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Floquet space exploration 
for the dual‑dressing of a qubit
Alessandro Fregosi 1,2, Carmela Marinelli 1,2, Carlo Gabbanini 1, Giuseppe Bevilacqua 2, 
Valerio Biancalana 2, Ennio Arimondo 1,3 & Andrea Fioretti 1*

The application of a periodic nonresonant drive to a system allows the Floquet engineering of 
effective fields described by a broad class of quantum simulated Hamiltonians. The Floquet evolution 
is based on two different elements. The first one is a time‑independent or stroboscopic evolution 
with an effective Hamiltonian corresponding to the quantum simulation target. The second element 
is the time evolution at the frequencies of the nonresonant driving and of its harmonics, denoted 
as micromotion. We examine experimentally and theoretically the harmonic dual‑dressing Floquet 
engineering of a cold atomic two‑level sample. Our focus is the dressing operation with small 
bare energies and large Rabi frequencies, where frequencies and amplitudes of the stroboscopic/
micromotion time evolutions are comparable. At the kHz range of our dressed atom oscillations, 
we probe directly both the stroboscopic and micromotion components of the qubit global time 
evolution. We develop ad‑hoc monitoring tools of the Floquet space evolution. The direct record 
of the time evolution following a pulsed excitation demonstrates the interplay between the two 
components of the spin precession in the Floquet space. From the resonant pumping of the dressed 
system at its evolution frequencies, Floquet eigenenergy spectra up to the fifth order harmonic of 
the dressing frequency are precisely measured as function of dressing parameters. Dirac points of 
the Floquet eigenenergies are identified and, correspondingly, a jump in the dynamical phase shift is 
measured. The stroboscopic Hamiltonian eigenfrequencies are measured also from the probe of the 
micromotion sidebands.These monitoring tools are appropriate for quantum simulation/computation 
investigations. Our results evidence that the stroboscopic phase shift of the qubit wavefunction 
contains an additional information that opens new simulation directions.

Floquet engineering has been introduced and reviewed in Refs.1–8. The stroboscopic component allows the 
realization of quantum simulations in a variety of systems, among which cold atomic  samples9–15 and solid state 
 ones16–18. In Ref.19 the micromotion component is considered as a limit to the measurement accuracy. On the 
opposite side it was investigated for an improved quantum simulation in Refs.20, 21, as a synthetic dimension for 
the characterization of topological properties in Ref.22, for the realization of entangled gates in Refs.23, 24. In the 
recent single dressing experiment of Ref.25, the resonant pumping at the micromotion evolution frequencies 
produced a Floquet amplification.

Bichromatic resonant driving has received a wide attention for both two- and three-level systems mainly in the 
resonant configurations, multiphoton and multistep, respectively. Bichromatic Fourier engineering was applied 
in optical lattices for the tunnelling  suppression26–28. That driving allowed also to engineer the nearest-neighbor 
 interactions29 and the dissipation  processes30. The role of interferences in the engineering process, examined in 
early optical pumping  experiments31, 32, was carefully explored in the dual modulation driving of an optical lat-
tice clock by Ref.33. This reference measured also the dual dressing periodic dependence on the driving relative 
phase role, an issue previously theoretically investigated in Ref.34.  Reference35 studied the geometric phase for 
the bichromatic microwave/radiofrequency dressing of colour centres. The topological features associated to an 
incommensurate multiple driving were theoretically explored by Refs.34, 36. In Ref.37 the dual incommensurable 
driving controlled evaporative cooling.

The present work reports on an experimental and theoretical investigation of the global Floquet space time 
evolution for a cold atomic sample in a  magnetometer38. In an external weak dc magnetic field our atomic struc-
ture is described by a collection of degenerate two-level systems. The qubit interacts with static and oscillating 
magnetic fields as in Fig. 1a. The qubit-field coupling is determined by the γ constant, for a real atom being 
γ = gµB with g an effective Landé factor and µB the Bohr magneton, assuming � = 1 . The B0 static magnetic 
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field has components B0j on the j = (x, y, z) axes. In the dual-dressing case, the qubit is driven by two time-
dependent, periodic fields oriented along the x and y axes, respectively, with Bi , (i = x, y) , maximum amplitudes. 
A bichromatic harmonic Hamiltonian encompassing the main features of the dual-dressing39 is

with σi the Pauli matrices and the �i , (i = x, y) phases given by

Here p is an integer, and �0i with (i = x, y) the initial phase of each harmonic field. The ��0 = �0y −�0x 
dressing phase difference represents an additional control handle as in Ref.33 for the doubly-modulated optical 
lattice clock. The periodicity associated to the phase difference, fully equivalent to the lattice momentum perio-
dicity in solid-state physics, represents a key element in the present investigation. In our experiment the time 
scale of the x dressing evolution corresponds to �0x = 0 . By taking the ω angular frequency as frequency unit in 
Eq. (1), we introduce dimensionless quantities as τ = ωt time, ω0 = γB0/ω magnetic vector and �i = γBi/ω , 
(i = x, y) Rabi frequencies.

In the high-frequency regime the experiments of Refs.20, 21 investigated the micromotion at the first perturba-
tive order in the Floquet time evolution. Here the study on strong dressing field examines experimental results 
associated with higher perturbation orders. While the perturbation approach of Ref.40 produces the physical 
insight into the qubit response, numerical analyses describe our experimental data. The Hamiltonian of our 
system is equivalent to an extended bipartite Su–Schrieffer–Heeger (SSH) model with complex tunnelling cou-
plings depending on the dressing field phases, as pictorially represented in Fig. 1b Similar SSH models appears 
in one dimensional lattices with two sites per unit  cell41–45.

In comparison with the monochromatic dressing, the dual one shows original features, as detailed in our 
previous  publications39, 40. Additional original features are associated to our direct observation of the strobo-
scopic time evolution and of the micromotion one. In our operation this last component is not characterized by 
a small amplitude and a very fast timescale evolution as in previous Floquet engineering investigations. Floquet 
eigenenergies, eigenvalues amplitude and dynamical phase of the stroboscopic time evolution are accessed 
either by resonantly pumping the qubit at its eigenfrequencies, denoted as Resonant Pulsed Pumping [RPP, see 
“Methods” section], or by recording the time evolution after initialization, denoted as Dressed Free Evolution 
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Figure 1.  In (a) schematic of a qubit dressed by the Bx and By oscillating fields, generated by the X-dress and 
Y-dress coils, respectively, in the presence of a B0 static field arbitrarily oriented in space. At t = 0 the qubit is 
optically pumped into a σx eigenstate by the circularly polarized pump laser propagating along the x axis (red 
dashed line). In the Resonant Pulsed Pumping mode, this pump laser stays ON, modulated at the dressed-qubit 
eigenfrequency (see “Methods” section). The 〈σy(t)〉 expectation value is monitored by the optical Faraday 
rotation of a probe beam propagating along the y axis (blue continuous line). Its rotation angle, from the initial 
E0 direction to the final E′0 one, is analysed by a balanced polarimeter made of a polarizing beam splitter and 
the PD1, PD2 detectors. In (b) schematic representation of the Su–Schrieffer–Heeger chain of two-state sites 
with the complex asymmetric hopping parameters of Eq. (9). At the n-th horizontal site, the up/down (un, dn) 
state components are plotted with separated energies. The n count of the absorbed photons is equivalent to an 
effective force field.
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[DFE, see “Methods” section]. The Fast Fourier Transform [FFT, see “Methods” section] of the time evolution 
gives a global access to the characteristics of both stroboscopic and micromotion components. The stroboscopic 
spectra, i.e., the Floquet eigenenergies of the quantum simulated Hamiltonian, are measured as a function of the 
dressing parameters. The wide exploration of the Floquet eigenenergies complements the previous  detections17, 33, 

46. The measured Floquet quasienergy spectra vs the dressing parameters evidence the presence of Dirac points. 
The analysis of the stroboscopic amplitude points out the presence of parameter ranges where the detection of 
simulated Hamiltonian is less efficient. In the directly-monitored stroboscopic time evolution, the qubit dynami-
cal phase shift represents an additional probe tool. The phase shift results demonstrate an interplay between the 
stroboscopic and micromotion components. As a surprising result we observe a discontinuity of the dynamical 
phase shift at the Dirac points, produced by those combined evolutions. A very good agreement between theo-
retical and experimental results is obtained in all examined cases.

Results
Dual‑dressing features. Floquet analysis. The U(τ ) time evolution operator results

This operator is obtained numerically starting from the initial condition U(0) = 1 and propagating until 
τ = 2π using the numerical algorithm of Ref.3. This system is conveniently treated by the Floquet theory, a 
time analog of the Bloch band structure for particles in spatially periodic  potentials34. The Floquet  theorem1–6, 8 
allows us to write

The qubit stroboscopic dynamics at stroboscopic times t = n 2π/ω is determined by the � Floquet operator 
behaving as a time-independent Hamiltonian. The additional micromotion dynamics, i.e., the short time depend-
ent evolution, is described by the K kick operator with K(0) = 0 and K(τ + 2π) = K(τ ) . The � matrix is not 
unique since, for a given U operator, one can subtract multiples of the ω frequency from its diagonal elements 
and compensate by adding to K(τ ) the same quantity.

We employed the numerical algorithm based on Eq. (255) of Ref.3 to propagate the time evolution operator 
from τ = 0 to τ = 2π . In this way we obtained U(τm) , for τm = 2π m/N  , m = 0, 1, . . . ,N  . We checked that 
convergence is reached for N approximately few tens. The Floquet matrix is obtained as � = (i/2π) log U(2π) 
and then the kick operator e−iK(τm) is obtained by inverting Eq. (4). The �± Floquet eigenenergies of the � single-
period evolution operator are restricted to the (−0.5, 0.5) first Brillouin zone. The � matrix may be written as

where the h vector, measured in energy units, represents an effective magnetic field. From a quantum simulation 
point of view, the stroboscopic response of a dual-dressing qubit is described by the h magnetic field arbitrarily 
oriented in space with a maximum absolute value determined by the dressing  frequency40. In the experimental 
investigation the � Floquet eigenenergies associated to the (|�+�, |�−�) eigenvectors are characterized by the 
following �L dressed Larmor frequency:

Figure 2a reports theoretical � eigenvalues vs the ��0 dressing phase for fixed �x ,�y amplitudes. Zero-
crossing points, i.e., Dirac-like points, appear for specific dressing parameter values. The eigenvalues may reach 
the Brillouin zone with crossings modified into anti-crossings. The (�+, �−) symmetry shown in Fig. 2a leads to 
|�+| = |�−| = �L/2 . The �L maximum value is 1, i.e., the dressing frequency.

Quantum simulation and SSH analogy. References33, 34, 47 pointed out the strong analogy between time-peri-
odic Hamiltonians, as the Eq. (1) one, and tight-binding models in presence of a static electric field and with each 
lattice site coupled to its neighbors. For such a comparison the action of the U(τ ) operator on a |�� eigenstate is 
written as

The |�(τ )� time periodic structure is given by

with (un, dn) the components of the Pn|�� state vector associated to n dressing photons [for the Pn operators see 
Eq. (3) of the Supplemental  Information48]. Substituting Eqs. (8) and (7) in Eq. (3), after some algebra we obtain 
the following coupled recurrences (valid for the p = 1 case only): 
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 where, for simplicity, we used ω0 = (0, 0,ω0z) . These equations describe a tight-binding chain with two states 
per site, i.e., a dimerized chain, (see Fig. 1b for a representation) with the following complex asymmetric nearest-
neighbour hopping strengths:

For ��0 = ±π/2 the z± hopping parameters reduce to (�x ±�y)/4 , with the above periodic structure 
derived in Ref.1. For �y = 0 the above equations reduce to the Wannier-Stark model as in Refs.34, 49. Within 
Eqs. (9a) and (9b) the top(bottom) un(dn) state has an intrinsic potential energy ω0/2(−ω0/2) . The nun and ndn 
terms represent the interaction with an effective electric field force associated to the photon number as in Ref.34 
for an incommensurate dual-dressing. The recurrence structure of Eq. (9a) and (9b) reveals a chain internal 
decoupling. The even-position bottom states are coupled only to the odd-position top states, leading to a chain 
with only one state per site. Similarly the odd-position bottom states couple only to the even-position top states, 
producing a separate chain of one state per site. The coupling between these two chains is produced by the qubit 
preparation in any superposition of top and bottom states. For p  = 1 one obtains a similar chain structure based 
on two coupled recurrences with �x nearest-neighbour hooping and a complex hopping between the sites n 
and n± p due to �y . The structure of all these chains recall the SSH model, with the additional presence of the 
photon number force. Except for this parameter, direct analogies exist between Eq. (9a) and (9b) and similar 
ones for the complex amplitudes of a bipartite lattice based on chain of optical  resonators42. A similar analogy 
exists also for the extended SSH models based on two sublattices of Refs.41, 43–45, with the photon force replaced 
by hopping strengths. For the Floquet engineering of a driven two-band system Ref.50 pointed out the analogy 
with an SSH model including additionally nearest-neighbor interactions.

Probing the stroboscopic evolution. The stroboscopic time periodic evolution is determined by the � 
eigenvectors and the associated �L dressed Larmor frequencies. In the experiment, the 〈σy(τ )〉 mean value of the 
qubit spin is monitored as in Fig. 1a, following its initial preparation in the σx(0) = 1 state [see Setup in “Meth-
ods” section]. Using the RPP probe, the fL experimental dressed Larmor frequency is measured, and compared 
to the theoretical �L one. Data for the Floquet eigenenergy dependence on the ��0 relative dressing phase and 
on the dressing Rabi frequencies are collected. An additional stroboscopic information is given by the amplitude 
of the 〈σy〉�L qubit oscillation at the dressed (�L, fL) frequency.

Phase periodicity of Floquet eigenvalues. For a time-periodic Hamiltonian the quasi momentum periodicity in 
solid state is replaced by a periodicity in the dressing field phase. For a bichromatic time-periodic Hamiltonian, 
the periodicity is associated with the � = (�x ,�y) phase vector of Eq. (1), as pointed out in Ref.34 treating the 
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Figure 2.  ��0 dependence of theoretical (�+, �−) Floquet eigenenergies and �L dressed frequency, and 
of measured fL frequencies. In (a) (�+, �−) with the x axis larger than the first Floquet zone to evidence the 
eigenenergy periodicity. �L is derived from the |�+ − �−| difference. Parameters: p = 1 , �x = 1.3,�y = 0.64 , 
ω0z = 0.3375 and ω0y = 0 . Black line for ω0x = 0 , and red dots for ω0x = 0.03 . In (b) �L theory (continuous 
lines) and fL experiment (markers) dressed Larmor frequencies within the Floquet zone. Blue line and squares 
for �x = 2.60(1) and �y = 3.15(2) , red line and circles for �x = 2.60(1) and �y = 1.90(1) . Other parameters: 
p = 1 , ω0x = ω0y = 0 , f = 40.00 kHz, ω0z = 0.3375(3) corresponding to f0 = 13.50(5) kHz. In (c) �L and 
fL within a limited Floquet zone. The transition from a Dirac-like crossing into an anti-crossing is explored by 
tuning the ω0x field. Parameters: p = 1 , �x = 1.670(5) , �y = 1.20(1) , f = 135.00 kHz ω0y = 0 , ω0z = 0.100(3) , 
corresponding to f0 = 13.50(5) kHz. In both experimental plots the error bar is smaller than the dot size, 
and the red dashed horizontal lines denote the f0 = 13.50(5) kHz undressed Larmor frequency value. All 
experimental data are acquired in the RPP mode. The number in brackets represents, according to the standard 
notation, the error in the last digit.
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periodic energy exchange between the two driving fields. The periodic time evolution is described by a closed 
orbit in the 2D (�x ,�y) space. In analogy to the solid state case, we refer to the regions 0 ≤ �x0,�y0 ≤ 2π 
of initial phases as the Floquet  zones34. The theoretical data of the Floquet eigenenergies of Fig. 2a for fixed 
�x ,�y amplitudes evidence the periodic dependence as a function of the ��0 relative dressing phase. The strong 
dependence on the (�x0,�y0) initial values derived in Ref.34 applies also to our ��0 dependence.

For given �x ,�y dressing fields, we verify experimentally the phase periodicity of the Larmor frequency 
and its fine tuning through the ��0 control parameter. Figure 2b reports the measured fL frequency vs ��0 
in the Floquet zone for two sets of dressing strengths, at given f = ω/2π experimental dressing frequency and 
f0 = |ω0|/2π undressed frequency. �L maxima and minima appear by tuning the dressing phase difference, 
as derived from the theory eigenvector lines of Fig. 2a. They appear also in theory/experiment data of Fig. 2b.

Floquet eigenenergies vs Rabi frequencies. For the Floquet eigenenergies vs dressing strengths, Fig. 3a shows the 
theoretical 2D (�x ,�y) map of �L , at given ��0 value and p = 1 , with maxima and minima. Figure 3b reports 
�L theoretical and fL experimental data vs �x at �y = 1.45 and p = 1 , corresponding to the horizontal dashed 
white line of Fig. 3a. As from the theory map, at �x = 1.685 and ω0z = 0.1 the �L ≈ 0.965 dressed Larmor fre-
quency approaches the upper boundary zone. This response corresponds to a substantial increase of almost one 
order of magnitude for the qubit Larmor frequency, for both (�L, fL) data. Similar results are obtained for the 
p = 2 case, as in Fig. 3c reporting fL experimental results, filled squares, and �L theoretical ones, blue continu-
ous line, vs �x at fixed �y dressing. Such similarity applies to all p values of the double-dressed Hamiltonian. The 
green open circles and continuous line of that figure are discussed in the following global probe section.

Crossings, anticrossings, and Dirac points. The 2D map of Fig. 3a reports (�x ,�y) values where �L = 1 , i.e., 
the Floquet eigenenergies reach the Brillouin zone boundary leading to crossing points at its bottom and top. 
These crossings are transformed into anti-crossings for different values of the dressing strengths. The anticross-
ing maxima are present in the �L plots vs the dressing strengths of Fig. 3b. In the p = 1 plot of Fig. 2b, the 
(�L, fL) maxima appear at the ��0/π = 0.5 and 1.5 values where the dressing field is composed by rotating and 
counter-rotating components, respectively, strongly coupled to the qubit at our very low static magnetic fields. 
The ω0z amplitude modifies the coupling strength, and in consequence the �L maxima values.

Dirac-like points, i.e., zero values of the � eigenenergies and the �L frequency, appear by tuning the dressing 
field phases, as in plots of Fig. 2, or by tuning the dressing strengths, as in Fig. 3b,c. The two Dirac-like points 
appearing in (�L, fL) vs ��0 (theory black line of Fig. 2a and red line one of Fig. 2b, with experimental data red 
dots) have positions that depend on the dressing parameters and are destroyed, i.e., transformed into anticross-
ings, by increasing the dressing amplitude. The blue line and squares of Fig. 2b evidence such destruction.

We have an additional handle for such crossing-anticrossing transformation. This handle is a weak trans-
verse magnetic field, either ω0x or ω0y , as shown in the red dotted theoretical line for (�+, �−) vs of Fig. 2a. This 
transformation is examined experimentally, for the zero crossing, in the (�L, fL) vs ��0 plot of Fig. 2c, which 
reports Larmor frequency values in a limited Floquet zone range around one Dirac point. With an applied ω0x 
static magnetic field scanned around the ω0x = 0 compensation value, the crossing-anticrossing transformation 
is carefully investigated. The dashed lines report the theoretical predictions.

Amplitude of the stroboscopic oscillation. The 〈σy(t)〉�L amplitude oscillation at the �L frequency is examined 
under different operating conditions. It has a complex dependence on the dressing parameters as in theoretical 

Figure 3.  Theoretical �L and experimental fL Larmor frequencies vs Rabi dressing frequencies. In (a) 
2D (�x ,�y) map of �L for p = 1 , ��0/π = 0.5 , and ω0z = 0.1 . In (b) theoretical prediction (line) and 
experimental data (markers) for dressed Larmor frequencies vs �x . The theoretical prediction corresponds 
to the horizontal white line of the (a) plot. Experimental parameters: �y = 1.60(1) , ω0z = 0.100(3) , 
��0/π = 0.500(5) , and f = 135.00  kHz. In (c) �L theory (blue line) and fL experiment (markers) for the 
p = 2 case vs �x . Green line and open dots for 1−�L and f − fL micromotion sideband, see text. Parameters: 
�y = 2.00(1) , ��0/π = 0.00(1) and f = 40.00 kHz. In both experimental plots the error bar is smaller than 
the dot size. In (b,c) the horizontal red dot-dashed lines indicate f values while dashed lines f0 ones. In all plots 
ω0x = ω0y = 0 , and undressed Larmor frequency f0 = 13.50(5) kHz. All data in (b) and the blue ones in (c) are 
collected in the RPP mode.
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2D (�x ,�y) map of Fig. 4a. The 2D plot of Fig. 4b reports the corresponding �L values. Experimental results 
for the white lines vertical cuts of the 2D maps of Fig. 4a,b are presented in (c,d). In contrast to the excellent 
experiment-theory matching for the dressing frequencies, for the amplitude only a good agreement is reached. 
Note that in this case the precise alignment of the probe with the y axis is a critical issue. A comparison of the 
theory/experiment plots evidences that the amplitude of the stroboscopic component is not constant, and is 
greatly depressed for dressing parameters close to the (�L, fL) maxima. Such different response becomes impor-
tant when the stroboscopic simulated Hamiltonian is explored experimentally.

Probing the global Floquet space. The exploration of the Floquet space is completed by measuring the 
time dependence of the global qubit evolution. For the measured 〈σy(τ )〉 qubit component, such global evolution 
is described by Eq. (12) [see Qubit evolution in “Methods” section]. The key feature is the presence of different 
time scales: a time periodic evolution at the �L dressed Larmor frequency, superimposed on the micromotion 
evolution at the s-th harmonic of the dressing frequency, with s an integer, and, finally, the s ±�L dressed-
frequency micromotion-sidebands. They are experimentally monitored by all probes.

Micromotion sideband frequencies. As in the previous Larmor frequency subsection, we measure the frequen-
cies of the micromotion sidebands applying the RPP probe to the qubit 〈σy(τ )〉 at the s-th sideband frequency. 
For the low frequency sideband of the s = 1 micromotion component, the 1−�L theoretical predictions, and 
the f − fL experimental results, are plotted in Fig. 3c vs �x at fixed ��0 and �y values. The comparison of those 
data with the (�L, fL) ones within the same figure confirms that the frequency of the micromotion sideband at 
(1−�L , f − fL) , represents a mirror image of the �L theory frequency, fL in the experiment. The information 
on the quantum simulated Hamiltonian is stored also in the micromotion time evolution.

Figure 4.  The |�σy�|�L stroboscopic component amplitude at the �L frequency, and analysis of the 
corresponding Larmor frequency . In (a,b) 2D theoretical maps in the (�y ,��0) plane; in (a) for the |�σy�|�L 
stroboscopic component amplitude at the �L frequency; in (b) for the �L frequency. Colour scales on the right. 
In (c,d), measured |�σy�|�L amplitude and fL Larmor frequency vs ��0 , respectively. fL error bars are smaller 
than the dot size. Theoretical predictions correspond to the white vertical cuts in the (a,b) 2D maps. Parameters 
in bottom plots: p = 1 , �x = 2.60(1),�y = 1.90(1) , ω0x = ω0y = 0 , ω0z = 0.3375(3) . In (c,d) f = 37.90kHz 
and f0 = 12.70(5)kHz, denoted in (d) by the red dashed line.
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FFT exploration. Figure  5 reports FFT spectra recorded for several dressing conditions, with micromotion 
frequency components at the multiples of the f dressing frequency up to the fourth harmonic, and their f ±�L 
sidebands. Note the presence of the zero frequency component in all spectra, described theoretically by the first 
line of Eq. (12). In Fig. 5c the large value of the �L frequency, close to the 1 maximum value, leads to sidebands 
largely shifted from each micromotion harmonic component. The theoretical predictions for the FFT spectrum 
peaks based on numerical analyses provide a good match of the experimental observations, the higher order 
micromotion components being depressed in amplitude by the detection bandwidth. Owing to the interfer-
ences in the qubit response, the relative amplitude of the spectrum components has a strong dependence on the 
dressing parameters. For instance, in the Fig. 5c,d plots one sideband is significantly weaker than the other. The 
theoretical simulations pointed out an interesting qubit response while monitoring the components of the qubit 
spin along the x, z directions. For instance, on the 〈σz(t)〉 time evolution, the odd micromotion components do 
not appear in the spectra owing to their reduced amplitude. Such simplified dressed qubit response represents a 
configuration useful for the probe issues in quantum simulation.

Time exploration. The observation of the 〈σy(τ )〉 time evolution provides a direct access to the combined stro-
boscopic and micromotion components. It represents a precise probe of their relative contribution to the total 
qubit response. The 〈σy(τ )〉 time evolution is monitored following the switch-on of the dressing fields at the 
initial t = τ = 0 time [see Dressed free evolution (DFE) in “Methods” section]. Experimental data and theoreti-
cal simulations are presented in Fig. 6a,b, respectively. Those time evolutions clearly evidence the �L precession 
and the micromotion oscillations owing to their different frequencies for the chosen dressing parameters. The 
Larmor amplitude, greater than the micromotion one, is described by �L sinusoidal fits, black lines in the plots. 
The micromotion components at the first and second harmonic frequencies are directly identified on both plots. 
Their relative amplitude depends greatly on the dressing parameters, as presented in the previous FFT explora-
tion Subsection.

Qubit phase shift at t = 0. The qubit evolutions of Fig.  6a,b present a very interesting feature at the short 
(t, τ ≈ 0) times. On the basis of the second line of Eq. (12) within the Qubit Evolution [see “Methods” section], 
the �L stroboscopic component of the qubit σy is written as

Figure 5.  FFT power spectrum (continuous black line, arbitrary units) of 〈σy(τ )〉 vs fFFT Fourier frequency, 
measured in f units. All spectra obtained from FFT applied to the RPP signals. The s-th micromotion 
component appears at fFFT = s with its sidebands at s ±�L positions. When the sidebands are stronger than the 
main components, the regular spacing of the micromotion components at first glance does not appear satisfied. 
Red open circles represent theoretical predictions scaled to the experimental ones. Power spectrum measured 
in arbitrary units. On the low power values the experimental and theoretical spectra are limited to the − 80 dB 
value.The 0,�L, 1, 2, 3, ... peak sequence, with their ordered micromotion sidebands, appears in the (a,b,d) plots. 
Instead in (c) the �L large value leads to the 0, 1−�L,�L, 1, 2−�L, 1+�L, 2, 3−�L, .. sequence. Parameters 
[p,�x ,�y ,��0/π , fL] the last one in kHz: in (a) [1, 4.00(1), 0.850(4), 0.500(1), 6.4(1)]; in (b) [2, 1.400(4), 
0.550(3), 0.000(1), 8.8(1)]; in (c) [1, 1.340(4), 1.380(7), 0.500(1), 36.5(1)]; in (d) [1, 1.000(3), 1.000(5), 1.500(1), 
8.0(1)]. In all plots ω0x = ω0y = 0 , ω0z = 0.3375(3) , and f = 40.00 kHz.
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where we introduce a �σy dynamical phase shift produced by the micromotion evolution. Note that in magnetic 
resonance experiments with a single rotating dressing field and starting from �σx(0)� = 1 , the �σy(0)� = 0 initial 
condition leads to �σy = 0 . This applies also to the single dressing time evolution as derived in Ref.39. For an 
incommensurate dual driving Ref.35 linked the �σy phase shift to a high order geometric phase.

The black lines of Fig. 6a,b report sinusoidal fits based on Eq. (11) with fL values derived from the Larmor 
frequency measurements as in Figs. 2 and 3 for the experimental data, and from the numerical eigenvalue deter-
minations for the �L theoretical ones. From those fits we derive that the �σy (0) = 0 condition valid for magnetic 
resonance and single dressing does not apply. The theoretical simulations evidence that the �σy(t ≈ 0)� ≈ 0 
continuity is satisfied by the micromotion evolution, as from a close exam of the τ = (0, 2) data in Fig. 6b. The 
�L oscillations begin with a phase shift different from zero in both Fig. 6a,b.

Fits of the experimental time evolutions on the basis of Eq. (11) at given dressing field amplitudes produce the 
�σy vs ��0 plot of Fig. 6c. The theoretical counterpart (black continuous line of Fig. 6c) is obtained by comput-
ing the phase from the second line of Eq. (12). The dashed line there reports the associated �± dependence on 
��0 , similar to the theoretical result of Fig. 2a. A smooth and large π phase shift takes place at the anticrossings 
points corresponding to the |�±| maxima. At the �± = 0 Dirac-like points a sharp and small, approximately π/10 , 
discontinuity of the �σy phase shift takes place. The amplitude of the �σy sharp jump at the Dirac-like points is 
modified by the dressing parameters. Instead the amplitude of the smooth and large π phase change around the 
|�±| maxima depends weakly on those parameters. For a theoretical connection between the |�±| linear varia-
tion at the Dirac points and the phase shift jump see Phase shift discontinuity in Supplemental  Information48. 
The comparison of the measured/predicted �L and �σy values at the ��0 = 0 and ��0/π = 1 dressing phases 
for fixed dressing amplitudes represents an interesting issue. At those phases the dressing fields have the same 
geometry, except for a modified spatial orientation. This symmetry leads to an equal �L Larmor frequency for 
those phases as shown by the data in Figs. 2b and 4d. Instead the results of Fig. 6c evidence a π change of the 
�σy value at those dressing phases.

Discussion
The present work explores the stroboscopic and micromotion components of the qubit dynamics in the Floquet 
engineering of two-level cold atoms released from a magneto-optical trap. The qubits are based on the ground-
state low-field magnetic field splitting. Our Hamiltonian includes two harmonic radiofrequency magnetic interac-
tions. We operate in a regime of small undressed energy splitting and large dressing Rabi frequencies, larger than 
the Floquet dressing frequency. The low frequency operation represents a key element for our diagnostic tools. 
The diagnostics is based on ad-hoc probes. The micromotion components and their sidebands appearing in the 
FFT and in the time-evolution signals provide a clear insight into the global qubit dynamics. By tuning the RPP 
frequency we examine separately the stroboscopic and micromotion components of the Floquet space evolution.

Dirac-like points are present in the stroboscopic spectra of the dual-dressed system vs the dressing phase 
difference. At the Dirac points we observe a phase-discontinuity for the stroboscopic qubit evolution. Its depend-
ence on the dressing parameters represents a peculiar signature. It will be important to explore if such signature 
applies also to Dirac points in other quantum systems, for instance, in the SSH models with a structure similar to 
Fig. 1b. The connection with the shift in the Berry’s phase associated to the Dirac points examined, for instance, 
in Ref.51 should be also explored. In Ref.52 for Dirac points not isolated in space a nodal structure was introduced 

(11)�σy(t)��L ∝ sin(�Lt +�σy ),

Figure 6.  Experiment and theory 〈σy(τ )〉 following the t = 0 switching of the dressing fields, and 
the qubit �σy measured/theory phase. In (a) experimental 〈σy(τ )〉 (red line) for ��0/π = 1.220(2) , 
�x = 2.600(8),�y = 1.90(1) . The blue line denotes the trigger for the dressing switch. In (b) corresponding 
theoretical prediction. Black lines on both plots represent sinusoidal fits based on Eq. (11). The fL,�L value 
is determined independently, see text. The derived phase shifts are �σy/π = −0.58(11) measured and 
�σy/π = −0.5197 theory. In (c) �σy measured (red dots with error bar) and theoretical (black line) phases of 
�L oscillations vs the ��0 dressing phase. Experimental data derived from the DFE exploration. On the right 
axis the theoretical �± Floquet eigenenergies vs ��0 . The sharp variations of �σy occur at the Dirac points. A 
≈ π phase change occurs around the |�±| maxima.
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as a topological invariant, whose form depends on their symmetry group. This approach should be applied also 
to the Dirac lines appearing in the (�x ,�y) space of our dual-dressing.

The present experiment is limited by the interaction time of the cold atoms. Longer interaction times are 
obtained by confining the atoms in an optical trap. Those times are required for a test of the Berry phase or the 
Chern number in the double-dressing with incommensurable frequencies.

From the points of view of quantum control and quantum simulation, our study of the stroboscopic and 
micromotion components produces several results to be exploited in future Floquet engineering investigations. 
The produced effective magnetic field arbitrarly controlled in orientation and amplitude, should be applied to 
qubit experiments requiring an easy and adiabatic control of the spin orientation. The qubit pulsed pumping in 
a strong regime is equivalent to a parametric excitation, and this connection may represent an additional handle 
in the Floquet engineering. The observations of the phase shift and its discontinuity evidence that in quantum 
simulations the phase shift of qubit wavefunction contains an additional information opening new simulation 
directions. The role of the driving dressing phases in the multifrequency Floquet engineering should be also 
examined within the same context. We apply the RPP to the exploration of qubit evolution for both the strobo-
scopic component and the micromotion ones, at the dressing harmonics and their sidebands. Such direct and 
precise determination of the micromotion time evolution opens the road to a quantum control application. A 
parametric driving of the micromotion components is equivalent to the storing of the additional information in 
our qubit. Within this approach the micromotion components play the role of synthetic dimensions and become 
an additional quantum control handle for the Floquet engineering.

While our attention is focused on single qubit system, it will be interesting to investigate the dual-dressing 
features also in presence of interaction and relaxation precesses. For this last topic the existence of periodic 
steady-state independent of the initial conditions was already proven in Ref.53.

Methods
Qubit evolution. The dressing operation modifies mean value and time evolution of the spin components. 
These quantities are derived from the U(τ ) operator time evolution of Eq. (4) using the K kick operator and the 
� stroboscopic one. From Eq. (3) for U(τ ) and imposing the initial condition �σx(t = 0)� = 1 , for the detected 
spin mean value parallel to the y axis we obtain

with |ψ� the state of interest. For the 0-th �L component and for the s-th harmonic of the micromotion, the 
introduced σ s

y Pauli matrix is defined as

with the Pn operator introduced in Eq. (8). The 〈σy(τ )〉 time dependence includes a constant term (first line), 
a time periodic evolution at the �L dressed Larmor frequency (second line) leading to the phase shift periodic 
dependence of Eq. (11). These components are superimposed on the micromotion evolution at the s-th harmonic 
of the dressing frequency (third line) and, finally, the dressed-frequency micromotion interplay at the sidebands 
s ±�L (fourth line). Note that in the ion-cooling community the above s-th harmonic micromoton is denoted 
as “sideband”.

The Qubit time evolution section of the Supplemental  Information48 contains a perturbation analysis of 
the 〈σy(τ )〉 time evolution leading to an alternative derivation of phase shifted sinusoidal evolution of Eq. (11).

Experimental protocol. Set‑up. In the experimental setup of Ref.38, an 85 Rb atom sample is trapped in 
a Magneto-Optical Trap (MOT), laser-cooled in the Fg = 3 hyperfine state to few tens µ K. Atoms are then 
released and spin-polarized along the x axis by circularly-polarized pump laser in presence of an uniform mag-
netic field, with main component B0z and eventually small B0x ,B0y components. At the end of the polarization 
phase two radio-frequency linearly-polarized magnetic fields, in the 20–150 kHz range with amplitudes in the 
0–50  µ T range, are applied along the x and y directions to the released, polarized atoms. In our data the time 
scale of the x dressing evolution corresponds to the �0x = 0 choice. Starting from the initial �σx(t = 0)� = 1 
magnetization, the 〈σy(t)〉 magnetization is probed by a linearly polarized beam, propagating along the y direc-
tion, by detecting the Faraday rotation. The initial preparation and the time evolution detection are detailed in 
the Supplemental  Information48. Also the compensation of spurious static magnetic fields and the calibration of 
the dressing radiofrequency fields are described there.

RPP: resonant pulsed pumping. In this configuration, a 5µ s laser pulse, periodic at fRPP frequency, forces the 
atoms into the �σx(0)� = 1 state. The Faraday rotation output signal is detected through a lock-in procedure.

(12)

�ψ |σy(τ )|ψ� = |�ψ |�+�|
2��+|σ

0
y |�+� + |�ψ |�−�|

2��−|σ
0
y |�−�

+ 2 Re

(

e i�Lτ �ψ |�+���+|σ
0
y |�−���−|ψ�

)
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∑
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[
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Amplitude and phase of the lock-in signal are recorded as a function of fRPP . This configuration, correspond-
ing to a Bell and Bloom magnetometer with synchronous optical pumping, has a high sensitivity. We assume that 
the pump laser does not disturb in a significant way the dynamics of the qubit, but has only the effect of zeroing 
the dissipative processes allowing to treat the problem within a Hamiltonian formalism. The RPP resonance 
linewidth is ≈ 600 Hz HWHM and the central resonance frequency is measured with a 50 Hz precision. This 
spin probe is analogue to the self-sustaining Larmor precession signal detected in the magnetometer experi-
ments of Refs.54, 55.

DFE: dressed free evolution. In this configuration a single 200 µ s long pulse of the pumping laser applied in 
zero static field condition, aligns the qubit spins along the x axis. At the end of the pumping phase, with static 
and dressing fields switched on, the qubit precession is detected by the Faraday rotation. This configuration, with 
a lower sensitivity than the RPP, detects very precisely amplitude and phase of the qubit time components. A 
similar pulsed approach with dressing fields on and a pulsed magnetic fields was applied in Ref.35.

FFT: FFT spectra. An FFT analysis of the time evolution of the spin magnetization is performed in both RPP 
and DFE modes. The FFT is digitally computed on a time sequence of ≈ 5 ms duration at a 500 kHz sampling 
rate, corresponding to a FFT frequency span of 250 kHz with a 200 Hz frequency step. In the RPP case a com-
ponent at the pump pumping frequency is always present in the spectrum, and the free evolution spectra are 
examined only for a resonant driving. The information gathered by the two cases produces identical spectral 
components. In the DFE case though, the spectral lines are larger due to the damping of the atomic magneti-
zation. In both RPP and DFE methods the high-frequency components have a reduced amplitude due to the 
limited bandwidth of our detector.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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