:q∈To

x
q

ch ≤ repi + ∑
c∈CS

t+2repi−1

∑
q=t+1:q∈Te

x
q

ch∀i : RGi∩CS = /0, i = 1 . . . ,ng, t ∈ To (2.13)

∑
c∈RGi\CS

t+p

∑
q=t:q∈To

x
q

ch + ∑
c∈RGi∩CS

t+p

∑
q=t:q∈Te

x
q

ch ≤ repi + ∑
c∈C\RGi

t+p

∑
q=t

x
q

ch,

∀i : RGi∩CS ̸= /0, i = 1 . . . ,ng, p = repi +1, . . . ,2repi +2,∀h ∈ H, t ∈ T (2.14)

In the following, the constraints on the crop rotation are presented. Recall that a 3-rotation r ∈ R3 is

the succession r = ⟨α,β ,γ⟩ of three crop of types α,β and γ , respectively, while a 2-rotation r ∈ R2 is the

succession r = ⟨α,β ⟩ of two crop of types α and β . These constraints force variables y and w to be 1 when

specific rotation schemes occur, accounting for different cases depending on how many second semester

crops are cultivated in a given crop sequence. In particular, Constraints (2.15)±(2.17) consider odd periods

t ∈ To only, and account for all combinations of the two preceding crops. As an example, Constraints (2.15)

are related to the case in which the two crops preceding crop c in t are annual or first semester crops (i.e.,

no second semester crop is cultivated in even periods t − 1 and t − 3) assigned to periods t − 2 and t − 4.

On the other hand, Constraints (2.18) and (2.19) consider even periods t ∈ Te only, and consider all possible

combinations of the two preceding crops. As an example, Constraints (2.18) impose the related variable w to

be equal to 1 when there is a second semester crop c ∈CS in t ∈ Te and the two crops preceding c are in t−1

(first semester crop) and t−3 (annual or first semester crop), i.e., there is no second semester crop cultivated
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in t− 2. Finally, Constraints (2.20) and (2.21) are used to activate the variables related to the 2-rotations:

Constraints (2.20) cover the case in which there is a 2-rotation given by crops cultivated in period t = 3 and

t − 2 (i.e., there is no second semester crop in t − 1), while Constraints (2.21) are related to the case of a

2-rotation given by crops cultivated in periods t = 2 (second semester crop) and t−1.

yt
rch ≥ xt

ch + ∑
i∈Cα

xt−4
ih + ∑

i∈Cβ

xt−2
ih − ∑

i∈CS

xt−1
ih − ∑

i∈CS

xt−3
ih −2,

∀r = ⟨α,β ,γ⟩ ∈ R3,∀c ∈Cγ ,∀h ∈ H, t ∈ To, t ≥ 5 (2.15)

yt
rch ≥ xt

ih + ∑
i∈Cβ

xt−1
ih + ∑

i∈Cα

xt−2
ih + ∑

i∈CS

xt−1
ih −3,

∀r = ⟨α,β ,γ⟩ ∈ R3,∀c ∈Cγ ,∀h ∈ H,∀t ∈ To, t ≥ 3 (2.16)

yt
rch ≥ xt

ih + ∑
i∈Cβ

xt−2
ih + ∑

i∈Cα

xt−3
ih + ∑

i∈CS

xt−3
ih − ∑

i∈CS

xt−1
ih −3,

∀r = ⟨α,β ,γ⟩ ∈ R3,∀c ∈Cγ ,∀h ∈ H,∀t ∈ To, t ≥ 5 (2.17)

wt
rch ≥ xt

ch + ∑
i∈Cβ

xt−1
ih + ∑

i∈Cα

xt−3
ih − ∑

i∈CS

xt−2
ih −2,

∀r = ⟨α,β ,γ⟩ ∈ R3,∀c ∈Cγ ,c ∈CS,∀h ∈ H,∀t ∈ Te, t ≥ 4 (2.18)

wt
rch ≥ xt

ch + ∑
i∈Cβ

xt−1
ih + ∑

i∈Cα

xt−2
ih + ∑

i∈CS

xt−2
ih −3,

∀r = ⟨α,β ,γ⟩ ∈ R3,∀c ∈Cγ ,c ∈CS,∀h ∈ H,∀t ∈ Te, t ≥ 4 (2.19)

yrce ≥ xt
ch + ∑

i∈Cα

xt−2
ih − ∑

i∈CS

xt−1
ih −1,

∀r = ⟨α,β ⟩ ∈ R2,∀c ∈Cβ ,∀h ∈ H, t = 3 (2.20)

wrce ≥ xt
ch + ∑

i∈Cα

xt−1
ih −1,∀r = ⟨α,β ⟩ ∈ R2,∀c ∈Cβ ,c ∈CS,∀h ∈ H, t = 2 (2.21)

2.5.1 Constraints of the CAP farmer scenario

As already mentioned in Section 2.2.2, farmers observing CAP regulation have benefits and incentives,

but have to follow strict ecological and diversification rules. These rules are described into detail in Section
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2.2.2.

The diversification constraints can be written as

∑
h∈H

xt
ch ≤ 0.75|H|,∀c ∈C,∀t ∈ To. (2.22)

Constraints (2.22) state that at least two different (annual or first semester) crops must be cultivated each

year, i.e., in each odd period, and that no crop can be assigned to more than the 75% of the farmland. Recall

that, as reported in Section 2.2.2, such constraints hold only to farms with total land between 10 and 30

hectares. Note that, since we assume that a crop is assigned to each odd period, Constraints (2.22) also imply

that at least two crops will be cultivated in each year (which is another CAP requirement).

Let Cleg be the set of legume crops, the following Constraints (2.23) and (2.24) only exist for farmlands

with more than 30 hectares.

∑
h∈H

(xt
c1h + xt

c2h)≤ 0.95|H|,∀c1,c2 ∈C,c1 ̸= c2,∀t ∈ To (2.23)

∑
c∈Cleg

∑
h∈H

xt
ch ≥ 0.05|H|,∀t ∈ To (2.24)

Constraints (2.23) state that the two most cultivated crops can not exceed the 95% of the farmland, each

year. The Constraints (2.24) impose a minimum of 5% of the whole land to be cultivated in legumes each

year.

2.5.2 CAP+SVC scenario

In this scenario, in addition to the CAP constraints, farmers have to respect the policies introduced by

the Carta del Mulino initiative (see Section Section 2.2.3). CdM identifies the set of crops of interest of the

initiative (i.e., wheat), in what follows denoted as CCdM.

96



Recall that, the CdM initiative impose three types of requirements: (i) greening constraints, (ii) diversi-

fication constraints, (iii) repetition constraints. For the three types, each set of constraints covers a specific

case, characterized by the set of (even) periods assigned to second semester crops. In the following, as an

example, one constraint set for each of the above three types is presented. The constraints related to the other

cases are reported in the appendix in Section 2.9.

∑
i∈CL

t+4

∑
q=t+1

x
q

ih ≥ xt
ch + ∑

i∈CS

xt+1
ih + ∑

i∈CS

xt+3
ih −2, ∀c ∈CCdM,∀h ∈ H,∀t ∈ To (2.25)

Constraints (2.25) are greening constraints related to the case in which a CdM crop is assigned to period t

and second semester crops are cultivated in t +1 and t +3. In (2.25), Cleg and Coil are the sets of legume and

oil crops, respectively, and CL = Cleg ∪Coil . They impose that at least a crop in CL must be assigned on h

from period t +1 to t +4.

∑
i∈{c,v}

(xt+1
ih + xt+2

ih + xt+4
ih + xt+6

ih )≤ 3+(1− xt
vh)+(1− ∑

i∈CS

xt+1
ih )+ ∑

c∈CS

xt+3
ih + ∑

i∈CS

xt+5
ih ,

∀v ∈CCdM,c ∈C,h ∈ H, t ∈ To (2.26)

Constraints (2.26) are the CdM diversification constraints related to the case in which a CdM crop v is

assigned to hectare h in the odd period t and a second semester crop is assigned in t + 1, but no second

semester crop is assigned to t +3 and t +5. Hence, the seeding periods for the four crops succeeding v are

t +1, t +2, t +4, t +6. The constraints state that, for each crop c ∈C, the crops v and c can not be assigned

in more than 3 periods in {t +1, t +2, t +4, t +6} (allowing the assignment of a crop different from v and c

in these periods).

∑
c∈CR

(xt1
ch + x

t2
ch + x

t3
ch)≤ 2+(1− ∑

i∈CS

xt+1
ih )+ ∑

c∈CS

xt+3
ih + ∑

i∈CS

xt+5
ih +(1− xt

vh),
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∀v ∈CCdM,∀h ∈ H,∀t ∈ To,∀{t1, t2, t3} ∈Ω (2.27)

Constraints (2.27) are the CdM repetition constraints covering the case in which a CdM crop v is assigned to

hectare h in period t, and second semester crops are cultivated in t +1, but not in t +3 and t +5. In (2.27),

let CR be the set of crops subject to the repetition constraints. The constraints impose that crops in CR can

be repeated at most once in the seeding periods t, t + 1, t + 2, t + 4, t + 6. In the constraints, Ω denotes the

set of all triples {t1, t2, t3} of 3 consecutive periods chosen among the seeding periods considered in each

constraint (i.e., {t, t +1, t +2, t +4, t +6} in this specific case). Hence, in Constraints (2.27), Ω is the set of

triples {{t, t +1, t +2},{t +1, t +2, t +4},{t +2, t +4, t +6}}.

2.6 Instance description and real data

The real data used in this study have been collected from a panel of Italian farms involved in the CdM

[52] initiative (described in Section 2.2.3 into detail), promoted by the Barilla Group in collaboration with

WWF Italy, University of Bologna, University of Tuscia and Open Fields. The farms have been identified

in the Italian provinces with the greater arable land cultivated with soft wheat for the year 2018 (1st year of

the CdM initiative), compared to the total arable land involved in crop rotation. In total, 23 farms have been

selected, with a land surface ranging from 19 to 229 hectares. In the experimental campaign, the set of crops

C considered for each farm includes the crops already grown during the years of data collection and other

crops that could potentially be cultivated. In fact, our models can be also employed to evaluate the potential

benefits arising from the cultivation of crops currently not considered by the farmers. In the instances, the

number of crops available for each farm ranges from 5 to 10. The details of each instance, in terms of number

of considered crops and number of hectares of the arable land, are reported in the Columns 1±3 of Table 2.2.

Since the real data collected from the farms include the crops already planned during the first year of
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the CdM initiative (i.e., year 2018), two different sets of experiments have been conducted for the CAP and

CAP+SVC scenarios (denoted as Set 1 and Set 2 in the following). In Set 1, crop planning decisions are only

taken from the second year on, keeping the planning of the first year fixed according to the real data. In fact,

the seeding plan for the first year was established and declared by the farmers, in order to satisfy the CAP

regulations and join the CdM initiative. In Set 2, also the first year is included in the crop planning decision

process. Note that, since the Pure farmer scenario is not actually followed by any of the selected farms, no

real data are available for the first year of planning. Hence, in all the experiments on this scenario we always

include the first year in the decision process.

The analysis of the ªUsed Agricultural Areaº of the farms showed differences in terms of production

specialization of the arable land. These differences are due to the different cultivation areas and the different

cultivation techniques adopted. All the farms are specialized in cereals production (wheat and corn), but

all of them have a legume crop or an oil crop. However, the distribution of crop areas within farms is not

uniform.

In order to reconstruct, for each farm, the profits obtained by the cultivation of the arable land with

the available crops, economic surveys and official data sources have been used. More precisely, the crop

profits are determined by factors such as crop prices, yields, cultivation costs and incentives. The main data

sources exploited are summarized below. The crop prices were obtained by using: annual prices available

on official commodities exchange (AGER ± Bologna [32]); prices annually fixed by contracts for industrial

crops; official Italian Ministry of Agriculture decree. Yields are set according to the National Agricultural

Information System [54]. The system records all the crops yields in Italy for year and municipality. For the

CAP incentives, the real farms’ data for all the years have been used. For the cultivation costs, composed by

technical inputs and operation costs, farms’ real figures collected during surveys have been employed.

As mentioned in Section 3, when crop rotation does not follow the best agronomic practices, a cost

increase occurs depending on the specific crop succession in the rotation scheme. In our experiments, we
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assume a cost increase ranging from 0% (best agronomic practice) to 30%, depending on the specific rotation

of crop types (i.e., renewal, improver, impoverishing). The cost increases considered in the experimental

campaign are reported in Table 2.1. As an example, when three impoverishing crops are consecutively

assigned to the same plot (the first rotation in Table 2.1), a cost increase of 30% (20%) occurs when the third

(second) crop is cultivated.

Crop Rotation scheme Cost Increase Crop Rotation scheme Cost Increase

Period 0 Period 1 Period 2 Period 1 Period 2 Period 0 Period 1 Period 2 Period 1 Period 2

Impoverishing Impoverishing Impoverishing 20% 30% Renewal Renewal Improver 10% 0

Impoverishing Impoverishing Renewal 20% 0% Renewal Improver Impoverishing 0 0

Impoverishing Impoverishing Improver 20% 0% Renewal Improver Renewal 0 0

Impoverishing Renewal Impoverishing 0 10% Renewal Improver Improver 0 10%

Impoverishing Renewal Renewal 0 10% Improver Impoverishing Impoverishing 0 20%

Impoverishing Renewal Improver 0 0 Improver Impoverishing Renewal 0 0

Impoverishing Improver Impoverishing 0 0 Improver Impoverishing Improver 0 0

Impoverishing Improver Renewal 0 0 Improver Renewal Impoverishing 0 0

Impoverishing Improver Improver 0 10% Improver Renewal Renewal 0 10%

Renewal Impoverishing Impoverishing 0 20% Improver Renewal Improver 0 0

Renewal Impoverishing Renewal 0 10% Improver Improver Impoverishing 10% 0

Renewal Impoverishing Improver 0 0 Improver Improver Renewal 10% 0

Renewal Renewal Impoverishing 10% 0 Improver Improver Improver 0 10%

Renewal Renewal Renewal 10% 20%

Table 2.1: Cost Increase of the rotations.

2.7 Experimental results

In this section, the results of the computational campaign on the MIP models introduced in Section 2.5

are presented on the real instances described in the previous section. The experiments have been performed

using the Gurobi Optimizer version 9.0.1 on a 2.5 GHz Quad-Core computer equipped with 16 GB of RAM.

In particular, all the real world instances have been solved in the three scenarios of the problem: Pure

farmer, CAP farmer and CAP+SVC farmer (see Sections 2.2.1±2.2.3). The aim of the experimental campaign

is twofold: (1) to evaluate the effectiveness of the sustainable policies proposed by the CAP and CdM

regulations, with respect to the case in which no sustainable initiative is followed (recall that, this last case

corresponds to the Pure farmer scenario); (2) to assess the ability of the proposed MIP models to solve
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real-life instances.

A five year planning horizon has been considered in all the instances. Hence, T = {1,2, . . . ,10}. As

already stated in the above section, two sets of experiments have been performed for both the CAP and

CAP+SVC scenarios. In Set 1, the crop planning of the first year is already given and set according to the

real data. In Set 2, the CAP and CAP+SVC scenarios were solved on the overall 5-year planning horizon,

including the first year in the planning process. Recall that, in the experiments, the crop planning of the first

year in the Pure farmer scenario is always included in the decision process, i.e., not given.

Table 2.2 reports the results of the Pure farmer scenario and those of Set 1 for the CAP and CAP+SVC

farmer scenarios. Columns 1, 2 and 3 of the table respectively report the data of the instances: id, number

of hectares and number of crops of each farm. Columns 4±6, 7±10 and 11±12 report the results for the

three scenarios of the problem. For each scenario, the optimal solution value (the profit in Euros), called

ªSolutionº, the computing time (in seconds) and the number of Branch & Bound nodes explored by Gurobi

are reported. Furthermore, for the CAP and CAP+SVC scenarios, we also report the profit increases (in %)

with respect to the Pure farmer. Such increases are denoted as ∆(P−C) and ∆(P− SVC) and computed as

(SolutionCAP−SolutionPure)/SolutionPure×100 and (SolutionCAP+SVC−SolutionPure)/SolutionPure×100,

respectively.

In the table, the instances are ordered by increasing number of hectares, ranging from 19 to 229 hectares.

Note that the number of the available crops does not vary as much in the instances, ranging from 5 to 10,

implying that the instance dimension is mainly determined by the number of hectares. The last row of the

table reports the average values on all the instances.

In Table 2.2, a comparison of the ªSolutionº values (i.e., the profits) of the three scenarios and of the

profit increases ∆(P−C) and ∆(P− SVC) show that the CAP and CAP+SVC attain higher profits than the

Pure farmer. Note that, with respect to the Pure farmer, the profits obtained with the CAP farmer (CAP+SVC

farmer) are 79% (94%) higher in Set 1, on average. This results show how the incentives introduced by
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sustainable policies, such as the Common Agricultural Policy by the European Union and a Sustainable

Value Chain private initiative, can be profitable for farmers and encourage them to join such initiatives.

Regarding the computational times, they generally increase with the number of hectares, even though

there are some exceptions that may depend on the particular structure of some instances. On average, the

computing time increases by 470% going from the Pure farmer scenario to the CAP farmer scenario and by

a further 121% in the CAP+SVC farmer case. These huge increases are probably due to the higher number

of constraints added to model the CAP and CAP+SVC scenarios, as shown in Section 2.5. As expected, a

general increase can be also observed in the number of nodes explored by the Branch & Bound procedure

performed by Gurobi. The maximum computation time is registered on the instance ªEMR BO1º for the

CAP+SVC scenario, solved in about 27 minutes, while the maximum computation times for the CAP and the

Pure farmer scenarios are around 8 minutes and 1 minute, respectively. Note that these computation times

are reasonable, proving a good ability of the models to solve this kind of problems for real-life instances.

Table 2.3 shows the results of the experiments of Set 2 on the CAP and CAP+SVC scenarios (to simplify

the reading we also retrieve the results of the Pure farmer scenario already reported in Table 2.2). Recall

that, in these experiments, the CAP and CAP+SVC scenarios are solved with the crop planning of the first

year not set, but included in the decision process. From one side, these results allow to evaluate the benefits

of fully joining sustainability initiatives. In fact, since the first year is included in the decision process, it is

possible to establish the actual convenience of joining them. On the other side, the results of Set 2 allow to

assess the additional computational effort required for solving larger instances. As expected, the objective

solution values (i.e., the profits) in Set 2 are higher than in Set 1, since the problem is less constrained, being

the first year included in the decision process. More precisely, as shown by the ∆(P−C) and ∆(P− SVC)

values, in Set 2 the CAP and the CAP+SVC scenarios attain profits that are, on average, 94% and 95% higher

than those obtained with the Pure farmer scenario. These results suggest that the optimization models can

help farmers to increase their profits when they attempt to join sustainability programs.
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The computational times of CAP and CAP+SVC in Set 2 are 77% and 6% higher, respectively, than

those of CAP and CAP+SVC in Set 1. Nevertheless, all the instances in Set 2 are optimally solved with

maximum and average computational times smaller than 20 minutes and 150 seconds, respectively, meaning

that the models are still able to solve real world instances in reasonable time. Note that, in Set 2, the solution

values of some instances are the same in the CAP and CAP+SVC scenarios. This happens when the CdM

crop is never cultivated in the optimal solution of the CAP+SVC scenario (recall that the CdM crop is the

only crop that affects the decision process in the CAP+SVC scenario), implying that the optimal solution of

the two scenarios is indeed the same.

To conclude, the models perform well on real-life instances, implying that the models could be embedded

in a decision support tool that can be practically used by farmers to plan their production and by regulatory

bodies to tune the incentives of sustainability programs.

Instance Pure Farmer CAP Farmer CAP+SVC Farmer

Id # Hectares # Crops Solution Time B&B nodes Solution Time ∆(P−C)(%) B&B nodes Solution Time ∆(P−SVC)(%) B&B nodes

PIE TO1 19 5 75,009.91 0.22 1 106,746.82 0.3 42 1 107,852.47 0.34 53 1

EMR FE3 23 7 89,596.04 0.29 1 136,005.36 0.28 52 0 140,252.79 0.28 53 0

EMR FE4 27 9 102,535.20 11.59 1014 171,966.34 9.18 68 1122 177,139.09 3.94 74 892

EMR PR1 29 10 174,676.28 1.43 1 159,307.75 3.11 -9 143 166,551.05 17.06 24 1223

PIE CN2 33 10 103,718.36 0.62 0 175,718.90 8.19 69 279 177,563.58 6.72 79 1

VEN RO1 49 6 69,893.60 1.27 1 186,722.88 7.1 167 1111 189,916.02 24.28 179 8472

LMB MI2 51 7 127,933.50 0.5 0 288,669.32 5.52 126 331 290,319.04 6.84 131 329

LMB MI1 53 8 103,948.90 0.62 0 256,200.01 2.58 146 45 257,995.15 5.16 166 868

PIE AL3 54 8 127,296.15 11.09 1102 254,348.29 27.19 100 2859 260,300.14 21.84 105 2592

PIE CN1 62 7 223,110.72 0.99 1 501,914.97 4.16 125 1 458,095.24 6 137 1

LMB MN2 66 9 210,945.24 24.67 3251 410,982.30 6.21 95 1 418,645.00 23.99 98 1280

EMR BO3 72 7 186,914.88 0.67 1 340,864.76 0.77 82 0 347,632.28 3.71 88 35

PIE AL4 84 5 236,728.23 7.23 1257 380,739.48 9.39 61 126 402,581.16 3.54 79 1

LMB MN3 84 10 1,047,807.99 42.81 1187 1,319,890.44 101.83 26 1185 1,418,083.42 12.41 51 1

LMB MN1 86 10 980,863.14 10.23 1 1,085,012.45 4.56 11 1 1,092,714.29 5.56 25 1

EMR FE2 89 9 285,202.28 1.1 1 454,570.68 31.94 59 1086 465,987.04 66.28 65 1223

PIE AL2 120 7 553,195.20 4.16 1 1,186,593.58 43.47 114 2137 1,256,405.84 22.74 132 60

VEN RO2 134 8 2,246,992.67 2.53 0 2,512,784.63 122.17 12 1133 2,702,264.75 65.19 30 1250

PIE AL1 154 10 1,069,265.12 10.08 1 1,496,261.38 171.6 40 2381 1,588,214.07 54.18 66 65

EMR BO1 161 10 494,902.73 36.79 302 1,033,833.48 42.49 109 296 1,086,321.08 1,638.96 131 33506

EMR FE1 177 9 653,204.34 2.71 1 1,089,875.38 290.41 67 1375 1,092,432.94 276.78 073 1183

VEN VE1 211 7 735,681.04 7.47 1 1,506,860.26 33.37 105 1 1,669,041.69 99.85 152 1051

EMR BO2 229 10 667,741.10 72.4 1631 1,670,885.66 508.08 150 1177 1,723,333.04 806.39 168 1447

Average 459,441.85 10.93 424.17 727,250.22 62.34 79 730.04 760,419.18 137.91 94 2,412.26

Table 2.2: Results of Set 1 of experiments.
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Instance Pure Farmer CAP Farmer CAP+SVC Farmer

Id # Hectares # Crops Solution Time B&B nodes Solution Time ∆(P−C)(%) B&B nodes Solution Time ∆(P−SVC)(%) B&B nodes

PIE TO1 19 5 75,009.91 0.22 1 114,458.93 0.34 44 1 114,458.93 0.34 53 1

EMR FE3 23 7 89,596.04 0.29 1 137,409.17 0.44 57 1 140,463.11 0.35 57 1

EMR FE4 27 9 102,535.20 11.59 1014 178,211.10 24.54 73 5071 183,513.55 10.83 79 1526

EMR PR1 29 10 174,676.28 1.43 1 216,608.02 4.19 -5 161 218,126.03 18.53 25 7248

PIE CN2 33 10 103,718.36 0.62 0 185,834.70 2.92 71 1 187,629.20 6.38 81 5

VEN RO1 49 6 69,893.60 1.27 1 195,225.70 17.19 172 2373 195,225.70 40.62 179 4236

LMB MI2 51 7 127,933.50 0.50 0 295,682.29 8.16 127 1386 295,739.17 30.10 131 1696

LMB MI1 53 8 103,948.90 0.62 0 276,281.55 9.69 148 2241 276,292.83 110.59 166 25585

PIE AL3 54 8 127,296.15 11.09 1102 260,415.19 35.65 104 2163 266,395.87 64.02 109 1542

PIE CN1 62 7 223,110.72 0.99 1 528,035.50 8.92 105 538 491,986.96 9.49 121 1

LMB MN2 66 9 210,945.24 24.67 3251 417,575.48 39.69 98 2144 426,448.08 108.44 102 2092

EMR BO3 72 7 186,914.88 0.67 1 351,828.16 4.90 86 141 353,861.36 4.43 89 7

PIE AL4 84 5 236,728.23 7.23 1257 423,140.48 4.43 70 1 428,269.91 4.31 81 1

LMB MN3 84 10 1,047,807.99 42.81 1187 1,587,311.80 86.69 35 1144 1,589,201.22 232.93 52 4731

LMB MN1 86 10 980,863.14 10.23 1 1,226,554.67 21.08 11 394 1,233,986.27 45.48 26 1049

EMR FE2 89 9 285,202.28 1.10 1 469,323.98 47.37 63 3381 479,495.57 293.33 68 2123

PIE AL2 120 7 553,195.20 4.16 1 1,283,437.44 51.31 127 343 1,289,863.20 93.38 133 1059

VEN RO2 134 8 2,246,992.67 2.53 0 2,931,218.51 60.84 20 2413 2,931,218.51 64.29 30 2144

PIE AL1 154 10 1,069,265.12 10.08 1 1,778,159.32 352.50 49 7950 1,778,159.32 240.08 66 2146

EMR BO1 161 10 494,902.73 36.79 302 1,143,805.91 790.44 120 1378 1,148,847.93 289.54 132 717

EMR FE1 177 9 653,204.34 2.71 1 1,130,892.09 223.34 67 1165 1,130,892.09 369.50 73 1252

VEN VE1 211 7 735,681.04 7.47 1 1,856,487.73 281.39 127 1132 1,860,657.17 268.33 153 1074

EMR BO2 229 10 667,741.10 72.40 1631 1,786,250.55 467.94 158 2163 1,810,098.89 1,088.13 171 1293

Average 459.441,85 10,93 424,17 816.267,32 110,61 84 1.638,48 818.731,78 147,54 95 2.675,17

Table 2.3: Results of Set 2 of experiments.

2.8 Conclusions

In this chapter, the decision problem of crop planning in sustainable agriculture taking into account

crop rotation benefits across growing seasons is considered. A formal problem characterization is given

and a complexity analysis is performed. A polynomial minimum cost network flow approach is proposed

for special cases. Integer Linear Programming models including all the problem characteristics have been

developed for the case in which the rotation is based on sequences of k = 3 crops, and tested on real data.

Recall that, as stated by classical agronomic literature, k = 3 is identified as best agronomic practice in

Mediterranean pedo-climatic contexts and prescribed by Italian regulations on organic agriculture [44].

An experimental campaign on real-world instances shows that the proposed approaches could be embed-

ded in a decision support tool that can be practically used by farmers to plan their production and to evaluate

the convenience of joining sustainability initiatives. On the other hand, the models can also be employed

by regulatory bodies to tune the incentives of such initiatives. The policy makers will be able to use the

results to assess the suitability of rules for farm sustainability transition. In fact, the comparison of the farm-

ers’ profitability among different scenarios will facilitate the design of adequate business tools by agri-food
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value-chain actors aimed to pull farmers into more sustainable and profitable arable land management.

Future research directions include (i) the extension of the network flow approach to more general cases

(e.g., considering the constraints arising from the CAP regulation), (ii) the development of ad-hoc models

for solving CRP-k in other pedo-climatic contexts.

2.9 Appendix: remaining constraints of the CAP+SVC scenario

The greening constraints read as follows:

∑
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∑
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x
q
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ch + ∑
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ih − ∑
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The diversification constraints read as follows:
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∀v ∈CdM,∀c ∈C,∀h ∈ H, t ∈ To
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∀v ∈CdM,∀c ∈C,∀h ∈ H, t ∈ To

∑
i∈{c,v}

(xt+2
ih + xt+4

ih + xt+6
ih + xt+8

ih )≤ 3+(1− xt
vh)+ ∑

i∈CS

xt+1
ih + ∑

c∈CS

xt+3
ih + ∑

i∈CS

xt+5
ih + ∑

i∈CS

xt+7
ih (2.39)

∀v ∈CdM,∀c ∈C,∀h ∈ H, t ∈ To

The repetition constraints are reported in the following.

∑
c∈CR

(xt1
ch + x

t2
ch + x

t3
ch)≤ 2+(1− ∑

i∈CS

xt+1
ih )+ ∑

c∈CS

xt+3
ih +(1− ∑

i∈CS

xt+5
ih )+(1− xt

vh) (2.40)
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∀v ∈CdM,∀h ∈ H, t ∈ To,∀{t1, t2, t3} ∈Ω

∑
c∈CR

(xt1
ch + x

t2
ch + x

t3
ch)≤ 2+(1− ∑

i∈CS

xt+1
ih )+(1− ∑

c∈CS

xt+3
ih )+(1− xt

vh) (2.41)

∀v ∈CdM,∀h ∈ H, t ∈ To,∀{t1, t2, t3} ∈Ω

∑
c∈CR

(xt1
ch + x

t2
ch + x

t3
ch)≤ 2+ ∑

i∈CS

xt+1
ih +(1− ∑

c∈CS

xt+3
ih )+ ∑

i∈CS

xt+5
ih +(1− xt

vh) (2.42)

∀v ∈CdM,∀h ∈ H, t ∈ To,∀{t1, t2, t3} ∈Ω

∑
c∈CR

(xt1
ch + x

t2
ch + x

t3
ch)≤ 2+ ∑

i∈CS

xt+1
ih +(1− ∑

c∈CS

xt+3
ih )+(1− ∑

i∈CS

xt+5
ih )+(1− xt

vh) (2.43)

∀v ∈CdM,∀h ∈ H, t ∈ To,∀{t1, t2, t3} ∈Ω

∑
c∈CR

(xt1
ch + x

t2
ch + x

t3
ch)≤ 2+ ∑

i∈CS

xt+1
ih + ∑

c∈CS

xt+3
ih +(1− ∑

i∈CS

xt+5
ih )+(1− xt

vh) (2.44)

∀v ∈CdM,∀h ∈ H, t ∈ To,∀{t1, t2, t3} ∈Ω

∑
c∈CR

(xt1
ch + x

t2
ch + x

t3
ch)≤ 2+ ∑

i∈CS

xt+1
ih + ∑

c∈CS

xt+3
ih + ∑

i∈CS

xt+5
ih +(1− ∑

i∈CS

xt+7
ih )+(1− xt

vh) (2.45)

∀v ∈CdM,∀h ∈ H, t ∈ To,∀{t1, t2, t3} ∈Ω

∑
c∈CR

(xt1
ch + x

t2
ch + x

t3
ch)≤ 2++ ∑

i∈CS

xt+1
ih + ∑

c∈CS

xt+3
ih + ∑

i∈CS

xt+5
ih + ∑

i∈CS

xt+7
ih +(1− xt

vh) (2.46)

∀v ∈CdM,∀h ∈ H, t ∈ To,∀{t1, t2, t3} ∈Ω
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Chapter 3

Replication and Sequencing of Unreliable

Jobs on Parallel Machines

Scheduling problems in which machine breakdowns may occur have received a good deal of attention

in the literature [76]. Typically, breakdowns refer to the fact that processing resources (machines) may

unexpectedly become unavailable, either because of a technical failure or because they are claimed by some

higher-priority process. In this context, the problem is how to schedule the jobs in advance, taking into

account the fact that breakdowns may occur. Many models in the literature assume that the machine(s)

breakdown has a finite (either deterministic or stochastic) duration, so that after repairing it the schedule

can be resumed (either in a preempt-repeat or a preempt-resume fashion [72]). In such scenarios, classical

scheduling objectives are considered, such as total (weighted) flow time or total tardiness. Some studies

address the optimality of the SPT rule with respect to expected total flow time [64] or in other post-disruption

management situations [78].

Here we take a different view, namely we assume that breakdowns are unrecoverable, i.e., once a re-

source is withheld, it will not be returned before the end of the scheduling horizon. This scenario has been
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particularly addressed in the computer science literature [70]. If there are chances that not all jobs will be

carried out, rather than optimizing completion-time-related functions, it may be more sensible to focus on

objectives depending on whether or not each job is successfully carried out. More precisely, this chapter

addresses the following scenario. A set of n jobs is to be processed on identical parallel machines. Machines

are subject to failures, i.e., when a machine breaks down, the remaining jobs scheduled on the machine

(including the job currently being processed) cannot be performed. Job J j is characterized by a success

probability p j, i.e., the probability that the machine does not break down during the execution of the job.

If job J j is successfully carried out, a revenue r j is gained. The problem is to allocate the jobs to the ma-

chines and sequence them on each machine so that the expected total revenue is maximized. Notice that the

value r j may indeed represent the cost of outsourcing job J j to some external provider, so that maximizing

expected revenue corresponds to minimizing expected outsourcing cost. This is also called rejection cost

in the context of scheduling problems with rejection [77]. The problem of sequencing unreliable jobs to

maximize expected total revenue has been addressed for the first time in [? ], where it was shown that the

single-machine version of this problem can be solved by a simple sequencing rule. In [66] it is proved that

for m≥ 2 the problem is NP-hard. It has been recently shown that, for m = 2, the list scheduling algorithm

provides a 0.8535-approximate solution [68] and for the general m-machine case a 0.8531-approximate so-

lution [69]. More specific results have been found for the special case in which machine breakdowns are

exponentially distributed [67].

In this work, we investigate a common strategy which is adopted, when possible, to deal with unrecover-

able interruptions, namely job replication [70]. The idea is that if identical copies of the same job are run on

different machines, this increases the chance that at least one copy is successfully completed. An example

is a complex scientific computation. We can easily replicate it on different machines, and we are interested

that at least one copy completes successfully.

In this chapter, we address a scheduling problem on machines subject to unrecoverable breakdowns
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characterized by the possibility of job replication. More precisely, there are m identical copies of each job,

and each copy has to be scheduled on exactly one of the m identical machines. On each of these machines,

the corresponding copy of job J j has a probability p j to be successfully completed, and this probability is

independent among the machines and also from the outcome of other jobs. We say that job J j is carried out

if at least one of the m copies of J j is successfully completed.

For the sake of simplicity, and when it does not create confusion, we write ªjob J j on machine Mkº to

refer to ªthe copy of job J j allocated to machine Mkº. The problem addressed in this chapter is the following.

Expected Revenue Maximization with m Machines (ERMm) ± Given n jobs {1,2, . . . ,n}, each having

success probability p j and a revenue r j which is attained if J j is carried out, and m identical machines

M1,M2, . . . ,Mm, find a sequence of the n copies of the jobs on each machine so that the expected revenue is

maximized.

Throughout the chapter, we let P = ∏
n
j=1 p j and assume that p j < 1 for all j (jobs such that p j = 1 can

be obviously processed in the first positions of the schedule of any machine, with no consequences on the

other jobs).

The following results are reported in this chapter. We first investigate the two-machine case. We show

that ERM2 is NP-complete, and propose a metaheuristic algorithm and a quadratic, mixed-integer formu-

lation for its exact solution. The solution approaches are tested via extensive computational experiments,

in which the quality of the solutions obtained is compared with an upper bound based on the solution of a

3-dimensional assignment problem. Then, the general case ERMm is investigated. For the special case of

ERMm with two jobs, we establish that an optimal schedule can be derived in constant time, and we use this

result to show that, in case of two jobs, the marginal increase in the expected revenue thanks to an additional

machine decreases in the number of machines. For ERMm with n jobs, we propose three heuristics, for two

of which we prove a worst-case approximation bound, and a new, improved upper bound obtained by solv-

ing a variant of ERMm. We also propose a tabu search approach generalized to the case with m machines.
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Extensive computational experiments are performed to assess the quality of the introduced upper bound and

heuristics, focusing on the problems ERM2 and ERM3. Finally, some empirical results are also shown for a

generic number of machines.

Part of this work has been published on Computers & Operations Research [65]. Another paper regard-

ing the newest results is in preparation. The chapter is organized as follows. Section 3.1 presents some

basic results which are needed by subsequent developments. Section 3.2 deals with ERM2. In particular,

in Section 3.2.1 basic properties of ERM2 are established, and its NP-hardness is proved. In Section 3.2.2

a quadratic integer formulation is proposed. A tabu search algorithm and an upper bounding scheme are

proposed in Sections 3.2.3 and 3.2.4 respectively. Computational experiments for ERM2 are discussed in

Section 3.2.5. Concerning ERMm, the problem is addressed in Section 3.3. In particular, Section 3.3.1 fo-

cuses on ERMm with two jobs, while Section 3.3.2 focuses on the upper bounding schemes. Sections 3.3.3 to

3.3.6 present the three heuristic and the tabu search algorithm while Section 3.3.7 presents the computational

experiments for the new bound and heuristics. Finally, some conclusions are drawn in Section 3.4.

3.1 Preliminaries

In what follows, we represent a sequence by a bijection σ : N → {1, . . . ,n}, such that job i ∈ N comes

before job j ∈N in the sequence σ if and only if σ(i)<σ( j). Here and below, we do not distinguish between

a job and its copies when it is unlikely to cause confusion. The probability that job j is successful under the

sequence σ then equals

Pj(σ) = ∏
i∈N : σ(i)≤σ( j)

pi.
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A solution for ERM will be represented by a multiset S = {σ1, . . . ,σm} of m sequences (i.e., one for each

machine). The corresponding expected revenue then equals

ER(S) = ∑
j∈N

[︄

1−∏
σ∈S

(1−Pj(σ))

]︄

r j. (3.1)

Recall in this respect that job j ∈ N is carried out, and thus leads to a revenue r j, if and only if the job

is successful on at least one machine. This latter event occurs with a probability equal to one minus the

probability that the job is unsuccessful on all machines.

In the special case where there is only one machine (i.e., m = 1), a solution for ERM consists of a single

sequence σ . Denoting the expected revenue of such a sequence by ER(σ), Equation (3.1) simplifies to

ER(σ) = ∑
j∈N

[1− (1−Pj(σ))]r j = ∑
j∈N

Pj(σ)r j. (3.2)

It is well-known that for this special case an optimal sequence can be found by following the so-called Z-rule

[79; 66]. More specifically, define the Z-ratio of a job j ∈ N as

Z j =
p jr j

1− p j

,

then it holds that a sequence is optimal if and only if it schedules the jobs in non-increasing order of their

Z-ratio. The proof uses a standard pairwise-interchange argument, which for the sake of completeness is

repeated below.

Theorem 3.1.1 ([79; 66]) Consider an ERM instance with a single machine and a sequence σ⋆. It then

holds that ER(σ⋆) = maxσ ER(σ) if and only if Zi > Z j implies σ⋆(i)< σ⋆( j) for all i, j ∈ N.

Proof. Consider a sequence σ⋆ that maximizes the expected revenue and, for arbitrary jobs i, j ∈ N with
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σ⋆( j) = σ⋆(i) + 1, let σ⋆
i j be the sequence obtained from σ⋆ by interchanging jobs i and j. Defining Q

such that Pi(σ
⋆) = piQ, it then holds that Pj(σ

⋆) = Pi(σ
⋆
i j) = pi p jQ and Pj(σ

⋆
i j) = p jQ. For all other jobs

k ∈ N \{i, j}, in turn, we have that Pk(σ
⋆) = Pk(σ

⋆
i j). Equation (3.2) then yields that

ER(σ⋆)−ER(σ⋆
i j) = Pi(σ

⋆)ri +Pj(σ
⋆)r j−Pi(σ

⋆
i j)ri−Pj(σ

⋆
i j)r j

= piQri + pi p jQr j− pi p jQri− p jQr j

= (1− p j)piQri− (1− pi)p jQr j

= (1− pi)(1− p j)(Zi−Z j)Q, (3.3)

which is non-negative if and only if

Zi =
piri

1− pi

≥ p jr j

1− p j

.

This proves that scheduling the jobs in non-increasing order of their Z-ratio is a necessary condition for

optimality. To establish sufficiency as well, consider an arbitrary sequence σZ that schedules the jobs in

non-increasing order of their Z-ratio. By the above argument, σZ and σ⋆ can only differ in how they order

jobs having the same Z-ratio. Equation (3.3) implies that interchanging jobs with the same Z-ratio does not

affect the expected revenue, and thus σZ must be optimal as well. □

3.2 ERM with two machines

Let us consider problem ERM2. We are given machines M1 and M2, and on each machine we must

sequence a copy of the jobs 1,2, . . . ,n. We denote the two schedules as (σ1,σ2) and the corresponding

expected revenue as ER(σ1,σ2). Also, we write i≺1 j (i≺2 j) if Ji precedes J j in σ1 (σ2). Given schedules

(σ1,σ2), let P1
j and P2

j denote the cumulative probabilities of job J j on the two machines respectively. At
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least one copy of J j is successfully carried out with probability

P1
j +P2

j −P1
j P2

j . (3.4)

Hence, for given sequences σ1 and σ2 on the two machines, the expected revenue is given by

ER(σ1,σ2) =
n

∑
j=1

r j(P
1
j +P2

j −P1
j P2

j ). (3.5)

3.2.1 Properties and complexity

We now analyze some properties of the problem. First, we state an auxiliary result which will turn out to

be useful in the analysis of ERM2. Suppose that a job sequence σÅ 1 has been fixed on M1, and let PÅ
1
j denote

the cumulative probability of job J j on M1 in this sequence, i.e.

PÅ
1
j = p j ∏

k:k≺1 j

pk.

Moreover, given σÅ 1, we define the modified Z-ratio of job J j, denoted by Z′j, as

Z′j = Z j(1−PÅ
1
j). (3.6)

Given a sequence σÅ 1 on M1, we consider the problem of finding the job sequence on M2 so that the

expected revenue is maximized. The following lemma holds:

Lemma 3.2.1 Given two machines and two copies of each job, if a job sequence σÅ 1 is fixed on M1, the

expected revenue is maximized by sequencing the jobs on M2 by nonincreasing values of the modified Z-

ratios Z′j.
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Proof. The proof uses an interchange argument. Consider a sequence σ2 on M2, and recall that P2
i is the

cumulative probability of job Ji in σ2. Given a fixed sequence σÅ 1 on M1, assume that in σ2 there are two

consecutive jobs J j and Ji such that j ≺2 i and Z′i > Z′j. Let σ ′2 be the sequence obtained swapping Ji and J j

in σ2, and denote with Q the product of the probabilities of the jobs preceding Ji and J j on M2. The expected

revenue of (σÅ 1,σ
′
2) can be expressed as

ER(σÅ 1,σ
′
2) = A+ ri(Qpi +PÅ

1
i −QpiPÅ

1
i )+ r j(Qpi p j +PÅ

1
j −Qpi p jPÅ

1
j)+B

while

ER(σÅ 1,σ2) = A+ r j(Qp j +PÅ
1
j −Qp jPÅ

1
j)+ ri(Qp j pi +PÅ

1
i −Qp j piPÅ

1
i )+B,

where A and B denote the contribution of jobs preceding and, respectively, following Ji and J j on M2 in

the two schedules. Now, the difference

ER(σÅ 1,σ
′
2)−ER(σÅ 1,σ2) = Q[ri pi− ri piPÅ

1
i + r j pi p j− r j pi p jPÅ

1
j − (r j p j− r j p jPÅ

1
j + ri p j pi− ri p j piPÅ

1
i )]

is strictly positive if and only if

ri pi(1−PÅ
1
i )(1− p j)> r j p j(1−PÅ

1
j)(1− pi),

and hence

Zi(1−PÅ
1
i )> Z j(1−PÅ

1
j),

which holds since Z′i > Z′j. By repeatedly applying the above argument, the thesis follows. □

A consequence of Lemma 3.2.1 is the following.
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Lemma 3.2.2 Consider an instance of ERM2 in which Z j = 1 for all jobs J j (with j = 1, . . . ,n). Then any

schedule in which the jobs are reversely sequenced on the two machines is optimal.

Proof. Consider any schedule σÅ 1 on M1. If Ji precedes J j on M1, by definition of cumulative probability,

PÅ
1
i > PÅ

1
j . Since Z j = 1, we have that, for all j, r j = (1− p j)/p j and Z′j = (1−PÅ

1
j), so from Lemma 3.2.1

the best schedule on M2 is the one in which jobs are reversely sequenced. Recalling (3.4) and denoting

∏
u
j=l p j = 1 if l > u, we obtain that the expected revenue is given by

n

∑
i=1

1− pi

pi

[︄

i

∏
j=1

p j +
n

∏
j=i

p j−
(︄

i

∏
j=1

p j

)︄(︄

n

∏
j=i

p j

)︄]︄

=
n

∑
i=1

(1− pi)

(︄

i−1

∏
j=1

p j +
n

∏
j=i+1

p j−
n

∏
j=1

p j

)︄

. (3.7)

Now observe that

n

∑
i=1

(1− pi)
i−1

∏
j=1

p j =
n

∑
i=1

i−1

∏
j=1

p j−
n

∑
i=1

i

∏
j=1

p j =
n−1

∑
i=0

i

∏
j=1

p j−
n

∑
i=1

i

∏
j=1

p j = 1−
n

∏
j=1

p j

and, similarly,

n

∑
i=1

(1− pi)
n

∏
j=i+1

p j =
n

∑
i=1

n

∏
j=i+1

p j−
n

∑
i=1

n

∏
j=i

p j =
n+1

∑
i=2

n

∏
j=i

p j−
n

∑
i=1

n

∏
j=i

p j = 1−
n

∏
j=1

p j.

Recalling that P = ∏
n
j=1 p j, we can then simplify (3.7) to

(1−P)+(1−P)−
(︄

n−
n

∑
j=1

p j

)︄

P = 2−
(︄

n+2−
n

∑
j=1

p j

)︄

P. (3.8)

Since, from (3.8), the expected revenue does not depend on the sequence on M1, we can conclude that

any schedule in which the jobs are reversely ordered on the two machines is optimal. □

We are now in the position of proving the main result of this section. In the proof we use the following
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problem, which is strongly NP-hard [75].

PRODUCT PARTITION: Given n integers a1,a2, . . . ,an, is there a partition S1,S2 such that

∏
j∈S1

a j = ∏
j∈S2

a j ?

Theorem 3.2.3 ERM2 is NP-hard.

Proof. Given an instance of PRODUCT PARTITION, define an instance of ERM2 containing n+1 jobs. The

first n jobs (called regular) correspond to the n numbers of PRODUCT PARTITION, and are defined so that

pi =
1

ai

ri =
1− pi

pi

while for the last job, called JK in the following, we let

pK =
P̂− ε

P̂(1− ε)
rK =

1− pK

pK

(1− ε), (3.9)

where P̂ = ∏
n
j=1 p j is the product of all regular jobs’ probabilities and ε is any number such that ε < P̂. As

usual, P denotes the product of all jobs’ probabilities, i.e., P = pK ∏
n
j=1 p j. Note that Z j = 1 for all regular

jobs J j (with j = 1, . . . ,n), while ZK = 1− ε .

First of all we want to establish the structure of an optimal solution of the instance of ERM2. Given an

optimal solution σ∗ of ERM2, for notation simplicity let us number regular jobs according to their ordering on

M1 in σ∗. Let S1 = {1,2, . . . ,h} and S2 = {h+1,h+2, . . . ,n} denote the job set preceding and, respectively,

following JK on M1, so that Jh and Jh+1 denote the predecessor and, respectively, the successor of JK on M1.

(This definition also covers the cases in which JK is the first scheduled job on M1, in which case we assume
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h = 0, or it is the last scheduled job on M1, in which case h = n.) Note that as a consequence of the above

definitions, P1
K = P1

h pK (P1
K = pK if h = 0).

We observe that, since all regular jobs have Z j = 1, the modified Z-ratio of job J j is Z′j = 1−P1
j and so,

if Ji precedes J j on M1, then Z′j > Z′i . By Lemma 3.2.1, once the ordering of the regular jobs on M1 is given,

their ordering on M2 is reversed with respect to M1, and is unique.

We next claim that in σ∗, job K immediately follows Jh+1 and immediately precedes Jh on M2. This is

equivalent to showing that

1−P1
h < Z′K < 1−P1

h+1,

i.e., since Z′K = ZK(1−P1
K) and P1

K = P1
h pK ,

1−P1
h

1−P1
h pK

< ZK <
1−P1

h pK ph+1

1−P1
h pK

. (3.10)

Recalling that pK = (P̂− ε)/(P̂(1− ε)), one has

1−P1
h

1−P1
h

P̂−ε
P̂(1−ε)

=
(1−P1

h )P̂(1− ε)

P̂− P̂ε−P1
h P̂+P1

h ε
<

(1−P1
h )P̂(1− ε)

P̂−P1
h P̂

= 1− ε,

where the inequality follows since P̂< P1
h . This proves the first inequality of (3.10). The second inequality of

(3.10) simply follows from the observation that the right hand side is strictly greater than 1. We can therefore

conclude that the structure of an optimal solution σ∗ is necessarily the following:

M1: S1 h K h+1 S2

M2: S2 h+1 K h S1

where the jobs in S1 and S2 are reversely ordered on the two machines. Notice that due to Lemma 3.2.2,

the value of the solution only depends on the partition (S1,S2), as sequencing within the two sets is immaterial

(as long as they are reversely ordered on the two machines). For this reason we denote the value of such a
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solution as ER(S1,S2).

Let us therefore compute ER(S1,S2). Recalling that r j = (1− p j)/p j for all regular jobs and using an

analogous derivation as the one leading to Equation (3.8), we obtain that the expected revenue of all jobs in

S1 is equal to

h

∑
i=1

1− pi

pi

[︄

i

∏
j=1

p j + pK

n

∏
j=i

p j−
(︄

i

∏
j=1

p j

)︄(︄

pK

n

∏
j=i

p j

)︄]︄

=
h

∑
i=1

(1− pi)

(︄

i−1

∏
j=1

p j + pK

n

∏
j=i+1

p j− pK

n

∏
j=1

p j

)︄

=

(︄

1−∏
j∈S1

p j

)︄

+

(︄

pK ∏
j∈S2

p j

)︄(︄

1−∏
j∈S1

p j

)︄

−
(︄

|S1|− ∑
j∈S1

p j

)︄

P

= 1−∏
j∈S1

p j + pK ∏
j∈S2

p j−
(︄

|S1|+1− ∑
j∈S1

p j

)︄

P.

where, in the last expression, we used P = pK ∏ j∈S1
p j ∏ j∈S2

p j. By symmetry, we also find that the expected

revenue of all jobs in S2 is equal to

1+ pK ∏
j∈S1

p j−∏
j∈S2

p j−
(︄

|S2|+1− ∑
j∈S2

p j

)︄

P.

The expected revenue of job K, finally, equals

rK

[︄

pK ∏
j∈S1

p j + pK ∏
j∈S2

p j−
(︄

pK ∏
j∈S1

p j

)︄(︄

pK ∏
j∈S2

p j

)︄]︄

= rK pK

(︄

∏
j∈S1

p j + ∏
j∈S2

p j−P

)︄

.

Hence, if we denote

C = 2−
(︄

n+2+ rK pK−
n

∑
j=1

p j

)︄

P,
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then we find that the total expected revenue of all jobs equals

ER(S1,S2) =C+(rK pK− (1− pK))

(︄

∏
j∈S1

p j + ∏
j∈S2

p j

)︄

. (3.11)

Now the key observation is that due to the definition of rK in (3.9), one has that rK pK− (1− pK)< 0, so

indeed maximizing (3.11) is equivalent to minimizing:

∏
j∈S1

p j + ∏
j∈S2

p j. (3.12)

This expression is always greater or equal to 2
√

P̂, with the equality attained if (S1,S2) is such that

∏
j∈S1

p j = ∏
j∈S2

p j =
√︁

P̂,

and this in turn occurs if and only if

1

∏ j∈S1
a j

=
1

∏ j∈S2
a j

,

i.e., if and only if there exists a partition in the instance of PRODUCT PARTITION. We can therefore con-

clude that there is a partition (S1,S2) of the regular jobs such that the value of the expected revenue is

C+2
√︁

P̂(RK pK− (1− pK)),

if and only if the same partition also defines a partition of integers in PRODUCT PARTITION such that

∏
j∈S1

a j = ∏
j∈S2

a j.

□
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We note that while the reduction in Theorem 3.2.3 requires polynomial time, it implies the specification of

very small positive numbers. In fact, the value P̂ is the inverse of the product of all numbers of PRODUCT

PARTITION, and such a product is not bounded by a polynomial in the maximum integer of PRODUCT PAR-

TITION. As a consequence, even though PRODUCT PARTITION is indeed strongly NP-complete, Theorem

3.2.3 only proves the NP-hardness of ERM2, which is open for strong NP-hardness.

3.2.2 An integer formulation for ERM2

In this section we introduce a quadratic integer programming formulation of the problem ERM2. In the

following, P1
j and P2

j are continuous variables, representing the cumulative probability of job J j on M1 and

M2 respectively, while s1
i j and s2

i j are binary variables such that, for k ∈ {1,2}, one has that sk
i j = 1 if Ji

precedes J j on machine Mk and 0 otherwise. Problem ERM2 can be formulated as follows.

max
n

∑
j=1

r j(P
1
j +P2

j −P1
j P2

j ) (3.13a)

s.t. s1
i j + s1

ji = 1 ∀ i, j : i ̸= j (3.13b)

s2
i j + s2

ji = 1 ∀ i, j : i ̸= j (3.13c)

P1
j ≤ p j ∀ j (3.13d)

P1
j ≤ p jP

1
i +1− s1

i j ∀ i, j : i ̸= j (3.13e)

P2
j ≤ p j ∀ j (3.13f)

P2
j ≤ p jP

2
i +1− s2

i j ∀ i, j : i ̸= j (3.13g)

s1
i j,s

2
i j ∈ {0,1} ∀ i, j ∈ N (3.13h)

The objective function (3.13a) represents the expected revenue (from (3.5)). Contraints (3.13b) and

(3.13c) define sequencing variables on the two machines, while constraints (3.13d) and (3.13e) define the
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meaning of variables P1
j . In fact, notice that if a job Ji precedes J j on M1 (i.e., s1

i j = 1), the variable P1
j cannot

exceed the cumulative probability of Ji multiplied by p j. If J j is in first position on M1, then s1
i j = 0 for all

Ji and (3.13d) implies that P1
j = p j. Otherwise, the most binding among constraints (3.13e) determines the

value of P1
j = p jP

1
i , where Ji is the job that immediately precedes J j in the schedule on M1 (maximization

implies that the corresponding constraint (3.13e) is active in an optimal solution). Constraints (3.13f) and

(3.13g) have the same meaning for M2. Notice that we do not need to impose transitivity constraints, in fact

if s1
i j = 1 and s1

jk = 1, then constraints (3.13d) and (3.13e) imply that s1
ki = 0 (and similarly for M2). This

quadratic integer formulation has been employed in the computational experiments in Section 3.2.5.

3.2.3 A tabu search heuristic

In this section, a Tabu Search (TS) algorithm designed for solving ERM2 is presented.

The algorithm exploits the result of Lemma 3.2.1, i.e., for a fixed schedule σÅ 1 on machine M1, the

expected revenue is maximized by sequencing the jobs on M2 by nonincreasing values of the modified Z-

ratios Z′j (3.6). Hence, a solution of ERM2 can be represented by only specifying the order in which the jobs

are sequenced on machine M1, since the optimal order on M2 follows by Lemma 3.2.1.

The TS algorithm has two main phases. In the first phase an initial solution is generated. Then, a TS

scheme is applied to iteratively improve the incumbent solution. In the first phase, the initial solution is

found by scheduling jobs on M1 by nonincreasing values of the Z-ratios (??). In the second phase, at each

iteration t, starting from the current solution (σ1,σ2), a solution neighborhood Nt is generated, by performing

all possible swaps of two jobs in σ1. More precisely, if σ ′1 is a sequence on M1 obtained by swapping two

jobs in σ1, and σ ′2 the corresponding sequence on M2 by nonincreasing Z′j, the new solution generated in the

neighborhood is (σ ′1,σ
′
2). A tabu list of jobs is used to avoid considering solutions already visited. Every

time a new current solution (σ ′1,σ
′
2) is selected from the neighborhood of (σ1,σ2), the first of the two jobs
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swapped on M1 is inserted in the tabu list. All the jobs in the tabu list cannot be swapped, thus avoiding to

return in previously visited solutions. When the tabu list is full and a new job has to be inserted, the job at

the head of the list is removed from the tabu list and the new job is added to its tail.

At the end of iteration t, the best solution in Nt is selected and chosen as the new current solution and the

tabu list is updated. The whole process is repeated until a maximum number of iterations Itmax is reached.

A scheme of the algorithm is reported in Algorithm 2.

Algorithm 2 Scheme of the Tabu Search algorithm.

Generate the initial solution (σ1,σ2)
0, set t = 0, (σ1,σ2)

best := (σ1,σ2)
0.

While t < Itmax do

begin

Generate the neighborhood Nt of the current solution (σ1,σ2)
t by swapping all job pairs in σ1.

Select a solution (σ1,σ2)
∗ in Nt that is not tabu and has maximal expected revenue.

Set (σ1,σ2)
t := (σ1,σ2)

∗.
If ER(σ1,σ2)

∗ > ER(σ1,σ2)
best

Set (σ1,σ2)
best := (σ1,σ2)

∗.
Update the tabu list, set t:=t+1.

end

Return the best solution (σ1,σ2)
best .

3.2.4 An upper bound for ERM2

In view of the intrinsic difficulty of the problem ERM2, in order to evaluate the quality of a solution, we

propose an upper bounding scheme, based on the solution of an instance of the three-dimensional assignment

problem (3AP):

max
n

∑
i=1

n

∑
j=1

n

∑
k=1

ci jkxi jk (3.14a)

s.t.
n

∑
j=1

n

∑
k=1

xi jk = 1 ∀ i = 1, . . . ,n (3.14b)

n

∑
i=1

n

∑
k=1

xi jk = 1 ∀ j = 1, . . . ,n (3.14c)

n

∑
i=1

n

∑
j=1

xi jk = 1 ∀k = 1, . . . ,n (3.14d)
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xi jk ∈ {0,1} ∀ i, j,k (3.14e)

where we refer to coefficients ci jk as utilities. Even though 3AP is itself a strongly NP-hard problem [73],

commercial solvers are able to solve medium-sized instances in limited computation times, which is suffi-

cient for our analysis.

Consider a schedule (σ1,σ2), and any job J j. Recalling (3.5), the contribution of J j to the expected

revenue is r j(P
1
j + P2

j − P1
j P2

j ). Now let P(u) denote the product of the u largest success probabilities.

Suppose that a job J j is scheduled in position u on M1 and v on M2. Since the function f (x,y) = x+ y− xy

is monotonically increasing for any x ∈ [0,1] and y ∈ [0,1], an upper bound on the contribution of J j to the

expected revenue is given by

r j(P(u)+P(v)−P(u)P(v)). (3.15)

Actually, this expression can be slightly refined. In fact, if p j is not one of the u (v) largest success

probabilities, P(u) (P(v)) in (3.15) can be replaced with p jP(u−1) (p jP(v−1)).

Hence, given an instance of ERM2, we get an upper bound on its optimal value by solving an instance

of 3AP in which each job is assigned a position on M1 and a position on M2. The utility of assigning a job J j

to position u on M1 and v on M2 is

c juv = r j(P̂ j(u)+ P̂ j(v)− P̂ j(u)P̂ j(v)),

where

P̂ j(h) = min{p jP(h−1),P(h)}.

In fact, notice that if p j is one of the h− 1 largest probabilities, then P(h) ≤ p jP(h− 1), otherwise P(h) ≥

p jP(h−1).
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In the special case that all jobs have an equal success probability p, the 3AP instance exactly yields the

optimal solution. In fact, for every job Ji and every schedule (σ1,σ2) that schedules job Ji in position j on M1

and k on M2, it holds that P1
i = P( j) = p j and P2

i = P(k) = pk. Hence, we can obtain an optimal schedule by

solving the corresponding 3AP instance with ci jk = ri p
j pk for every i, j,k = 1, . . . ,n. Observe that, for each

i, j,k = 1, . . . ,n, the objective function coefficient ci jk is the product of three numbers that depend only on i, j

and k, respectively. The resulting structure is therefore actually a special case of the axial three-dimensional

assignment problem (A3AP); see e.g., [71]. Although A3AP is NP-hard [71], the complexity of ERM2 in

the special case where all jobs have an equal success probability is still open.

3.2.5 Computational results

In this section, we present a computational campaign on random instances carried out to test the quadratic

program, the tabu search and the 3AP-based upper bound.

We have carried out two different experiments. In the first experiment, both job probabilities and job

revenues are generated from uniform distributions. The second experiment deals with two special cases,

namely (i) the jobs have identical revenues and (ii) the time to failure follows an exponential distribution

(identical for the two machines).

Uniform instances

In the first experiment, the instances have been generated by considering different numbers of jobs n (i.e.,

n ∈ {10,20,30,40,50}) and three different intervals of probability Ip (Ip ∈ {[0.9,1], [0.5,1], [0.1,1]}), thus

obtaining 15 possible sets. For each set we randomly generated 20 instances with job success probabilities

uniformly distributed in Ip, while job revenues are integers uniformly distributed in [10,100]. Hence, the

experiments have been performed on 300 instances.

From a preliminary test campaign, it turned out that the TS algorithm (Section 3.2.3) is most effective by
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setting the size of the tabu list to 20% of the number n of jobs, and the number of iterations to Itmax = 100.

In fact, in most cases the quality of the solutions does not increase at all by increasing the maximum number

of iterations over such limit. So, the TS algorithm was performed using these settings in all the experiments.

All the algorithms have been run on a 1.7 GHz CPU with 2 cores and 8 GB RAM. More in details, the

TS algorithm has been implemented as a single-thread Python 3.7 program. The quadratic programming

formulation (3.13a)±(3.13h) and the 3AP-based bound presented in Section 3.2.4 have been implemented

and solved by the Gurobi 9.1 solver using all the available cores and the default tolerance parameters. We set

the Gurobi parameter NumericFocus to 3, corresponding to maximum numerical accuracy. A time limit of

20 minutes was set for Gurobi, as preliminary experiments showed that beyond such limit the improvements

in the optimality gap are extremely slow.

In Table 3.1, we report the results from our tests for each set of instances. Each row of the table refers to

the average results over the 20 randomly generated instances of each set (one for each n and Ip). In Column 3,

the CPU time of the TS algorithm is reported. In Column 4, we report the average gap between the solutions

obtained with the Tabu Search and the solutions obtained by Gurobi with the QP model (3.13a)±(3.13h).

In particular, for each instance we compute this gap as (SolT S− SolQP)/SolT S, where SolT S and SolQP are

the values of the Tabu Search and the Gurobi solution, respectively. In Column 5 the CPU time needed to

compute the upper bound UB3AP by solving the three-dimensional assignment problem is reported. Column

6 reports the average gap between UB3AP and the best upper bound found by Gurobi on the QP model,

denoted as UBQP. For each instance, this gap is computed as (UBQP−UB3AP)/UBQP and so, when the

value reported in Column 6 is negative, it means that UBQP is better than UB3AP, on average. Finally,

Column 10 reports the average gap between the Tabu Search solution and the best bound UBBest between

UB3AP and UBQP, computed as (UBBest −SolT S)/UBBest ×100 for each instance.

As the results show, the solutions obtained through the mathematical program turn out to be generally

dominated by the Tabu Search solutions. In fact, Gurobi is not able to find optimal solutions within the time
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n Ip TS time Avg gap TS-QP (%) UB3AP time Avg gap UBQP-UB3AP (%) Avg gap UBBest -TS (%)

10 0.1-1 0.24 0.00 0.22 -14.78 0.46

20 0.1-1 3.76 0.15 1.05 20.44 16.93

30 0.1-1 11.80 0.79 1.60 32.36 22.10

40 0.1-1 27.00 2.46 4.44 35.38 26.75

50 0.1-1 55.92 3.48 13.95 44.21 26.42

10 0.5-1 0.25 0.04 0.94 -7.95 4.98

20 0.5-1 3.31 0.36 1.02 17.92 21.75

30 0.5-1 11.47 2.12 1.52 30.21 26.57

40 0.5-1 26.46 4.60 3.98 35.14 28.46

50 0.5-1 55.08 6.48 9.78 39.98 31.19

10 0.9-1 0.24 0.00 0.97 -0.46 0.85

20 0.9-1 3.64 0.08 1.07 2.57 4.13

30 0.9-1 10.84 1.18 1.51 5.24 7.82

40 0.9-1 25.81 2.83 4.81 8.37 10.53

50 0.9-1 54.68 5.22 10.66 9.97 14.52

Table 3.1: Computational results for the uniform instances.

limit on all the instances with n > 10, and, as shown in Column 4, the TS solution is better than the solution

found by Gurobi and the gap increases as n increases. For n = 10, Gurobi finds the optimal solution on 31

instances, and the optimality gap is below 0.1% on all other instances. On these 31 instances, the optimality

is certified in an average time of 277 seconds. The TS algorithm is able to find the optimal solution on 25 of

these 31 instances, while in the other instances the gap between SolT S and SolQP is close to zero. As for the

upper bounds, the best bounds are consistently obtained by the 3AP approach except when n = 10, in which

UBQP is better than UB3AP on average.

As the instance size increases, the optimality gap (reported in Column 7 of the table) gets worse. How-

ever, for Ip = [0.9,1], it does not exceed 15% even on larger instances, while for Ip = [0.5,1] or Ip = [0.1,1]

a sharp increase of the optimality gaps can be observed already for n = 20. Somewhat surprisingly, there is

not a big difference between instances with Ip = [0.5,1] and Ip = [0.1,1].

Finally, concerning computation times, we observe that both the TS and the 3AP do not require large

CPU times, even for the largest instances.

From a practical viewpoint, one may wonder whether it pays off to invest in an additional machine such

that jobs can be duplicated. In order to get some insight, for each instance of this experiment, we compare

the value of expected revenue attained if there is a single machine (m = 1) with the expected revenue if there
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n Ip = [0.1,1] Ip = [0.5,1] Ip = [0.9,1]

10 37.84 38.16 14.37

20 40.89 37.68 21.36

30 39.77 40.61 28.11

40 35.55 38.62 31.42

50 38.97 37.62 34.75

Table 3.2: Average percentage increase in the expected revenue for m = 2 instead of m = 1.

are two machines (m = 2). (Recall from Section 3.1 that when m = 1 the optimal schedule is attained by

sequencing the jobs in nonincreasing order of their Z-ratio.)

Table 3.2 reports the average percentage increase in expected revenue thanks to the second machine. In

these computations, we compare for each instance the best available (but not necessarily optimal) schedule

for m = 2 with the optimal solution for m = 1. Table 3.2 suggests that the value of an additional machine is

limited if Ip = [0.9,1] and n is small, but for Ip = [0.5,1] and Ip = [0.1,1], or for increasing n, the average

increase becomes more significant. One possible explanation is that, if the success probabilities are smaller

or if there are more jobs, then it becomes more likely that not all jobs can be carried out on a single machine.

Adding an extra machine therefore adds more value. This effect, however, appears to tail off when comparing

Ip = [0.5,1] and Ip = [0.1,1]. Indeed, between these settings, the additional value of a machine does not seem

to differ substantially, and it also does not seem to depend on the number of jobs n.

Section 3.3.1 characterizes in more detail the marginal increase in the expected revenue thanks to an

additional machine for m > 2, but when there are only two jobs.

Special cases

The second experiment deals with two special cases. The first special case is when we want to maximize

the expected number of achieved jobs, i.e., r j = 1 for all j. In this case, each job is only characterized by its

success probability. The second special case is when a job is characterized by a certain duration t j, and the

machine time to failure follows an exponential distribution. In this case, the success probability of a job is
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given by e−λ t j , where λ is the parameter of the exponential distribution. In this context, we let r j = t j for all

j, i.e., we want to maximize the expected amount of work done, as in [67; 70]. As before, we have run 20

instances for each value of n = 10,20,30,40,50. Processing times have been uniformly generated in [1,100],

and λ = 0.01.

Unit revenues ± The results on these instances (Table 3.3) do not seem substantially different from the

uniform case. In fact, the overall average gap (UBBest−SolT S)/UBBest×100 computed over all the instances

is about 16% both in the uniform and unit-revenue instance sets. Similarly as before, a larger probability

range negatively affects the gap between the best upper bound and the TS solution. The fact of having

identical revenues does not result in any apparent structure for the optimal solution, and we conjecture that

even this special case is hard.

Exponential breakdowns ± Also in this case the computational times are not an issue for the Tabu Search

and the 3AP upper bound, while Gurobi is never able to certify the optimal solution within the time limit. As

in the other experiments, the Tabu Search performs better than Gurobi on the QP in all cases, with relatively

small gaps even for larger instances (column 3 of Table 3.4). However, in this special case the upper bounds

are less effective with respect to the other scenarios. The 3AP bound is better than the Gurobi bound except

for n = 10. The gap between the TS solution and the best upper bound, however, is quite large, and it gets

larger as the number of jobs increases, occasionally reaching 89% for an instance with 50 jobs. This may be

due to the fact that the jobs with larger (smaller) revenue have a smaller (larger) success probability, which

possibly makes it harder for Gurobi to discriminate among different schedules and therefore to find good

upper bounds.

The increased gaps, as well as the fact that no apparent optimality property can be easily established,

leads us to conjecture that even this special case is hard.
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n Ip TS time Avg gap TS-QP (%) UB3AP time Avg gap UBQP-UB3AP (%) Avg gap UBBest -TS (%)

10 0.1-1 0.29 0.00 0.88 -9.54 2.38

20 0.1-1 2.32 0.10 0.14 23.73 17.06

30 0.1-1 8.78 0.43 0.71 40.77 19.15

40 0.1-1 20.65 1.61 2.31 19.10 45.57

50 0.1-1 36.80 2.36 11.62 51.60 21.62

10 0.5-1 0.32 0.05 0.02 -4.86 7.05

20 0.5-1 2.31 0.29 0.13 22.47 19.47

30 0.5-1 8.35 1.43 0.59 37.58 21.84

40 0.5-1 20.06 3.27 2.31 43.57 23.39

50 0.5-1 40.25 4.03 6.31 48.00 24.79

10 0.9-1 0.28 0.02 0.02 -0.19 1.04

20 0.9-1 2.51 0.15 0.15 3.01 0.15

30 0.9-1 7.00 1.58 0.53 6.48 8.79

40 0.9-1 19.79 3.37 2.17 11.44 12.59

50 0.9-1 38.23 4.24 4.87 13.50 14.79

Table 3.3: Computational results for the instances with unit revenue.

n TS time Avg gap TS-QP (%) UB3AP time Avg gap UBQP-UB3AP (%) Avg gap UBBest -TS (%)

10 0.24 0.16 0.02 -36.68 16.11

20 2.09 0.33 0.16 23.47 54.23

30 7.55 1.97 0.75 45.06 62.46

40 18.74 4.19 3.29 54.03 67.16

50 36.81 4.74 12.26 58.87 71.07

Table 3.4: Computational results for the instances with exponentially distributed failures.

3.3 ERM with m machines

In this section, the general ERMm problem is addressed. For simplicity, we will also write ERM to refer

to ERMm. For this problem, we provide the following results.

• A new, improved upper bound obtained by solving a variant of ERMm. This upper bound is used to

assess the quality of heuristic solutions;

• Three new heuristics, for two of which we prove a worst-case approximation bound, respectively of

Hm/m (where Hm is the m-th harmonic number) and 1− (m−1
m

)m;

• An extensive computational campaign concerning the three heuristics as well as a tabu search ap-

proach for ERMm, showing that it is possible to quickly produce solutions with a small optimality gap

even for large values of m.

This section is organized as follows. First, in Section 3.3.1 the problem with two jobs is analyzed. Then, we
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focus on the general case with n jobs. In Section 3.3.2, a procedure to compute an upper bound for ERMm is

described. Sections 3.3.3, 3.3.4, and 3.3.5 deal with three different heuristic approaches, while Section 3.3.6

presents a metaheuristic approach. Computational experiments are described and discussed in Section 3.3.7.

3.3.1 ERMm with 2 jobs

In this section we focus on solving ERMm with n = 2 jobs efficiently. Besides showing that this special

case can be solved in constant time, we wish to assess how the number of machines affects the expected

revenue. In particular, we show that the marginal increase in the expected revenue thanks to an additional

machine decreases as m grows.

In the special case of two jobs, there are only two possible job sequences for each machine: (1,2) or

(2,1). Let x ∈ {0,1, . . . ,m} be the number of machines in which the jobs are scheduled in the order (1,2),

so that the number of machines with job sequence (2,1) equals m− x. Observe that job J1 is not carried out

if and only if all x machines scheduled according to the sequence (1,2) fail on their first job and the other m

machines fail on either the first or second job. Hence, J1 is carried out with probability

1− (1− p1)
x(1− p1 p2)

m−x (3.16)

and, analogously, the probability that job J2 is carried out equals

1− (1− p2)
m−x(1− p1 p2)

x. (3.17)

The expected revenue of the resulting schedule therefore equals

r1

[︁

1− (1− p1)
x(1− p1 p2)

m−x
]︁

+ r2

[︁

1− (1− p2)
m−x(1− p1 p2)

x
]︁
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= r1 + r2−
[︁

r1(1− p1)
x(1− p1 p2)

m−x + r2(1− p2)
m−x(1− p1 p2)

x
]︁

.

Now define the function f : R→ R:

f (x) = r1(1− p1)
x(1− p1 p2)

m−x + r2(1− p2)
m−x(1− p1 p2)

x.

To maximize the expected revenue, we want to find a value x ∈ {0,1, . . . ,m} for which f (x) is minimal.

For every x ∈ R, the derivative of f in x is given by

f ′(x) = r1 ln

(︃

1− p1

1− p1 p2

)︃(︃

1− p1

1− p1 p2

)︃x

(1− p1 p2)
m + r2 ln

(︃

1− p1 p2

1− p2

)︃(︃

1− p1 p2

1− p2

)︃x

(1− p2)
m.

Denoting

η =
r2 ln

(︂

1−p1 p2

1−p2

)︂

r1 ln
(︂

1−p1 p2

1−p1

)︂ ,

we therefore obtain that f ′(x⋆) = 0 for some x⋆ ∈ R if and only if

(︃

(1− p1)(1− p2)

(1− p1 p2)2

)︃x⋆

= η ·
(︃

1− p2

1− p1 p2

)︃m

,

which in turn is equivalent to

x⋆ =
m(ln(1− p2)− ln(1− p1 p2))+ lnη

ln(1− p1)+ ln(1− p2)−2ln(1− p1 p2)
. (3.18)

Moreover, the second order derivative of f is strictly positive since, for all x ∈ R,

f ′′(x) = r1

(︃

ln

(︃

1− p1

1− p1 p2

)︃)︃2(︃
1− p1

1− p1 p2

)︃x

(1− p1 p2)
m
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+ r2

(︃

ln

(︃

1− p1 p2

1− p2

)︃)︃2(︃
1− p1 p2

1− p2

)︃x

(1− p2)
m > 0.

The latter inequality shows that f (x) is convex, and therefore, to determine a schedule that maximizes ex-

pected revenue, one has:

1. if x⋆ ≥ m, then it is optimal to schedule all m machines in the order (1,2);

2. if x⋆ ≤ 0, then it is optimal to schedule all m machines in the order (2,1);

3. if x⋆ ∈ (0,m), then it is optimal to either schedule ⌊x⋆⌋ or ⌈x⋆⌉ machines in the order (1,2), and the

remaining machines in the order (2,1).

We now show that the marginal increase in the expected revenue thanks to an additional machine is

decreasing in the number of machines. For every m≥ 1, let x⋆(m) denote the value of x⋆ given in (3.18) and

let q(m) be the corresponding optimal number of machines scheduled in the order (1,2) obtained by applying

the method described above. Moreover, we denote by Qi(m) the resulting probability that job Ji ∈ {1,2} is

not carried out. Since ln(1− p1)< ln(1− p1 p2) and ln(1− p2)< ln(1− p1 p2), it follows from (3.18) that

x⋆(m+1)− x⋆(m) =
ln(1− p2)− ln(1− p1 p2)

ln(1− p1)+ ln(1− p2)−2ln(1− p1 p2)
∈ (0,1)

for every m. As a consequence, q(m+ 1) takes either value q(m) or q(m) + 1. Hence, Q1(m+ 1) takes

value (1− p1)Q1(m) if q(m+1) = q(m)+1 and value (1− p1 p2)Q1(m) otherwise. Analogously, Q2(m+1)

takes value (1− p1 p2)Q2(m) if q(m+1) = q(m)+1 and value (1− p2)Q2(m) otherwise. Now observe that

the maximum expected revenue with m machines equals r1(1−Q1(m))+ r2(1−Q2(m)). If we denote by

∆ER⋆(m) the marginal increase in the expected revenue thanks to an increase from m to m+ 1 machines,
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since Qi(m+1)< Qi(m), we obtain that

∆ER⋆(m) = r1(Q1(m)−Q1(m+1))+ r2(Q2(m)−Q2(m+1))

= max{r1 p1Q1(m)+ r2 p1 p2Q2(m), r1 p1 p2Q1(m)+ r2 p2Q2(m)}

> max{r1 p1Q1(m+1)+ r2 p1 p2Q2(m+1), r1 p1 p2Q1(m+1)+ r2 p2Q2(m+1)}

= ∆ER⋆(m+1).

Here, the inequality follows since Q1(m) and Q2(m) are decreasing in m. This establishes that the marginal

increase in the expected revenue thanks to an additional machine is non-increasing as m grows.

Although the analysis above focuses on the special case of only two jobs, we conjecture that also for

a general number of jobs it holds that the marginal benefit of an additional machine is decreasing in the

number of machines. If this conjecture is true, then it indicates that ERMm is mainly relevant for practical

applications with a relatively small number of machines m. This motivates the relevance of ERM2, as studied

in Section 3.2, and ERM3, for which results are presented in Section 3.3.7.

3.3.2 An upper bound for ERMm

Consider the relaxation of ERMm in which we are allowed to schedule the machines sequentially. More

specifically, only when a certain machine gets blocked by a job failure, we need to decide how to schedule

the jobs on the next machine. We call this variant the sequential ERM. A solution for the sequential ERM

is represented by a policy that specifies, for every possible outcome of the jobs on the previous machines,

which schedule to follow on the current machine. Observe that in case there is only a single machine, the

sequential ERM is equivalent to the original ERM.

The optimal solution value for the sequential ERM provides an upper bound on the optimal value for the
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original ERM. To see this, observe that, for every ERM solution, one possible policy for the sequential ERM

would be to follow on each machine the corresponding schedule specified by the ERM solution, regardless of

the outcome of the jobs on the previous machines. That is, even if a job is already carried out by a previous

machine and therefore cannot generate any additional revenue, it is still included on the current machine

according to the schedule described by the original ERM solution. This static policy leads to the same

expected revenue for the sequential ERM as the original solution for the traditional ERM. By consequence,

every schedule for the traditional ERM defines a policy for the sequential ERM with the same objective

value, and therefore the maximum value for the sequential ERM is at least as large as the maximum value for

the original ERM. We refer to the maximum objective value for the sequential ERM as the sequential upper

bound.

In the following, we will show that for the sequential ERM it is an optimal policy to always schedule

the jobs that have not yet been carried out in non-increasing order of their Z-ratio. Next, we will discuss

a number of structural properties of the value of this upper bound that will be useful for the analysis in

Section 3.3.3.

Optimality of following the Z-ratio

Theorem 3.3.1 below states that for the sequential ERM it is optimal to follow the Z-ratio. More specifi-

cally, it is optimal to always schedule next the remaining jobs (i.e., the ones that have not yet been carried out

on a previous machine) in non-increasing order of their Z-ratio. Here, we assume without loss of generality

that the jobs are indexed in non-decreasing order of their Z-ratio. For every i ∈ N and k ∈ {1, . . . ,m}, the

value f (i,k) reflects the expected revenue when following the Z-ratio if the remaining jobs are i, . . . ,n and

there are k remaining machines. Equation (3.19) can then be interpreted as follows. Since job i has the

maximum Z-ratio among all remaining jobs i, . . . ,n, it is scheduled next. If it succeeds, which occurs with

probability pi, then we obtain revenue ri and the value f (i+ 1,k), reflecting that we still have k machines
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available to perform the remaining jobs i+ 1, . . . ,n. On the other hand, if job i fails, which occurs with

probability (1− pi), then we obtain value f (i,k−1), reflecting that we lost one machine.

Theorem 3.3.1 For an arbitrary instance (n,m,(ri, pi)i∈N) with Z1 ≥ . . . ≥ Zn, the sequential upper bound

equals f (1,m) as determined by the recursion

f (i,k) = pi [ri + f (i+1,k)]+(1− pi) f (i,k−1) (3.19)

with boundary conditions f (n+1,k) = 0 and f (i,0) = 0 for all i ∈ N and k ∈ {1, . . . ,m}.

Proof. Define a value function v : 2N ×{0, . . . ,m} → R such that for every S ⊆ N and k ∈ {0, . . . ,m} the

value v(S,k) equals the maximum expected revenue that one can obtain from a set of remaining jobs S

and k remaining machines. For every S ⊆ N with S ̸= /0 and k ∈ {1, . . . ,m}, the value function satisfies the

optimality equation

v(S,k) = max
j∈S

{︁

p j(r j + v(S\{ j},k))+(1− p j)v(S,k−1)
}︁

with boundary conditions v(S,0) = 0 and v( /0,k) = 0.

Now consider an arbitrary S ⊆ N with S ̸= /0 and k ∈ {1, . . . ,m}. Moreover, let i ∈ S be such that it has

the maximum Z-ratio among all remaining jobs, i.e,

piri

1− pi

= max
j∈S

p jr j

1− p j

.

We then claim that

v(S,k) = pi(ri + v(S\{i},k))+(1− pi)v(S,k−1), (3.20)

such that following the Z-rule is indeed optimal. In particular, this would establish that f (i,k)= v({i, . . . ,n},k)
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for every i ∈ N and k ∈ {1, . . . ,m}, and that the recursion as specified by Equation (3.19) is indeed correct.

Hence, to complete the proof, it remains to be shown that Equation (3.20) holds.

We prove Equation (3.20) using induction on k and |S|. For k = 1, we are in the single-machine case,

and it is optimal to follow the Z-rule by Theorem 3.1.1. For |S| = 1, the claim also holds trivially, since

there is only a single job that can be performed. Hence, suppose that k > 1 and |S|> 1, and, as the induction

hypothesis, that our claim holds for the case of k−1 remaining machines or |S|−1 remaining jobs. Consider

an arbitrary job j ∈ S\{i} and observe that, by definition of the value function and the induction hypothesis,

pi(ri + v(S\{i},k))+(1− pi)v(S,k−1)

≥ pi [ri + p j(r j + v(S\{i, j},k))+(1− p j)v(S\{i},k−1)]

+(1− pi) [p j(r j + v(S\{ j},k−1))+(1− p j)v(S,k−2)]

= piri + p jr j + pi p jv(S\{i, j},k)+ pi(1− p j)v(S\{i},k−1)

+(1− pi)p jv(S\{ j},k−1)+(1− pi)(1− p j)v(S,k−2)

and

p j(r j + v(S\{ j},k))+(1− p j)v(S,k−1)

= p j [r j + pi(ri + v(S\{i, j},k))+(1− pi)v(S\{ j},k−1)]

+(1− p j) [pi(ri + v(S\{i},k−1))+(1− pi)v(S,k−2)]

= piri + p jr j + pi p jv(S\{i, j},k)+ pi(1− p j)v(S\{i},k−1)

+(1− pi)p jv(S\{ j},k−1)+(1− pi)(1− p j)v(S,k−2).
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From this, we obtain that

pi(ri + v(S\{i},k))+(1− pi)v(S,k−1)

≥ p j(r j + v(S\{ j},k))+(1− p j)v(S,k−1),

showing that Equation (3.20) holds, and therefore completing the proof. □

Structural properties of the upper bound

The next three lemmas provide insight into the structural properties of the optimal objective value for the

sequential ERM. Throughout, we consider an arbitrary instance (n,m,(ri, pi)i∈N) with Z1 ≥ . . .≥ Zn. It then

follows from Theorem 3.3.1 that f (i,k) equals the maximum expected revenue for the instance defined on

job set {i, . . . ,n} and with k ≥ 1 remaining machines. Lemma 3.3.2 states that for an instance with a single

machine the maximum Z-ratio upper bounds the maximum expected revenue. Lemma 3.3.3, in turn, states

that the average expected revenue per machine is non-increasing in the number of machines. Lemma 3.3.4,

finally, implies that before performing a job with maximum Z-ratio the expected revenue is not smaller than

when the job has been carried out.

Lemma 3.3.2 f (i,1)≤ Zi for all i ∈ N.

Proof. We show the result by induction on i. For i = n, we have f (n,1) = pnrn ≤ Zn since 0 < pn < 1 and

rn > 0. Now consider arbitrary i < n and assume that f (i+1,1)≤ Zi+1. Equation (3.19) and our assumption

that Zi ≥ Zi+1 then yield

f (i,1) = pi [ri + f (i+1,1)]≤ pi (ri +Zi+1)≤ pi (ri +Zi) = pi

(︃

ri +
piri

1− pi

)︃

=
piri

1− pi

= Zi,

which completes the proof. □
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Lemma 3.3.3
f (i,k)

k
≤ f (i, ℓ)

ℓ
for all i ∈ N and k ≥ ℓ≥ 1.

Proof. We show the result using induction on k and i. For k = 1 the result trivially holds. Now suppose

that k ≥ 2 and, as the first induction hypothesis, assume that

f (i,k−1)

k−1
≤ f (i, ℓ)

ℓ
(3.21)

for all i ∈ N and ℓ= 1, . . . ,k−1. Equation (3.19) then yields that

(k−1) f (n,k) = (k−1)
k−1

∑
ℓ=0

(1− pn)
ℓpnrn = (k−1) f (n,k−1)+(k−1)(1− pn)

k−1 pnrn

≤ (k−1) f (n,k−1)+
k−2

∑
ℓ=0

(1− pn)
ℓpnrn = k f (n,k−1).

The first induction hypothesis, i.e., Inequality (3.21), then implies that

f (n,k)

k
≤ f (n,k−1)

k−1
≤ f (n, ℓ)

ℓ

for all ℓ= 1, . . . ,k−1. Since we also trivially have f (n,k)/k ≤ f (n, ℓ)/ℓ for ℓ= k, we obtain that the result

holds for i = n.

Now consider arbitrary i ∈ N \{n} and, as the second induction hypothesis, assume that

f (i+1,k)

k
≤ f (i+1, ℓ)

ℓ
(3.22)

for all ℓ= 1, . . . ,k. Equation (3.19) and this second induction hypothesis applied to ℓ= k−1 then imply that

(k−1) f (i,k) = (k−1)piri +(k−1)pi f (i+1,k)+(k−1)(1− pi) f (i,k−1)
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≤ (k−1)piri + kpi f (i+1,k−1)+(k−1)(1− pi) f (i,k−1)

= k [pi(ri + f (i+1,k−1))+(1− pi) f (i,k−2)]

− piri +(k−1)(1− pi) f (i,k−1)− k(1− pi) f (i,k−2)

= k f (i,k−1)− piri +(1− pi) [(k−1) f (i,k−1)− k f (i,k−2)] . (3.23)

Now observe that it follows from the first induction hypothesis and Lemma 3.3.2 that

(k−1) f (i,k−1)− k f (i,k−2)≤ (k−1) f (i,k−1)− k(k−2)

k−1
f (i,k−1)

=
1

k−1
f (i,k−1)≤ f (i,1)≤ Zi.

Here, we use the first induction hypothesis twice: once in the first inequality (by applying Inequality (3.21)

to ℓ = k− 2) and again in the penultimate inequality (by applying Inequality (3.21) to ℓ = 1). Substituting

this into Inequality (3.23) then yields (k−1) f (i,k)≤ k f (i,k−1). Hence, by Inequality (3.21),

f (i,k)

k
≤ f (i,k−1)

k−1
≤ f (i, ℓ)

ℓ

for all ℓ= 1, . . . ,k−1. Since we also trivially have f (i,k)/k≤ f (i, ℓ)/ℓ for ℓ= k, this completes the induction,

and therefore the proof. □

Lemma 3.3.4 f (i,k)≥ f (i+1,k) for all i ∈ N \{n} and k ≥ 0.

Proof. Consider an arbitrary i ∈ N \ {n}. We show the result by induction k. First observe that f (i,0) =

f (i+1,0) = 0, so for k = 0 the result trivially holds. Now take arbitrary k > 0 and suppose that f (i,k−1)≥
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f (i+1,k−1). It then follows from Equation (3.19) and Zi ≥ Zi+1 that

f (i,k)− f (i+1,k)

1− pi

= Zi + f (i,k−1)− f (i+1,k)≥ Zi+1 + f (i+1,k−1)− f (i+1,k)

Hence, to establish f (i,k)≥ f (i+1,k), it suffices to show that

Zi+1 + f (i+1,k−1)− f (i+1,k)≥ 0. (3.24)

For k = 1 this immediately follows from Lemma 3.3.2. Hence, we can assume that k ≥ 2. Lemma 3.3.2 and

Lemma 3.3.3 (first applied with ℓ= 1 and next with ℓ= k−1) then imply that

f (i+1,k) =
f (i+1,k)

k
+(k−1)

f (i+1,k)

k

≤ f (i+1,1)+ f (i+1,k−1)≤ Zi+1 + f (i+1,k−1).

Inequality (3.24) therefore holds for all k ≥ 1, which completes the proof. □

3.3.3 The Z-rule heuristic

Algorithm 3 Z-rule heuristic (ZRH).

input: An ERM instance (n,m,(ri, pi)i∈N)

1 for all j, compute Z j = p jr j/(1− p j) let σ be the sequence that schedules the jobs j ∈ N in

non-increasing order of Z j let S←{σ ,σ , . . . ,σ} (m times) return S

In this section we analyze the worst-case performance of the heuristic that schedules the jobs in non-

increasing order of their Z-ratio on all machines (Algorithm 3), hence requiring O(n logn) time. We refer

to this heuristic as the Z-rule heuristic, abbreviated as ZRH. More specifically, for an arbitrary instance, we

compare the objective value obtained by this heuristic with the sequential upper bound. As such, our analysis
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not only gives insight into the Z-rule heuristic’s performance, but also into the quality of our upper bound.

For every m ≥ 1, let Hm = ∑
m
k=1 1/k be the mth harmonic number, and denote αm = Hm/m. That is, αm

is the inverse harmonic mean of the integers 1, . . . ,m. Table 3.5 lists the value of αm for m ∈ {1, . . . ,20}.

In the following, we will show that, for every instance with m machines, the Z-rule heuristic leads to an ex-

pected revenue that is at least αm times the sequential upper bound. We will also provide a family of instances

showing that the derived bound between the heuristic and this sequential upper bound is asymptotically tight.

Table 3.5: Approximation guarantee αm for ERMm with m ∈ {1, . . . ,20}.

m αm m αm m αm m αm

1 1 6 0.4083 11 0.2745 16 0.2113

2 0.75 7 0.3704 12 0.2586 17 0.2023

3 0.611 8 0.3397 13 0.2446 18 0.1942

4 0.5208 9 0.3143 14 0.2323 19 0.1867

5 0.4567 10 0.2929 15 0.2212 20 0.1799

Since αm = Hm/m decreases in m, the obtained approximation guarantee is only constant for a fixed

number of machines. Observe in this respect that the approximation guarantee compares the objective value

of the heuristic with the sequential upper bound, and not the true maximum expected revenue for the original

ERM. As such, our analysis does not show to which extent the deteriorating performance is caused by an

increasing gap between the heuristic and the optimal solution on the one hand, or between the optimal

solution and the upper bound on the other hand. Intuitively, however, one would expect that the quality of

both the heuristic and the upper bound deteriorate as the number of machines increases. Indeed, if there are

more machines, then following the same sequence on every machine, as in the Z-rule heuristic, seems more

harmful, and a sequential approach in which one can schedule the next machine after knowing the previous

one’s outcome seems more beneficial.
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Worst-case performance guarantee

Consider an arbitrary instance (n,m,(ri, pi)i∈N) with Z1 ≥ . . .≥ Zn. The expected revenue of scheduling

the jobs in non-increasing order of their Z-ratio on all machines then equals h(1,m) as determined by the

recursion

h(i,k) =
k

∑
ℓ=1

(︃

k

ℓ

)︃

pℓi (1− pi)
k−ℓ [ri +h(i+1, ℓ)] (3.25)

with boundary condition h(n + 1,k) = 0, for all i ∈ N and k ∈ {1, . . . ,m}. The interpretation of Equa-

tion (3.25) is as follows. For arbitrary i ∈ N and k ∈ {1, . . . ,m}, consider the instance defined on job

set {i, . . . ,n} with k available machines. Since job i has maximal Z-ratio among all jobs i, . . . ,n, it is sched-

uled first on all available machines, and only those machines on which job i succeeds remain available

afterwards. The number of available machines to perform jobs i+1, . . . ,n therefore follows a binomial dis-

tribution with k trials and success probability pi. Moreover, we receive the reward ri if and only if job i is

successful on at least one machine. Hence, if job i is successful on exactly ℓ∈ {1, . . . ,k}machines, which oc-

curs with probability
(︁

k
ℓ

)︁

pℓi (1− pi)
k−ℓ, then we receive the reward ri as well as the expected reward h(i+1, ℓ)

from the instance defined on job set {i+1, . . . ,n} with ℓ available machines. If job i fails on all k machines,

on the other hand, then the reward equals zero. Equation (3.25) therefore indeed correctly specifies the

expected reward associated with the Z-rule heuristic.

In order to derive the worst-case performance guarantee, it is convenient to rewrite Equation (3.25).

Consider an arbitrary i∈N and k ∈ {2, . . . ,m}. Using the fact that
(︁

k
ℓ

)︁

=
(︁

k−1
ℓ−1

)︁

+
(︁

k−1
ℓ

)︁

for all ℓ= 1, . . . ,k−1,

where
(︁

k−1
0

)︁

= 1, we can rewrite Equation (3.25) as follows:

h(i,k) = pk
i [ri +h(i+1,k)]+

k−1

∑
ℓ=1

[︃(︃

k−1

ℓ−1

)︃

+

(︃

k−1

ℓ

)︃]︃

pℓi (1− pi)
k−ℓ [ri +h(i+1, ℓ)]

= pk
i [ri +h(i+1,k)]+ pi

k−1

∑
ℓ=1

(︃

k−1

ℓ−1

)︃

pℓ−1
i (1− pi)

k−ℓ [ri +h(i+1, ℓ)]
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+(1− pi)
k−1

∑
ℓ=1

(︃

k−1

ℓ

)︃

pℓi (1− pi)
k−1−ℓ [ri +h(i+1, ℓ)]

= pi

k−1

∑
ℓ=0

(︃

k−1

ℓ

)︃

pℓi (1− pi)
k−1−ℓ [ri +h(i+1, ℓ+1)]+(1− pi)h(i,k−1)

= piri + pi

k−1

∑
ℓ=0

(︃

k−1

ℓ

)︃

pℓi (1− pi)
k−1−ℓh(i+1, ℓ+1)+(1− pi)h(i,k−1). (3.26)

Here, the third equality results from merging the first two terms of the second equality (where the indices of

the summation have been shifted down one unit), and from applying Equation (3.25) for k− 1. The fourth

equality, in turn, follows since

k−1

∑
ℓ=0

(︃

k−1

ℓ

)︃

pℓi (1− pi)
k−1−ℓ = 1, (3.27)

because it is the total probability mass of a binomial distribution with k−1 trials and success probability pi.

Theorem 3.3.6, which forms the main result of this section, states that for every instance with m ma-

chines, the Z-rule heuristic leads to an expected revenue that is at least αm = Hm/m times the sequential

upper bound, where Hm = ∑
m
k=1 1/k is the mth harmonic number. To show this result, we use the following

lemma.

Lemma 3.3.5 For every k ∈ N0 and p ∈ (0,1) it holds that

(1− p)

(︃

1− 1

k

)︃

+ p
k−1

∑
ℓ=0

(︃

k−1

ℓ

)︃

pℓ(1− p)k−1−ℓHℓ+1 ≥ pHk. (3.28)

Proof. Consider an arbitrary p ∈ (0,1) and k ∈ N0. Since one can easily verify that the inequality holds

for k = 1, we assume that k ≥ 2. Using Equation (3.27), we can rewrite Inequality (3.28) as

p
k−1

∑
ℓ=0

(︃

k−1

ℓ

)︃

pℓ(1− p)k−1−ℓ (Hk−Hℓ+1)≤ (1− p)

(︃

1− 1

k

)︃

,
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which in turn is equivalent to

k−2

∑
ℓ=0

(︃

k−1

ℓ

)︃

pℓ+1(1− p)k−2−ℓ (Hk−Hℓ+1)≤
k−1

k
. (3.29)

Now observe that for every ℓ= 0, . . . ,k−2

Hk−Hℓ+1 =
k

∑
u=ℓ+2

1

u
≤ k−1− ℓ

ℓ+2

and
(︃

k−1

ℓ

)︃

· k−1− ℓ

ℓ+2
=

(k−1)!

(ℓ+1)!(k−2− ℓ)!
· ℓ+1

ℓ+2
=

(︃

k−1

ℓ+1

)︃

· ℓ+1

ℓ+2
.

Hence,

k−2

∑
ℓ=0

(︃

k−1

ℓ

)︃

pℓ+1(1− p)k−2−ℓ (Hk−Hℓ+1)≤
k−2

∑
ℓ=0

(︃

k−1

ℓ

)︃

pℓ+1(1− p)k−2−ℓ k−1− ℓ

ℓ+2

=
k−2

∑
ℓ=0

(︃

k−1

ℓ+1

)︃

pℓ+1(1− p)k−2−ℓ ℓ+1

ℓ+2

=
k−1

∑
ℓ=1

(︃

k−1

ℓ

)︃

pℓ(1− p)k−1−ℓ ℓ

ℓ+1

≤
k−1

∑
ℓ=0

(︃

k−1

ℓ

)︃

pℓ(1− p)k−1−ℓ k−1

k
=

k−1

k
,

where the final inequality follows since ℓk≤ (k−1)(ℓ+1) for all ℓ= 1, . . . ,k−1, and where the final equality

follows from Equation (3.27). This establishes Inequality (3.29) and therefore completes the proof. □

Theorem 3.3.6 Consider an arbitrary instance (n,m,(ri, pi)i∈N) with Z1 ≥ . . .≥ Zn. For every i∈N and k ∈

{1, . . . ,m} it then holds that

h(i,k)

f (i,k)
≥ αk =

Hk

k
=

1

k

k

∑
ℓ=1

1

ℓ
. (3.30)
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In particular, h(1,m)≥ αm f (1,m).

Proof. We establish Inequality (3.30) using induction on i and k. For k = 1, it follows from expanding the

recursions defined by Equations (3.19) and (3.25) that, for every i ∈ N,

h(i,1) = pi [ri +h(i+1,1)] =
n

∑
j=i

(︄

j

∏
u=i

pu

)︄

r j = f (i,1).

Since α1 = 1, this shows that Inequality (3.30) indeed holds if k = 1. Analogously, for i = n, it follow from

expanding Equations (3.19) and (3.25) that, for every k = 1, . . . ,m,

h(n,k) =
k

∑
ℓ=1

(︃

k

ℓ

)︃

pℓn(1− pn)
k−ℓrn = (1− (1− pn)

k)rn =
k

∑
ℓ=1

(1− pn)
k−ℓpnrn = f (n,k).

Since αk ≤ 1 for all k ≥ 1, this shows that Inequality (3.30) indeed holds if i = n.

Now consider arbitrary i ∈ N \{n} and k ∈ {2, . . . ,m}. As the induction hypothesis, assume that h(i,k−

1)≥ αk−1 f (i,k−1) and h(i+1, ℓ)≥ αℓ f (i+1, ℓ) for all ℓ= 1, . . . ,k. Equation (3.26) then yields

h(i,k)≥ piri + pi

k−1

∑
ℓ=0

(︃

k−1

ℓ

)︃

pℓi (1− pi)
k−1−ℓαℓ+1 f (i+1, ℓ+1)+(1− pi)αk−1 f (i,k−1)

= αk piri +(1−αk)piri + pi

k−1

∑
ℓ=0

(︃

k−1

ℓ

)︃

pℓi (1− pi)
k−1−ℓαℓ+1 f (i+1, ℓ+1)

+αk(1− pi) f (i,k−1)+(αk−1−αk)(1− pi) f (i,k−1). (3.31)

We now use Lemmas 3.3.2-3.3.4 to bound the right-hand side of the above inequality in terms of f (i+1,k)/k.

In particular, Lemmas 3.3.2 and 3.3.3 imply that

piri = (1− pi)Zi ≥ (1− pi)Zi+1 ≥ (1− pi) f (i+1,1)≥ (1− pi)
f (i+1,k)

k
. (3.32)
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Moreover, for every ℓ= 0, . . . ,k−1, Lemma 3.3.3 and the fact that αℓ+1 = Hℓ+1/(ℓ+1) yield

αℓ+1 f (i+1, ℓ+1) = Hℓ+1

f (i+1, ℓ+1)

ℓ+1
≥ Hℓ+1

f (i+1,k)

k
. (3.33)

Next, observe that

αk−1−αk =
1

k−1

(︃

Hk−1−
k−1

k
Hk

)︃

=
1

k−1
(αk +Hk−1−Hk) =

1

k−1

(︃

αk−
1

k

)︃

and, by Lemmas 3.3.3 and 3.3.4, that

f (i,k−1)≥ f (i+1,k−1)≥ (k−1)
f (i+1,k)

k
.

Hence, we also have that

(αk−1−αk)(1− pi) f (i,k−1)≥
(︃

αk−
1

k

)︃

(1− pi)
f (i+1,k)

k
. (3.34)

Substituting Inequalities (3.32)-(3.34) into Inequality (3.31) and rearranging terms then yields

h(i,k)≥ αk piri +αk(1− pi) f (i,k−1)

+

[︄

(︃

1−αk +αk−
1

k

)︃

(1− pi)+ pi

k−1

∑
ℓ=0

(︃

k−1

ℓ

)︃

pℓi (1− pi)
k−1−ℓHℓ+1

]︄

f (i+1,k)

k
.

On the other hand, it follows from Equation (3.19) that

αk f (i,k) = αk piri +αk pi f (i+1,k)+αk(1− pi) f (i,k−1)

= αk piri +αk(1− pi) f (i,k−1)+ piHk

f (i+1,k)

k
.
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Hence, to establish that h(i,k)≥ αk f (i,k), it suffices to show that

(1− pi)

(︃

1− 1

k

)︃

+ pi

k−1

∑
ℓ=0

(︃

k−1

ℓ

)︃

pℓi (1− pi)
k−1−ℓHℓ+1 ≥ piHk.

Lemma 3.3.5 states that this inequality indeed holds, which completes the proof. □

Asymptotic tightness of the performance guarantee

Consider the family of ERM instances in which all jobs have unit reward and identical success proba-

bility. Observe that an instance (n,m,(1, p)i∈N) from this family is completely specified by the parameters

n,m∈N0 and p∈ (0,1). Let F(n, p,m) and H(n, p,m) be the corresponding objective value of the sequential

upper bound and Z-rule heuristic, respectively.

Theorem 3.3.8 below shows that, for every m ∈ N0, the ratio between H(n, p,m) and F(n, p,m) tends

to αm as n grows to infinity and p tends to one. As such, it establishes that the worst-case performance

guarantee derived above is asymptotically tight. Before proving this result, we first characterize the values

of F(n, p,m) and H(n, p,m) as n tends to infinity in the next lemma.

Lemma 3.3.7 For arbitrary m ∈ N0 and p ∈ (0,1), define

F(p,m) = m
p

1− p
(3.35)

and let H(p,m) be as defined by the recursion, for k = 1, . . . ,m,

H(p,k) =
pk

1− pk
+

k−1

∑
ℓ=1

(︃

k

ℓ

)︃

pℓ(1− p)k−ℓ

1− pk
[1+H(p, ℓ)] . (3.36)

It then holds that limn→∞ F(n, p,m) = F(p,m) and limn→∞ H(n, p,m) = H(p,m).
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Proof. Consider an arbitrary p ∈ (0,1). We prove the result by induction on m. For m = 1, it immediately

follows from Equations (3.19), (3.25), (3.35), and (3.36) that

lim
n→∞

F(n, p,1) = lim
n→∞

H(n, p,1) =
∞

∑
j=1

p j =
p

1− p
= F(p,1) = H(p,1).

Hence, the result holds for m = 1. Now consider an arbitrary m≥ 2 and, as the induction hypothesis, assume

that limn→∞ F(n, p,k)=F(p,k) and limn→∞ H(n, p,k)=H(p,k) for all k = 1, . . . ,m−1. For arbitrary n∈N0,

let P(n) and Q(n) denote the probability that all n jobs can be completed successfully in the solution obtained

from the sequential upper bound and Z-rule heuristic, respectively. Since for given m and p the expected

revenue for an instance with n jobs only differs from the one with n−1 jobs if all n jobs succeed, and since

we consider unit revenues, it holds that F(n, p,m) = F(n−1, p,m)+P(n) and H(n, p,m) = H(n−1, p,m)+

Q(n). Equation (3.19) then yields that

F(n, p,m) = p [1+F(n−1, p,m)]+(1− p)F(n, p,m−1)

= p [1+F(n, p,m)−P(n)]+(1− p)F(n, p,m−1)

and therefore that

F(n, p,m) =
p [1−P(n)]

1− p
+F(n, p,m−1).

Since p < 1, we have limn→∞ P(n) = 0. Combined with the induction hypothesis, we obtain

lim
n→∞

F(n, p,m) =
p [1− limn→∞ P(n)]

1− p
+ lim

n→∞
F(n, p,m−1) = m

p

1− p
,
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which establishes that limn→∞ F(n, p,m) = F(p,m). Analogously, Equation (3.25) yields that

H(n, p,m) =
m

∑
ℓ=1

(︃

m

ℓ

)︃

pℓ(1− p)m−ℓ [1+H(n−1, p, ℓ)]

= pm [1+H(n, p,m)−Q(n)]+
m−1

∑
ℓ=1

(︃

m

ℓ

)︃

pℓ(1− p)m−ℓ [1+H(n−1, p, ℓ)]

and therefore that

H(n, p,m) =
pm [1−Q(n)]

1− pm
+

m−1

∑
ℓ=1

(︃

m

ℓ

)︃

pℓ(1− p)m−ℓ

1− pm
[1+H(n−1, p, ℓ)] .

Using limn→∞ Q(n) = 0 and the induction hypothesis, we thus obtain

lim
n→∞

H(n, p,m) =
pm [1− limn→∞ Q(n)]

1− pm
+

m−1

∑
ℓ=1

(︃

m

ℓ

)︃

pℓ(1− p)m−ℓ

1− pm

[︂

1+ lim
n→∞

H(n−1, p, ℓ)
]︂

=
pm

1− pm
+

m−1

∑
ℓ=1

(︃

m

ℓ

)︃

pℓ(1− p)m−ℓ

1− pm
[1+H(p, ℓ)] .

This establishes that also limn→∞ H(n, p,m) = H(p,m), and therefore completes the proof. □

And now we are in the position to prove that the worst case result of Section 1 is asymptotically tight.

Theorem 3.3.8 For every m ∈ N0 it holds that

lim
p→1

lim
n→∞

H(n, p,m)

F(n, p,m)
= αm.

Proof. Given the result of Lemma 3.3.7, it suffices to show that

lim
p→1

H(p,m)

F(p,m)
= αm (3.37)
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for every m ∈ N0. We show this using induction on m. Since F(p,1) = H(p,1) for all p ∈ (0,1), we have

lim
p→1

H(p,1)

F(p,1)
= 1 = α1,

so Equation (3.37) holds for m = 1. Now consider arbitrary m > 1 and, as the induction hypothesis, assume

that

lim
p→1

H(p,k)

F(p,k)
= αk

for all k = 1, . . . ,m−1. Equations (3.35)-(3.36) imply that

lim
p→1

H(p,m)

F(p,m)
= lim

p→1

[︄

pm

(1− pm)F(p,m)
+

m−1

∑
ℓ=1

(︃

m

ℓ

)︃

pℓ(1− p)m−ℓ

1− pm

(︃

1

F(p,m)
+

H(p, ℓ)

F(p,m)

)︃

]︄

= lim
p→1

[︄

pm(1− p)

mp(1− pm)
+

1

m

m−1

∑
ℓ=1

(︃

m

ℓ

)︃

pℓ(1− p)m−ℓ

1− pm

(︃

1− p

p
+ ℓ

H(p, ℓ)

F(p, ℓ)

)︃

]︄

, (3.38)

where in the second equality we use that F(p,m) = mp/(1− p) = (m/ℓ)F(p, ℓ) for all ℓ = 1, . . . ,m. Now

observe that, using l’Hopital’s rule,

lim
p→1

pm(1− p)

p(1− pm)
= lim

p→1

mpm−1− (m+1)pm

1− (m+1)pm
=

1

m

and, for every ℓ= 1, . . . ,m−1,

lim
p→1

pℓ(1− p)m−ℓ

1− pm
= lim

p→1

ℓpℓ−1(1− p)m−ℓ− (m− ℓ)pℓ(1− p)m−ℓ−1

−mpm−1

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0 for ℓ= 1, . . . ,m−2;

1
m

for ℓ= m−1.

Substituting this into Equation (3.38) and using the induction hypothesis, the definition of αm, and the fact
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that limp→1(1− p)/p = 0, we obtain that

lim
p→1

H(p,m)

F(p,m)
=

1

m2
+

m−1

m
αm−1 = αm,

which completes the proof. □

3.3.4 Modified Z-rule heuristic

One potential weakness of the Z-rule heuristic is that it leads to a solution that follows the same sequence

on each machine. Because of this, jobs occurring early on in the sequence have a relatively higher probability

to be successful on multiple machines, whereas jobs occurring later on in the sequence have a relatively

higher probability not to be successful on any machine. In this section, we consider a construction heuristic

based on the so-called modified Z-ratio. This ratio was already introduced in Section 3.2.1 for the case of two

machines and takes into account the probability that a job might already be successful on an other machine.

Given a multiset S = {σ1, . . . ,σk} of k ∈ {1, . . . ,m} sequences and a job j ∈ N, we define the modified

Z-ratio of j given the partial solution S as

Z j(S) = Z j ∏
σ∈S

(1−Pj(σ)) =
p jr j

1− p j
∏
σ∈S

(1−Pj(σ)) .

In words, the modified Z-ratio equals the expected revenue of performing job j on a single machine times the

probability that j fails on all sequences in S, divided by job j’s failure probability. Observe that if S = /0, then

the modified Z-ratio reduces to the original Z-ratio. If |S| = 1, in turn, then it coincides with the modified

Z-ratio as defined in [65] for ERM2, i.e., ERM constrained to two machines.

Before describing the heuristic, we first state the following result that motivates its description. It shows

that if m− 1 sequences are fixed, then for the remainder machine it is optimal to schedule the jobs in non-

152



increasing order of their modified Z-ratio. As such, it generalizes the corresponding result in [65] for ERM2.

Here and below, we use the additive union, with symbol ⊎, to merge two multisets such that the multiplicities

of their elements are summed up. For example, with S = {σ} for some arbitrary sequence σ , we have that

S⊎{σ}= {σ ,σ}.

Theorem 3.3.9 For a multiset S = {σ1, . . . ,σm−1} of m−1 sequences and a sequence σ ′,

ER(S⊎{σ ′}) = max
σ

ER(S⊎{σ})

if and only if Zi(S)> Z j(S) implies σ ′(i)< σ ′( j) for all jobs i, j ∈ N.

Proof. Equation (3.1) yields that

ER(S⊎{σ ′}) = ∑
j∈N

[︄

1− ∏
σ∈S⊎{σ ′}

(1−Pj(σ))

]︄

r j

= ∑
j∈N

[︄

1±∏
σ∈S

(1−Pj(σ))−
(︁

1−Pj(σ
′)
)︁

∏
σ∈S

(1−Pj(σ))

]︄

r j

= ∑
j∈N

[︄

1−∏
σ∈S

(1−Pj(σ))

]︄

r j + ∑
j∈N

[︁

1−
(︁

1−Pj(σ
′)
)︁]︁

r j ∏
σ∈S

(1−Pj(σ)) .

Denoting C = ∑ j∈N [1−∏σ∈S (1−Pj(σ))]r j and r′j = r j ∏σ∈S (1−Pj(σ)) for each j ∈ N, we obtain that

ER(S⊎{σ ′}) =C+ ∑
j∈N

Pj(σ
′)r′j.

Here, the quantity ∑ j∈N Pj(σ
′)r′j equals the expected revenue of following sequence σ ′ for the corresponding

ERM instance with a single machine and revenues (r′j) j∈N instead of (r j) j∈N . Since the constant C does not

depend on σ ′, Theorem 3.1.1 yields that, for fixed S, the expected revenue ER(S⊎{σ ′}) is maximized by σ ′
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if and only if the jobs j ∈ N are scheduled in non-increasing order of the ratio

p jr
′
j

1− p j

=
p jr j

1− p j
∏
σ∈S

(1−Pj(σ)) = Z j(S),

which establishes the result. □

Algorithm 4 Modified Z-rule heuristic (MZRH).

input: An ERM instance (n,m,(ri, pi)i∈N)

2 initialize S← /0 while |S|< m, do

3 let σ be a sequence that schedules the jobs j ∈ N in non-increasing order of Z j(S) let S←
S⊎{σ}

4 return S

Based on the above result, we propose the modified Z-rule heuristic (MZRH), summarized in Algo-

rithm 4. The modified Z-rule heuristic builds a feasible solution such that, in each iteration, the next machine

schedules the jobs in non-increasing order of their modified Z-ratio, given the partial solution formed by

the previous machines’ sequences. Notice that computing Pj(S), given the values Pj(S−{σ}) and σ can be

done in constant time (as Pj(S) = Pj(S−{σ})+Pj(σ)−Pj(S−{σ})Pj(σ)). Since there are m iterations and

scheduling the jobs in non-increasing order of their modified Z-ratio takes time O(n log(n)), the modified

Z-rule heuristic runs in time O(mn log(n)).

In the following, an approximation result for the Modified Z-rule heuristic is presented. More precisely,

we show that this heuristic produces a solution whose value is at least 1− (m−1
m

)m times the optimal value.

Such a result follows from an approximation study of [74] establishing an approximation bound of a ªgreedyº

heuristic for the maximization of submodular set functions.

Definition 3.3.1 Given a finite set M, a set function f : 2M → R is submodular if for every ρ ∈ M and

S⊆ T ⊆M it holds that f (S∪{ρ})− f (S)≥ f (T ∪{ρ})− f (T ).
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In words, for a submodular function f , the marginal benefit of including an additional element ρ is non-

increasing in the set of already included elements.

Given a finite set M, a submodular function f : 2M → R, and an integer m ≥ 1, consider the problem

max{ f (S) : |S| ≤ m, S ⊆M} and the greedy algorithm that, starting from the empty set S = /0, at each step

adds to S an element σ ∈M \S maximizing f (S∪{σ})− f (S). [74] proved that such a greedy algorithm is

1− (m−1
m

)m approximate.

Below, we use the result of [74] to argue that the modified Z-rule heuristic has the same approximation

guarantee. To do so, we first show that the expected revenue is submodular in the included sequences and,

next, argue that the modified Z-rule heuristic coincides with the greedy algorithm described by [74]. Since

we represent a solution by a multiset instead of a set, however, we first need to introduce some additional

notation.

Let P denote the set of all permutations (i.e., sequences) of the jobs in N, and let M = P×{1, . . . ,m}

be the set containing m copies of each permutation. Hence, M contains n!×m job permutations. For an

arbitrary subset S⊆M, denote by SÅ the multiset obtained from S by including each permutation σ ∈P with

the number of times that it appears in S. Additionally, define the set function f : 2M→R with f (S) = ER(SÅ)

for every S ⊆ M. It then follows that every subset S ⊆ M with |S| = m corresponds to a unique solution SÅ

of our ERM problem, and that f (S) equals the expected revenue of this solution. The following lemma

shows that f is submodular, implying that the additional expected revenue thanks to scheduling an additional

machine according to a given permutation is non-increasing in the multiset of sequences scheduled on other

machines.

Lemma 3.3.10 The set function f : 2M → R with f (S) = ER(SÅ) for every S⊆M is submodular.
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Proof. Consider arbitrary S⊆ T ⊆M and (ρ,k) ∈M. From Equation (3.1),

f (S∪{(ρ,k)}) = ER(SÅ ⊎{ρ}) = ∑
j∈N

[︄

1− (1−Pj(ρ))∏
σ∈SÅ

(1−Pj(σ))

]︄

r j

= ER(SÅ)+Pj(ρ) ∑
j∈N

[︄

∏
σ∈SÅ

(1−Pj(σ))

]︄

r j

and

f (T ∪{(ρ,k)}) = ER(TÅ )+Pj(ρ) ∑
j∈N

[︄

∏
σ∈TÅ

(1−Pj(σ))

]︄

r j.

Since S⊆ T and 0≤ 1−Pj(σ)≤ 1 for every σ ∈M and j ∈ N, it follows that

f (S∪{(ρ,k)})− f (S) = ER(SÅ ⊎{ρ})−ER(SÅ)

= Pj(ρ) ∑
j∈N

[︄

∏
σ∈SÅ

(1−Pj(σ))

]︄

r j

≥ Pj(ρ) ∑
j∈N

[︄

∏
σ∈TÅ

(1−Pj(σ))

]︄

r j

= ER(TÅ ⊎{ρ})−ER(TÅ ) = f (T ∪{(ρ,k)})− f (T ).

By Definition 3.3.1, this shows that f is submodular. □

Now observe that, with the definition of M and f as described above, our ERM problem corresponds

exactly to the problem max{ f (S) : |S| ≤ m, S ⊆M}. Moreover, it follows from Theorem 3.3.9 that, starting

from the empty set S = /0, the modified Z-rule heuristic adds at each iteration t = 1, . . . ,m a permutation

σ ∈P such that

f (S∪{(σ , t)})− f (S) = max
(ρ,k)∈M\S

{ f (S∪{(ρ,k)})− f (S)}.

As such, our modified Z-rule heuristic is a special case of the greedy algorithm described by [74]. Moreover,
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by Lemma 3.3.10, the function f is submodular. If we let SH be the solution produced by the Modified Z-rule

heuristic, and S∗ an optimal solution, we thus obtain:

Theorem 3.3.11 (Nemhauser et al., 1978) For every m ∈ N0 it holds that

ER(SH)

ER(S∗)
≥ 1−

(︃

m−1

m

)︃m

≥ 1− 1

e
.

3.3.5 Mutual-best-reply heuristic

In this section we introduce a third heuristic algorithm, called the mutual-best-reply heuristic (MBRH)

and summarized in Algorithm 5. Here, for a solution S and a sequence σ ∈ S, we denote by S−{σ} the

multiset obtained by decreasing the multiplicity of σ in S by one. We also define

W (S) = {σ ∈ S : ∃ i, j ∈ N with σ(i)< σ( j) and Zi(S−{σ})< Z j(S−{σ})}

as the set of sequences σ ∈ S that do not schedule the jobs j ∈ N in non-increasing order of their modified

Z-ratios with the partial solution S−{σ}. The mutual-best-reply heuristic then iteratively checks whether

there is a machine whose sequence disagrees with the modified Z-rule given the partial solution formed by

all other machines. If so, then the machine is rescheduled according to the modified Z-rule and we proceed to

the next iteration. Hence, when the procedure terminates, it follows from Theorem 3.3.9 that every machine

sequences the jobs optimally if we consider the other machines’ sequences to be fixed. That is, the sequences

form a mutual best reply to each other.

It follows from Theorem 3.3.9 that whenever a sequence disagrees with the modified Z-rule, then

rescheduling leads to a strict increase in the expected revenue. Equation (3.3) in the proof of Theorem 3.1.1
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Algorithm 5 Mutual-best-reply heuristic (MBRH).

input: An ERM instance (n,m,(ri, pi)i∈N) and an initial solution S = {σ1, . . . ,σm}
5 while there exists a σ ∈W (S), do

6 let S← S−{σ} let σ ′ be a sequence that schedules the jobs j ∈ N in non-increasing order

of Z j(S) let S← S⊎{σ ′}
7 return S

implies that this increase is lower bounded by

γ = min
i, j∈N : Zi>Z j

{︄

(1− pi)(1− p j)(Zi−Z j) ∏
k∈N\{i, j}

pk

}︄

.

Since the expected revenue of an arbitrary solution lies in the interval
[︁

0,∑ j∈N r j

]︁

, the mutual-best-reply

heuristic thus terminates in at most ∑ j∈N r j/γ iterations. This is finite, but not polynomial (or even pseudo-

polynomial) in the input size. Establishing the exact computational complexity of the mutual-best-reply

heuristic still forms an open problem.

3.3.6 A tabu search heuristic

In this section, a Tabu Search (TS) algorithm for ERM is presented. The overall structure is summarized

in Algorithm 6. Starting from an initial solution {σ1, . . . ,σm}, in each iteration t of the TS scheme we select

the best non-tabu neighbor solution {σ̂1, . . . , σ̂m}. The solution neighborhood is constructed according to

the method explained below. If this best neighbor improves the best known solution Sbest, we update this

latter solution. If the best neighbor is worse than the solution with which we started the iteration, i.e., no

improving solution is found in the neighborhood, then we make the move that led to our neighbor solution

tabu for the next τÅ iterations in order to avoid cycling. We refer to the parameter τÅ as the tabu tenure. Finally,

we proceed to the next iteration with {σ̂1, . . . , σ̂m} as our new current solution. The algorithm terminates

when the maximum number of iterations T is reached.
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Algorithm 6 Tabu Search for ERM.

input: an ERM instance (n,m,(ri, pi)i∈N) and an initial solution {σ1, . . . ,σm}
8 initialize Sbest←{σ1, . . . ,σm} and t← 0 for k = 1, . . . ,m do

9 for i, j ∈ N with i < j do

10 τ(i, j,k)← 0 ; // Initialize tabu list

11 while t < T , do

12 let B← 0 for k = 1, . . . ,m do // Loop over machines

13 for i, j ∈ N with i < j and τ(i, j,k)≥ t do // Loop over non-tabu swaps

14 swap i and j in σk to obtain a new sequence σ ′k initialize S′←{σ ′} and R←{1, . . . ,m}\
{k} while R ̸= /0 do // Schedule remaining machines

15 pick arbitrary ℓ ∈ R and let R← R \ {ℓ} let σ ′ℓ be a sequence with jobs u ∈ N in

non-increasing order of Zu(S
′) let S′← S′⊎{σ ′ℓ}

16 if ER(S′)> B then // Store best non-tabu neighbor

17 B← ER(S′) (î, ĵ, k̂)← (i, j,k) (σ̂1, . . . , σ̂m)← (σ ′1, . . . ,σ
′
m)

18 if B > ER(Sbest) then // Store overall best solution

19 Sbest←{σ̂1, . . . , σ̂m}
20 else if B < ER({σ1, . . . ,σm}) then // Make non-improving move tabu

21 τ(î, ĵ, k̂)← t + τÅ

22 let (σ1, . . . ,σm)← (σ̂1, . . . , σ̂m) let t← t +1

23 return Sbest

Given a tuple (σ1, . . . ,σm), we consider for every two jobs i, j ∈ N with i < j and for every machine k ∈

{1, . . . ,m} a move (i, j,k) that generates a neighbor (σ ′1, . . . ,σ
′
m) as follows. First, we swap jobs i and j in

sequence σk, i.e., the sequence followed on machine k, to obtain a new sequence σ ′k. Next, we run through

the remaining machines in an arbitrary order and, at each step, the next machine ℓ is scheduled according to

a sequence σ ′ℓ as specified by the modified Z-rule. The definition of a move (i, j,k) and the associated tabu

list τ(i, j,k) not only keeps track of which two jobs are interchanged, but also of the machine on which this

is done. Indeed, to prevent cycling, we only need to prevent undoing a non-improving move on the relevant

machine. As such, for the purpose of defining the neighborhood and the tabu list, the order of the schedules

on the different machines matters. We therefore represent a solution as an ordered tuple (σ1, . . . ,σm) rather

than as an unordered multiset {σ1, . . . ,σm}.
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Observe that rather than running through the remaining machines in an arbitrary order after having

performed a swap on a given machine, we could also make this order a part of the move. This order is

relevant for future iterations because the machines differ with respect to which pairwise interchanges are

allowed by the tabu list. By considering all possible orders, however, the size of the neighborhood increases

substantially. Preliminary computational experiments have shown that the increase in solution quality thanks

to this larger neighborhood does not outweigh the additional time needed to explore it. Therefore, we chose

to rely on a random order as described in Algorithm 6.

For the specific case of two machines, the tabu search described in Algorithm 6 is equivalent to the one

developed by [65]. Our current approach therefore directly generalizes the one of [65] to an arbitrary number

of machines.

3.3.7 Computational experiments

In this section, we assess the quality of the new upper bound and heuristics by means of computational

experiments. To do so, we use the same instances as in Section 3.2.5. In the following, first, we briefly

recall how the instances are generated. Then, we focus on the special case with two machines, i.e., ERM2,

so that we can directly compare the performance of the sequential upper bound and the new heuristics with

those of the 3AP-based upper bound and the tabu search for two machines proposed in Section 3.2. Next,

we focus on ERM3 to assess the quality of the new generalized tabu search algorithm and compare it with

the other heuristics and the sequential upper bound. Finally, we show how the gap between our upper bound

and heuristics scales in the number of machines.

Instance description and implementation details

As introduced in Section 3.2.5, 20 instances have been generated for each combination of the number

of jobs n ∈ {10,20,30,40,50} and intervals Ip ∈ {[0.9,1], [0.5,1], [0.1,1]} for the success probability. For
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each job i = 1, . . . ,n in a given instance, a success probability pi was drawn uniformly at random from the

corresponding interval Ip, while the revenue ri was drawn from a integer uniform distribution on the interval

[10,100]. This then lead to 20×5×3 = 300 instances in total.

The tabu search has been run as a Python 3.7 program on a single 1.7 GHz CPU core with 8 GB RAM.

All heuristics and the upper bound introduced in this chapter have been run on a single 1.7 GHz CPU core and

with 8GB of RAM. The tabu search was implemented as a Python 3.7 program, whereas the other methods

were implemented using the C++ programming language and compiled with Microsoft Visual C++ 14.0.

As a starting solution for MBRH and tabu search, we used the solution obtained by MZRH and MBRH,

respectively.

Performance for ERM2

For the specific case of ERM2, in Section 3.2 we proposed a quadratic integer program, a tabu search

heuristic, and an upper bound based on a three-dimensional assignment problem (3AP). Although the quadratic

integer program cannot be solved exactly within a reasonable computation time, it does provide a feasible

solution and a valid upper bound. As such, it can be used as a heuristic whose performance can be evaluated

by means of the obtained upper bound. Among these methods, the tabu search and the 3AP-based upper

bound turned out to perform best. Therefore, we only compare the new upper bound and heuristics to these

latter two methods.

Table 3.6 displays the result of this experiment on ERM2-instances. For a given value V (be it a lower

bound obtained through a heuristic or the upper bound provided by 3AP), the percentage gap is computed

relative to the sequential upper bound UBs, presented in Section 3.3.2, as:

UBs−V

UBs

×100%.
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Table 3.6: Average percentage gap and cpu time in seconds for ERM2 instances.

ZRH MZRH MBRH Tabu Search 3AP bound

n Ip % gap % gap % gap % gap cpu % gap cpu

10 [0.1,1] 8.21 6.96 6.53 6.27 0.24 −8.10 0.22

10 [0.5,1] 8.66 6.94 5.89 5.52 0.25 −7.52 0.94

10 [0.9,1] 1.38 0.88 0.73 0.65 0.24 −0.78 0.97

20 [0.1,1] 10.52 8.41 7.29 6.72 3.76 −12.72 1.05

20 [0.5,1] 10.85 8.60 7.08 6.37 3.31 −19.83 1.02

20 [0.9,1] 3.37 2.35 1.88 1.60 3.64 −2.64 1.07

30 [0.1,1] 10.90 8.51 7.40 6.54 11.80 −20.25 1.60

30 [0.5,1] 11.96 9.40 7.56 6.77 11.47 −27.10 1.52

30 [0.9,1] 5.82 3.81 2.98 2.47 10.84 −5.84 1.51

40 [0.1,1] 10.51 8.65 7.11 6.48 27.00 −28.06 4.44

40 [0.5,1] 11.63 9.31 7.39 6.46 26.46 −31.26 3.98

40 [0.9,1] 7.53 5.40 4.07 3.43 25.81 −7.95 4.81

50 [0.1,1] 11.57 9.03 7.29 6.46 55.92 −27.60 13.95

50 [0.5,1] 11.68 9.18 7.05 6.27 55.08 −36.39 9.78

50 [0.9,1] 9.10 6.08 4.75 3.84 54.68 −12.56 10.66

In addition to the percentage gap, the table also reports on the average cpu time in seconds for the tabu search

and the 3AP bound. All other heuristics needed less than 0.001 seconds to solve any of the instances. The

averages are taken over all twenty instances for the corresponding value of n and interval Ip as indicated by

the table’s rows.

Table 3.6 clearly shows that the more advanced heuristics also result in better solutions. When comparing

the corresponding cpu-times, however, we observe that for larger instances the tabu search needs a relatively

large amount of time to improve upon the solution obtained by MBRH.

The performance of all heuristics follows the same overall trend: with Ip = [0.9,1], the gap clearly

increases in the number of jobs n, whereas it is much more stable for Ip = [0.5,1] or Ip = [0.1,1]. Moreover,

when comparing the different intervals of the success probability, we see that the gap increases between Ip =

[0.9,1] and Ip = [0.5,1] and, perhaps somewhat surprisingly, the gap stabilizes between Ip = [0.5,1] and Ip =
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[0.1,1]. Since we do not know the optimal solution value, however, it is not clear which part of the gap is

caused by the heuristic and the sequential upper bound, respectively.

With respect to the quality of the bound, we find that the sequential upper bound clearly dominates the

one provided by 3AP, both in the quality of the bound as in the computation time. Indeed, for all considered

instances, it took less than 0.001 seconds to compute the sequential upper bound, and its value was strictly

smaller than the one provided by 3AP for all but one of the instances. As Table 3.6 shows, the average

percentage gap of 3AP is always negative, and the sequential upper bound outperforms the 3AP bound

especially when n is larger and Ip = [0.5,1].

Performance for ERM3

Table 3.7 provides the results for three-machine problems. The 3AP-based upper bound does not ap-

pear in the table since it only applies to ERM2. Moreover, we also need to use tabu search described in

Section 3.3.6 that generalizes the method of Section 3.2.3 to more than two machines.

The computational results for ERM3 display a similar pattern as for ERM2. When comparing Tables 3.6

and 3.7, however, we see that the average gaps decrease for Ip = [0.9,1] and n ≤ 30, while they increase

for most other settings. One possible explanation for this is that when Ip = [0.9,1] and n is small, then it is

easier to find a schedule in which most jobs are likely to be carried out with m = 3 than with m = 2. As the

number of jobs increases or the range of success probabilities becomes wider, this effect dissipates and the

gap increases, instead of decreasing, with the number of machines. In the next section we will demonstrate

this effect even more clearly.

Especially for larger instances, we observe that the tabu search needs a relatively large amount of time

to yield only a limited improvement over MBRH. It seems that, compared to the case of ERM2, the enlarged

neighborhood harms the tabu search’s performance. Since this effect would only get worse as the number of

machines increases, it seems that the tabu search is mainly relevant for a relatively small number of machines.
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Table 3.7: Average percentage gap and cpu time in seconds for ERM3 instances.

ZRH MZRH MBRH Tabu Search

n Ip % gap % gap % gap % gap cpu

10 [0.1,1] 13.52 10.12 9.43 9.24 1.40

10 [0.5,1] 12.68 8.29 7.51 7.26 1.49

10 [0.9,1] 0.80 0.37 0.33 0.32 1.58

20 [0.1,1] 17.00 11.67 10.53 10.38 12.88

20 [0.5,1] 17.53 11.60 9.93 9.70 13.98

20 [0.9,1] 2.81 1.43 1.19 1.18 15.62

30 [0.1,1] 17.61 11.90 10.43 10.26 48.99

30 [0.5,1] 19.29 12.89 10.86 10.61 55.83

30 [0.9,1] 6.17 3.09 2.50 2.49 65.93

40 [0.1,1] 17.12 11.82 10.21 10.04 128.16

40 [0.5,1] 18.80 12.47 10.30 10.08 139.66

40 [0.9,1] 9.03 4.92 3.94 3.94 174.16

50 [0.1,1] 18.68 12.31 10.55 10.30 263.77

50 [0.5,1] 19.06 12.49 10.26 10.05 301.88

50 [0.9,1] 11.84 6.35 5.04 5.02 394.70

For this reason, we did not test the tabu search for more than three machines.

Performance for ERMm

Figure 3.1 provides insight into how the gap between our heuristics (other than tabu search) and the se-

quential upper bound scales in m. The figure displays a similar pattern to what we observed when comparing

Tables 3.6 and 3.7. The gaps initially tend to increase in m, but, as m becomes larger, this growth slows down

and, for most settings, eventually becomes negative. In fact, as the number of machines becomes sufficiently

large, most jobs are likely to be carried out, leading to a smaller gap.

This empirical finding shows that the average percentage gap does not increase monotonically in the

number machines. This seems to conflict with the fact that, as derived in Section 3.3.3, the worst-case

performance does deteriorate monotonically in m. However, in establishing the asymptotic tightness of
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Figure 3.1: Average percentage gap for ZRH, MZRH, and MBRH as a function of the number of

machines m. The graph is repeated for different values of n ∈ {10,20, . . . ,50} and intervals for the

success probabilities Ip ∈ {[0.9,1], [0.5,1], [0.1,1]}. Gaps are computed relative to the sequential

upper bound UBs as (UBs−V)/UBs×100% for the corresponding value V.

2 8 14 20

0

25

50

n
=

1
0

% gap

2 8 14 20 2 8 14 20

ZRH

MZRH

MBRH

2 8 14 20

0

25

50

n
=

2
0

2 8 14 20 2 8 14 20

2 8 14 20

0

25

50

n
=

3
0

2 8 14 20 2 8 14 20

2 8 14 20

0

25

50

n
=

4
0

2 8 14 20 2 8 14 20

2 8 14 20

0

25

50

Ip = [0.9,1]

n
=

5
0

2 8 14 20

Ip = [0.5,1]

2 8 14 20

Ip = [0.1,1]

m

165



this worst-case guarantee we considered a family of instances in which n tends to infinity. As such, our

computational experiment suggests that one could perhaps derive a better performance guarantee if one

parameterizes on the number of jobs n.

Comparing the average percentage gaps for ZRH and MZRH with the related worst-case performance

guarantees (i.e., Hm/m and 1− (m−1
m

)m, respectively), our computational results suggest that the average

performance of these heuristics is considerably better than the worst-case performance. Moreover, the em-

pirical performance can be further slightly improved by using the MBRH heuristic, even if it is still an open

question whether MBRH yields a better worst-case guarantee than MZRH.

3.4 Conclusions

In this chapter we addressed the problem of sequencing unreliable jobs on parallel machines when job

replication is allowed. In particular, we defined the Expected Revenue Maximization problem (ERM), where

a set of jobs with failure probabilities are replicated and each copy is scheduled on a different machine. A

revenue r j is attained when a job J j is carried out, and the problem is that of maximizing the total expected

revenue. We first addressed the problem with m = 2 machines, showing that it is NP-Complete and providing

a quadratic integer programming formulation, an upper bound based on the Three Dimensional Assignment

problem (3AP) and a tabu search approach. We showed that the latter finds good solutions when job success

probabilities are large. Then, we focused to the general case of m machines, proposing a novel upper bound

(the sequential upper bound) and four heuristic approaches, namely the Z-rule heuristic, the modified Z-rule

heuristic, the mutual-best-reply heuristic, and a new generalized tabu search. Our main theoretical contri-

bution is to show that the Z-rule heuristic yields an expected revenue of at least Hm/m times the sequential

upper bound, where Hm = ∑
m
k=1 1/k is the mth harmonic number. Moreover, this bound is asymptotically

tight. This result simultaneously yields a worst-case guarantee for the Z-rule heuristic’s performance as well
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as for the gap between the sequential upper bound and the maximum expected revenue. Furthermore, we

prove that the slightly more complex modified Z-rule heuristic is 1− (m−1
m

)m approximate.

Based on extensive computational experiments, we also find that our proposed methods display a good

empirical performance. In particular, the sequential upper bound performs significantly better than the bound

based on the three-dimensional assignment problem proposed for ERM2. With respect to the heuristics,

especially the modified Z-rule heuristic and the mutual-best-reply heuristic seem to result in a high-quality

solution in very limited computation time. An interesting open question is whether also the mutual-best-reply

heuristic leads to an improved approximation guarantee.

The tabu search, however, only seems practical for instances with two or three machines. For larger

values of m the neighborhood becomes too large to be effectively explored.

Several possible venues for future research can be considered, including the following.

(i) The complexity status of relevant special cases (e.g., those introduced in Section 3.2.5) is still un-

known and hence requires further analysis.

(ii) The mathematical programming formulation proposed in Section 3.2.2 solves to optimality only rel-

atively small instances of ERM2. A promising direction for further research consists in developing

exact solution methods. Indeed, since there are currently no such methods available, it is unclear what

part of the gap between our sequential upper bound and the heuristics is due to performance of the

upper bound and the heuristics, respectively. One main challenge in developing such exact solution

methods is the highly non-linear objective function due to the product of probabilities.

(iii) Further improvements might be obtained in the tabu search performances by considering other neigh-

borhood definitions that scale better in the number of machines.
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Conclusions

In this dissertation, we focused on three different problems. The first problem (Chapter 1) arises from

a real-world application in healthcare and concerns the transportation of perishable biological samples from

draw centers to a main laboratory for analysis. The samples must be delivered within their lifetime but

dedicated facilities called spoke centers are available to extend such lifetime. At spoke centers the transfer

of samples between vehicles is allowed. To solve the problem, we developed three different mixed integer

linear programming models (MILP) and different hybrid metaheuristic algorithms based on the Adaptive

Large Neighborhood Search framework (H-ALNS), for which several ad-hoc procedures have been devised.

Computational experiments on different sets of instances, based on real-life data provided by the Local

Healthcare Authority of Bologna, Italy, have been also presented. A comparison between the solutions

obtained by MILP formulations and the H-ALNS algorithms on small instances shows the effectiveness of

the proposed metaheuristics and assesses the superiority of the two time-indexed MILP models with respect

to the simple MILP one. On real-life instances, due to the big number of samples to deliver each day, we

proposed an experimental study to evaluate different grouping policies. The computational results show

that the H-ALNS algorithms are able to find solutions in which all samples are delivered on time while,

in the real case, the lifetime requirements of samples are not currently satisfied. This means that the H-

ALNS algorithms together with the devised grouping policies can improve significantly the decision-making

process in this kind of problems.
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In Chapter 2, we focused on the decision problem of crop planning in sustainable agriculture taking

into account crop rotation benefits across growing seasons is considered. A formal characterization for the

problem has been given. We performed a complexity study showing that the problem is NP-hard with rotation

schemes of three or more crops. A special case of the problem that can be solved through a polynomial

network-flow approach has been also presented. Furthermore, we formulated three different variants of the

problem, accounting for different sustainable scenarios, in order to evaluate the effectiveness of existing

public (Common Agricultural Policy) and private (Carta del Mulino) initiatives on the use of the soil and

on the profits of the farmers. Different integer linear programs have been developed for each variant and

tested through an extensive computational campaign. The data were provided by 23 Italian farms and the

experiments have been performed on the problem considering rotation schemes of three crops (CRP-3),

which is common practice in the Mediterranean pedo-climatic context. The results show that the proposed

approaches could be embedded in a decision support tool that can be practically used by farmers to plan

their production and to evaluate the convenience of joining sustainability initiatives. On the other hand, the

models can also be employed by regulatory bodies to tune the incentives of such initiatives. The policy

makers will be able to use the results to assess the suitability of rules for farm sustainability transition.

Finally, in Chapter 3 we addressed the problem of replicating and sequencing unreliable jobs on par-

allel machines. We first addressed the problem with m = 2 machines, showing that it is NP-Complete and

providing a quadratic integer programming formulation, an upper bound based on the Three-Dimensional

Assignment problem (3AP) and a tabu search approach. We showed that the latter finds good solutions

when job success probabilities are large. Then, we focused to the general case of m machines, proposing

a novel upper bound (the sequential upper bound) and four heuristic approaches, namely the Z-rule heuris-

tic, the modified Z-rule heuristic, the mutual-best-reply heuristic, and a new generalized tabu search. Our

main theoretical contribution is to prove the worst case performance guarantee of the Z-rule heuristic and the

modified Z-rule heuristic. We also derived a performance guarantee of the gap between the sequential upper
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bound and the maximum expected revenue. Based on extensive computational experiments, we also find

that our proposed methods display a good empirical performance. In particular, the sequential upper bound

performs significantly better than the bound based on the three-dimensional assignment problem proposed

for ERM2. With respect to the heuristics, especially the modified Z-rule heuristic and the mutual-best-reply

heuristic seem to result in a high-quality solution in very limited computation time.

The problems addressed in this dissertation come from totally different fields, but can be modeled and

solved in a rigorous and quantitative way by applying combinatorial optimization techniques. The results

reported in this dissertation show the effectiveness of the proposed methods and algorithms that can be

helpful tools for managers to improve decision-making in real-world problems.
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