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A B S T R A C T

In this paper, we develop a Digital Twin (DT) for a cell with a robotic arm serving seven stations and assisted
by a human operator. The lack of reliable predictions of human behaviours requires constant monitoring of the
cell in order not to affect the degree of context-awareness, autonomy, and adaptability of a DT. This monitoring
is carried out through a real-time simulation and optimization algorithm, which continuously produces near-
optimal decisions for machines and efficient recommendations for human operators. The proposed approach
is tested in a large computational campaign based on real-world data. The results show that the behaviour of
the operator scarcely affects the performance of the cell at least in the considered settings.
1. Introduction

Efficient modern manufacturing systems need to continuously re-
act and adapt to changes provoked by both the external environ-
ment, i.e., the market and supply chain dynamics, and the internal
environment, i.e., disturbances and disruptions in the manufacturing
plant. In this context, the adoption of the Industry 4.0 paradigm aims
at increasing the responsiveness of the factory floor to unexpected
changes.

One key aspect of the Industry 4.0 is the introduction of the so
called Digital Twin (DT) (Rosen et al., 2015), an accurate digital model
representing the physical manufacturing system. Even if DTs can be
applied for modelling different physical objects, from a single product
to a whole city (Qi et al., 2021), their ability to provide a complete
digital representation of physical manufacturing systems favours their
use in production planning, simulation, and optimization. In particular,
being based on the large amount of data generated in a smart factory,
a data-driven DT (Friederich et al., 2022) is composed of three core
components: model, state, and behaviour.

• The model is a digital representation of the physical manufactur-
ing system and its components.

• The state is the real-time reflection of the physical manufacturing
system as perceived by sensors and other IT systems.

• The behaviour is a description of the reactions of the manufactur-
ing system in response to given inputs. This feature guarantees
that the DT can constantly simulate the behaviour of the physical
manufacturing system in a realistic way.
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A DT includes high-resolution data collected by sensors, as well as
information processed by other IT systems. These elements, coupled
with the ability to simulate the behaviour of the physical manufacturing
system, allow accurate predictions of the physical system. Hence, the
combination of data collection with prescriptive analytics approaches
ultimately allows for taking autonomous decisions in real-time (Rosen
et al., 2015). However, to reach its full potential, a DT should be
context-aware, autonomous, and adaptive (Hribernik et al., 2021).

Context-awareness is the ability to access and process any infor-
mation describing the state of the entire physical system which in-
cludes not only the environmental data gathered by sensors or pro-
vided by ERP systems, but also information on the behaviours of
human operators (Alexopoulos et al., 2016; Bisio et al., 2018). Nev-
ertheless, the adoption of effective DTs may be hindered by the non-
deterministic behaviours of human operators (Joo and Shin, 2019).
The non-deterministic nature of the behaviour of human operators
cannot be easily captured by sensors and other technologies, thus
increasing the complexity of the models. In fact, when dealing with
human operators, three main problems have to be addressed: (i) how
to model human operators in the DT’s state, (ii) how to predict their
behaviours in the optimization algorithms and (iii) how to maintain the
autonomy and agency of both the DT and human operators.

Once context information is accessible, it can be used in the DT’s
decision-making process, thus enabling its capability to react to envi-
ronmental changes and take autonomous decisions. By monitoring the
context status, a re-optimization process can be triggered when needed,
and a new plan reflecting the mutated state can be generated in real-
time. Clearly, autonomous decision-making requires the development
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of real-time optimization algorithms, able to develop near-optimal
decisions and provide useful suggestions for human operators.

Finally, a DT is adaptive when it can change its behaviour and its
internal models are based on the context-awareness and autonomous
decision making (Tao et al., 2018). In fact, the contextualized data
streams collected from the field allow a continuous calibration and val-
idation, i.e., a dynamical adaptation of the internal model parameters
as soon as they start deviating from the nominal values.

Overall, a context-aware, adaptive and autonomous DT can react
to changes and take optimized decisions faster than what would be
possible when human intervention is needed.

In this paper, we introduce a context-aware, autonomous and adapt-
able DT of a robotic cell developed for MB Elettronica srl (in the fol-
lowing, MB), a company that designs, develops, and assembles Printed
Circuit Boards (PCBs). The cell comprises a robotic arm assisted by
a human operator, 3 workstations, a buffer, and 3 conveyors (input,
output and fail). The robotic arm is in charge of moving the PCBs
between the stations of the cell and directly performing some opera-
tions, whereas the human operator, oversees the management of the
defective PCBs and the replenishment of the necessary materials for
the cell. The DT aims at supporting the operational scheduling of the
tasks in charge of two dedicated resources, i.e. the robotic arm and the
human operator, trying to maximize the overall productivity of the cell.
At this aim, sensors continuously record data, thus allowing informing
the DT of the current state of the cell. The scheduling behaviour of the
cell is autonomously optimized by the real-time optimization algorithm
keeping into account and adapting to the behaviour of the human
operator. The optimization process provides guidance to the human
operator by signalling (without enforcing) the desired next moves. In
fact, the algorithm evaluates the set of available moves by simulating
the behaviour of two independent agents (i.e., the robotic arm and the
human operator) and selects the most promising moves for both these
agents, even if the human operator may not follow the DT’s suggestion.

The contributions of the paper are threefold:

• We consider a robotic cell with a human operator in the PCBs
production and we develop an autonomous, context-aware DT
able to react in real-time to changes in the cell by updating the
planned movements of the robot and suggestions for the operator
(Section 3). The proposed architecture can be easily extended to
consider different applications and scenarios.

• To deal with the uncertainty provoked by the possible moves of
the human operator, we developed a reactive approach built on
a simulation–optimization algorithm (Xu et al., 2016). This algo-
rithm is based on the Approximate Dynamic Programming frame-
work (Bertsekas, 2005) to give the DT a real-time autonomous
decision-making capability (Section 4).

• We test the proposed approach on real-world data, thus showing
its feasibility (Section 5). In detail, we show how the productivity
of the cell is not very affected by the behaviour of the human op-
erator as long as the operator is collaborative. These results may
enrich the limited literature on DTs with human operators, and
provide useful insights to manufacturing companies interested in
the implementation of DTs for robotic cells.

The paper is organized as follows. In Section 2 we illustrate the
main approaches discussed in the literature on the impact of DTs on
the scheduling of manufacturing systems. In Section 3 we describe and
introduce the problem at hand. In Section 4 we describe the algorithms
we developed to solve the optimization problem and in Section 5 and
Appendix we show our preliminary results. Finally, a discussion is
carried out in Section 6 and conclusions and future research directions
2

follow.
2. Literature review

DTs have been widely implemented in manufacturing to improve
different processes, such as product design, layout planning, production
scheduling and monitoring, and maintenance (Cimino et al., 2019;
Kritzinger et al., 2018; Leng et al., 2021; Liu et al., 2021). The im-
plementation of a DT to the solution of scheduling problems can be
based on two different approaches (Negri et al., 2021): reactive and
preventive.

In the reactive approach, when an issue occurs, new information
is fed back to the scheduler to find a new solution. This assumes
that a continuous recalculation must take place whenever a change in
the physical production system is registered by the DT (Negri et al.,
2021). In this regard, Eunike et al. (2022) present a DT architecture
for constructing a decentralized scheduling system that is resilient to
shop floor disruptions. Every time a disruption occurs, it will cause
the DT to adjust the job execution sequence and forward the revised
schedule to the machine. Liu et al. (2022) propose a DT-driven shop
floor adaptive scheduling method able to capture dynamic events and
issue warnings when dynamic events occur in the actual production
process, and adaptively optimize the initial scheduling scheme. Even in
this case, every time an abnormal event occurs, it triggers rescheduling,
and re-executes the algorithm to obtain the latest results. In Tliba et al.
(2022) the authors propose a DT-driven dynamic scheduling approach
for a hybrid flow shop problem based on the readjustment of schedules
in response to real-time events. After a scheduling run, if an internal
or external event (or change) disrupts the current scheduling, the DT
will update the parameter(s) impacted by this event either in the
scheduling model or in the simulation model and, finally, reschedule
the production accordingly. Leng et al. (2019) discuss a DT for a
manufacturing system where the DT reacts to production events, such
as new orders and changes in the workshop configuration. Some papers
focus on the so called pure reactive scheduling or online scheduling,
which is a generalization of reactive scheduling since it is based on re-
computation that is carried out not only upon the realization of trigger
events but also to periodically consider new information (Zhang et al.,
2021a).

In other cases, data collected by a DT can be also used to implement
a preventive approach to deal with the uncertainty that may affect
operations. In particular, several robust approaches to scheduling have
been proposed in the literature on DT applications in manufacturing.
These approaches aim at reducing the impact of necessary rescheduling
due to the uncertain dynamics that characterize the physical manufac-
turing system, which is constantly monitored by a DT (Rossit et al.,
2019). At this aim, some approaches are based on the minimization
of the adjustments to implement in each rescheduling (Fang et al.,
2019), thus trying to reduce the organizational issues related to each
change. Alternative approaches define stable scheduling schemes that
should be recomputed only when an event in the physical manu-
facturing system, as detected by the DT, provokes a deviation from
the expected performance of the system that overcomes a certain
threshold (Rossit et al., 2019; Zhang et al., 2021b). This deviation can
be evaluated by considering several performance dimensions, such as
operational (Zhang et al., 2021b) and energy efficiency (Liang et al.,
2018). Specifically, the expected performance of the manufacturing sys-
tem can be computed starting from some critical factors for scheduling,
such as the availability of workforce and equipment, production time,
and energy consumption. The expected values of these critical factors
can be computed through some prediction models that are based on big
data collected over time by the DT in the physical manufacturing sys-
tem (Tao and Zhang, 2017; Yu et al., 2021; Zhuang et al., 2018). During
the production process, these values can be cyclically re-evaluated by
using an updated version of the same prediction models, thus allowing
the computation of scheduling schemes that can be more easily im-
plemented in the physical manufacturing system. For example, Liang

et al. (2018) propose a scheduling framework that includes a prediction



Computers in Industry 146 (2023) 103858T. Albini et al.
Fig. 1. Architecture of the cell.
model for the energy consumption of a shop floor, while Negri et al.
(2021) combine scheduling with a prediction model for the equipment’s
health status. This latter framework, based on a genetic algorithm, as-
signs the jobs to the machines in the manufacturing system, supporting
the identification of the scheduling alternatives that slow down the
degradation of the machines, thus prolonging their lifespan. In general,
these robust approaches can enable the implementation of more stable
scheduling schemes, which may be extremely useful in planning at the
tactic level and when the resources used in the production system can
be easily assigned to alternative tasks. Nevertheless, the application
of these robust approaches in scheduling problems at the operational
level and/or in presence of dedicated resources may be less beneficial,
especially if their computational time prevents fast rescheduling.

3. Problem description

The problem has been analysed within a project carried out by the
Italian company MB. Fig. 1 shows a view of the architecture of the cell:

• S1 and S2 are two testing stations where, respectively, tests are
performed on the components of the PCB by a Seica test machine
and a visual inspection of the PCB components is performed by
an Automated Optical Inspection (AOI) testing machine.

• S3 is a station where three different operations are performed on
each PCB: a first silicone sealing, the insertion of the inductors,
and a second silicone sealing. These operations are carried out
without any interruption by the robotic arm, which is therefore
busy for all their duration. The operator is in charge of refilling
the S3 station when the silicone and inductors levels are low.

• SB is a buffer station which supports the robotic arm in the
handling of PCBs during intermediate processing. The buffer can
hold up to 6 PCBs.

• INPUT conveyor contains the PCBs to be processed, which are
loaded by the operator.

• OUTPUT conveyor contains the finished PCBs, which are loaded
by the robotic arm and should be taken away by the operator.
3

• FAIL conveyor contains the defective PCBs, which should be
manually checked and reworked by the operator.

The processing flow is the following: PCBs are loaded by the op-
erator on the INPUT conveyor, where they are read by an automatic
reader. The robotic arm picks up the PCB in the first position from
INPUT and moves it in an available test station, either S1 or S2,
releasing the PCB on a conveyor that transports it inside the test
machine. The tests (S1 and S2) can be performed in any order. Tests
have two possible outcomes: Pass or Fail.

If a PCB fails a test, it is picked up by the robotic arm and left in
FAIL. Here, the operator checks the defective PCB through a manual
inspection in debug mode. If the result of this inspection is positive,
the operator reinserts the PCB into the cell putting it in INPUT. Once
back in the cell, the PCB will have to repeat the failed test and then
continue with the remaining operations.

Only after positively passing both tests, a PCB can move in S3. The
robotic arm places the PCB under the silicon dispenser, where the first
silicone sealing is performed. Then, the robotic arm moves the PCB
under the inductors dispenser. Once the inductors are inserted, the PCB
is positioned again under the silicone dispenser for the second and
final sealing. At the end of these operations, the robotic arm moves
the completed PCB and releases it into the OUTPUT conveyor. Buffer
positions SB can be used to hold some PCBs if desired.

In sum, the robotic arm is in charge of handling the PCBs from the
various stations, as well as the silicone sealing and inductors insertion
operations. Conversely, the operator is in charge of loading the PCBs
into the INPUT conveyor, unloading the PCBs from the OUTPUT and
the FAIL conveyors, reworking the defective PCBs, and refilling the
silicon and inductors, when their levels drop under predetermined
thresholds. During these last two operations, the robotic arm stops,
allowing the operator to safely access the cell.

4. Architecture and algorithms of the digital twin

In this section, we describe the general algorithmic scheme adopted
in the proposed DT. First, we introduce the general architecture of the

DT, then we describe in detail all the main components.
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Fig. 2. Architecture of the DT.
4.1. The digital twin

In this section, we introduce the general architecture of the DT,
shown in Fig. 2 and the general algorithmic scheme adopted in the
proposed DT.

The main components of the DT are the State Database (DB) which
may include Data Analysis processes and the Optimization Algorithm
which contains the (Mathematical) Model. The DT interacts with the
Field which comprises the Physical Manufacturing System, a Robotic
Cell Simulator to test the DT when the physical manufacturing system
is not available and possibly access to additional IT systems (e.g., ERP).
Observe that, in a manufacturing cell, we can distinguish between
two types of information: Dynamic and static. Dynamic information is
data that changes frequently even over a short time horizon (e.g., the
position of the robot) while static data changes slowly over time
(e.g., degradation of a test cell). A DT needs data synchronization
for both kinds of information. Changes in static data may trigger the
Data Analysis process to maintain the model accuracy. Whereas, the
frequent changes of dynamic data trigger a new run of the Optimization
Algorithm while the cell is running. Therefore, the algorithm is called
multiple times during the production and it is required to run within
short CPU times to guarantee real-time reactions of the DT. More in
detail, the flow of dynamic data is described in Fig. 3 and involves four
actors.

As soon as an event is logged by the Sensors in the physical system
(e.g., the robot changes position), the change is synchronized to the
DB. Note that the sensors are only indirectly aware of the operator’s
actions, because they observe the results of the actions of the operator
(e.g. the silicone level is refilled). Then, a new call of the algorithm
is triggered to find the most promising move and the best suggestion
for the operator. Internally the algorithm invokes a discrete event
simulator to accurately predict the effects of different decisions. Hence,
an extremely low computation time avoids idle times, thus running
the algorithm on stale data. At the end of the execution, the results
are communicated to the DB, which possibly communicates the next
movement to the robot and the suggestion to the operator. Therefore,
solving the optimization problem with high frequency allows a better
synchronization of the planned movements with the current situation
of the cell.

We describe all the components in detail below.

4.2. State database

The State DB contains all the dynamic and static information about
the state of the system. This component is in charge of invoking the
optimization algorithm whenever a state change is communicated by
4

the sensors. Due to the high frequency updates to dynamic information,
the algorithm is allowed at most one second of computation to achieve
a real-time autonomous DT. On the other hand, as shown in Fig. 2,
changes to static information could trigger the Data Analysis process,
which may enable to work on more accurate data even under system
changes.

4.3. Field

The field contains all the systems that can communicate to the DT
changes in the state of the real world. More specifically, we include:

• The Physical Manufacturing System is connected to the DB thro-
ugh a set of sensors, continuously synchronizing the current state
information. The state of all the stations and the robotic arm is
directly monitored by the sensors in the cell and synchronized to
the State database. Whereas the position of the human operator
is only observed indirectly, i.e., sensors observe the results of the
actions of the human operator.

• The Simulator is the digital version of the physical manufacturing
system, which allows carrying out virtual tests, also when the
physical system is not available. To account for the uncertainty
of the physical production system, we developed a discrete-event
simulation of the robotic cell based on two independent agents:
the robotic arm and the human operator. In the simulation, the
operations of the robotic arm are assumed to be deterministic
and known in advance. The uncertainty is caused by three main
characteristics of the cell:

1. The duration of each operation carried out by the operator
is assumed to be non-deterministic, but follows a known
probability distribution.

2. The algorithm provides suggestions to the operator, but the
operator is free to override them, performing a different
action. The simulator module assumes that the operator
has a probability to accept the suggestion. If the suggestion
is not accepted, the operator performs another available
move.

3. The outcome of the two tests that can be either Pass or Fail
according to a known probability distribution.

• The IT systems include ERP, MES, and other information systems
that provide information on the production lots and the technical
characteristics of the cell. This produced information is static and
it is used to define the instance to solve. Although there is no need
to explicitly consider IT systems in the Simulator.
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Fig. 3. Flow of dynamic data in the DT.
4.4. Optimization algorithm module

We have developed a dynamic optimization framework where,
whenever the algorithm is triggered, it identifies the best available
decision at the given moment. The optimization algorithm is triggered
by the State database every time a change in the physical cell is
reported by the sensors. The algorithm loads information about the
current state of the system from the database and evaluates all the
available moves choosing the most promising for the robot and the best
suggestion, if any, to give to the operator. In order to accurately predict
the future behaviour of the cell, it uses internally a simplified version
of the cell simulator.

Let 𝑠 be the current state at time 𝑡0, and let 𝑑 ∈ 𝐷(𝑠) be an available
decision at state 𝑠 where 𝐷(𝑠) is the set of possible decisions at 𝑠. 𝑃 (𝑠) is
the objective function associated with a state 𝑠. Let 𝑠′ = 𝑠∪𝑑 be the state
obtained by the current state 𝑠 in which decision 𝑑 has been applied.
Conversely, let �̄� be the predicted state at the end of the simulation
starting from the state 𝑠′ and ending the simulation at time 𝑡0 + 𝑇𝑝.

When evaluating the available alternatives the optimization algo-
rithm selects the best possible moves according to a score 𝑃 (𝑠′), thus
allowing to identify the decision 𝑑 to take at time 𝑡0. The optimization
algorithm runs an internal simulation to identify the most promising
move. In each internal simulation, the algorithm takes decisions on
behalf of the robotic arm and the human operator as they arise. The
internal simulation is carried out for a limited time horizon 𝑇𝑝. At the
end of 𝑇𝑝, the simulation is halted and the reached final state �̄� is
evaluated and the best decision 𝑑∗ is identified

𝑑∗ = min
𝑑∈𝐷(𝑠)

{𝐸(𝑃 (�̄�))}

Then, the best decision 𝑑∗ is returned and implemented in the physical
system. The score 𝑃 is computed as the lexicographic order of three
criteria:

• Numbers of PCBs Completed (𝑁𝑃𝐶𝐵𝐶) corresponds to the
number of PCBs completed at 𝑡 + 𝑇 .
5

0 𝑝
• Time to Complete (𝑇𝑇𝐶) corresponds to the sum of the flow
times of each PCB, i.e., the sum of time spent by every PCB inside
the cell.

• Movement of Robot (𝑀𝑂𝑅) is the sum of the movement times
of the robotic arm needed for the completion of all the PCBs.

More specifically, the lexicographic order selects the highest
𝑁𝑃𝐶𝐵𝐶; in case of a tie, the lowest 𝑇𝑇𝐶, and, in case of a further
tie, the lowest 𝑀𝑂𝑅.

The pseudocode of the algorithm is described in detail in Algorithm
1. Note that, Algorithm 1 can be considered as an approximate dynamic
program (Bertsekas, 2005) where, due to the presence of strict compu-
tational time constraints and the stochastic nature of the problem, we
limit the lookahead to a single one-step lookahead policy.

Algorithm 1 Optimization Algorithm
1: Load information from the state database
2: Generate set 𝐷(𝑠) of all possible moves
3: for 𝑑 ∈ 𝐷(𝑠) do
4: Run internal simulation for 𝑇𝑝
5: Let �̄� be the predicted state at the end of the simulation
6: Evaluate 𝑃 (�̄�)
7: Store the best 𝑑∗
8: end for
9: Return 𝑑∗ to the state database

In the internal simulation, the algorithm performs choices on behalf
of the robotic arm and the operator. The internal simulator used by
the algorithm is a deterministic version of the physical cell simulator
adopted by the DT. In fact, test operations are assumed to never fail,
the operator always follows the suggestions and the duration of each
move of the human operator is deterministic.

To identify the best moves of the robotic arm, a criterion 𝑊 com-
puting a score for each decision is used. More specifically, we tested
three possible criteria 𝑊 :
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• Closest To Completion (𝐶𝑇𝐶): Gives priority to the PCBs that
are closest to being completed.

• Closest To the Robot (𝐶𝑇𝑅): Gives priority to the PCBs closer
to the current position of the robotic arm, thus minimizing its
movement.

• Shortest Processing Time (𝑆𝑃𝑇 ): Gives priority to the PCBs with
the expected shortest processing time.

The suggestions for the operator are based on the predicted future
perations of the robotic arm, and aim at avoiding blocks in the future
oves of the robotic arm. The algorithm always provides the operator
ith an expected suggestion and a time by which the suggestion is
xpected. Therefore, the operator is free to choose whether to anticipate
he suggestion and carry out the suggested operation immediately or
ot.

. Computational results

To test the effectiveness of the algorithms discussed in the previous
ection, we first introduce the test campaign in Section 5.1, and then we
escribe the main results in Section 5.2. Further details on the results
re presented in Appendix.

.1. Test cases

Our computational campaign consists of simulating the production
f 53 PCBs, an instance provided by MB that represents a typical
ituation for the cell. We considered three different types of PCBs
Type 1, Type 2, and Type 3), which are characterized by specific
omponents. Out of a total of 53, 24 are Type 1, 16 are Type 2, and 13
re Type 3. They all require the same operations but differ in terms of
rocessing time or silicone consumption. The numeric data are chosen
n the basis of data collected in the real MB plant. Without loss of
enerality, the duration of the operations carried out by the operators
s assumed to follow a uniform distribution.

Given this setting, we performed a set of 2430 experiments, each
ne defined by four key parameters:

• 𝑊 : As discussed in the previous section, we tested three different
criteria 𝑊 for the selection of the next moves of the robotic arm:
𝐶𝑇𝐶, 𝐶𝑇𝑅 and 𝑆𝑃𝑇 .

• 𝑇𝑝: We selected three levels of the lookahead of the internal
simulation, equal to 0, 1800, and 18,000 s. With the first value no
internal simulation is performed, whereas the latter value is set to
guarantee that the simulation runs to its completion by processing
the whole set of PCBs.

• 𝑇𝑆: The test success rate performed in the cell, precisely in S1
and S2 stations. In detail, we selected three levels of the success
rate, equal to 80%, 85%, and 90%.

• 𝑂𝐶: The operator compliance rate when performing the moves
suggested by the algorithm. In line with the success rate of the
tests, we selected three levels of the compliance rate of the
operator, equal to 80%, 85% and 90%.

The values of 𝑇𝑆 and 𝑂𝐶 have been decided in accordance with MB
lettronica. By combining the levels of these four parameters, we ob-
ained 81 different scenarios. Each scenario represents the production
f the 53 PCBs, hence the optimization algorithm is run every time a
ecision has to be taken. To account for the randomness each scenario
as been tested 30 times by using a specific random seed. To increase
he comparability of the tests on these scenarios, we selected the same
equence of random seeds for the test of every scenario.

The algorithm has been implemented in Python 3 and the computa-
ional campaign was carried out by using Google Colab with Intel Xeon
6

PU at 2.20 GHz and 12 GB of RAM. t
Table 1
Mean and standard deviation of the total processing time.

Criterion Lookahead

𝑇𝑝 = 0 𝑇𝑝 = 1800 𝑇𝑝 = 18000

𝐶𝑇𝐶 14781.77 (850.34) 14348.56 (617.98) 14360.41 (633.91)
𝐶𝑇𝑅 14777.55 (843.34) 14150.24 (564.07) 14116.73 (580.18)
𝑆𝑃𝑇 14747.34 (828.07) 14400.75 (635.69) 14393.85 (648.98)

Table 2
Mean and standard deviation of the total operator working time.

Criterion Lookahead

𝑇𝑝 = 0 𝑇𝑝 = 1800 𝑇𝑝 = 18000

𝐶𝑇𝐶 1445.13 (361.97) 1682.15 (361.63) 1655.46 (354.77)
𝐶𝑇𝑅 1435.40 (359.17) 1647.76 (428.94) 1702.31 (402.94)
𝑆𝑃𝑇 1501.79 (394.96) 1679.18 (369.96) 1694.81 (346.14)

Table 3
Mean and standard deviation of the total robot working time.

Criterion Lookahead

𝑇𝑝 = 0 𝑇𝑝 = 1800 𝑇𝑝 = 18000

𝐶𝑇𝐶 12236.10 (683.86) 12568.36 (458.02) 12558.90 (471.36)
𝐶𝑇𝑅 11937.28 (707.73) 12565.44 (428.90) 12542.56 (403.59)
𝑆𝑃𝑇 11781.42 (625.86) 12546.66 (484.28) 12508.28 (486.07)

5.2. Test results

Tables 1–4 present the descriptive results of our tests showing how
they are affected by two main factors investigated in our analysis,
which are 𝑊 (the criteria used by the robotic arm for the selection
of the next PCB to work) and 𝑇𝑝 (the lookahead used by the internal
simulation to identify the most promising move to perform in the cell).

Table 1 shows the mean and standard deviation of the total pro-
cessing time, which is the total time spent by the cell to process
the whole set of PCBs. It shows that the lowest total processing time
occurs when the algorithm uses the 𝐶𝑇𝑅 criterion and the maximum
lookahead. In general, when the lookahead is zero, the total processing
time is maximum. Whereas the reduction obtained passing from 1800
to 18000 s appears to be negligible or nonexistent. Concerning the
criteria, 𝐶𝑇𝑅 appears to be the best performing, at least when the
lookahead is non-zero.

Table 2 shows the mean and standard deviation of the total operator
working time, which is the total time spent by the operator to process
the whole set of PCBs. It shows that the lowest total operator working
time occurs when the algorithm uses the CTR criterion and the min-
imum lookahead. In general, when the 𝑇𝑃 is zero, the total operator
working time is minimum, but also in this case the increase obtained
passing from 1800 to 18000 s appears to be limited or nonexistent.
Concerning the criteria, 𝐶𝑇𝑅 appears to reduce the overall involvement
of the operator, at least when the lookahead is under 18000 s. When
𝑇𝑝 = 18,000 𝐶𝑇𝐶 yields the best performance. By jointly observing
Tables 1 and 2, we point out that the lowest total processing time is
obtained when the operator is more involved in the cell operations.

Table 3 shows the mean and standard deviation of the total robot
working time, which is the total time spent by the robotic arm to
process the whole set of PCBs. It shows that the lowest total robot
working time occurs when the algorithm uses the 𝑆𝑃𝑇 criterion and the
minimum lookahead. In fact, when the 𝑇𝑝 = 0, the total robot working
ime is minimum. The maximum involvement of the robotic arm occurs
hen the 𝑇𝑝 = 1800 s. Concerning the criteria, 𝑆𝑃𝑇 appears to reduce

he overall involvement of the robotic arm.
Table 4 shows the mean and standard deviation of the total CPU

ime, which is the time spent by the DT to compute and simulate the
olution for the processing of the whole set of PCBs. It shows that

he lowest total CPU time occurs when the algorithm uses the 𝑆𝑃𝑇
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Table 4
Mean and standard deviation of the total CPU time.
Criterion Lookahead

𝑇𝑝 = 0 𝑇𝑝 = 1800 𝑇𝑝 = 18000

𝐶𝑇𝐶 0.33 (0.47) 21.21 (1.32) 124.62 (4.70)
𝐶𝑇𝑅 0.33 (0.47) 21.21 (2.38) 123.01 (4.89)
𝑆𝑃𝑇 0.31 (0.46) 20.69 (1.10) 121.42 (4.45)

Table A.5
Regression table of the total processing time.

Poisson regression model results

C: 𝐶𝑇𝑅 −0.01∗∗∗ (0.00) [−149.06]
C: 𝑆𝑃𝑇 0.00 (0.00) [17.00]
Lookahead 0.00∗∗∗ (0.00) [−0.02]
Test success −0.00∗∗∗ (0.00) [−29.04]
Operator compliance 0.00 (0.000) [0.27]
Constant 9.76∗∗∗ (0.03)

𝑁 = 2430
Wald 𝜒2(5) = 205.12∗∗∗

Log pseudo likelihood = −56219.38
Pseudo 𝑅2 = 0.05

Robust standard errors in round brackets, Marginal effects in
square brackets.
Significance level: *** 𝛼 < 0.001; ** 𝛼 < 0.01; * 𝛼 < 0.05; † < 0.1.

Table A.6
Regression table of the total operator working time.

Poisson regression model results

C: 𝐶𝑇𝑅 −0.00 (0.01) [0.91]
C: 𝑆𝑃𝑇 0.02† (0.01) [30.92]
Lookahead 0.00∗∗∗ (0.00) [0.01]
Test success −0.00† (0.00) [−2.96]
Operator compliance 0.00 (0.00) [0.09]
Constant 7.49∗∗∗ (0.14)

𝑁 = 2430
Wald 𝜒2(5) = 76.95∗∗∗

Log pseudo likelihood = −137843.53
Pseudo 𝑅2 = 0.02

Robust standard errors in round brackets, Marginal effects in
square brackets.
Significance level: *** 𝛼 < 0.001; ** 𝛼 < 0.01; * 𝛼 < 0.05; † < 0.1.

riterion and the minimum lookahead. As expected by increasing the
uration of the internal simulation the required total CPU time grows.
owever, even when the full lookahead is adopted, the CPU time is
round 143 s to simulate the full 53 PCBs instance, never requiring
ore than half a second to compute the best move. On average, the

ptimization algorithm is called 326 times. Hence, the time necessary
or each call is well under one second, thus enabling the real-time
eal-world application of our algorithm. Concerning the criteria, 𝑆𝑃𝑇
ppears to slightly reduce the total CPU time, but we do not observe
ny relevant difference between the different criteria.

To further analyse how the four dependent variables are affected by
he criteria and the lookahead, as well as by other control variables, we
arried out four different regression models. Specifically, since all the
ependent variables are non-negative count variables, we performed
oisson regression models. We computed robust standard errors to
educe the impact of heteroskedasticity. Appendix contains the detailed
esults of the regressions.

From these regressions, it turns out that only 𝑇𝑆 rate has a sig-
ificant impact on the total processing time since a higher success
ate in the tests reduces the number of PCBs to rework and, conse-
uently, the total processing time. While 𝑇𝑆 significantly improves
he performance, 𝑂𝐶 has always a not significant effect. A higher 𝑇𝑝
ncreases the performance, but its effect tends to decrease over a certain
hreshold, thus suggesting setting a non-zero lookahead to reach good
7

erformance, but not excessively high to slow down the algorithm. c
oncerning the criteria, 𝐶𝑇𝑅 reduces the total processing time of the
ell and guarantees an efficient use of the robotic arm. The use of
he robotic arm is minimized by using the 𝑆𝑃𝑇 criterion, which also
uarantees the minimization of the total CPU time.

. Discussion

In this paper, we have developed and tested a DT which has been
pplied to a case study arising from a real production cell with a robotic
rm and a dedicated operator. Our findings show that the proposed
rchitecture and algorithm can be successfully applied in practice,
nd point out how its performance is specifically affected by some
ontextual factors.

The literature on the application of DT to the solution of scheduling
roblems proposed several different approaches, which are character-
zed by different ways to deal with the uncertainty that affects the
lanning of manufacturing tasks. Our proposed DT falls in the reactive
pproach to scheduling problems, which assumes recalculating a new
cheduling scheme once new information from the physical manufac-
uring system is observed. A crucial aspect of the reactive approach
s the CPU time, which can be extremely high, since every change
n the physical manufacturing system involves a continuous recalcu-
ation of the solution. In this regard, several contributions develop
ore advanced algorithms, such as mixed integer linear programming

MILP) (Tliba et al., 2022) and genetic algorithms (Eunike et al., 2022;
iu et al., 2022), to give the DT a real-time autonomous decision mak-
ng capability. Compared with our approach, most of the algorithms
roposed in the literature tend to require more computation and thus
o have a lower computational efficiency.

Indeed, our paper presents a simpler algorithmic approach while
till providing reactive scheduling, since it proposes a real-time opti-
ization and simulation algorithm that enables automatic scheduling

daptation in response to changes in the physical system. More specifi-
ally, at the algorithmic level, we use a simplified approximate dynamic
rogram approach proposed by Bertsekas (2005) thus guaranteeing
olutions in a limited CPU time.

Another original contribution of the present paper is that our system
onsiders a human operator to support production. This raises the
roblem of the uncertainty of his actions, which has not been much
xplored in the literature so far. Some studies do not take into account
he uncertainty associated with the human operator (Eunike et al.,
022; Negri et al., 2021; Zhang et al., 2021a). Others simply include
his uncertainty as a disturbing factor in the production process, trigger-
ng the change in the scheduling (Fang et al., 2019). Conversely, our
pproach takes into account the uncertainty of the human operator’s
ctions by developing a suggestion mechanism for the operator. The
uggestion mechanism allows for performing accurate forecasts, while
t the same time safeguarding human autonomy and agency. In fact,
f the operator decides not to follow the suggestion, the algorithm
imply adapts its future choices around the observed behaviour of the
perator. Interestingly, results show that operator compliance with the
uggestion is less relevant than other sources of uncertainty, at least in
he considered settings.

Our work can also make a practical contribution to managers or
upervisors of robotic cells as it can support them in implementing the
hysical system through a fast and effective scheduling algorithm. In
act, by connecting the DT to the Physical Manufacturing System, it can
e used at the operational level to control and optimize the production
f the cell in real-time. On the other hand, by connecting it with a
hysical Manufacturing Simulator, it can be used both at tactical level
nd at the strategic level to predict the productivity of the cell to a new
roduction mix or new products. Moreover, the proposed framework
an be easily adapted to address manufacturing cells with different
onfigurations.
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7. Conclusions and future research

In this paper, we developed a DT for a robotic cell with the presence
of a human operator. The proposed approach can be easily adapted to
consider robotic cells with different layouts and patterns of interaction
and collaboration between a robot and human operators.

A possible future research direction will be to test the approach
in the actual physical system and to develop modules to address the
DT adaptability more explicitly. A different line of research will aim at
extending the approach to a more general configuration of the cell, or
to completely different manufacturing settings.
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Appendix. Regression analysis

Tables A.5–A.8 show the results of the regression models consider-
ing as dependent variable, respectively, the total processing time, the
total operator working time, the total robot working time, and the total
CPU time.

Table A.5 confirms that the total processing time is significantly
reduced by using the 𝐶𝑇𝑅 criterion and increasing the lookahead. This
effect is close to zero, thus confirming that the impact of lookahead
tends to decrease over a certain threshold. Concerning the control
variables, only 𝑇𝑆 has a significant impact since a higher success rate
in the tests reduces the number of PCBs to rework and, consequently,
the total processing time.

Table A.6 shows that the total operator working time is increased by
using the 𝑆𝑃𝑇 criterion, although this effect is scarcely significant, and
by increasing the lookahead. Even in this case, the effect of lookahead
is close to zero, thus confirming that it tends to decrease over a certain
threshold. Concerning the control variables, only 𝑇𝑆 has a negative
and scarcely significant impact since a higher success rate in the tests
reduces the number of PCBs to rework and, consequently, the operator
moves necessary for their processing.

Table A.7 shows that the total robot working time is increased by
using the 𝐶𝑇𝐶, while the other criteria, especially the 𝑆𝑃𝑇 , signif-
8

icantly reduce the total robot working time. Even in this case, the
Table A.7
Regression table of the total robot working time.

Poisson regression model results

C: 𝐶𝑇𝑅 −0.01∗∗∗ (0.00) [−105.68]
C: 𝑆𝑃𝑇 −0.01∗∗∗ (0, 00) [−175.58]
Lookahead 0.00∗∗∗ (0.00) [0.02]
Test success −0.00∗∗∗ (0.00) [−28.11]
Operator compliance 0.00 (0.00) [0.12]
Constant 9.61∗∗∗ (0.03)

𝑁 = 2430
Wald 𝜒2(5) = 310.71∗∗∗

Log pseudo likelihood = −46658.11
Pseudo 𝑅2 = 0.08

Robust standard errors in round brackets, Marginal effects in
square brackets.
Significance level: *** 𝛼 < 0.001; ** 𝛼 < 0.01; * 𝛼 < 0.05; † < 0.1.

Table A.8
Regression table of the total CPU time.
Poisson regression model results

C: 𝐶𝑇𝑅 −0.01 (0.01) [−0.53]
C: 𝑆𝑃𝑇 −0.03∗∗∗ (0.01) [−1.25]
Lookahead 0.00∗∗∗ (0.00) [0.01]
Test success −0.01∗∗∗ (0.00) [−0.27]
Operator compliance 0.00 (0.00) [−0.00]
Constant 2.67∗∗∗ (0.10)

𝑁 = 2430
Wald 𝜒2(5) = 12808.57∗∗∗

Log pseudo likelihood = −13919.63
Pseudo 𝑅2 = 0.83

Robust standard errors in round brackets, Marginal effects in
square brackets.
Significance level: *** 𝛼 < 0.001; ** 𝛼 < 0.01; * 𝛼 < 0.05; † < 0.1.

effect of lookahead is significant, but close to zero, thus confirming that
it tends to decrease over a certain threshold. Concerning the control
variables, only 𝑇𝑆 has a negative and significant impact since a higher
success rate in the tests reduces the number of PCBs to rework and,
consequently, the robotic arm moves necessary for their processing.

Finally, Table A.8 shows that the total CPU time is significantly
reduced by using the 𝑆𝑃𝑇 criterion. Even in this case, the effect of
lookahead is significant, but close to zero, thus confirming that it tends
to decrease over a certain threshold. Concerning the control variables,
again only 𝑇𝑆 has a negative and significant impact since a higher
success rate in the tests reduces the number of PCBs to rework and,
consequently, the time spent by the algorithm to define the necessary
operations for their processing.

References

Alexopoulos, K., Makris, S., Xanthakis, V., Sipsas, K., Chryssolouris, G., 2016. A concept
for context-aware computing in manufacturing: The white goods case. Int. J.
Comput. Integr. Manuf. 29, 839–849.

Bertsekas, D.P., 2005. Dynamic programming and suboptimal control: A survey from
ADP to MPC. Eur. J. Control 11, 310–334.

Bisio, I., Garibotto, C., Grattarola, A., Lavagetto, F., Sciarrone, A., 2018. Exploiting
context-aware capabilities over the Internet of Things for industry 4.0 applications.
IEEE Netw. 32, 101–107.

Cimino, C., Negri, E., Fumagalli, L., 2019. Review of digital twin applications in
manufacturing. Comput. Ind. 113, 103130.

Eunike, A., Wang, K.J., Chiu, J., Hsu, Y., 2022. Real-time resilient scheduling by
digital twin technology in a flow-shop manufacturinag system. Procedia CIRP 107,
668–674.

Fang, Y., Peng, C., Lou, P., Zhou, Z., Hu, J., Yan, J., 2019. Digital-twin-based job
shop scheduling toward smart manufacturing. IEEE Trans. Industr. Inform. 15,
6425–6435.

Friederich, J., Francis, D.P., Lazarova-Molnar, S., Mohamed, N., 2022. A framework for
data-driven digital twins for smart manufacturing. Comput. Ind. 136, 103586.

Hribernik, K., Cabri, G., Mandreoli, F., Mentzas, G., 2021. Autonomous, context-aware,
adaptive digital twins—state of the art and roadmap. Comput. Ind 133, 103508.

http://refhub.elsevier.com/S0166-3615(23)00008-8/sb1
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb1
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb1
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb1
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb1
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb2
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb2
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb2
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb3
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb3
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb3
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb3
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb3
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb4
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb4
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb4
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb5
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb5
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb5
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb5
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb5
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb6
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb6
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb6
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb6
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb6
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb7
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb7
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb7
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb8
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb8
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb8


Computers in Industry 146 (2023) 103858T. Albini et al.
Joo, T., Shin, D., 2019. Formalizing human–Machine interactions for adaptive
automation in smart manufacturing. IEEE Trans. Hum. Mach. Syst. 49, 529–539.

Kritzinger, W., Karner, M., Traar, G., Henjes, J., Sihn, W., 2018. Digital twin in manu-
facturing: A categorical literature review and classification. IFAC-PapersOnLine 51,
1016–1022.

Leng, J., Wang, D., Shen, W., Li, X., Liu, Q., Chen, X., 2021. Digital twins-based
smart manufacturing system design in Industry 4.0: A review. J. Manuf. Syst. 60,
119–137.

Leng, J., Zhang, H., Yan, D., Liu, Q., Chen, X., Zhang, D., 2019. Digital twin-driven
manufacturing cyber–physical system for parallel controlling of smart workshop. J.
Ambient Intell. Humaniz. Comput. 10, 1155–1166.

Liang, Y.C., Lu, X., Li, W.D., Wang, S., 2018. Cyber physical system and Big Data
enabled energy efficient machining optimisation. J. Clean. Prod. 187, 46–62.

Liu, M., Fang, S., Dong, H., Xu, C., 2021. Review of digital twin about concepts,
technologies, and industrial applications. J. Manuf. Syst. 58, 346–361.

Liu, L., Guo, K., Gao, Z., Li, J., Sun, J., 2022. Digital twin-driven adaptive scheduling
for flexible job shops. Sustainability 14 (5340).

Negri, E., Pandhare, V., Cattaneo, L., Singh, J., Macchi, M., Lee, J., 2021. Field-
synchronized digital twin framework for production scheduling with uncertainty.
J. Intell. Manuf. 32, 1207–1228.

Qi, Q., Tao, F., Hu, T., Anwer, N., Liu, A., Wei, Y., Wang, L., Nee, A.Y.C., 2021.
Enabling technologies and tools for digital twin. J. Manuf. Syst. 58, 3–21.

Rosen, R., Wichert, G.von., Lo, G., Bettenhausen, K.D., 2015. About the importance of
autonomy and digital twins for the future of manufacturing. IFAC-PapersOnLine
48, 528–539.
9

Rossit, D.A., Tohmé, F., Frutos, M., 2019. Industry 4.0: Smart scheduling. Int. J. Prod.
Res. 57, 3802–3813.

Tao, F., Zhang, M., 2017. Digital twin shop-floor: A new shop-floor paradigm towards
smart manufacturing. IEEE Access 5, 20418–20427.

Tao, F., Zhang, H., Liu, A., Nee, 2018. Digital twin in industry: State-of the-art. IEEE
Trans. Industr. Inform. 15, 2405–2415.

Tliba, K., Diallo, T.M.L., Penas, O., Khalifa, R.B., Yahia, N.B., Choley, J.Y., 2022.
Digital twin-driven dynamic scheduling of a hybrid flow shop. J. Intell. Manuf.
http://dx.doi.org/10.1007/s10845-022-01922-3.

Xu, J., Huang, E., Hsieh, L., Lee, L.H., Jia, Q.-S., Chen, C.-H., 2016. Simulation
optimization in the era of industrial 4.0 and the industrial internet. J. Simul. 10,
310–334.

Yu, H., Han, S., Yang, D., Wang, Z., Feng, W., 2021. Job shop scheduling based on
digital twin technology: A survey and an intelligent platform. Complexity 8823273.

Zhang, J., Deng, T., Jiang, H., Chen, H., Qin, S., Ding, G., 2021a. Bi-level dynamic
scheduling architecture based on service unit digital twin agents. J. Manuf. Syst.
60, 59–79.

Zhang, M., Tao, F., Nee, A.Y.C., 2021b. Digital twin enhanced dynamic job-shop
scheduling. J. Manuf. Syst. 58, 146–156.

Zhuang, C., Liu, J., Xiong, H., 2018. Digital twin-based smart production management
and control framework for the complex product assembly shop-floor. J. Adv. Manuf.
Technol. 96, 1149–1163.

http://refhub.elsevier.com/S0166-3615(23)00008-8/sb9
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb9
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb9
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb10
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb10
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb10
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb10
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb10
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb11
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb11
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb11
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb11
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb11
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb12
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb12
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb12
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb12
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb12
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb13
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb13
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb13
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb14
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb14
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb14
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb15
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb15
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb15
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb16
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb16
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb16
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb16
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb16
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb17
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb17
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb17
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb18
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb18
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb18
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb18
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb18
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb19
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb19
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb19
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb20
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb20
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb20
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb21
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb21
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb21
http://dx.doi.org/10.1007/s10845-022-01922-3
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb23
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb23
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb23
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb23
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb23
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb24
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb24
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb24
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb25
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb25
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb25
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb25
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb25
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb26
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb26
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb26
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb27
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb27
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb27
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb27
http://refhub.elsevier.com/S0166-3615(23)00008-8/sb27

	Real-time optimization for a Digital Twin of a robotic cell with human operators
	Introduction
	Literature review
	Problem description
	Architecture and algorithms of the Digital Twin
	The Digital Twin
	State Database
	Field
	Optimization algorithm module

	Computational results
	Test cases
	Test results

	Discussion
	Conclusions and future research
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	Appendix. Regression analysis
	References


