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Complete Stability of Neural Networks With
Extended Memristors

Mauro Di Marco , Mauro Forti , Riccardo Moretti , Luca Pancioni, and Alberto Tesi

Abstract— The article considers a large class of delayed neural
networks (NNs) with extended memristors obeying the Stanford
model. This is a widely used and popular model that accurately
describes the switching dynamics of real nonvolatile memristor
devices implemented in nanotechnology. The article studies via
the Lyapunov method complete stability (CS), i.e., convergence
of trajectories in the presence of multiple equilibrium points
(EPs), for delayed NNs with Stanford memristors. The obtained
conditions for CS are robust with respect to variations of the
interconnections and they hold for any value of the concentrated
delay. Moreover, they can be checked either numerically, via a
linear matrix inequality (LMI), or analytically, via the concept
of Lyapunov diagonally stable (LDS) matrices. The conditions
ensure that at the end of the transient capacitor voltages and NN
power vanish. In turn, this leads to advantages in terms of power
consumption. This notwithstanding, the nonvolatile memristors
can retain the result of computation in accordance with the
in-memory computing principle. The results are verified and
illustrated via numerical simulations. From a methodological
viewpoint, the article faces new challenges to prove CS since
due to the presence of nonvolatile memristors the NNs possess
a continuum of nonisolated EPs. Also, for physical reasons, the
memristor state variables are constrained to lie in some given
intervals so that the dynamics of the NNs need to be modeled
via a class of differential inclusions named differential variational
inequalities.

Index Terms— Complete stability (CS), differential variational
inequalities, in-memory computing, linear matrix inequality
(LMI), Lyapunov diagonally stable (LDS) matrices, Lyapunov
method, memristor, neural networks (NNs).

I. INTRODUCTION

TRADITIONAL computers based on Von Neumann archi-
tectures are currently facing severe challenges to process

big amount of data in the Internet of Things and edge
computing systems [1], [2], [3], [4]. These are due to the
Moore’s law slowdown and the memory wall bottleneck, i.e.,
the difficulties to continuously transmit huge amount of data
between the central processing unit (CPU) and the memory
(e.g., the RAM) located at different sites. The use of emerging
nanoscale devices as memristors is a long-term vision aimed
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at overcoming the limitations of Von Neumann architectures
via the implementation of innovative analog and parallel
neuromorphic computing paradigms [5], [6], [7]. Especially,
nonvolatile memristors can handle their state for a long time
and thus they enable to circumvent the memory bottleneck
according to the in-memory computing principle [8], [9], [10].
Namely, the same memristor device has a key role in the
computation but also in memorizing the result of computation,
which is the same mechanism at the core of a biological brain.

The memristor was envisioned by Chua in the seminal
1971 article [11] as the fourth basic passive circuit element
together with the resistor, capacitor, and inductor. An ideal
voltage-controlled memristor is a circuit element defined by a
nonlinear relation between flux (the integral of voltage) and
charge (the integral of current). In the voltage-current domain
it satisfies a state-dependent Ohm’s law where the flux has
the role of the state variable. The main limitation of ideal
memristors is that they are unable to satisfactorily model real
memristor devices in nanotechnology [12], [13], [14], [15],
[16], [17]. Actually, the most effective way to accurately
describe real devices is via more complex models named
extended memristors [18],1 which involve more general forms
of the quasi-static Ohm’s law and also additional internal
state variables such as geometric features of the device or
the temperature. One of the most popular and widely used
real memristor models is the Stanford one [16], [20], [21],
[22]. Its importance is due to the fact that it is able to accu-
rately describe the hysteresis loops and nonlinear dynamics
displayed by a broad class of filamentary resistive random
access memory (RRAM) devices exhibiting bipolar switching
characteristics (more details in Section II).

Following the definition in the seminal papers [23], [24],
[25], and [26], by complete stability (CS) of a neural network
(NN) it is meant that any trajectory converges toward an
equilibrium point (EP) as t → ∞. In view of the applications,
an extremely important case of CS is that where the NN has
multiple EPs and each solution tends to an EP depending upon
the initial condition. In fact, in this case a NN is tailor made
to implement content addressable memories (CAMs), where
the stable EPs correspond to the memorized patterns, to solve
combinatorial optimization problems, where the stable states
are the local minima of the cost function, and to solve in
real time several other tasks in the fields of image processing
and adaptive signal processing [26], [27], [28]. The physical

1A detailed discussion on the nomenclature, genealogy, and classification
of memristors is available in [18] and [19].
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mechanism of static pattern formation, i.e., the emergence in
the long run of some stationary voltage distribution for the
neurons, is also inherently related to CS [29]. Adding delays
in the NN model further extends the application fields, since
a completely stable delayed NN is well suited also to solve
motion-related problems [30]. We refer the reader to [31] for
a thorough survey of the main recent results in the literature
on CS of NNs. It is worth mentioning that in the special
case where there exists a unique EP, CS reduces to global
asymptotic stability (GAS) [32]. However, GAS NNs will not
be considered in this article.

CS of NNs without memristors has been widely investigated
in the literature using the Lyapunov method, the dichotomy
of omega limit sets for cooperative systems, the global con-
sistency of decision schemes for competitive systems and
the Łojasiewicz inequality and the concept of trajectories
with finite length, see, e.g., [23], [24], [31], [33], [34], [35],
[36], [37], and references therein. Quite on the contrary, the
study of CS of memristor NNs (MNNs) is an important
topic that is still in its infancy, as confirmed by the limited
number of available studies. In [38], [39], and [40], CS of
MNNs with ideal memristors has been investigated in the
case of symmetric interconnections and in that of cooperative
(positive) interconnections between neurons, using a technique
referred to as flux-charge analysis method [19]. This method is
used also in [41] and [42] for multistability of delayed cellular
NNs with ideal memristors. Moreover, there are contributions
on CS of NNs where memristors are modeled as elements
switching between two values of the resistance displayed
by the pinched hysteresis loop [43], [44]. We also mention
the related relevant papers [45], [46] and [47] dealing with
techniques for synchronization of various classes of NNs with
delay and switching memristors. However, how to employ such
switching models to describe real memristor devices has not
been studied so far. Finally, [48] deals with CS of a class
of MNNs where memristors obey the ThrEshold Adaptive
Memristor (TEAM) model and [49] studies CS of a class of
cellular MNNs with bistable neurons.

The previous discussion shows that there is a substantial
lack of results on CS for NNs with general and reliable real
memristor models. In turn, this represents a serious limitation
in view of the practical implementation in nanotechnology
of MNNs. Goal of this manuscript is to make a first step
to fill this relevant gap. Indeed, in this article, we study for
the first time CS of a large class of MNNs with nonvolatile
extended memristors obeying the widely used and popular
Stanford model. For generality, we also allow for the presence
of concentrated delays in neuron interconnections. We will
refer to these NNs as Stanford MNNs (SMNNs).

Due to the peculiar mathematical structure of the SMNNs
equations, there are a number of challenges and mathematical
difficulties to analyze CS as follows.

1) Each neuron is described by a third-order nonlinear
dynamical system since, in addition to the capacitor
voltage, there are two more state variables given by the
length g of the gap of the memristor insulating material
and the temperature T of the filament tip. Therefore,

for n neurons, an SMNN is described by a set of 3n
coupled differential equations. This is remarkably more
complex than in a traditional memristor-less NN, or in
MNNs with ideal memristors, which can be described
by a set of n differential equations.

2) Due to the nonvolatility of the memristors, it follows
that for structural reasons an SMNN has a continuum
of nonisolated EPs, a new scenario calling for peculiar
methods to address CS.

3) Due to physical limitations, one state variable of each
neuron, i.e., the gap g, is constrained to lie in a
given interval. Such hard constraints are mathematically
described by a class of differential inclusions termed
differential variational inequalities (DVIs) [50]. Their
study thus needs nonstandard tools from nonsmooth
analysis.

The main results in the article can be summarized as
follows.

1) We provide sets of conditions ensuring CS of the con-
sidered class of MNNs. These hold for any concentrated
delay and they are robust with respect to variations of
the neuron interconnections.

2) The conditions for CS can be effectively tested numer-
ically since they are expressed in the form of linear
matrix inequalities (LMIs) [51]. For several relevant
classes of interconnection matrices they can also be
checked analytically via the concept of Lyapunov diag-
onally stable (LDS) matrices [52].

3) The conditions for CS guarantee that at the end of
the transient the capacitor voltages vanish, hence power
consumption of the SMNNs drops off at a steady state.
This is a desirable feature for NNs used in the Internet of
Things or edge computing systems [3], [4], where power
efficiency is crucial. It is stressed that, although capacitor
voltages vanish, the nonvolatile memristors can retain in
memory the result of the SMNN computation, i.e., the
asymptotic values of the memristors gaps, in accordance
with the in-memory computing principle.

The article is organized as follows. In the remaining part
of this section we give the notation and some preliminary
mathematical results. Then, Section II discusses the Stanford
memristor and SMNN models considered in the article. The
main results on CS of SMNNs are given in Section III,
while Section IV provides numerical simulations illustrating
the applicability of the results on CS. Finally, Section V draws
the main conclusions of the article.

Notation: If x, y ∈ Rn are column vectors, ⟨x, y⟩ =∑n
i=1 xi yi is the scalar product, while ∥x∥ = ⟨x, x⟩

1/2
=

(
∑n

i=1 x2
i )

1/2 denotes the Euclidean norm of x and ∥x∥∞ =

maxi=1,...,n |xi | is the infinity norm. Given x ∈ Rn and set
Q ⊂ Rn , we let dist(x, Q) = infy∈Q ∥x − y∥. If A =

A⊤
∈ Rn×n , where superscript ⊤ means the transpose,

is a symmetric square matrix, 3m(A) (resp., 3M(A)) is
the minimum eigenvalue (resp., maximum eigenvalue) of A.
Moreover, A > 0 (resp. A ≥ 0) means that A is positive
definite (resp. positive semidefinite). If A ∈ Rn×n is (in
general) nonsymmetric, ∥A∥2 = [3M(A⊤ A)]1/2 is the induced
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two-norm of A. We denote by C([−τ, 0],Rn) the space of
continuous functions from [−τ, 0] to Rn , where τ > 0.

A. Preliminaries

1) Tangent and Normal Cones: We recall some properties
of tangent and normal cones that are useful in the article. The
reader is referred to [50] for more details.

Let Q ⊂ Rn be a nonempty closed convex set. The tangent
cone to Q at x ∈ Q is defined as

TQ(x) =

{
z ∈ Rn

: lim inf
ζ→0+

dist(x + ζ z, Q)
ζ

= 0
}

while the normal cone to Q at x ∈ Q is given by

NQ(x) =
{
w ∈ Rn

: ⟨w, z⟩ ≤ 0 ∀z ∈ TQ(x)
}
.

It can be shown that, for any x ∈ Q, TQ(x) and NQ(x) are
nonempty closed convex cones in Rn . Furthermore, NQ(·) is a
monotone operator, i.e., for any x, y ∈ Q and any nx ∈ NQ(x),
ny ∈ NQ(y), we have ⟨x − y, nx − ny⟩ ≥ 0.

2) Differential Variational Inequalities: A DVI is a partic-
ular class of differential inclusion that is especially useful to
model the dynamics of systems evolving in a closed convex
subset of Rn defined for instance by some hard constraints.
Next, we recall the definition and some basic properties of
DVIs. For a more thorough treatment the reader is referred to
[50, Ch. 5].

Definition 1 [50, pp. 265]: Let Q ⊂ Rn be a nonempty
closed convex set and F : Q → Rn . A DVI is a problem of the
form: find an absolutely continuous function x(t), t ∈ [t1, t2],
such that x(t) ∈ Q for all t ∈ [t1, t2] and

ẋ(t) ∈ F(x(t))− NQ(x(t)) (1)

for almost all (a.a.) t ∈ [t1, t2].
Property 1 [50, Th. 1, pp. 267]: Let Q ⊂ Rn be a

nonempty compact convex set. Also, suppose that F : Q →

Rn is continuous in Q. Then, for any initial condition (IC)
x0 ∈ Q, the DVI (1) has at least a solution x(t), such that
x(0) = x0, which is defined for t ≥ 0.

3) Relevant Classes of Matrices: In the article we will
consider these classes of matrices A ∈ Rn×n [53].

Matrix A ∈ P if all its principal minors are positive.
Matrix A is said to be (positive) LDS if there exists a

diagonal matrix D ∈ Rn×n , D > 0, such that D A+ A⊤ D > 0.
If A is LDS then A ∈ P . The converse, however does not hold
in general.

Matrix A is an M-matrix if ai j ≤ 0 for any i ̸= j and
A ∈ P , while A is an H -matrix if the comparison matrix of
A, i.e.,

M(A) =

{
|ai i |, i = j
−|ai j |, i ̸= j

for i, j = 1, . . . , n, is an M-matrix.
More details about P and LDS matrices and their relation-

ships, and a discussion of their importance in the stability
analysis of NNs and interconnected dynamical systems, can
be found in [52].

II. SMNN MODEL

A. Stanford Memristor Model

Let v(t) [resp., i(t)] be the voltage (resp., the current) in a
memristor. Moreover, define the flux φ(t) =

∫ t
−∞

v(σ )dσ and
charge q(t) =

∫ t
−∞

i(σ )dσ . An ideal flux-controlled memris-
tor is defined by the constitutive relation q = q̂(φ) [11], where
q̂ : R → R is a nonlinear C1 function. By differentiating in
time, the memristor satisfies the quasi-static Ohm’s law

i = q̇ = q̂ ′(φ)
dφ
dt

= G id(φ)v (2)

φ̇ = v (3)

where G id(φ)
.
= q̂ ′(φ) has dimension of Ohm−1 and is named

(state dependent) memductance. The state variable is the flux
φ. When subject to a zero-mean sinusoidal voltage, an ideal
memristor displays its main fingerprint consisting in a pinched
hysteresis loop in the v − i plane.

An extended memristor satisfies [18], [19]

i = Gext(x, v)v (4)

ẋ = Fext(x, v) (5)

where x ∈ Rn is a vector of state variables, Gext(·, ·) : Rn
×

R → R is the memductance and Fext(·, ·) : Rn
×R → Rn . It is

further assumed that Gext(·, ·) is bounded in a neighborhood
of (x, 0) for any x ∈ Rn .

Clearly, an extended memristor has a more general form
of quasi-static Ohm’s law with respect to an ideal memristor.
Moreover, it may have more than one internal state variable
as defined by the state vector x . Due to (4), an extended
memristor still displays a pinched hysteresis loop in the v− i
plane when subject to a zero-mean sinusoidal voltage.

We consider the popular and widely used Stanford memris-
tor model [16], [20], [21], [22]

i = I0 exp
(
−

g
g̃

)
sinh

(
v

V0

)
(6)

ġ = −v0 exp
(

−
qe E
K T

)
sinh

(
qea0ψ

ℓK T
v

)
(7)

Ṫ =
vi
Cth

−
T − Tamb

2th
(8)

which accurately describes the switching mechanism and
dynamics due to the formation/rupture of conductive filaments
in a broad class of filamentary RRAM devices exhibiting
bipolar switching characteristics.

The Stanford memristor state variables are x = (g, T )⊤ ∈

R2, where the gap g is the distance between the top electrode
and the tip of the conductive filament and T is the temperature
of the filament tip. The model is characterized by a number of
positive parameters. We refer to Table I for the nomenclature
and for specific parameter values of some real memristor
devices implemented in nanotechnology [54]. One first set
of parameters a0, E, ℓ, Tamb,2th and Cth are named ‘process
parameters’ since they depend upon the fabrication aspects
as device structure and material properties and measurement
setup. The second set I0, g̃, V0, v0 an ψ are named ‘switching
parameters’ since they mainly describe the filament evolution
(gap dynamics) and the hysteresis loops in response to periodic
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TABLE I
STANFORD MEMRISTOR PARAMETERS AND TYPICAL VALUES FOR SOME REAL DEVICES

inputs. Additionally, K = 1.38 × 10−23 J/K is the Boltz-
mann’s constant and qe = 1.6 × 10−19 C is the elementary
unit charge. We refer the reader to [20], [21], [22], and [16]
for a detailed discussion on the physical mechanisms described
by (6)–(8).

Due to physical constraints, the filament gap g has a lower
and an upper bound [16]

g ∈ [gm, gM ].

From a mathematical viewpoint, the best way to impose
such hard constraint is to replace (7) with the following
DVI [50]

ġ ∈ −v0 exp
(

−
qe E
K T

)
sinh

(
qea0ψ

ℓK T
v

)
− N[gm ,gM ](g) (9)

where N[gm ,gM ](g), the normal cone to [gm, gM ] at g, ensures
that g evolves within [gm, gM ] for all times.

Henceforth, we suppose without loss of generality that
T (0) ≥ Tamb. Note that in (8) the term v(t)i(t) ≥ 0 for all t .
It easily follows that T (0) ≥ Tamb implies T (t) ≥ Tamb for
t ≥ 0. Note that if power is turned off, i.e., we let v = 0 and
T = Tamb (the ambient temperature), then we have ġ = 0 and
Ṫ = 0, i.e., any point of the form

(ḡ, Tamb), ḡ ∈ [gm, gM ] (10)

is an EP of (6)–(8). This implies that Stanford model
is nonvolatile since it is able to retain in memory a
continuum of nonisolated EPs as given in (10). Finally,
note that Stanford model can be put in the form of
an extended memristor by defining its memductance as
Gext(v, g) = I0e−g/g̃ sinh(v/V0)/v for v ̸= 0 and Gext(v, g) =

(I0/V0)e−g/g̃ if v = 0.

B. SMNN Equations

We consider a class of delayed MNNs with an additive
interconnection structure where each neuron has a capacitor
C and a memristor satisfying Stanford model. The SMNNs
obey the system of delayed DVIs

C v̇i (t) = −I0 exp
(

−
gi (t)

g̃

)
sinh

(
vi (t)
V0

)

+

n∑
j=1

ai j f (v j (t))+

n∑
j=1

aτi j f (v j (t − τ)) (11)

ġi (t) ∈ −v0 exp
(

−
qe E

K Ti (t)

)
sinh

(
qea0ψ

ℓK Ti (t)
vi (t)

)
− N[gm ,gM ](gi (t)) (12)

Ṫ i (t) =

I0 exp
(
−

gi (t)
g̃

)
vi (t) sinh

(
vi (t)
V0

)
C th

−
Ti (t)− Tamb

2th

(13)

for i = 1, . . . , n, where ai j (resp., aτi j ), i, j = 1, . . . , n, are
the neuron interconnections (resp., delayed neuron intercon-
nections) and 0 < τ < +∞ is a constant concentrated delay.

Moreover, the neuron activation f : R → R is such that
f (0) = 0, it is Lipschitz continuous, i.e., | f (ζ1) − f (ζ2)| ≤

L f |ζ1 − ζ2| for any ζ1, ζ2 ∈ R, for some 0 < L f < +∞ and
it satisfies the following condition.

Assumption 1: For any V > 0 there exists γ(V ) such that

0 < γ(V ) ≤
f (vi )

vi
≤ 1 (14)

for all vi ∈ [−V, V ], vi ̸= 0, and i = 1, . . . , n.
Several widely used neuron activations satisfy Assump-

tion 1. For example, the piecewise linear activation f (ζ ) =

(1/2)(|ζ + 1| − |ζ − 1|) of standard cellular NNs [26] sat-
isfies this assumption with γ(V ) = max{1, 1/V }, while the
sigmoidal activation f (ζ ) = (2/π) arctan(πζ/2) of Hopfield
NNs [55] satisfies the same assumption with γ(V ) = 1/V .
Moreover, note that there are unbounded activations that
satisfy Assumption 1, as for instance f (ζ ) = ζ if ζ ≥ 0,
f (ζ ) = (1/2)ζ if ζ < 0.

Note that (11)–(13) are 3n coupled differential equations
in 3n state variables, i.e., the n capacitor voltages vi , the n
memristor gaps gi and the n memristor temperatures Ti .

C. Existence and Uniqueness of the Solution

Since a SMNN obeys a class of differential inclusions
defined by a discontinuous and multivalued vector field, first
of all, we have to discuss what is meant by a solution of an
initial value problem (IVP) associated with the SMNN.

Let v = (v1, . . . , vn)
⊤, g = (g1, . . . , gn)

⊤, T =

(T1, . . . , Tn)
⊤, T̃ amb = (Tamb, . . . , Tamb)

⊤
∈ Rn , A =
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[ai j ], Aτ = [aτi j ] ∈ Rn×n .2 Moreover, introduce the following
diagonal mappings:

1) F(v) = ( f (v1), . . . , f (vn))
⊤

: Rn
→ Rn

2) D(v, g) = (d(v1, g1), . . . , d(vn, gn))
⊤

: R2n
→ Rn ,

where for i = 1, . . . , n

d(vi , gi ) = I0 exp
(
−

gi

g̃

)
sinh

(
vi

V0

)
. (15)

3) G(v, T ) = (g(v1, T1), . . . , g(vn, Tn))
⊤

: R2n
→ Rn ,

where for i = 1, . . . , n

g(vi , Ti ) = −v0 exp
(

−
qe E
K Ti

)
sinh

(
qea0ψ

ℓK Ti
vi

)
. (16)

4) T(v, g) = (t(v1, g1), . . . , t(vn, gn))
⊤

: R2n
→ Rn ,

where for i = 1, . . . , n

t(vi , gi ) =

I0 exp
(
−

gi

g̃

)
vi sinh

(
vi
V0

)
C th

. (17)

Finally, let

Dm
.
=

I0

V0
diag

(
exp

(
−

gM

g̃

)
, . . . , exp

(
−

gM

g̃

))
∈ Rn×n.

(18)

Note that the diagonal elements of Dm are equal to the
minimum value attained by the small signal memductance
(I0/V0)e−gi/g̃ when gi ∈ [gm, gM ], i = 1, . . . , n.

Then, we can rewrite the SMNN equations as

C v̇(t) = −D(v(t), g(t))+ AF(v(t))+ AτF(v(t − τ)) (19)

ġ(t) ∈ G(v(t), T (t))− N0(g(t)) (20)

Ṫ (t) = T(v(t), g(t))−
T (t)− T̃ amb

2th
(21)

where

0
.
= [gm, gM ]

n
⊂ Rn.

Definition 2 (IVP): Consider function ν ∈ C0([−τ, 0],Rn)

and vectors g0, T0 ∈ Rn such that g0,i ∈ [gm, gM ] and T0,i ≥

Tamb, i = 1, . . . , n. By a solution in [−τ, t̃] of the SMNN with
ICs ν, g0, T0, we mean a function (v, g, T ) : [−τ, t̃] → R3n ,
such that:

1) (v, g, T ) is continuous in [−τ, t̃] and absolutely contin-
uous in [0, t̃];

2) we have v(t) = ν(t), g(t) = g0, T (t) = T0, t ∈ [−τ, 0];
3) (v, g, T ) satisfies (19)–(21) for a.a. t ∈ [0, t̃]; and
4) we have g(t) ∈ 0 for all t ∈ [0, t̃].
An EP of the SMNN is a constant solution (v̄, ḡ, T̄ ), t ≥

−τ . It can be easily checked that any point in R3n such that
v̄i = 0, ḡi ∈ [gm, gM ] and T̄ i = Tamb, i = 1, . . . , n, is an EP.
Then, a SMNN has a continuum of nonisolated EPs.

Let

vM
.
= max

{
1, V0

√
6
(

V0

I0
exp

(gM

g̃

)
(MF + ε)− 1

)}
(22)

2Note that, with some abuse of notation, henceforth we use v, g and T to
denote the vectors of voltages, gaps and temperatures, while in (6)–(8) the
same notations are used for the scalar quantities given by the voltage, gap,
and temperature of a single memristor.

TM
.
= Tamb +2th

(
I0vM exp

(
−

gm

g̃

)
sinh

(
vM

V0

)
+ ε

)
(23)

where ε > 0

MF = max
i=1,...,n

 n∑
j=1

|ai j | +

n∑
k=1

|aτik |VF


VF = max

t∈[−τ,0]

∥v(t)∥∞.

Consider sets

4
.
= [−vM , vM ]

n
⊂ Rn, ϒ

.
= [Tamb, TM ]

n
⊂ Rn.

Lemma 1: Let (v(t), g(t), T (t)), t ≥ −τ , be a solution of
an IVP associated with (19)–(21). Then, there exists t f < ∞

such that v(t) ∈ 4 and T (t) ∈ ϒ for t ≥ t f . Moreover,
4 × 0 × ϒ ⊂ R3n is positively invariant for the dynamics
of (19)–(21).

Proof: See Appendix A.
Due to Lemma 1, there is no loss in generality if we study

CS of SMNNs obeying the following delayed DVI

v̇(t) ∈ −D(v(t), g(t))+ AF(v(t))+ AτF(v(t − τ))

− N4(v(t)) (24)

ġ(t) ∈ G(v(t), T (t))− N0(g(t)) (25)

Ṫ (t) ∈ T(v(t), g(t))−
T (t)− T̃ amb

2th
− Nϒ (T (t)) (26)

where the ICs ν ∈ C0([−τ, 0], 4), g0 ∈ 0 and T0 ∈ ϒ .
Proposition 1: There exists a unique solution of any IVP

associated with a SMNN which is defined and bounded for
t ≥ −τ .

Proof: See Appendix B.
Note that, although a SMNN obeys a DVI defined by a

discontinuous and multivalued vector field, yet it enjoys the
important property of uniqueness of the solution of any IVP.

III. CS OF SMNNS

In Section III-A and III-B we establish the main results on
CS of a SMNN. Then, in Section III-C we provide a number
of remarks to discuss the significance of the obtained results.

A. Main Result

Next, we recall the classical definition of CS.
Definition 3 ([23], [24], [25], [26]): A SMNN is said to

be completely stable if and only if the solution of any IVP
converges to an EP as t → ∞.

To study CS we enforce the following assumption on the
interconnection and delayed interconnection matrices A and
Aτ , and the diagonal matrix Dm in (18).

Assumption 2: There exist a diagonal matrix P ∈ Rn×n ,
P > 0, and a matrix Z = Z⊤

∈ Rn×n , Z > 0, such that the
following condition

S =

(
2P Dm − P A − A⊤ P − Z −P Aτ

−Aτ⊤ P Z

)
> 0 (27)

holds.
It can be readily verified that condition (27) amounts to

solve an LMI feasibility problem with respect to the n positive
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diagonal entries of the matrix P and the n(n + 1)/2 entries of
the positive definite matrix Z . It is well known that there are
effective numerical tools based on interior point polynomial
methods for solving such LMI problems [31], [56]. Moreover,
the particular structure of the matrix S makes it possible to
derive some necessary and simplified sufficient conditions for
(27), as discussed in Section III-B.

The next fundamental result holds.
Theorem 1: Suppose that Assumptions 1 and 2 are satisfied.

Let

k .
= min

{
3m(S)γ2(vM)

43M(P)
,

1
2τ

ln
(

1 +
3m(S)

23M(P Aτ Z−1(P Aτ )⊤)

)}
> 0 (28)

where vM is given in (22) and γ(vM) is defined in Assumption
1. Then, the solution of any IVP associated with the SMNN
(24)–(26) converges exponentially to an EP (v̄, ḡ, T̄ ) depend-
ing upon the ICs and such that v̄ = 0, ḡ ∈ 0 and T̄ = T̃ amb.
More precisely, the convergence rate can be estimated as
follows. There exist Mv,Mg,MT > 0 such that

∥v(t)∥ ≤ Mve−kt

∥g(t)− ḡ∥ ≤ Mge−kt

∥T (t)− T̃ amb∥ ≤ MT e−kT t

for t ≥ 0, where kT = min{k, 1/2th}.
Proof: See Appendix C.

Theorem 2: A SMNN is completely stable if Assumptions
1 and 2 are satisfied.

Proof: Immediately follows from Theorem 1.

B. Checking Conditions for CS

Since Assumption 2 plays a key role to assess CS via
Theorem 2, in this section we investigate if it is possible to
explicitly characterize classes of matrices A, Aτ , and Dm for
which condition (27) holds. We first show that (27) admits an
equivalent condition.

Lemma 2: The diagonal matrix P ∈ Rn×n , P > 0, and the
matrix Z = Z⊤

∈ Rn×n , Z > 0, solve (27) if and only if the
matrix

�
.
= 2P Dm − P A − A⊤ P − Z−P Aτ Z−1(P Aτ )⊤ (29)

is positive definite.
Proof: It follows directly by applying Schur’s lemma [51]

to the matrix S.
Next, we investigate how both necessary and sufficient

conditions ensuring that � > 0 can be derived using the class
of LDS matrices (see Section I-A3). Assessing whether a
given matrix is LDS in general amounts to solving a simplified
LMI feasibility problem. Moreover, as shown later, there
are relevant classes of matrices for which checking the LDS
condition can be performed analytically via a finite number of
inequalities.

1) Necessary Conditions: First of all, we observe that � >

0 if and only if

2P Dm − P A − A⊤ P > Z + P Aτ Z−1(P Aτ )⊤ (30)

where the right-side term is positive definite for all Z > 0.
Hence, inequality (30) can be solved for P and Z only if
P(Dm − A)+(Dm − A⊤)P > 0, which implies that a necessary
condition for Assumption 2 is that Dm − A is LDS.

Indeed, a sharpened necessary condition is derived next.
Proposition 2: Assumption 2 holds only if both matrices

Dm − A − Aτ and Dm − A + Aτ are LDS.
Proof: We first observe that the condition

(P Aτ ± Z)Z−1(P Aτ ± Z)⊤ ≥ 0

is satisfied for all P and Z > 0. Hence, we have

Z + P Aτ Z−1(P Aτ )⊤ ≥ ∓
(
P Aτ + (P Aτ )⊤

)
which implies that � > 0 only if

2P Dm − P A − A⊤ P ±
(
P Aτ + (P Aτ )⊤

)
> 0

thus completing the proof.
2) Sufficient Conditions: A sufficient condition ensuring

that � > 0 can be derived by finding a diagonal matrix P ,
P > 0, such that Dm − A is LDS and condition (30) is satisfied
for some choice of the matrix Z , Z > 0. Suppose that Aτ is
nonsingular and assume that Z enjoys the following structure

Z = Z0
.
= α(Aτ )⊤ P Aτ (31)

where α is a positive real parameter. Clearly, Z0 > 0 for all
α > 0. By replacing Z with Z0 in (30) we have

2P Dm − P A − A⊤ P > α(Aτ )⊤ P Aτ +
1
α

P. (32)

Clearly, if P is a solution of (32) for a given α > 0, then � >

0 once Z = Z0. We observe that for a given P > 0 condition
(32) holds for some α > 0 only if it is satisfied for the value
of α which makes its right-side as less positive definite as
possible. This can be pursued by noting that the following
condition

α∥Aτ∥2
23M(P)+

1
α
3M(P) ≥ α(Aτ )⊤ P Aτ +

1
α

P (33)

holds for all α > 0. Hence, a suitable choice for minimizing
the right-side term of (32) consists in selecting for α the value
which minimizes the left-side of (33), which amounts to

α =
1

∥Aτ∥2
. (34)

This leads to the next result.
Proposition 3: Let Aτ be nonsingular. Then, Assumption 2

holds if there exists a diagonal matrix P , P > 0, such that

2P Dm − P A − A⊤ P −
1

∥Aτ∥2
(Aτ )⊤ P Aτ − ∥Aτ∥2 P > 0.

(35)

Proof: It is enough to replace α in (32) with the expression
in (34).

The above sufficient condition requires the solution of an
LMI feasibility problem involving the n positive entries of P
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and the assumption that Aτ is nonsingular. Indeed, if Aτ is
singular then a similar reasoning can be applied by adding
to Z0 an arbitrarily small diagonal positive definite matrix.
The analysis requires some technical developments and it is
omitted for space limitations.

Now, we derive a sufficient condition which is more simple
to be checked and it covers also the case when Aτ is singular.
Indeed, we exploit the fact that if P > 0 is such that Dm − A
is LDS then there exists δ > 0 ensuring that

2P Dm − P A − A⊤ P ≥ δ3M(P)In (36)

where In is the nth-order identity matrix.
Proposition 4: Let P > 0 satisfy condition (36) for some

δ > 0. Then, Assumption 2 holds if

∥Aτ∥2 <
δ

2
. (37)

Proof: Let

Z = 3M(P)∥Aτ∥2 In

where P , P > 0, solves (36) for some δ. According to this
choice of Z , (30) boils down to

2P Dm − P A − A⊤ P > 3M(P)∥Aτ∥2 In

+
1

3M(P)∥Aτ∥2
P Aτ (P Aτ )⊤.

To prove that the above condition is satisfied, it is enough
to observe that (37) ensures that P is such that

2P Dm − P A − A⊤ P > 23M(P)∥Aτ∥2 In

and to verify that the following condition

3M(P)∥Aτ∥2 In ≥
1

3M(P)∥Aτ∥2
P Aτ (P Aτ )⊤

holds true.
Clearly, the larger is δ the larger is the set of matrices

Aτ to which Proposition 4 applies. In the next theorem,
which summarizes and at the same time improves the previous
sufficient conditions, we address the problem of choosing the
optimal value of δ.

Theorem 3: Suppose that Assumption 1 is satisfied and
Dm − A is LDS. Let the diagonal matrix P∗, P∗ > 0, be such
that (Dm − A⊤)P∗

+ P∗(Dm − A) > 0 and let

d∗
=

1
2
3m

[(
(Dm − A⊤)P∗

+ P∗(Dm − A)P∗
)
(P∗)−1] > 0.

(38)

Then, a SMNN is CS for all the matrices Aτ satisfying

∥Aτ∥2 < d∗
3m(P∗)

3M(P∗)
. (39)

Proof: Consider

2P∗ Dm − P∗ A − A⊤ P∗
≥ 2d P∗ (40)

where d is a positive scalar. It is seen that d∗ in (38) is the
maximum value of d such that (40) holds. Now, exploiting the
relation [3m(P∗)]−1 P∗

≥ In we have

2P∗ Dm − P∗ A − A⊤ P∗
≥ 2d∗3m(P∗)In.

Hence, by comparing the above condition with (36) it can
be concluded that, once d∗ and P∗ are available, condition
(37) boils down to (39). This ensures that Assumption 2 is
satisfied and a SMNN is CS due to Theorem 2.

We stress that Theorem 3 provides a robustness condition
for CS with respect to the magnitude of the induced matrix
2-norm of Aτ . The theorem assumes that Dm − A is LDS,
whose verification in general requires to solve an LMI problem
with n unknowns. However, there are relevant classes of
matrices for which Dm−A is LDS is equivalent to Dm−A ∈ P
and hence it can be simply checked via a finite number of
inequalities (see Section I-A3).

Theorem 4: Suppose that Assumption 1 is satisfied. Then,
the result on CS in Theorem 3 holds if (39) is met and one
of the following conditions is satisfied:

1) Dm−A is symmetric and positive definite, i.e., Dm−A ∈

P;
2) Dm − A is an M-matrix;
3) Dm − A is a nonsingular H -matrix with nonnegative

diagonal entries;
4) Dm − A is an acyclic P matrix; and
5) Dm − A is a skew symmetric matrix with positive

diagonal entries.
Proof: All the stated conditions ensure that Dm − A is

LDS [52].

C. Discussion

1) To the authors knowledge, Theorems 2–4 are the first
results on CS of MNNs with a class of extended mem-
ristors. The memristors obey Stanford model and they
can accurately describe the behavior of real memristor
devices. These theorems are not only of theoretic inter-
est, but they can also be used to design practical MNNs
in nanotechnology enjoying the important property
of CS.

2) Previous papers [48] and [49] deal with CS of MNNs
with the TEAM memristor model and a memristor
model used in ameba learning. Such models are not as
general and effective as the Stanford model to describe
the dynamics of real memristor devices [16]. More-
over, [49] deals with CS of a class of NNs without delay
and with uncoupled second-order cells.

3) According to Theorems 1–4, a SMNN is not only
completely stable but in addition each solution is expo-
nentially convergent to an EP with a known convergence
rate not depending on the ICs. This enables to quantita-
tively estimate the convergence time, which is extremely
useful in view of the practical applications to the solution
in real time of signal processing problems. It is also
noticed that exponential convergence holds even if a
SMNN has a continuum of EPs (see Section II-C).

4) We stress that the approach based on LDS matrices in
Theorems 3 and 4 enables to single out entire classes
of matrices and ranges of interconnections parameters
for which a SMNN is CS. Furthermore, such results
hold for a general SMNN dimension n. We will further
illustrate these features in Section IV. Theorem 4 can
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be immediately extended to any other class of matrices
enjoying the LDS property [52].

5) Theorems 1–4 ensure that exponential stability and CS
of SMNNs enjoy fundamental robustness properties.
First of all, exponential stability and CS are insensitive
to the presence of arbitrary constant delays. This is of
potential interest for the applications, because delays are
subject to large uncertainties due to the difficulties to
accurately measure them [57]. Moreover, the condition
Dm − A is LDS is robust with respect to small variations
of A. Finally, if Dm − A is LDS, Theorem 3 shows that
there is a robustness margin with respect to the norm of
the delayed interconnection matrix Aτ .

6) Due to Theorem 1, we have that Ti (t) → Tamb and
vi (t) → 0, i = 1, . . . , n, as t → ∞. This means
that, when a steady state is reached, the memristor is
at the ambient temperature, moreover, voltages, currents
and power in the SMNN vanish. This is a remarkable
advantage over traditional NNs as cellular NNs or Hop-
field NNs where the asymptotic values of voltages are
not zero and the NNs consume power also at a steady
state. It is worth to stress that, although voltages vanish,
yet the nonvolatile memristors can retain in memory the
result of the computation, i.e., the asymptotic values ḡi ,
i = 1, . . . , n, of the gaps, according to the principle
of in-memory computing. In practice, the values ḡi can
be measured by a standard technique for evaluating the
small signal memductances (I0/V0)e−ḡi/g̃ displayed by
the memristors [58].

7) CS of a NN, i.e., convergence of each trajectory toward
an EP, is a peculiar dynamical property that can be
guaranteed under suitable hypotheses on the activations
and neuron interconnections (see Assumptions 1 and
2 in Theorem 1). On the other hand, in the general
case, NNs do not enjoy CS since they can display
sustained oscillations, traveling waves and even chaos
and hyperchaos, see, e.g., [29], [59], [60], [61], [62],
[63], [64], [65], [66], and references therein.

IV. NUMERICAL SIMULATIONS

As an application example of the bound (39) for CS of
SMNNs, we focus on the case where Dm − A belongs to the
following class of matrices with a cyclic structure

Cr,s =



r 0 · · · 0 s

−s r
. . . 0

0 −s r
. . .

...
...

. . .
. . .

. . .
...

0 · · · 0 −s r


∈ Rn×n (41)

where r > 0, s > 0. Matrices in this class play an impor-
tant role in modeling cyclic dynamical systems, food chains,
chemical reactions, and also to investigate nonlinear dynamic
phenomena and the potentials and limitations for information
processing of cellular NN arrays [67], [68].

Next, we report known conditions ensuring that these matri-
ces are LDS (see [69]).

Fig. 1. Time evolution of memristor voltages vi [V], gaps gi [nm]
and temperatures Ti [K], i = 1, 2 for a 5-neuron SMNN with a cyclic
interconnecting structure. Time t in µs.

Lemma 3: Matrix Cr,s is LDS if and only if

r − s cos
(π

n

)
> 0. (42)

Exploiting this condition, we obtain the following result as
a consequence of Theorem 3.

Corollary 1: Consider a SMMN where Dm − A = Cr,s

satisfies (42) and suppose that Assumption 1 holds. Then, the
SMNN is CS for all Aτ such that

∥Aτ∥2 < r − s cos
(π

n

)
. (43)

Proof: The proof follows by computing the right-side
of (39) for Dm − A = Cr,s and P∗

= In . Indeed, we have
3M(P∗) = 3m(P∗) = 1 and

d∗
= 3m

(
1
2

(
C⊤

r,s + Cr,s
))
.

Exploiting the eigenvalues-eigenvectors properties of Cr,s

we obtain

3m

(
1
2

(
C⊤

r,s + Cr,s
))

= r − s cos
(π

n

)
which completes the proof.

It is worth noting that (43) provides the tightest bound on
∥Aτ∥2 for which Assumption 2 holds, when Dm − A = Cr,s .
In fact, consider Aτ = λIn with λ > 0. We have

Dm − A − Aτ = Cr−λ,s
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Fig. 2. Time evolution of memristor voltages vi [V], gaps gi [nm] and
temperatures Ti [K], i = 3, 4, 5, for a 5-neuron SMNN with a cyclic
interconnecting structure. Time t in µs.

and hence, according to Lemma 3, the necessary condition of
Proposition 2 is satisfied if and only if

λ < r − s cos
(π

n

)
.

Since ∥Aτ∥2 = λ, Assumption 2 holds if and only if (43)
is satisfied.

For illustration purposes, choose Aτ with the following
structure:

Aτ =



u 0 · · · 0 u

u u
. . . 0

0 u u
. . .

...
...

. . .
. . .

. . .
...

0 · · · 0 u u


∈ Rn×n. (44)

Fig. 3. Voltage v3 as a function of v2 (upper plot) and v5 as a function of v4
(lower plot) for a 5-neuron SMNN. The IC is marked with a circle. Voltages
in V.

It can be easily checked that ∥Aτ∥2 = 2|u|, hence due to
Corollary 1, we have that Assumption 2 is satisfied and the
SMNN is CS if (42) holds and in addition

|u| < uM
.
=

r
2

−
s
2

cos
(π

n

)
.

This demonstrates that it is easy to find in an analytic
way, via the developed LDS approach, conditions for CS that
hold for an entire class of A and Aτ , for open ranges of
interconnection parameters and for any dimension n.

Let n = 5 neurons, τ = 10−6 s, C = 10−9 F and consider
the neuron activation f (γ) = (1/2)(|γ + 5| − |γ − 5|), which
satisfies Assumption 1. Also, refer to the memristor parameters
in Table I. Note in particular that the gap g ∈ [gm, gM ] =

[0.6, 1.1] nm.
The EPs of the SMNN are such that the voltages v̄i = 0,

the temperatures T̄ i = Tamb, while the gap ḡi can assume any
value in [gm, gM ], i = 1, . . . , 5. Note that there is a continuum
of nonisolated EPs.

Let A = −C p,q with p = 1.83, q = 2. We have Dm =

2.84·10−4 I5, hence Dm −A = Cr,s with r = 1.8303, s = 2 and
so uM = 0.2123. Next, we fix u = 0.1, so that 2u < uM .
We have simulated the SMNN using MATLAB routine dde23
for delayed differential equations. The hard constraints gi ∈

[gm, gM ] for the neuron gaps are imposed numerically using
the “Events” option in MATLAB environment (see [70]).
The ICs νi (t) ∈ C([−10−6, 0],R) for the neuron voltages are
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Fig. 4. Gap g3 as a function of g2 (upper plot) and g5 as a function of g4
(lower plot) for a 5-neuron SMNN. The IC is marked with a circle and the
final state with an asterisk. Gaps in nm.

sinusoidal functions with angular frequency 20/τ and with
various phases and amplitudes (details are omitted). The ICs
of the gaps are g1(0) = g2(0) = g3(0) = g5(0) = 1 nm,
while g4(0) = 0.7 nm. The ICs of the temperatures are
Ti (0) = Tamb = 298 K for i = 1, . . . , 5. Figs. 1 and 2
depict the time-domain behavior of memristor voltages vi ,
gaps gi and temperatures Ti , i = 1, . . . , 5, in the time interval
[0, 2.5 × 10−6

] = [0, 2.5τ ]. Fig. 3 reports v3 as a function
of v2 and v5 as a function of v4, while Fig. 4 shows g3 as
a function of g2 and g5 as a function of g4. It is seen that
after some transient oscillations vi , gi and Ti tend to constant
values. In particular, voltages tend to 0, while temperatures
tend to Tamb. The gaps tend to constant values ḡ1 = 0.605,
ḡ2 = 0.978, ḡ3 = 0.901, ḡ4 = 0.757 and ḡ5 = 1.1 nm.
The asymptotic values ḡi , which are retained in memory
by the nonvolatile memristors, are the result of the SMNN
computation. The observed behavior is in accordance with that
predicted by Corollary 1.

V. CONCLUSION

The article has proved some fundamental results on CS for
a class of delayed NNs with nonvolatile extended memristors
obeying the popular and widely used Stanford model. The
conditions for CS, which can be effectively checked numeri-
cally via an LMI approach, or analytically, using the concept
of LDS matrices, hold for any value of the concentrated
delay and they are robust with respect to variations of the
interconnections. Using the LDS approach, several classes
of interconnection matrices have been singled out for which
CS holds. The obtained results not only ensure CS but also
exponential convergence of each trajectory with a known con-
vergence rate which is independent of the ICs. Furthermore,
at the end of the transient power in the SMNN vanishes,
while nonvolatile memristors retain in memory the result of
computation in accordance with the in-memory computing
principle. Future work will be devoted to study whether the
techniques developed in the article can be applied or extended
to study CS of NNs with other memristors used for modeling
real devices in nanotechnology.

APPENDIX A
PROOF OF LEMMA 1

Consider an IVP for (19)–(21) and suppose without loss of
generality C = 1. We first show that there exists t ′

f < ∞ such
that v(t) ∈ 4 for t ≥ t ′

f . Consider v(0) ∈ Rn , ∥v(0)∥∞ >

vM . Let ı̂(t) ∈ {1, . . . , n} be such that |vı̂(t)| = ∥v(t)∥∞. Let
us first consider t ∈ [0, τ ]. Function ∥v(t)∥∞ is absolutely
continuous on [0, τ ], hence it is differentiable for a.a. t ∈

[0, τ ]. By proceeding as in [38, Appendix A], we have for
a.a. t ∈ [0, τ ]

d∥v(t)∥∞

dt
= sgn(vı̂(t)(t))

(
−I0e−

g
ı̂
(t)

g̃ sinh
(
vı̂(t)(t)

V0

)
+

n∑
j=1

aı̂(t) j f (v j (t))

+

n∑
k=1

aτî(t)k f (vk(t − τ))

)
where sgn denotes the signum function. As long as ∥v(t)∥∞ >

vM , we have |vı̂(t)(t)| > vM ≥ 1. Considering that | f (v j (t))| ≤

|v j (t)| and |(v j (t − τ))| < VF for any j ∈ {1, . . . , n} and
t ∈ [0, τ ], we have

d∥v(t)∥∞

dt
≤ |vı̂(t)(t)|

(
−

I0

V0
e−

gM
g̃

(
1 +

v2
M

6V 2
0

)

+

n∑
j=1

|aı̂(t) j | +

n∑
k=1

|aτî(t)k |VF

.
Taking into account (22) the inequality boils down to

d∥v(t)∥∞

dt
≤ −|vı̂(t)|ε ≤ −ε. (45)

As a consequence, in [0, τ ], ∥v(t)∥∞ decreases toward
vM with velocity not smaller than ε. Moreover, since
∥v(t)∥∞ is monotone decreasing, maxt∈[0,τ ] |vı̂(t)| ≤

maxt∈[−τ,0] ∥v(t)∥∞ = VF and inequality (45) holds
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true for any t ∈ [kτ, (k + 1)τ ], k = 1, 2, . . . , as long
as ∥v(t)∥∞ ≥ vM . This implies that 4 is globally
attracting and positively invariant. Moreover, v(t) ∈ 4

for t ≥ t ′

f = (∥vi (0)∥∞ − vM)/ε.
Now, assume that T (t ′

f ) /∈ ϒ and let ηT ̸= ∅ be the set
of indexes i ∈ {1, . . . , n} such that Ti (t ′

f ) > TM . It can be
checked that the following inequality holds if Ti (t) ≥ TM

Ṫ i (t) ≤ −
TM − Tamb

2th
+ I0e−

gm
g̃ sinh

(
vM

V0

)
vM ≤ −ε.

Arguing as before we conclude that ϒ is globally attracting
and positively invariant. Moreover, T (t) ∈ ϒ for t ≥ t f =

t ′

f + t ′′

f where t ′′

f = maxi∈ηT (|Ti (t ′

f )| − TM)/ε.

From the proof it also follows that 4 × 0 × ϒ is positively
invariant for the dynamics of (19)–(21).

APPENDIX B
PROOF OF PROPOSITION 1

We proceed by using the method of steps. First, we show
the existence of a solution for an IVP associated with
(24)–(26) for t ∈ [−τ, τ ]. Consider the following IVP for
a DVI without delay

ẇ

ḣ
u̇
θ̇

 ∈


−D(w, h)+ AF(w)+ AτF(ν(θ))

G(w, u)
T(w, h)−

u−T̃ amb
2th

1



−


N4(w)

N0(h)
Nϒ (u)

N[−τ,0](θ)


= F(w, h, u, θ)− N4×0×ϒ×[−τ,0](w, h, u, θ) (46)

where t ∈ [0, τ ] and the ICs are w(0) =

ν(0), h(0) = g0, u(0) = T0 and θ(0) = −τ . Since
4 × 0 × ϒ × [−τ, 0] ⊂ R3n+1 is a nonempty compact
convex set, F : 4 × 0 × ϒ × [−τ, 0] → R3n+1 is
continuous in 4 × 0 × ϒ × [−τ, 0] and the ICs belong
to 4 × 0 × ϒ × [−τ, 0], due to Property 1 there exists at
least one solution to the IVP (46). The solution is bounded
for t ≥ −τ due to Lemma 1.

Solving the IVP for θ , we obtain θ(t) = t − τ in t ∈ [0, τ ].
Substituting in (46), we can check that

(v, g, T ) =

{
(ν, g0, T0), t ∈ [−τ, 0]

(w, h, u), t ∈ [0, τ ]
(47)

is a solution of (24)–(26) for t ∈ [−τ, τ ].
Now, it is possible to proceed in a way analogous to that

used to prove Property 4 in [71] to show that (24)–(26) admits
at least one solution in the interval [−τ, (m + 1)τ ] for any
integer m > 1, thus completing the proof of the existence
part. The solution is bounded due to Lemma 1.

To prove the uniqueness of the solution, suppose for
contradiction that there exist two solutions (va, ga, Ta) and
(vb, gb, Tb) of an IVP for (24)–(26) and define their distance

1 =
1
2

(
∥va−vb∥

2
+ ∥ga − gb∥

2
+ ∥Ta − Tb∥

2). (48)

We want to prove that 1(t) = 0 for any t ∈ [−τ,mτ ], where
m ≥ 0 is an integer. This result holds for m = 0, since for
t ∈ [−τ, 0] both solutions coincide with (ν, g0, T0), therefore
1(t) = 0. To prove the uniqueness for m > 0, we apply again
the method of steps. Suppose that 1(t) = 0 for t ∈ [−τ,mτ ].
For t ∈ [−mτ, (m + 1)τ ] we have

v̇a(t) = −D(va(t), ga(t))+ AF(va(t))
+ AτF(va(t − τ))− nva ,t

ġa(t) = G(va(t), Ta(t))− nga ,t

Ṫ a(t) = T(va(t), ga(t))−
Ta(t)− T̃ amb

2th
− nTa ,t

v̇b(t) = −D(vb(t), gb(t))+ AF(vb(t))
+ AτF(vb(t − τ))− nvb,t

ġb(t) = G(vb(t), Tb(t))− ngb,t

Ṫ b(t) = T(vb(t), gb(t))−
Tb(t)− T̃ amb

2th
− nTb,t

(49)

where nva ,t ∈ N4(va(t)), nvb,t ∈ N4(vb(t)), nga ,t ∈ N0(ga(t)),
ngb,t ∈ N0(gb(t)), nTa ,t , nTb,t ∈ Nϒ (Ta(t)).

We obtain

1̇(t) =
〈
va(t)− vb(t), v̇a(t)− v̇b(t)

〉
+

〈
ga(t)− gb(t), ġa(t)− ġb(t)

〉
+

〈
Ta(t)− Tb(t), Ṫ a(t)− Ṫ b(t)

〉
(50)

where〈
va(t)− vb(t), v̇a(t)− v̇b(t)

〉
= −⟨va(t)− vb(t),D(va(t), ga(t))− D(vb(t), gb(t))⟩

+ ⟨va(t)− vb(t), AF(va(t))− AF(vb(t))⟩

+ ⟨va(t)− vb(t), AτF(va(t − τ))− AτF(vb(t − τ))⟩

−
〈
va(t)− vb(t), nva ,t − nvb,t

〉
moreover〈

ga(t)− gb(t), ġa(t)− ġb(t)
〉

= ⟨ga(t)− gb(t),G(va(t), Ta(t))− G(vb(t), Tb(t))⟩

−
〈
ga(t)− gb(t), nga ,t − ngb,t

〉
and, finally〈

Ta(t)− Tb(t), Ṫ a(t)− Ṫ b(t)
〉

= ⟨Ta(t)− Tb(t),T(va(t), ga(t))− T(vb(t), gb(t))⟩

−

〈
Ta(t)− Tb(t),

Ta(t)− Tb(t)
2th

〉
−

〈
Ta(t)− Tb(t), nTa ,t − nTb,t

〉
.

The normal cone to a set Q is a monotone operator (see
Section I-A1). Moreover, by assumption, 1(t) = 0, i.e., va(t −
τ) = vb(t − τ), for t ∈ [−τ,mτ ]. Then, from (50)

1̇ ≤

〈va − vb

ga − gb

Ta − Tb

,
−D(va, ga)+ AF(va)+ D(vb, gb)− AF(vb)

G(va, Ta)− G(vb, Tb)

T(va, ga)− T(vb, gb)

〉
.

(51)
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By assumption, F(·) is Lipschitz continuous. From
(15)–(17), also D(·, ·),G(·, ·),T(·, ·) are Lipschitz continuous
in 4 × 0 × ϒ . Then, there exists 0 < ξ < +∞ such that

1̇(t) ≤ 2ξ1(t).

Therefore, by the Gronwall lemma, we obtain

0 ≤ 1(t) ≤ 1(mτ)exp(2ξ(t − mτ)) = 0 (52)

i.e., 1(t) = 0, when t ∈ [−τ,mτ ]. This shows the uniqueness
of the solution for any t ≥ −τ .

APPENDIX C

To prove Theorem 1 we first establish an algebraic prop-
erty and a fundamental result on exponential convergence of
memristor voltages.

Proposition 5: If Assumptions 1 and 2 hold, we have

Sk

.
=

(
2P Dm − P A − A⊤ P − Z −

2k P
γ2(vM )

−P Aτ

−(P Aτ )⊤ e−2kτ Z

)
> 0

where k is as in (28).
Proof: Since Z > 0, from Schur’s lemma [51], Sk > 0 if

and only if

�k = 2P Dm − P A − A⊤ P − Z −
2k P

γ2(vM)

− e2kτ P Aτ Z−1(P Aτ )⊤

= �−
2k P

γ2(vM)
− (e2kτ

− 1)P Aτ Z−1(P Aτ )⊤ > 0

where we have taken into account (29). Since k > 0, γ2(vM) >

0, P > 0 and P Aτ Z−1(P Aτ )⊤ > 0, we obtain

3m(�k) ≥ 3m(�)−
2k

γ2(vM)
3M(P)

−(e2kτ
− 1)3M(P Aτ Z−1(P Aτ )⊤). (53)

If we choose k as in (28), we have 3m(�k) > 0, which in
turn implies �k > 0 and Sk > 0.

Lemma 4: Suppose that Assumptions 1 and 2 hold. Then
v(t) → 0 exponentially as t → +∞ with convergence rate k
as in (28), i.e., ∥v(t)∥ ≤ Mve−kt , t ≥ 0, where

Mv =

√
3M(P)+3M(Z) 1−e−2kτ

2k

3m(P)γ(vM)
max

−τ≤θ≤0
∥v(θ)∥. (54)

Proof: Suppose for simplicity C = 1. Consider for (24)–
(26) the following candidate Lyapunov function:

W (v(t), t) = e2kt
n∑

i=1

2pi

∫ vi (t)

0
f (σ )dσ

+

∫ t

t−τ
e2ksF⊤(v(s))ZF(v(s))ds. (55)

Its time derivative along the solutions of (24)–(26) is given
by

Ẇ (v(t), t) = 2ke2kt
n∑

i=1

2pi

∫ vi (t)

0
f (σ )dσ

+ e2kt
n∑

i=1

2pi f (vi (t))v̇i (t)

+ e2ktF⊤(v(t))ZF(v(t))

− e2k(t−τ)F⊤(v(t − τ))ZF(v(t − τ))

= e2kt
{

2k
n∑

i=1

2pi

∫ vi (t)

0
f (σ )dσ

− 2F⊤(v(t))PD(v(t), g(t))

+ 2F⊤(v(t))P AF(v(t))

+ 2F⊤(v(t))P AτF(v(t − τ))

+ F⊤(v(t))ZF(v(t))

− e−2kτF⊤(v(t − τ))ZF(v(t − τ))
}

(56)

for a.a. t ≥ 0. Considering Assumption 1, we have
n∑

i=1

2 pi

∫ vi (t)

0
f (σ )dσ ≤

n∑
i=1

2 pi

∫ vi (t)

0
σdσ

=

n∑
i=1

piv
2
i (t) ≤ F⊤(v(t))

P
γ2(vM)

F(v(t)). (57)

Additionally, it can be verified that

−F⊤(v(t))PD(v(t), g(t))

= −F⊤(v(t))P D(g(t))V0 sinh
(
v(t)
V0

)
≤ −F⊤(v(t))P D(g(t))v(t) (58)

where we have let

D(g(t))=
I0

V0
diag

(
exp

(
−

g1(t)
g̃

)
, . . . , exp

(
−

gn(t)
g̃

))
.

As a consequence, we have

Ẇ (v(t), t) ≤ e2kt
{
F⊤(v(t))

2k P
γ2(vM)

F(v(t))

− F⊤(v(t))2 P D(g(t))v(t)

+ 2F⊤(v(t))P AF(v(t))

+ 2F⊤(v(t))P AτF(v(t − τ))

+ F⊤(v(t))ZF(v(t))

− e−2kτF⊤(v(t − τ))ZF(v(t − τ))
}
.

Let

V(t, τ ) =

(
F(v(t))

F(v(t − τ))

)
∈ R2n

and

S(g(t))

=

(
2P D(g(t))− P A − A⊤ P − Z −

2k P
γ2(vM )

−P Aτ

−(P Aτ )⊤ e−2kτ Z

)
.

We have 2P D(g(t)) > 0 and, due to Assumption 1,
F⊤(v(t))P D(g(t))(F(v(t)) − v(t)) ≤ 0. Therefore we can
rewrite the last inequality as

Ẇ (v(t), t) ≤ −e2kt
{
V⊤(t, τ )S(g(t))V(t, τ )

+ 2F⊤(v(t))P D(g(t))(F(v(t))− v(t))
}
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≤ −e2ktV⊤(t, τ )S(g(t))V(t, τ ). (59)

Since

S(g(t)) = Sk +

(
2P(D(g(t))− Dm) 0

0 0

)
(60)

and, from (18), D(g(t)) − Dm ≥ 0, we have S(g(t)) ≥ Sk .
As a consequence, from Proposition 5, S(g(t)) ≥ Sk > 0.
In turn, this implies (see Assumption 1)

Ẇ (v(t), t) ≤ −e2kt3M∥F(v(t))∥2

≤ −e2kt 3M

γ2(vM)
∥(v(t))∥2

≤ 0. (61)

We are now in a position to prove that v(·) converges
exponentially to 0. First of all, note that (61) implies that
W (v(t), t) ≤ W (v(0), 0) for any t ≥ 0. Then, we have

W (v(0), 0) =

n∑
i=1

2pi

∫ vi (0)

0
f (σ )dσ

+

∫ 0

−τ

e2ksF⊤(v(s))ZF(v(s))ds

≤ v⊤(0)Pv(0)

+

∫ 0

−τ

e2ksF⊤(v(s))ZF(v(s))ds

≤ 3M(P)∥v(0)∥2

+3M(Z)
1 − e−2kτ

2k
max

−τ≤θ≤0
∥v(θ)∥2 (62)

and

W (v(t), t) ≥ e2kt
n∑

i=1

2pi

∫ vi (t)

0
f (σ )dσ

≥ e2kt
n∑

i=1

2pi

∫ vi (t)

0
γ(vM)σdσ

≥ e2kt3m(P)γ(vM)∥v(t)∥2. (63)

Inequalities (62) and (63) can be combined into

e2kt3m(P)γ(vM)∥v(t)∥2

≤

(
3M(P)+3M(Z)

1 − e−2kτ

2k

)
max

−τ≤θ≤0
∥v(θ)∥2

which yields the stated result.
Proof of Theorem 1. Recalling Lemma 1 and noting that

sinh(x) is convex for x ≥ 0 we have from (16) and Lemma 4

|g(vi (t), Ti (t))| ≤ v0

∣∣∣∣sinh
(

qea0ψ

ℓK Tamb
vi (t)

)∣∣∣∣
≤ sinh

(
qea0ψ

ℓK Tamb
vM

)
|vi (t)|

≤ v0 sinh
(

qea0ψ

ℓK Tamb
vM

)
Mve−kt

for t ≥ 0, where Mv is given in (54). By applying Proposition
6 to (25) it can be easily verified that

∥g(t)− ḡ∥ ≤ Mge−kt , t ≥ 0

where

Mg =
√

nv0 sinh
(

qea0ψ

ℓK Tamb
vM

)
Mv

k
.

Arguing as before we have from (17)

|t(vi , gi )| ≤
I0

Cth
exp

(
−

gm

g̃

)
M2
v sinh

(
vM
V0

)
e−2kt

for t ≥ 0. By applying Proposition 7 to (26) we obtain

∥T (t)− T̃ amb∥ ≤ MT e−kT t

for t ≥ 0, where kT = min{k, 1/2th} and on the basis of
(64)–(66)

MT =
√

nT (0)
(

1 + M̃T
I0

Cth
exp

(
−

gm

g̃

)
M2

V sinh
(

VM

V0

))
and

M̃T = max
{

1
|2k −2th|

,
1
ek

}
.

APPENDIX D

Proposition 6: Consider the scalar DVI

ẋ(t) ∈ a(t)− N[xm ,xM ](x(t))

for a.a. t ≥ 0, where x ∈ R, x(0) ∈ [xm, xM ] and a(t) : R →

R is continuous and tends to 0 exponentially, i.e., there exist
H, β > 0 such that |a(t)| ≤ He−βt , t ≥ 0. Then, x(t) → x̄ ∈

[xm, xM ] exponentially, with convergence rate β, namely, we
have |x(t)− x̄ | ≤ (H/β)e−βt for t ≥ 0.

Proof: For a.a. t ≥ 0 we have ẋ(t) = 0 if x(t) = xM and
a(t) ≥ 0 or x(t) = xm and a(t) ≤ 0. Otherwise, we have
ẋ(t) = a(t). Therefore, |ẋ(t)| ≤ |a(t)| ≤ He−βt for a.a.
t ≥ 0. Given t2 ≥ t1 ≥ 0, we have |x(t2) − x(t1)| =

|
∫ t2

t1
ġ(t)dt | ≤

∫ t2
t1

|ġ(t)|dt ≤
∫ t2

t1
He−βt dt = (H/β)[e−βt1 −

e−βt2 ] ≤ (2H/β)e−βt1 . Hence, for any ϵ > 0 we have
|x(t2) − x(t1)| ≤ ϵ when t2 ≥ t1 ≥ (1/β) ln(2H/βϵ). By the
Cauchy criterion on limit existence (sufficiency part), there
exists the limt→∞ x(t) = x̄ . Since x(t) ∈ [xm, xM ] for all
t ≥ 0 we necessarily have x̄ ∈ [xm, xM ]. Finally, note that
|x(t) − x̄ | = |x(t) − x(0) − (x̄ − x(0))| ≤

∫
∞

t |a(σ )|dσ ≤∫
∞

t |He−βσ
|dσ = (H/β)e−βt for t ≥ 0.

Proposition 7: Consider the scalar differential equation

ẋ(t) = a(t)− b(x(t)− x̄)

for t ≥ 0, where x, b ∈ R, b > 0, and a : R → R is continuous
and tends to 0 exponentially, i.e., there exist H, β > 0 such
that |a(t)| ≤ He−βt , t ≥ 0. Then, x(t) → x̄ exponentially as
t → ∞ with convergence rate equal to min{b, β} if b ̸= β

and b/2 = β/2 if b = β.
Proof: Let y = x − x̄ , so that ẏ(t) = a(t)− by(t). By the

variation of constants formula we have

y(t) = e−bt y(0)+ e−bt
∫ t

0
ebσa(σ )dσ, t ≥ 0.

If β < b. We have∣∣∣∣∫ t

0
ebσa(σ )dσ

∣∣∣∣ ≤

∣∣∣∣H
∫ t

0
ebσ e−βσdσ

∣∣∣∣ =
H

b − β

(
e(b−β)t

− 1
)

and

|y(t)| ≤ e−bt
|y(0)| +

H
b − β

(e−βt
− e−bt )
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≤

( H
b − β

+ |y(0)|
)

e−βt , t ≥ 0. (64)

Similarly, if b < β we obtain

∥y(t)∥ ≤ |y(0)|
(

1 +
H

β − b

)
e−bt , t ≥ 0. (65)

If b = β, we easily obtain

|y(t)| ≤ (|y(0)| + Ht)e−bt

≤

(
|y(0)| +

2H
eb

)
e−bt/2, t ≥ 0. (66)

ACKNOWLEDGMENT

The authors wish to sincerely thank the Associate Editor and
the anonymous reviewers for the constructive comments which
helped to significantly improve the content and presentation of
the article.

REFERENCES

[1] M. M. Waldrop, “The chips are down for Moore’s law,” Nature News,
vol. 530, no. 7589, pp. 144–147, Feb. 2016.

[2] R. S. Williams, “What’s next? [The end of Moore’s law],” Comput. Sci.
Eng., vol. 19, no. 2, pp. 7–13, Mar. 2017.

[3] S. Li, L. Xu, and S. Zhao, “The Internet of Things: A survey,” Inf. Syst.
Frontiers, vol. 17, no. 2, pp. 243–259, 2015.

[4] O. Krestinskaya, A. P. James, and L. O. Chua, “Neuromemristive circuits
for edge computing: A review,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 31, no. 1, pp. 4–23, Jan. 2020, doi: 10.1109/TNNLS.2019.2899262.

[5] J. J. Yang and R. S. Williams, “Memristive devices in computing system:
Promises and challenges,” ACM J. Emerg. Technol. Comput. Syst., vol. 9,
no. 2, p. 11, May 2013.

[6] M. A. Zidan, J. P. Strachan, and W. D. Lu, “The future of electronics
based on memristive systems,” Nature Electron., vol. 1, no. 1, pp. 22–29,
Jan. 2018.

[7] C. Li et al., “Long short-term memory networks in memristor crossbar
arrays,” Nature Mach. Intell., vol. 1, no. 1, pp. 49–57, Jan. 2019.

[8] Q. Xia and J. J. Yang, “Memristive crossbar arrays for brain-inspired
computing,” Nature Mater., vol. 18, no. 4, pp. 309–323, Apr. 2019.

[9] D. Ielmini and G. Pedretti, “Device and circuit architectures for
in-memory computing,” Adv. Intell. Syst., vol. 2, no. 7, Jul. 2020,
Art. no. 2000040.

[10] A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, and E. Eleftheriou,
“Memory devices and applications for in-memory computing,” Nature
Nanotechnol., vol. 15, no. 7, pp. 529–544, Jul. 2020.

[11] L. Chua, “Memristor—The missing circuit element,” IEEE Trans. Circuit
Theory, vol. 18, no. 5, pp. 507–519, Sep. 1971.

[12] L. O. Chua and S. M. Kang, “Memristive devices and systems,” Proc.
IEEE, vol. 64, no. 2, pp. 209–223, Feb. 1976.

[13] P. Mazumder, S. M. Kang, and R. Waser, “Memristors: Devices, models,
and applications,” Proc. IEEE, vol. 100, no. 6, pp. 1–9, Jun. 2012.

[14] A. Ascoli, F. Corinto, V. Senger, and R. Tetzlaff, “Memristor model
comparison,” IEEE Circuits Syst. Mag., vol. 13, no. 2, pp. 89–105,
May 2013.

[15] B. Hajri, H. Aziza, M. M. Mansour, and A. Chehab, “RRAM device
models: A comparative analysis with experimental validation,” IEEE
Access, vol. 7, pp. 168963–168980, 2019.

[16] P. Chen and S. Yu, “Compact modeling of RRAM devices and its
applications in 1T1R and 1S1R array design,” IEEE Trans. Electron
Devices, vol. 62, no. 12, pp. 4022–4028, Dec. 2015.

[17] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser, “TEAM:
ThrEshold adaptive memristor model,” IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 60, no. 1, pp. 211–221, Jan. 2013.

[18] L. Chua, “Everything you wish to know about memristors but are afraid
to ask,” Radioengineering, vol. 24, no. 2, pp. 319–368, Jun. 2015.

[19] F. Corinto, M. Forti, and L. O. Chua, Nonlinear Circuits and Systems
With Memristors. Cham, Switzerland: Springer, 2021.

[20] P. Sheridan, K.-H. Kim, S. Gaba, T. Chang, L. Chen, and W. Lu, “Device
and SPICE modeling of RRAM devices,” Nanoscale, vol. 3, no. 9,
pp. 3833–3840, 2011.

[21] X. Guan, S. Yu, and H.-S.-P. Wong, “A SPICE compact model of
metal oxide resistive switching memory with variations,” IEEE Electron
Device Lett., vol. 33, no. 10, pp. 1405–1407, Oct. 2012.

[22] Z. Jiang, S. Yu, Y. Wu, J. H. Engel, X. Guan, and H.-S. P. Wong,
“Verilog-A compact model for oxide-based resistive random access
memory (RRAM),” in Proc. Int. Conf. Simul. Semiconductor Processes
Devices (SISPAD), Sep. 2014, pp. 41–44.

[23] M. W. Hirsch, “Convergent activation dynamics in continuous time
networks,” Neural Netw., vol. 2, no. 5, pp. 331–349, 1989.

[24] M. A. Cohen and S. Grossberg, “Absolute stability of global pattern
formation and parallel memory storage by competitive neural networks,”
IEEE Trans. Syst., Man, Cybern., vol. SMC-13, no. 5, pp. 815–825,
Sep./Oct. 1983.

[25] J. J. Hopfield, “Neurons with graded response have collective computa-
tional properties like those of two-state neurons,” Proc. Nat. Acad. Sci.
USA, vol. 81, no. 10, pp. 3088–3092, May 1984.

[26] L. O. Chua and L. Yang, “Cellular neural networks: Theory,” IEEE
Trans. Circuits Syst., vol. 35, no. 10, pp. 1257–1272, Oct. 1988.

[27] J. Zurada, Introduction to Artificial Neural Systems. Eagan, MN, USA:
West Publishing, 1992.

[28] S. Haykin, Neural Networks: A Comprehensive Foundation. Upper
Saddle River, NJ, USA: Prentice-Hall, 1999.

[29] L. O. Chua, “Special issue on nonlinear waves, patterns and spatio-
temporal chaos in dynamic arrays,” IEEE Trans. Circuits Syst. I,
Fundam. Theory Appl., vol. 42, no. 10, pp. 557–823, Oct. 1995.

[30] L. O. Chua and T. Roska, Cellular Neural Networks and Visual Comput-
ing: Foundation and Applications. Cambridge, U.K.: Cambridge Univ.
Press, 2005.

[31] P. Liu, J. Wang, and Z. Zeng, “An overview of the stability analysis of
recurrent neural networks with multiple equilibria,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 34, no. 3, pp. 1098–1111, Mar. 2023.

[32] M. Forti and A. Tesi, “New conditions for global stability of neu-
ral networks with application to linear and quadratic programming
problems,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 42,
no. 7, pp. 354–366, Jul. 1995.

[33] A. N. Michel, J. A. Farrell, and W. Porod, “Qualitative analysis of
neural networks,” IEEE Trans. Circuits Syst., vol. 36, no. 2, pp. 229–243,
Feb. 1989.

[34] S. Yang, Q. Liu, and J. Wang, “A collaborative neurodynamic approach
to multiple-objective distributed optimization,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 29, no. 4, pp. 981–992, Apr. 2018.

[35] S. Arik, “New criteria for stability of neutral-type neural networks with
multiple time delays,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31,
no. 5, pp. 1504–1513, May 2020.

[36] M. Di Marco, M. Forti, M. Grazzini, and L. Pancioni, “Limit set
dichotomy and multistability for a class of cooperative neural networks
with delays,” IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 9,
pp. 1473–1485, Sep. 2012.

[37] M. Forti and A. Tesi, “Absolute stability of analytic neural networks: An
approach based on finite trajectory length,” IEEE Trans. Circuits Syst.
I, Reg. Papers, vol. 51, no. 12, pp. 2460–2469, Dec. 2004.

[38] M. Di Marco, M. Forti, and L. Pancioni, “Complete stability of feedback
CNNs with dynamic memristors and second-order cells,” Int. J. Circuit
Theory Appl., vol. 44, no. 11, pp. 1959–1981, Nov. 2016.

[39] M. Di Marco, M. Forti, and L. Pancioni, “Convergence and multistability
of nonsymmetric cellular neural networks with memristors,” IEEE Trans.
Cybern., vol. 47, no. 10, pp. 2970–2983, Oct. 2017.

[40] M. Di Marco, M. Forti, and L. Pancioni, “Memristor standard cellular
neural networks computing in the flux–charge domain,” Neural Netw.,
vol. 93, pp. 152–164, Sep. 2017.

[41] K. Deng, S. Zhu, G. Bao, J. Fu, and Z. Zeng, “Multistability of
dynamic memristor delayed cellular neural networks with application to
associative memories,” IEEE Trans. Neural Netw. Learn. Syst., vol. 34,
no. 2, pp. 690–702, Feb. 2023.

[42] K. Deng, S. Zhu, W. Dai, C. Yang, and S. Wen, “New criteria on stability
of dynamic memristor delayed cellular neural networks,” IEEE Trans.
Cybern., vol. 52, no. 6, pp. 5367–5379, Jun. 2022.

[43] M. Yuan, W. Wang, Z. Wang, X. Luo, and J. Kurths, “Exponential
synchronization of delayed memristor-based uncertain complex-valued
neural networks for image protection,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 32, no. 1, pp. 151–165, Jan. 2021.

http://dx.doi.org/10.1109/TNNLS.2019.2899262


DI MARCO et al.: COMPLETE STABILITY OF NEURAL NETWORKS WITH EXTENDED MEMRISTORS 14533

[44] Y. Kao, Y. Li, J. H. Park, and X. Chen, “Mittag–Leffler synchronization
of delayed fractional memristor neural networks via adaptive control,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 5, pp. 2279–2284,
May 2021.

[45] X. Yang, J. Cao, and J. Liang, “Exponential synchronization of memris-
tive neural networks with delays: Interval matrix method,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 28, no. 8, pp. 1878–1888, Aug. 2017.

[46] X. Yang and D. W. C. Ho, “Synchronization of delayed memristive
neural networks: Robust analysis approach,” IEEE Trans. Cybern.,
vol. 46, no. 12, pp. 3377–3387, Dec. 2016.

[47] X. Yang, J. Cao, and J. Qiu, “Pth moment exponential stochastic
synchronization of coupled memristor-based neural networks with mixed
delays via delayed impulsive control,” Neural Netw., vol. 65, pp. 80–91,
May 2015.

[48] M. Di Marco, M. Forti, R. Moretti, L. Pancioni, G. Innocenti, and
A. Tesi, “Convergence of a class of delayed neural networks with real
memristor devices,” Mathematics, vol. 10, no. 14, p. 2439, Jul. 2022.

[49] R. Tetzlaff, A. Ascoli, I. Messaris, and L. O. Chua, “Theoretical
foundations of memristor cellular nonlinear networks: Memcomputing
with bistable-like memristors,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 67, no. 2, pp. 502–515, Feb. 2020.

[50] J. P. Aubin and A. Cellina, Differential Inclusions. Set-Valued Maps and
Viability Theory. Berlin, Germany: Springer-Verlag, 1984.

[51] S. P. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix
Inequalities in System and Control Theory. Philadelphia, PA, USA:
SIAM, 1994, vol. 15.

[52] E. Kaszkurewicz and A. Bhaya, Matrix Diagonal Stability in Systems
and Computation. Berlin, Germany: Springer, 2012.

[53] D. Hershkowitz, “Recent directions in matrix stability,” Linear Algebra
Appl., vol. 171, pp. 161–186, Jul. 1992.

[54] M. Lanza et al., “Standards for the characterization of endurance in resis-
tive switching devices,” ACS Nano, vol. 15, no. 11, pp. 17214–17231,
Nov. 2021.

[55] J. J. Hopfield, “Neural networks and physical systems with emergent
collective computational abilities,” Proc. Nat. Acad. Sci. USA, vol. 79,
no. 8, pp. 2554–2558, 1982.

[56] Y. Nesterov and A. Nemirovsky, Interior Point Polynomial Methods for
Convex Programming: Theory and Applications. Philadelphia, PA, USA:
SIAM, 1993.

[57] Z. Yi, P. Ann Heng, and K. Sak Leung, “Convergence analysis of cellular
neural networks with unbounded delay,” IEEE Trans. Circuits Syst. I,
Fundam. Theory Appl., vol. 48, no. 6, pp. 680–687, Jun. 2001.

[58] N. Du et al., “Practical guide for validated memristance measurements,”
Rev. Sci. Instrum., vol. 84, no. 2, Feb. 2013, Art. no. 023903.

[59] A. Arbi, “Novel traveling waves solutions for nonlinear delayed dynam-
ical neural networks with leakage term,” Chaos, Solitons Fractals,
vol. 152, Nov. 2021, Art. no. 111436.

[60] K. Aihara, T. Takabe, and M. Toyoda, “Chaotic neural networks,” Phys.
Lett. A, vol. 144, nos. 6–7, pp. 333–340, 1990.

[61] A. Arbi, N. Tahri, C. Jammazi, C. Huang, and J. Cao, “Almost anti-
periodic solution of inertial neural networks with leakage and time-
varying delays on timescales,” Circuits, Syst., Signal Process., vol. 41,
pp. 1940–1956, Nov. 2022.

[62] Y. Guo, S. S. Ge, and A. Arbi, “Stability of traveling waves
solutions for nonlinear cellular neural networks with distributed
delays,” J. Syst. Sci. Complex., vol. 35, no. 1, pp. 18–31,
Feb. 2022.

[63] P. Arena, R. Caponetto, L. Fortuna, and D. Porto, “Bifurcation and chaos
in noninteger order cellular neural networks,” Int. J. Bifurcation Chaos,
vol. 8, no. 7, pp. 1527–1539, Jul. 1998.

[64] A. Arbi and N. Tahri, “Almost anti-periodic solution of inertial neural
networks model on time scales,” in Proc. MATEC Web Conf., vol. 355.
Les Ulis, France: EDP Sciences, 2022, p. 02006.

[65] M. D. Marco, M. Forti, L. Pancioni, G. Innocenti, A. Tesi,
and F. Corinto, “Oscillatory circuits with a real non-volatile Stan-
ford memristor model,” IEEE Access, vol. 10, pp. 13650–13662,
2022.

[66] A. Arbi, C. Aouiti, and A. Touati, “Uniform asymptotic stability and
global asymptotic stability for time-delay Hopfield neural networks,” in
Artificial Intelligence Applications and Innovations. Halkidiki, Greece:
Springer, Sep. 2012, pp. 483–492.

[67] G. Setti, P. Thiran, and C. Serpico, “An approach to information
propagation in 1-D cellular neural networks. II. Global propagation,”
IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 45, no. 8,
pp. 790–811, Aug. 1998.

[68] P. Thiran, K. R. Crounse, L. O. Chua, and M. Hasler, “Pattern forma-
tion properties of autonomous cellular neural networks,” IEEE Trans.
Circuits Syst. I, Fundam. Theory Appl., vol. 42, no. 10, pp. 757–774,
Oct. 1995.

[69] M. Arcak and E. D. Sontag, “Diagonal stability of a class of cyclic
systems and its connection with the secant criterion,” Automatica,
vol. 42, no. 9, pp. 1531–1537, Sep. 2006.

[70] Z. Galias, “Simulations of memristors using the Poincaré map approach,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 67, no. 3, pp. 963–971,
Mar. 2019.

[71] M. Di Marco, M. Forti, M. Grazzini, and L. Pancioni, “On
global exponential stability of standard and full-range CNNs,”
Int. J. Circuit Theory Appl., vol. 36, nos. 5–6, pp. 653–680,
Jul. 2008.

Open Access funding provided by ‘Università degli Studi di Siena’ within the CRUI CARE Agreement


