
03 May 2024

Marchetti, F., Becattini, F., Seidenari, L., Bimbo, A.D. (2024). SMEMO: Social Memory for Trajectory
Forecasting. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
[10.1109/TPAMI.2024.3356755].

SMEMO: Social Memory for Trajectory Forecasting

Published:

DOI:10.1109/TPAMI.2024.3356755

Terms of use:

Open Access

(Article begins on next page)

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. Works made available under a Creative Commons license can be used according to the terms and
conditions of said license.
For all terms of use and more information see the publisher's website.

Availability:

This version is availablehttp://hdl.handle.net/11365/1255276 since 2024-02-08T09:34:51Z

Original:

This is a pre print version of the following article:

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

SMEMO: Social Memory for Trajectory
Forecasting

Francesco Marchetti, Federico Becattini, Lorenzo Seidenari, Alberto Del Bimbo

Abstract—Effective modeling of human interactions is of utmost importance when forecasting behaviors such as future trajectories.
Each individual, with its motion, influences surrounding agents since everyone obeys to social non-written rules such as collision
avoidance or group following. In this paper we model such interactions, which constantly evolve through time, by looking at the problem
from an algorithmic point of view, i.e. as a data manipulation task. We present a neural network based on an end-to-end trainable
working memory, which acts as an external storage where information about each agent can be continuously written, updated and
recalled. We show that our method is capable of learning explainable cause-effect relationships between motions of different agents,
obtaining state-of-the-art results on multiple trajectory forecasting datasets.

Index Terms—Trajectory prediction, Memory Augmented Networks, Social interactions, Autonomous driving

✦

1 INTRODUCTION

Autonomous vehicles will soon become a pervasive technology.
To comply with safety standards, said vehicles must be able
to anticipate what will happen in the surrounding environment.
Humans perform the same kind of operation when moving in
social contexts. In fact, their motion is heavily influenced by group
dynamics such as leader following or collision avoidance [1].
They gather information about nearby entities and their actions are
planned according to an estimate of how such entities will behave
and move. This kind of reasoning is possible thanks to a cognitive
system known as working memory [2], which retains short term
information and manipulates it in order to make decisions.

To emulate the human capability of forecasting in a dynamic
environment, several works have studied mechanisms to model
social interactions, in particular with the goal of predicting human
trajectories [3], [4], [5], [6]. Recent methods have proposed
different solutions, focusing on pooling strategies to aggregate
information about individuals [1], [5], [7], intra-agent attention
mechanisms [8] or graph-based representations to model both spa-
tial and temporal relationships [9]. They have different drawbacks.
The main issue of relying on pooling alone is information loss;
when pooling multiple signals into a single aggregate, temporal
ordering is lost and agent-wise knowledge is disregarded in favor
of a coarse global descriptor, which is more practical to handle
yet less informative. On the other hand, attention and graph based
approaches are able to model relationships between signals but
still rely on some fixed-size hidden representation blending them
together. All in all, none of these methods is able to imitate a
working memory, which would allow to manipulate individual
pieces of information. Lacking the capability to keep track of
each agent, while modeling the overall social interactions, makes
it impossible for forecasting methods to properly reason about
cause-effect relationships between the motion of different agents.

Nonetheless, there have been learning based attempts to repli-
cate the cognitive mechanism of a working memory with the

• F. Marchetti, F. Becattini, L. Seidenari, A. Del Bimbo are with the
Media Integration and Communication Center (MICC) of the University
of Florence, Italy.

WRITEREAD

CTRL

MEMORY

CONTROLLER
STATE

DEC
FUTURE

PREDICTION

SOCIAL
INTERACTION

ENC

Fig. 1. SMEMO models social interaction in trajectory prediction exploit-
ing a working memory. Past observations are encoded and stored in
memory and retrieved to formulate multiple future predictions for each
agent. Read/Write operations are guided by a controller. The whole
model is trained end-to-end.

definition of Memory Augmented Neural Network (MANN) mod-
els [10], [11], [12]. Differently from previous memory networks,
such as RNNs and LSTMs, MANNs add a trainable external
memory which is element-wise addressable, i.e. relevant items
of information can be accessed selectively. The whole model
is end-to-end differentiable, meaning that it learns to store and
retrieve relevant information from the memory in a task-driven
fashion. State-to-state transitions are obtained through read/write
operations. In this way, MANNs learn to tackle problems in an
algorithmic way, i.e., by actively manipulating data to produce
an output. Successful examples of MANN applications have been
proposed for sorting long sequences of data [10], assigning labels
to patterns observed with time-lags [13] and trajectory prediction
of individual vehicles [14], [15] among others.

We claim that a trainable external memory as provided by the
MANN model is utterly important to perform effective reasoning
about social dynamics in multi-agent forecasting scenarios, such
as human trajectory forecasting in crowds. In fact, it would allow
to store and share individual items of information - the positions
of the moving agents - and take them into consideration to make
predictions at each timestep according to their relevance, without
any predefined modeling of their relationship.

In this paper, we present a model with a Social MEmory

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2024.3356755

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

MOdule (SMEMO) for trajectory forecasting, where the core
element consists of a Memory Augmented Neural Network that
is trained to store past information from multiple agents in a
shared external memory and recall and manipulate this infor-
mation to make predictions. As a byproduct, explicitly storing
and reading the trajectory states of the individual agents makes
our model interpretable. This allows us to explain cause-effect
relationships in our predictions, i.e. to show how a generated
trajectory is influenced by the motion of the surrounding agents.
Providing explainable predictions is a particularly sensitive aspect
when dealing with safety-critical systems, as demonstrated by the
increasing interest that this topic has recently started to gain [1],
[16], [17]. We provide evidence of the effectiveness of our solution
with application to pedestrian trajectory prediction in crowded
environments, where modeling of interactions between the agents
is particularly challenging due to unpredictable rules that govern
crowds and the unconstrained variability of agents’ movements.

The main contributions of our work are the following:
• We propose a new model with an end-to-end external work-

ing memory, which we refer to as Social MEmory MOdule
(SMEMO), capable of modeling agent interactions for trajec-
tory prediction.

• Thanks to multiple memory heads, SMEMO is able to generate
multiple diverse predictions, addressing the multimodal nature
of the task.

• We show that our model is able to understand social rules in
crowded scenarios. We present a new synthetic dataset of social
interactions between multiple agents, and show that our solution
outperforms the current state of the art models especially in the
presence of tight social interaction.

• As a direct consequence of explicitly modeling cause-effect
relationships between agents’ behaviors, SMEMO provides
explainable predictions without requiring external tools for
interpreting its decision process.

2 RELATED WORK

In this section we first provide an overview of the state of the
art regarding trajectory prediction, with a particular attention on
methods that can also provide explainable decisions. We then
report a summary of most prominent methods that, as ours, work
with memory based models, either as an internal state (RNNs) or
as an external module (MANNs).

Trajectory Prediction Trajectory prediction aims at estimat-
ing future locations of moving agents. Difficulties arise from
several sources: past motion has to be understood in order to
accurately predict the future [5], [18]; a representation of the
environment should be obtained in order to provide spatial cues or
constraints on admissible areas [19], [20], [21], [22], [23]; other
agents must be taken into account to detect social patterns such
as group dynamics [3], [4], [5], [6], [7], [8], [19], [24], [25].
Several works exploited generative models either to obtain multi-
ple futures forecasts from a single past or to estimate prediction
uncertainty [6], [19], [26], [27], [28], [29].

Whereas a fine modeling of motion is always necessary,
environment and social behaviors gain importance depending on
the scenario and the type of observed agent. Complex environment
representations are useful in automotive settings, where the focus
is on road and lane layouts [21], [22], [30]. This is motivated
by the fact that vehicles are severely constrained, both in terms
of urban regulations and physical ability to roam, since they can

accumulate a lot of momentum. Modeling social patterns often
offers a better comprehension of future motion, despite there being
evidence of limited relevance with motorized agents [19], [21].
Most prior work has in fact focused on modeling interactions
between moving agents while observing pedestrians [3], [4], [5],
[6], [7], [26], [31].

One of the first works to address social interaction with neural
trajectory predictors has been Social-LSTM [5], which adopted a
grid based social pooling to aggregate information about spatially
close agents. A follow-up work has extended this idea by adding
an adversarial loss to generate socially acceptable multiple future
trajectories [6]. The idea of combining recurrent networks to
model pedestrian dynamics with an adversarial discriminator has
also been followed by [8], adding a physical and social attention
to focus on interactions. Recently, Shafiee et al.proposed a model
integrating a kinematic trajectory representation based on LSTMs
with a 3D attention model extracted directly from video sequences,
instead of modeling trajectories alone [23]. This approach has the
advantage of removing the need of multiple target tracking thus
increasing the inference efficiency.

A recent trend followed by several works is to estimate
intentions, i.e. generate a likely spatial goal that the agent wants to
reach [32], [33], [34], [35], [36]. This kind of technique has proven
extremely effective, retaining the current state of the art in several
benchmarks. However, solely estimating trajectory goals neglects
the social context which can deeply affect agent trajectories. In this
work, we do not model intentions since social cues might modify
the trajectory of an agent even after the observation horizon, thus
bringing it far from the estimated goal in the predicted future.
Furthermore, we highlight the difficulties that intention-based
models encounter in highly social environments experimenting
on a synthetic dataset where predictions must consider social
interaction rules. Finally, an effective way of modeling social
interactions, which is gaining an increasing attention, is to model
agents as nodes in a graph and then process it with a Graph Neural
Network (GNN) [9], [37], [38]. Differently from these methods we
model social dynamics by exploiting a trainable external working
memory. In this way, we are able to avoid a processing flow that
eventually blends past information together into a single latent
state, but instead we let the memory able to keep track of relevant
cues across time, and store them separately to be successively
recalled. To the best of our knowledge we are the first to adopt
an external working memory trained end-to-end to model social
behaviors and perform trajectory prediction.

A relevant consequence of using an external memory is
explaining the decision process of the network. We show that
thanks to the Memory Module we are able to highlight cause-
effect relationships between agent behaviors, without the usage of
external tools to generate interpretable decisions [1], [16], [17]. A
few prior works have underlined the importance of interpretable
predictions for trajectory forecasting [1], [25], [39], [40]. In [39],
the authors specifically design a model to be interpretable by
generating a probability distribution over a discrete set of possible
intents, intended as combinations of direction and speed. Such
intents however are modeled over four hard-wired social rules.
The most similar work to ours in terms of explainability is [25],
which exploits a form of attention that can attend to information
about other agents individually. Such attention is derived from
the internals of a transformer architecture. Differently, we rely on
read/write weights that our model produces to access memory and
attend information from different agents.

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2024.3356755

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Fig. 2. A social context S with two agents x0 and x1. Past (blue) is
observed and multiple futures are predicted (shades of red).

Memory Augmented Neural Networks Neural Networks are
trained to solve specific tasks in a data driven fashion. The whole
knowledge is stored in the weights of the model, which learns
how to produce adequate responses depending on the input. Tasks
involving data sequences, e.g. time series, require to remember
early information and hold on to that information up to a point
when it might become relevant to produce the answer. Recurrent
Neural Networks (RNN) addressed this issue by updating an
internal state that attempts to summarize the whole history of
observed inputs. Whereas this approach has proven effective in a
large variety of cases, it has been shown to suffer from long term
forgetting due to exploding/vanishing gradients that affect mem-
orization capabilities. This drawback has been mitigated to some
extent by improved versions of RNNs, such as Long Short Term
Memories (LSTM) [41] or Gated Recurrent Units (GRU) [42].
RNNs, however, still represent their memory as a latent fixed-
size state that will eventually lose track of some information for
sufficiently long input sequences. Another limitation of relying on
a latent memory is that individual pieces of information cannot be
recalled, making it hard to perform reasoning tasks that involve
data manipulation. Apparently simple tasks such as copying or
sorting become therefore extremely challenging to address.

Memory Augmented Neural Networks (MANN) [10], [11]
are Neural Networks that behave as RNNs in the sense that can
be updated through time, but instead of relying on an internal
latent state, they exploit an external addressable memory. Such
memory is fully differentiable and the model, thanks to a trainable
controller, learns to read and write relevant information. The
first embodiment of a MANN has been Neural Turing Machine
(NTM) [10], introduced to solve simple algorithmic tasks, demon-
strating large improvements when compared to RNNs. Using an
external memory, in fact, allows the network to store knowledge
that cannot be forgotten unless deleted by the model itself. At each
timestep the network can perform reasoning involving all previous
observations and can perform data manipulation to emit its out-
puts. Follow-up works have extended and refined the formulation
of the NTM [11], [12], [13], [43]. Recently, several declinations
of MANNs have been proposed to tackle more complex problems
such as online learning [44], object tracking [45], [46], visual
question answering [47], [48], person re-identification [49], action
recognition [50] and garment recommendation [51].

Recently MANTRA, a fist attempt to use Memory Augmented
Neural Networks for trajectory prediction, has been proposed by
Marchetti et al. [14], [15]. However, this approach is not end-to-
end since each component is trained independently. Moreover, the
external memory is a persistent memory populated during training
to describe possible future trajectories and perform multimodal
predictions. The approach has been extended in [52] and [53].

The former (ESA [52]) adds a sparse transformer-based memory
controller to improve the effectiveness and the interpretability of
the model, whereas the latter (MemoNet [53]) writes endpoint
goals rather than encodings of whole trajectories. Differently from
MANTRA and its variants, which completely discards any social
component, we exploit an end-to-end trainable episodic memory
to reason about social interactions between multiple agents.

A different take on using memories for trajectory prediction
has been explored in [54], where a storage is leveraged to address
a continual learning setting. Also in this case, the memory is a
persistent storage, trained to store samples rather than a working
memory as in SMEMO.

A few works have used a collection of end-to-end trainable
memory cells for trajectory prediction [55], [56], [57], adapting
existing data structures to hold temporal information. In [55],
individual trajectories are fed to a Tree Memory Network (TMN),
i.e. a recursive structure where hidden states of an RNN are
organized in a hierarchical binary tree, allowing to learn short
and long term temporal dependencies. Differently from [55], we
exploit the external memory as a shared workspace capturing
social dynamics between different agents and its read heads to
predict multiple futures. In addition, our memory allows individual
agents to perform independent write operations, accessing mem-
ory portions selectively, which is not possible with TMN.

In [56] and [57] instead a graph memory keeps track of
the state of each agent at every timestep to perform trajectory
smoothing. In [56] memory operations are done without training
by appending hidden states. In [57], instead, trajectory smoothing
is performed by combining a transformer with memory replay.
This is an algorithm based on a graph-structured memory stor-
ing previous outputs and informing the transformer decoder of
previous motion patterns, avoiding sharp turns in the predictions.
The purpose of the memories in both [56] and [57] is therefore
different since memory in our work is a shared working memory
that informs every agent about the social context to comply with
complex social behaviors. Memory structure is also different since
SMEMO does not rely on a graph but on a memory bank, selec-
tively readable/writable with information of individual agents.

3 METHOD

3.1 Problem Formulation
Given a social context S = {xi, i = 0, ..., N − 1}, defined as the
set of trajectories representing N moving agents, we formulate the
task of trajectory prediction as the problem of predicting the future
positions of each agent, given their past positions. We consider se-
quences of agent trajectories belonging to different social contexts
as independent episodes. Within each episode, trajectories span
from an initial observation point up to a prediction horizon.

All trajectories, past and future, are sequences of top-view
2D spatial coordinates in a fixed reference frame, independent
from the agents. Past trajectories are observed over a temporal
interval up to an instant P , identified as the present xi

0:P =
{xi

0, x
i
1, ..., x

i
P }. All movements taking place after the present

and up to an instant F belong to future trajectories xi
P+1:F =

{xi
P+1, ..., x

i
F }.

Trajectory prediction is an inherently multimodal problem,
meaning that given a single observation, multiple outcomes are
possible. Following the recent literature [6], [19], [26] we generate
multiple future estimates to provide a variety of futures in order
to cover this uncertainty. To provide a comprehensive notation,

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2024.3356755

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Past Trajectories

Recurrent
Decoder

Future Predictions

Recurrent
Motion Encoder

Social________________
Memory_______________
Module_______________

Shared Memory

Fig. 3. Past trajectories are fed to the Egocentric stream (Blue) and a Social stream (Yellow). In the Egocentric stream, each past trajectory is
embedded and then encoded with a Recurrent Motion Encoder GRU. In the Social stream, the Social Memory Module encodes past trajectories
and populates the working memory, which is shared for each agent. This allows the model to create a representation for the social context. Prediction
is performed by decoding the concatenation of the past encoding and the social feature.

throughout the paper we define variables with a superscript iden-
tifying the referred agent and two subscripts indicating the current
timestep and current future estimate identifier. Therefore the t-th
timestep of the k-th future prediction for agent i is denoted as
xi
t,k. Fig. 2 exemplifies such notation, depicting a social context

with two agents and three diverse future predictions.

3.2 Architecture Overview

In SMEMO, the motion of each agent is processed into two
streams, which we refer to as Egocentric and Social, as shown
in Fig. 3. The former is dedicated to modeling relative displace-
ments of an agent from one timestep to another. This allows to
understand how individual agents move, regardless of their actual
position in space. The latter instead, processes the absolute agent
positions to obtain knowledge of where an agent is with respect to
the environment. This information is then stored into an external
memory, shared across agents. Our model therefore can learn
to perform social reasoning by manipulating memory entries to
predict future positions for all agents in the scene.

In the Egocentric Stream, at each timestep t, past displace-
ments ∆xi

t are observed for each agent trajectory xi ∈ S .
Each displacement is first processed by an encoder E∆ to obtain
a projection δit into a higher dimensional space. The temporal
sequence of δit is then fed to a recurrent motion encoder ET ,
which generates a condensed feature representation τ it .

In the Social Stream, past absolute positions xi
t are considered

for each agent trajectory xi ∈ S . A projection πi
t is obtained with

an encoder EΠ. This yields a sequence of temporized descriptors,
which is directly fed to the Social Memory Module. This module
acts as a recurrent neural network and processes a sequence of
input features in parallel for each agent. It generates a compact
social descriptor σi

t, summarizing social behaviors between all
agents in the social context S up to the current timestep t. The
i superscript denotes a separate social descriptor for each agent,
beyond the fact that all participate in a common social context.
This is necessary since agents interact differently with the others
depending on their position and movement.

The egocentric and social representations, τ it and σi
t, are

finally concatenated and fed to a recurrent motion decoder DT and
the model autoregressively predicts future displacements ∆xi

t+1,
for each agent, with a decoder D∆. Each autoregressive step
works as follows. E∆ and EΠ respectively process each ∆xi

0:P

and xi
0:P independently, generating at each timestep the latent

representations δit and πi
t, until the present is reached. For each

timestep in the future, instead, δit and πi
t are replaced with a vector

of zeros to allow the autoregressive trajectory generation. The
recurrent encoder ET and the Social Memory Module therefore
keep updating their internal state and new τ it and σi

t are generated
for each instant in the future. All agents share E∆, ET , EΠ, DT
and D∆ and the memory M of the Social Memory Module.

3.3 Social Memory Module

The Social Memory Module serves the purpose of reasoning about
interactions between all the observed agents. The module is com-
posed of an external memory M = [m0,m1, ...,m|M|−1], shared
across all agents. Each memory entry mj is a readable/writable
cell of dimension Q. Overall, M can be interpreted as a matrix
with dimensions |M| × Q. The Social Memory Module interacts
with the memory using a recurrent controller with a single write
head and multiple read heads. As in standard Memory Augmented
Neural Networks (MANN) [10], [11], [43], M is an episodic
memory used as workspace for writing and reading relevant
information from a data sequence, which is then wiped out at
the end of each episode.

The Social Memory Module aggregates data from all agents
in the social context S and continuously outputs a social feature
σi
t, which condenses the history of the whole episode up to the

current timestep t. The module is fed with multiple sequences
of encoded absolute positions πi

t of i = 0, ..., N − 1. For each
timestep t, the encoded absolute positions of each agent are given
in input in parallel. When each element of a sequence πi

t is
presented to the module, it is concatenated with the social feature
generated at the previous step by the Social Memory Module itself.
Such social feature is initialized with a zero-vector and updated
autoregressively at each timestep. The obtained representation is
then fed to the Memory Controller, which outputs a latent feature
γi
t used to access memory through read and write operations.

These operations happen subsequently at each timestep: first the
module accesses memory to fetch relevant social information (read
phase), then the memory is updated to take into account the current
observation (write phase). Since M is continuously updated, we
denote with Mt the memory content at timestep t.

3.3.1 Addressing
Read and write operations share a memory addressing step, where
the most relevant memory locations are identified by generating
read/write weights α (Fig. 4). In this section we refer to these
weights as access weights, regardless if they are used for reading

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2024.3356755

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Recurrent Memory
Controller

Social Memory Module

Memory Key

Addressing
Strength

Cosine
Similarity

Read/Write
Head Softmax

Softplus

Fig. 4. Social Memory Module Addressing. SMEMO is equipped with a
shared memory Mt. The controller outputs at each timestep a feature γi

t
which is fed to the read/write heads to generate a memory key η and an
addressing strength β. The key is used to find relevant memory locations
in memory via cosine similarity. Access weights α are then obtained by
normalizing such similarities through a softmax with temperature β.

Read
HeadRead

Head

Recurrent Memory
Controller

Social Memory Module

Addressing

Σ
Weighted

Sum

Read
Head

Future
Pooling

Fig. 5. Social Memory Module Reading. For each agent i, separate read
heads perform a memory addressing to obtain K social features σi

t,k
which will be fed in parallel into the decoder to generate a multimodal
future prediction. The social features are then pooled together via Future
Pooling and fed back to the model auto-regressively.

or writing, even if they are exploited in different ways as outlined
in Sec. 3.3.2 and Sec. 3.3.3. For the sake or simplicity, in this
section we temporarily drop the agent superscript and timestep
subscript, reminding the reader that addressing operations are
executed for all the agents at each timestep.

Memory addressing is performed by read/write heads starting
from the state of the memory controller γ. Each head is a
dense layer that transforms the state into a pair (η, β), which
respectively indicate the memory key and addressing strength.
The weights generating β have a softplus activation, as in Neural
Turing Machines [10], to ensure it to be grater than zero.

The memory key η is used to find relevant memory locations
mj via cosine similarity sj =

η·mj

∥η∥·∥mj∥ . To obtain the final access
weights, β is used to control the amount of focus by normalizing
the similarities s = {s0, , ..., s|M|−1} with a learned temperature-
softmax, where |M| is the number of memory entries:

αj =
eβsj∑
l e

βsl
j = 0, ..., |M| − 1 (1)

3.3.2 Reading

The Social Memory Module is equipped with K read heads. These
heads are used in parallel to produce a multimodal prediction,
i.e., a variety of futures. Each read head performs a memory
addressing operation (see Sec. 3.3.1), obtaining read weights
αi

t,k, k = 0, ...,K − 1.

Social
Pooling

Social
Pooling

Write
Head

Recurrent Memory
Controller

Social Memory Module

Addressing

Erase Matrix

Add Matrix

×

Outer Product

×

Outer Product

Erase Vector

Add Vector

Sigmoid

Fig. 6. Social Memory Module Writing. For each agent, a single write
head is in charge of addressing memory and generating erase and add
vectors. The vectors are combined with the write weights to generate
erase and add matrices. Memory update is performed after Social Pool-
ing to achieve invariance to the order in which agents write in memory
at each timestep.

Assuming that the memory contains relevant information con-
cerning social dynamics of the agents, a social feature σi

t,k can be
produced by simply performing a sum over memory locations,
weighted by αi

t,k. This feature is then directly passed to the
Egocentric Stream and decoded into a multimodal prediction by
applying the decoder for each future k in parallel. Having K
read heads allows the model to learn different modalities and to
condition the decoder to generate K diverse futures. Finally, an
autoregressive social feature ρit+1, to be fed to the model at the
next timestep, is obtained by applying a max-pooling operation to
σi
t,k over all k = 0, ...,K − 1 futures. We refer to this step as

Future Pooling. Future Pooling is necessary to obtain a compact
descriptor summarizing all K futures and avoid the combinatorial
growth of agents and futures, which would require a large amount
of Memory Controllers evaluated in parallel. The pooled feature
ρit is then fed back as input to the Social Memory Module at the
next time-step as shown in Fig. 5.

3.3.3 Writing
To store relevant information for each agent i, a write head
produces write weights αi

t through memory access (see Sec.
3.3.1), an erase vector eit and an add vector ait. The two vectors
are generated by two additional dense layers which, similarly to
the generation of the memory key, transform the controller state γ
into eit and ait respectively. The former is passed through a sigmoid
activation to bound between 0 and 1 the rate of information that
can be erased, i.e. when eit = 0 no information is erased, instead
when eit = 1 all the information is erased. The write weights are
combined with eit and ait with an outer product to obtain add and
erase matrices, which will be used to update each memory entry:

Ai
t = αi

t ⊗ ait Ei
t = αi

t ⊗ eit (2)

Since we want the shared memory to contain information
about each moving agent, before updating the memory content, we
first generate erase and add matrices Ei

t and Ai
t for each agent i

and then perform a max pooling operation Et = max{Ei
t}, At =

max{Ai
t} across all agents i = 0, ..., N − 1. This mechanism

is similar in spirit to Social Pooling [5], [58], where states from
different agents are pooled together to condition predictions. The
need of a social pooling stems also from the fact that we want
the memory content to be invariant to the order in which agents
are observed at each step. Memory update is performed after each
timestep as

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2024.3356755

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Memory

Write weights Read weights

Fig. 7. Memory configuration for explainable predictions. Memory is
divided in segments Mi, reserved to individual agents. Information for
agent i is written only in Mi and read from all the other segments. White-
colored addressing weights refer to zeroed-out cells. αi

write and αi
read

indicate the writing and reading addressing for agent i.

Mt+1 = (1− Et) · Mt + At. (3)

where we use the subscripts t and t+1 to denote the memory
content at two consecutive timesteps. The memory writing process
is shown in Fig. 6.

4 EXPLAINABILITY

In addition to correctly predicting the future trajectory of an agent,
it is interesting to understand which neighbors have contributed
to the generation of such trajectory. In particular, understanding
how agents are influenced by their neighbors can foster explicit
modeling of cause-effect relationships and provide explainable
predictions. This aspect is of fundamental importance in safety
critical autonomous driving systems. In fact, providing a certain
degree of explainability can improve the welcoming of such
technology while providing a higher level of understanding about
the internals of the system itself. This problem is not trivial and
most trajectory predictors do not provide explainable predictions
by design. This is due to the ”black box” structure of neural
networks which makes an output non interpretable and does not
provide any information about why a predicted trajectory follows
a certain pattern. The main peculiarity of SMEMO is the use of
a shared episodic memory where, at each timestep, agents store
information explicitly.

In the following we show how, with a simple constraint on
where the memory controllers can write and read, our model can
become easily interpretable by design. During the writing phase
we reserve a segment of z memory cells for each agent. In this
way, we can compartmentalize the information about the social
context agent by agent. We refer to Mi = [mi·z, ...,mi·z+z−1]
as the set of z memory entries reserved to agent i. Therefore, the
overall memory can be re-defined as M = [M0,M1, ...,MN−1]
where N is the number of agents in the social context. In our
experiments we use z = 5. Moreover, to predict the future position
of a certain agent, we force SMEMO to read only segments
reserved to other agents. As a consequence, memory access during
the reading phase can be interpreted as an inter-agent attention,
underlining the importance of other agents during each step of the
generation of a future trajectory. Fig. 7 depicts how a controller
can read and write in memory in this configuration, depending on
the trajectory to be predicted. For the sake of simplicity, we drop
the timestep subscript, reminding the reader that writing/reading
operations are executed for each timestep.

Thanks to this formulation, cause-effect relationships emerge
since it is possible to observe on which memory segment the
reading controller focuses its attention before predicting the future
of an agent. To perform such analysis, it is sufficient to examine
how features in memory are updated and how the controller is
attending them to generate predictions, without requiring further
training of the network. Referring to Fig. 7, we define the attention
for an agent i on another agent j as the sum of all the reading
weights of the segment dedicated to j, i.e. Mj :

atti(j) =
j·z+z∑
c=j·z

αi
read(c) (4)

where αi
read(c) indicates the c-th element of the read vector

αread generated for agent i and z is the number of cells in the
segment Mj . The attention for agent i on all other agents is thus
defined as atti = {atti(j), j = {0, ..., N − 1} \ i}.

Finally, we normalize the attentions using a softmax to make
the vector sum up to 1. Note that we discard self-attention, i.e., we
do not consider the attention of an agent on itself. Such attention
however will be zero by construction, since the controller can only
read in memory segments reserved to agents different from the one
it is predicting.

To provide a better intuition, we provide a simple example
involving three moving agents, which we identify as A0, A1 and
A2. Suppose that, at a certain timestep, agent A1 and agent A2
are about to collide. The model will generate a prediction such
that they are able to avoid each other. That to do so, SMEMO
changes the trajectory of A1 to avoid A2. To make this possible,
the controller will need to read A2’s state from memory and
therefore the reading phase for agent A1 will mostly attend the
memory segment reserved to A2. In this case, the attention value
for agent A1 on agent A2 must be higher compared to that on the
agent A0, which does not interact with A1.

We show in Sec. 5.6 that when social behaviors emerge in
predicted trajectories, it is possible to highlight the importance of
surrounding agents for each prediction of the model.

5 EXPERIMENTS

Assessing the actual capability of a model to address social
interactions is not straightforward. The main limitation lays in
limited or unlabeled samples of social behaviors in standard
datasets. With this in mind, we first showcase the ability of our
model to perform high level reasoning on interaction scenarios
with a synthetic trajectory forecasting dataset. We built this dataset
to contain social episodes between multiple agents which have
to follow specific interaction rules. This is an algorithmic task
with a well defined output depending on its initial conditions. We
show that common approaches do not perform well under these
conditions and fail to understand how the movement of an agent
influences the others. The synthetic dataset also underlines the
risks of relying on goal-based approaches, which have become a
popular choice in recent trajectory forecasting methods [32], [33],
[34], [35]. We then experiment on the Stanford Drone (SDD) and
UCY/ETH datasets to provide a comparison with the state of the
art on real data.

5.1 Datasets
Synthetic Social Agents As outlined in the seminal paper by
Helbing et al. [3], pedestrians obey implicit social rules following

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2024.3356755

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

behavioral patterns. These are not caused by deliberate actions
but are rather a reaction to social forces that make individuals
influence each other. These interactions in complex environments
are not easy to model and, even when performing well in terms
of prediction metrics, trajectory forecasting models might fail to
grasp the underlying rules that dominate crowds. In real datasets,
there are a lot of variables at play that contribute to the complexity
of the problem, making such rules less evident and harder to
model: the movement of an agent influences the trajectory of
the others and since each agent can arbitrarily alter its motion,
the problem is inherently multimodal, i.e. several predictions are
needed to approximate the future. All these elements concur to
make it extremely hard if not impossible to precisely assess and
annotate cause-effect relationships in motion patterns of agents
that conciliate their attempt to reach a destination with such
aforementioned rules.

To measure the capability of a model to perform correct
predictions for this kind of patterns, we synthetically generated
a dataset of interacting moving agents that obey a few simple
social rules. This dataset is intended to be an oversimplification
of real social behaviors, yet offers a challenging shift of attention
from individual motion to social forces. We completely remove
multimodality, making motion patterns depend solely on the social
context. We refer to it as the Synthetic Social Agents (SSA) dataset.

The dataset is divided into short episodes. Episodes portray
a set of agents moving in a scene. In each episode, agents start
moving from a random point lying on a fixed-radius circumference
towards the middle. The goal of each agent is to cross the circle,
passing through the center, without hitting the others. We define a
set of arbitrary rules, which we expect forecasting models to learn
in order to perform correct predictions. In our case, the only rules
that control the social forces of the samples in the dataset are the
following:

• When an agent is moving, it maintains a constant speed, drawn
at random at the beginning of the episode, throughout the whole
episode and moves forward until the episode is over.

• If the trajectories of two agents will intersect within a fixed
distance radius r, the slowest agent stops until the fastest one
has passed and the collision will no longer occur. We fix r =
1.2m in our experiments.

For each episode, a variable number of agents (from 3 to
10) and their velocity are drawn at random between 1m/s and
2m/s to simulate both slow and fast walks. Agent starting points
are quantized along the circumference to avoid agents to be too
close and the whole circle is rotated by a random degree to
increase sample variability. Samples have a temporal extent of
60 timesteps, 20 in the past and 40 in the future. We fix the radius
of the circumference to 6 meters, in order to simulate a plausible
interaction scenario. We defined a fixed train and test split by
collecting 9000 and 1000 episodes respectively.

The challenge behind SSA is given by the necessity of jointly
manipulating all observations in order to understand when an
agent causes another to react and stop. The purpose of this dataset
is not to leverage synthetic data to train trajectory predictors that
work in the real world as done by prior works [59], [60], but
rather to provide a tool for testing the ability to identify social
interactions. We argue that this capability has not yet been fully
achieved by state of the art trajectory forecasting methods. We will
publicly release the dataset to foster research on this subject and
ease comparisons with future works.

Trajectory
Past Future

Agents
0 1 2 3

GT SMEMO GRU

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
Timesteps (future)

0.00

0.01

0.02

0.03

0.04

0.05

Sp
ee

d

agent: 0

GT
SMEMO
GRU

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
Timesteps (future)

0.00

0.01

0.02

0.03

0.04

0.05

Sp
ee

d

agent: 2

GT
SMEMO
GRU

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
Timesteps (future)

0.00

0.01

0.02

0.03

0.04

0.05

Sp
ee

d

agent: 1

GT
SMEMO
GRU

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
Timesteps (future)

0.00

0.01

0.02

0.03

0.04

0.05

Sp
ee

d

agent: 3

GT
SMEMO
GRU

Fig. 8. Comparison of GT with SMEMO and GRU Encoder-Decoder
from an episode of SSA. Top: agents start from a random point on the
circle and approach the center with fixed velocities. Blue and purple
agents halt (dark dot in GT), waiting for the orange and green ones
to pass. Bottom: velocities of each agent during the episode. SMEMO
manages to slow down predictions when social interactions occur.

Stanford Drone Dataset The Stanford Drone Dataset [61]
(SDD) is a dataset of agents of various types (pedestrians, bicycles,
cars, skateboarders) who move around the university campus
acquired through a bird’s eye view drone at 2.5 Hz. The train-
test split used for the experiments is that of the Trajnet challenge
[62] (also commonly adopted by other state-of-the-art methods),
which focuses on the prediction of pedestrian trajectories. There
are about 14k scenarios with multiple agents moving in the scene
expressed in pixel coordinates.

ETH/UCY ETH [63] and UCY [64] are two datasets of real-
world pedestrian trajectories in top-view coordinates in meters.
The acquisition was carried out with a fixed camera on 5 different
scenarios captured at 2.5 Hz. ETH contains two scenarios (ETH,
HOTEL) while UCY contains three (UNIV, ZARA1, ZARA2). In
total we have 5 scenarios with 1536 unique pedestrians and with
non-trivial social interaction between agents like group actions,
collision avoidance and crossing trajectories. Following the con-
figuration used by state of the art methods, for the evaluation we
use the leave-one-out strategy where we train the model on all
trajectories of 4 scenarios and test it on the fifth scenario.

5.2 Training and Implementation

Following previous literature, for SDD and ETH/UCY we train
our model to observe 3.2 seconds of past trajectory and predict
4.8 seconds in the future for all agents in the scene (respectively
8 and 12 timesteps). In SSA instead we observe 20 timesteps
and predict the remaining 40, simulating a 2s past and 4s future
sampled at 10Hz. All three datasets are organized in episodes, i.e.
several agents are observed simultaneously sharing the same past
and future timespans.

The encoders E∆ and EΠ are Multi-Layer Perceptrons (MLP)
composed of two fully-connected layers with a ReLU activation
in the middle. The encoders have the purpose of lifting the 2-
dimensional signal to a higher dimension, projecting each point
to a 16-dimensional representation. The recurrent motion encoder
and memory controller are Gated Recurrent Units (GRU) with

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2024.3356755

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

a 100-dimensional state. The read heads and write head are
implemented as fully-connected layers. In particular, to perform
memory addressing, they both map the controller state γi

t into the
scalar addressing strength β plus memory key η. The write heads
instead have two additional fully-connected layers to generate the
add and erase vectors ait and eit. The three latent variables η, ait
and eit all share the same dimension with the memory entries,
which we chose to be Q=20. Overall, the memory size is fixed
at 128 × 20, i.e. a memory with states in R20 and |M| = 128
writable slots. Finally, the recurrent motion decoder is a GRU with
a 120-dimensional state, followed by a linear layer generating 2D
spatial offsets. The dimension of the GRU hidden state stems from
the concatenation of the encoded motion τ it and the social feature
σi
t,k, respectively of size of 100 and 20.

The entire model is trained end-to-end with the Adam opti-
mizer using a learning rate of 0.001 and a batch size of 32 for
ETH/UCY and 128 for SDD and SSA. We use a Mean Squared
Error loss for all agents in the scene. To ensure multiple diverse
future generation, we use an MSE based Variety Loss [6], i.e.
we optimize only the closest trajectory to the ground truth among
the K generated ones. In this way, each read head of the Social
Memory Module learns to focus on different locations in memory,
thus generating different future modalities.

To avoid overfitting, we perform data augmentation of the
training set by applying random rotations to all trajectories in the
scene, in the range [0, 2π]. At the beginning of each episode,
memory content is wiped out, both during training and during
testing, since we do not want information about an episode to
interfere with other samples.

5.3 Metrics

To evaluate predictions, we adopt the widely used Average Dis-
placement Error (ADE) and Final Displacement Error (FDE)
metrics. ADE is the average L2 error between all future timesteps,
while FDE is the L2 error at the last timestep. In the multimodal
configuration, i.e. when we generate multiple diverse predictions,
we consider the minimum ADE and FDE between all predictions
generated by the model and the ground truth. This is a standard
practice, often referred to as best-of-K.

To evaluate the model on SSA, along with ADE/FDE, we
observe in which order the agents cross the center of the circumfer-
ence. The rationale is that social interaction always happen before
an agent reaches the opposite quadrant of the circle, since they are
all heading towards the center. An incorrect modeling of social
interactions will therefore cause the agents not to stop/proceed in
the correct order. We used the Kendall’s τ Rank Correlation [65]
to compare the ordering of the agents according to the generated
predictions with the ground-truth sequence.

Furthermore, we also introduce a new metric to quantitatively
assess the capacity of attention-based methods to estimate cause-
effect relationships on SSA. The metric, which we call Cause-
Effect Accuracy (CEA), evaluates if the model is able to correctly
identify which agent causes reactions in the motion patterns of
the others. For every moment where an interaction is present (an
agent is stopped due to an incoming collision with a faster one),
we compare the agent responsible for such interaction with the
one estimated by the model and compute the accuracy dividing the
number of correct matches with the total number of interactions.

The CEA metric for a an episode can be computed as

CEA =
1

|A||T |
∑
i ̸=j,t

1
{
ytij = ŷtij

}
(5)

where the true label ytij is 1 in case agent i is conditioning
the motion of j and 0 otherwise at time t, while ŷtij is a binary
prediction of such causal relationship between the two agents.

5.4 Results
We first analyze the capability of SMEMO to address social inter-
actions using SSA. In this synthetic dataset, modeling information
such as speed and direction is trivial since agents either move
in a straight line or wait for their turn to start moving. The model
must learn to reason about reciprocal agent positions to understand
when they will interact. The distribution of trajectories in SSA
and in real datasets like SDD and ETH/UCY will inevitably be
different. Trajectories in SSA follow artificial rules that are not
meant to reflect real behaviors of pedestrians. On the contrary,
the purpose of SSA is to strip down to a bare minimum what
agents are allowed to do, removing the need for multimodality
and making motion patterns depend solely on social interactions.

We compare our model against three non-social baselines and
five state-of-the-art trajectory predictors. The non-social baselines
process each agent individually, without any knowledge about
the others. We use a linear regressor, a Multi-Layer-Perception
regressor (MLP) and an Encoder-Decoder model based on two
Gated Recurrent Units. Note that the Encoder-Decoder model
is analogous to the Egocentric Stream in SMEMO. We then re-
train Expert-Goals [35], PECNet [34], Trajectron++ [26], Social-
GAN [6], AgentFormer [25] and SR-LSTM [66] on SSA using the
official code available online. No future multimodality is tested
with SSA, since the output is deterministic and we only want to
assess the social reasoning capabilities of the model.

In Fig. 8 we show a qualitative analysis of an episode from
SSA. We compare the ground truth with predictions made by
SMEMO and the Encoder-Decoder GRU (i.e. SMEMO’s Ego-
centric Stream). Interestingly, SMEMO does not completely halt
trajectories but rather smoothly decreases and increases the ve-
locity of the agents. At the same time, it is able to effectively
identify interactions and make slower agents wait for the faster
ones to have passed. The non-social baseline instead is only able to
exploit biases in the data distribution to generate average solutions
based on the initial speed, e.g. constant velocity trajectories for
faster agents and trajectories that slow down when approaching
the center for the others.

What SMEMO is learning is a chain of cause-effect rela-
tionships that makes an agent stop depending on the position
of another. This becomes more evident in Fig. 9 where we
demonstrate how predictions are modified when looking at the
same episode with increasingly less agents. The three agents have
different speeds, so in the complete episode the fastest does not
stop while the other two have to wait. It can be seen that if we
remove the fastest agent, the second one keeps its speed until the
end while the slowest keeps waiting for its turn. With a single
agent instead, no waiting is predicted.

In Tab. 1 we show numerical results on SSA. We report mean
and standard deviation for all models, which have been trained
three times with different random seeds. As expected, the non-
social baselines fail to produce satisfactory predictions. Surpris-
ingly, instead, state-of-the-art methods such as PECNet [34] and
Trajectron++ [26] achieve similar performances in terms of FDE

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2024.3356755

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Trajectory
Past Future

Agents
0 1 2

3 agents 2 agents 1 agent

Fig. 9. Cause-effect modeled by SMEMO. The same episode from
SSA is evaluated by iteratively removing the fastest agent. Left : the
predictions for the blue and orange agents wait for the green one to
pass. Middle: the orange agent is free to proceed without halting. Right :
When a single agent is present, SMEMO correctly predicts a constant
velocity trajectory.

TABLE 1
Comparison with the state-of-the art on SSA in terms of ADE, FDE and

Kendall’s τ on SSA. SMEMO largely outperforms the competition.

Method ADE ↓ FDE ↓ Kendall ↑
Linear 0.552 ±0.004 0.855 ±0.006 0.665 ±0.004

MLP 0.527 ±0.004 0.832 ±0.003 0.638 ±0.010

GRU ENC-DEC 0.525 ±0.004 0.829 ±0.003 0.642 ±0.009

Expert-Goals [35] 0.571 ±0.005 0.896 ±0.007 0.495 ±0.006

PECNet [34] 0.286 ±0.012 0.828 ±0.009 0.705 ±0.003

Trajectron++ [26] 0.519 ±0.011 0.818 ±0.019 0.569 ±0.015

Social-GAN [6] 0.302 ±0.004 0.506 ±0.003 0.626 ±0.031

AgentFormer [25] 0.243 ±0.003 0.385 ±0.003 0.701 ±0.006

SR-LSTM [66] 0.217 ±0.004 0.409 ±0.003 0.777 ±0.012

SMEMO 0.169 ±0.006 0.244 ±0.012 0.827 ±0.008

and Expert-Goals [35], which achieves the best results one real
data as further discussed in this Section, performs even worse than
non-social baselines in all metrics. We believe that the issue with
methods such as [34] and [35] lies in the fact that they heavily rely
on estimating an endpoint spatial goal. This is indeed an important
aspect when modeling real-world trajectories, but in SSA it does
not offer any kind of advantage since the destination is always
a point along a straight line. What emerges from this analysis
is that, while these methods are extremely powerful predictors
(see Tab. 2 and Tab. 3 and discussion further on in this section),
they are not equipped with a sufficiently effective social reasoning
mechanism. Social-GAN [6], on the other hand, is capable of
obtaining a lower FDE, yet the Kendall τ is still on par with non-
social methods. AgentFormer [25] and SR-LSTM [66] perform
better than the other state-of-the-art methods in ADE and FDE
but the results are worse than our model. These two models,
similarly to ours, perform an inter-agent attention for every future
timestep. We believe that this enables a certain degree of social
reasoning while generating the predictions. However, SMEMO
achieves much lower ADE and FDE as well as a considerable
improvement in rank correlation, getting close to the upper bound
of 1.

Moving to real world data, we report the results obtained by
SMEMO on SDD and ETH/UCY in Tab. 2 and Tab. 3, along with
the best performing methods from the state of the art1. On both
datasets we show ADE and FDE for K=20 predictions. Since some
prior work also adopts K=5 on SDD, we evaluate our model also
with this reduced number of predictions.

On the SDD dataset, SMEMO obtains state-of-the-art results,

1. Results for [35] do not correspond with the original paper due to an error
pointed out by the authors here: https://github.com/JoeHEZHAO/expert traj

except for FDE at K = 20, where it reports competitive results
with the top three performing methods.

On the ETH/UCY dataset, instead, SMEMO is able to perform
better than most of the existing models and comparably with latest
approaches. In Tab. 3 we also show results obtained by methods
that rely on map information. We do not directly compare to them
since, as most methods, we do not rely on such input, yet it is
interesting to note that SMEMO is still able to obtain better or on
par results (Introvert [23]). Even if there is not a predominance of a
single state-of-the-art model for each split of the dataset, SMEMO
manages to achieve excellent results on the average of all splits
having the best result in the FDE.

On both datasets, the only real competitor appears to be
Expert-Goals [35], which achieves similar results to SMEMO. In
particular, while SMEMO is able to lower the FDE considerably
on SDD dataset and to equal it on ETH/UCY, Expert-Goals [35]
exhibits a better ADE, i.e. a better short term behavior. We argue
however that the most challenging aspects of trajectory prediction
appear when generating long term predictions, which are the most
likely to be influenced by social interactions.

In Fig. 10, we report some real qualitative examples from the
ETH/UCY and SDD dataset. As we can see from the different
combinations generated by the model, SMEMO is able to generate
multiple predictions that are consistent with both the agent’s past
trajectory and its social context.

5.5 Ablation Studies
Importance of Memory We perform ablations studies to assess
the importance of the external working memory by retraining
SMEMO with the following variations: i) Memory Reset - the
memory gets wiped out as soon as the present timestep is reached;
ii) Zero reading - the memory reading controller always reads
a vector of zeros; iii) Random reading - the memory reading
controller always reads a random vector; iv) State Pooling - the
Social Memory Module just outputs the state of the memory
controller, average-pooled among all agents. Tab. 4 and Tab. 5
we report the results in terms of ADE, FDE respectively for
the synthetic and real datasets. For SSA we also report Kendall
τ Rank Correlation. Interestingly, resetting the memory at the
present timestep does not affect too much the final results. All
the memory about the past is condensed into the latent state of the
recurrent encoder and controller. In particular on SSA, since no
social interaction takes place in the past, the model is still able to
re-write relevant information in memory and perform quite well.
Zero and random reading obtain almost identical results in Tab. 4
since the decoder learns to ignore the input generated by the Social
Memory Module, which does not carry any relevant information.
As expected, this performs on par with the GRU Encoder-Decoder
baseline from Tab. 1.

The reason of this behavior is also to be found in the fact
that on SSA we predict a single future. In fact, moving to the
real datasets, where we perform multimodal predictions, reading
random states allows us to generate diverse futures, thus lowering
the prediction error. It can be seen in Tab. 5 that for SDD the
gap between zero reading and random reading increases when
predicting more futures. In simple terms, the zero reading setting
makes all the predictions collapse into the same output since all
the memory read heads extract the same information. A similar
behavior can be observed for state pooling. When the memory
controller outputs an average-pooled state among agents, multi-
modality is lost. However, in this case we are relying on an internal

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2024.3356755

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://github.com/JoeHEZHAO/expert_traj

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

TABLE 2
Results on SDD. K is the number of predictions generated by the models. Errors are expressed in pixels. *Results for [26] are taken from [67].

K=5
Method ADE FDE

DESIRE [19] 19.25 34.05
Ridel et al. [68] 14.92 27.97
MANTRA [14] 13.51 27.34
PECNet [34] 12.79 25.98
PCCSNet [69] 12.54 -
TNT [32] 12.23 21.16
SMEMO 11.64 21.12

K=20
Method ADE FDE Method ADE FDE

Trajectron++ [26]* 19.30 32.70 MID [29] 9.73 15.32
SoPhie [8] 16.27 29.38 MANTRA [14] 8.96 17.76
EvolveGraph [67] 13.90 22.90 LB-EBM [70] 8.87 15.61
CF-VAE [71] 12.60 22.30 PCCSNet [69] 8.62 16.16
P2TIRL [72] 12.58 22.07 MemoNet [53] 8.56 12.66
Goal-GAN [33] 12.20 22.10 LeapFrog [28] 8.48 11.66
Expert-Goals [35] 10.49 13.21 Y-Net [36] 8.25 12.10
SimAug [73] 10.27 19.71 SMEMO 8.11 13.06
PECNet [34] 9.96 15.88

(a) Social Multimodal Prediction (d) GT + best prediction

Fig. 10. Social multimodal prediction generated by SMEMO in different real dataset. Past trajectory is depicted in blue, ground truth in green and
prediction in red. The first and second row show example from ETH/UCY datasets (respectively Univ and Zara scenario), while the third from SDD.
The first three columns represent different combination of multi-modal prediction generated by model (each combination is related with a specific
reading controller), while the last column shows the best prediction compared with ground-truth.

TABLE 3
Results on the ETH/UCY datasets. Each model generates K=20

multiple predictions Errors are expressed in meters. Best result for
each split in bold; second best is underlined. Methods marked with *

exploit map information while other only past trajectories.

Method ETH HOTEL UNIV ZARA1 ZARA2 AVERAGE
SoPhie* [8] 0.70/1.43 0.76/1.67 0.54/1.24 0.30/0.63 0.38/0.78 0.54/1.15
Next* [74] 0.73/1.65 0.30/0.59 0.60/1.27 0.38/0.81 0.31/0.68 0.46/1.00
S-BiGAT* [37] 0.69/1.29 0.49/1.01 0.55/1.32 0.30/0.62 0.36/0.75 0.48/1.00
GOAL-GAN* [33] 0.59/1.18 0.19/0.35 0.60/1.19 0.43/0.87 0.32/0.65 0.43/0.85
Introvert* [23] 0.42/0.70 0.11/0.17 0.20/0.32 0.16/0.27 0.16/0.25 0.21/0.34
Social-GAN [6] 0.81/1.52 0.72/1.61 0.60/1.26 0.34/0.69 0.42/0.84 0.58/1.18
CGNS [75] 0.62/1.40 0.70/0.93 0.48/1.22 0.32/0.59 0.35/0.71 0.49/0.97
SR-LSTM [66] 0.63/1.25 0.37/0.74 0.51/1.10 0.41/0.90 0.32/0.70 0.45/0.94
MATF [76] 1.01/1.75 0.43/0.80 0.44/0.91 0.26/0.45 0.26/0.57 0.48/0.90
STGAT [40] 0.65/1.12 0.35/0.66 0.52/1.10 0.34/0.69 0.29/0.60 0.43/0.83
SGCN [38] 0.63/1.03 0.32/0.55 0.37/0.70 0.29/0.53 0.25/0.45 0.37/0.65
MANTRA [14] 0.48/0.88 0.17/0.33 0.37/0.81 0.27/0.58 0.30/0.67 0.32/0.65
Transformer [18] 0.61/1.12 0.18/0.30 0.35/0.65 0.22/0.38 0.17/0.32 0.31/0.55
PECNet [34] 0.54/0.87 0.18/0.24 0.35/0.60 0.22/0.39 0.17/0.30 0.29/0.48
PCCSNet [69] 0.28/0.54 0.11/0.19 0.29/0.60 0.21/0.44 0.15/0.34 0.21/0.42
Trajectron++ [26] 0.39/0.83 0.12/0.19 0.22/0.43 0.17/0.32 0.12/0.25 0.20/0.40
Social-NCE [77] - /0.79 - /0.18 - /0.44 - /0.33 - /0.26 - /0.40
AgentFormer [25] 0.45/0.75 0.14/0.22 0.25/0.45 0.18/0.30 0.14/0.24 0.23/0.39
LB-EBM [70] 0.30/0.52 0.13/0.20 0.27/0.52 0.20/0.37 0.15/0.29 0.21/0.38
Expert-Goals [35] 0.37/0.65 0.11/0.15 0.20/0.44 0.15/0.31 0.12/0.25 0.19/0.36
SMEMO 0.39/0.59 0.14/0.20 0.23/0.41 0.19/0.32 0.15/0.26 0.22/0.35

memory model instead of an external one. On SSA this leads to
double ADE and FDE with Kendall τ dropping to similar values
to the non-social baselines. This demonstrates how the model can

TABLE 4
Ablation study on SSA. Memory reset : content wiped out at present.
Zero/Random reading: read heads always read zero/random vectors.
State pooling: no external memory; pooled controller states for each

agent are fed to the egocentric stream.

Ablation study ADE ↓ FDE ↓ Kendall ↑
SMEMO 0.169 0.244 0.827
Memory reset 0.180 0.270 0.790
State pooling 0.270 0.414 0.690
Zero reading 0.522 0.822 0.640
Random reading 0.522 0.822 0.650

benefit from relying on a working memory in which data can be
explicitly stored instead of blended in a unique latent vector.

Memory Update Eq. 3 states that memory content is updated
sequentially, generating the new memory Mt+1 depending on the
previous content Mt and new information to be added (At) or
deleted (Et). Theoretically, this mechanism is similar to that used
by a recurrent neural network such as an LSTM or GRU: the
write matrix At resembles the information passing through an
input gate, while the effect of the erase matrix Et is similar in
spirit to a forget gate. A recurrent neural network could indeed be
defined using similar equations. Therefore, we study the effects

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2024.3356755

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

TABLE 5
Ablation study on SDD and ETH/UCY. Memory reset : content wiped out at present. Zero/Random reading: read heads always read zero/random

vectors. State pooling: no external memory; pooled controller states for each agent are fed to the egocentric stream. We report both ADE and FDE.

Ablation study SDD (K=5) SDD(K=20) ETH HOTEL UNIV ZARA1 ZARA2 AVERAGE
SMEMO 11.64/21.12 8.11/13.06 0.39/0.59 0.14/0.20 0.23/0.41 0.19/0.32 0.15/0.26 0.22/0.35
Memory reset 12.29/22.51 8.43/13.43 0.46/0.72 0.16/0.28 0.25/0.45 0.20/0.35 0.17/0.29 0.24/0.42
Zero reading 19.19/35.66 19.30/35.87 0.93/1.91 0.27/0.52 0.51/1.11 0.42/0.95 0.32/0.76 0.49/1.05
Random reading 14.89/28.54 9.48/15.39 0.53/0.95 0.18/0.27 0.29/0.55 0.26/0.50 0.20/0.40 0.29/0.53
State pooling 17.77/35.39 17.93/35.75 0.93/1.90 0.28/0.54 0.51/1.11 0.43/0.95 0.32/0.71 0.49/1.04

TABLE 6
Results on the SDD and ETH/UCY datasets using a social-level GRU to update the memory content instead of SMEMO’s update policy (Eq. 3).

Memory Update SDD K=5 SDD K=20 ETH HOTEL UNIV ZARA1 ZARA2 AVERAGE
SMEMO 11.64/21.12 8.11/13.06 0.39/0.59 0.14/0.20 0.23/0.41 0.19/0.32 0.15/0.26 0.22/0.35
GRU 11.80/21.25 8.27/13.69 0.43/0.72 0.16/0.26 0.25/0.46 0.19/0.35 0.16/0.29 0.24/0.42

of using a GRU to update the social memory content. To do so,
we treat the content of the external memory as the internal state of
the GRU, unrolling its cells into a single mono-dimensional vector.
This vector will have size |M|∗Q where |M| is the number of cells
and Q is the dimension of the features stored in memory. At each
timestep, a vector of length |M|∗Q is fed to the GRU. We generate
it in the same way as the add and erase vectors. For simplicity we
generate a single update rather than two distinct add and erase
vectors, as the GRU requires a single input. After the update, the
internal state of the GRU is reshaped back to the original external
memory size |M| × Q, i.e., with |M| cells of dimension Q. We
leave the reading phase unaltered. We test the social-level GRU
to update the memory on the SDD and ETH/UCY datasets and
report the results in Tab. 6. Overall, the results are close to the ones
obtained with the original memory update formulation, although
worse results are obtained with the GRU. We impute this drop
to the lack of individual addressing of memory cells during the
update process.

Integration with Other Models In principle, the Social
Memory Module could be plugged in into any existing trajectory
prediction model. In particular, if a model has an encoder-decoder
structure to process single trajectories it could benefit from
SMEMO to analyze the social context since encoded trajectories
could directly feed SMEMO’s controllers. In the same way, the
social feature produced by SMEMO can be used to condition
future generation by feeding it to the decoder.

To demonstrate the effectiveness and integrability of our
approach, we augmented a model from the state of the art,
PECNet [34], with a Social Memory Module. PECNet originally
exploited a social pooling mechanism, which we replaced in favor
of SMEMO. We also updated PECNet’s decoder to make the
prediction generation autoregressive, which is necessary for the
Social Memory Module since data is continuously read and written
in memory at every timestep. We carried out the experiment on
the SDD dataset with K=20 futures, by retraining the augmented
model. We report results in Tab. 7. It can be seen that both for ADE
and FDE there is approximately a 4.5% improvement against the
original Social Pooling mechanism.

Including the Environmental Context The focus of this
work is on analyzing the social aspect of trajectory prediction,
therefore we disregarded the usage of the environmental context,
i.e. a map of the surrounding scene. However, this could be
easily plugged in into the model. We performed an experiment
adding a CNN processing the semantic top-view map of the scene

TABLE 7
Results on the SDD dataset for K=20 futures obtained by the PECNet

model [34] using a Social Memory Module (SMEMO) instead of its
original Social Pooling Mechanism (SP). We also report a baseline

without social information to understand the effect of the two modules.

K=20 PECNet w/o Social PECNet + SP PECNet + SMEMO
FDE 16.72 15.88 15.15
ADE 10.56 9.96 9.38

TABLE 8
Comparison of SMEMO with and without context (top-view semantic

map of the surronding scene).

SMEMO (ADE/FDE ↓) SDD (K=5) SDD (K=20)
w/o context 11.64/21.12 8.11/13.06
with context 11.41/20.66 8.24/13.03

in which the agents move. The map encodes information about
roads, sidewalks, vegetation and buildings. For each agent, in
the timestep corresponding to the present, we take a crop of
200x200px of the context centered on its position. The CNN is
composed of three convolutional layers. Each layer has a ReLU
activation and a max-pooling. All layers have a 3x3 kernel and
padding 1. The first two convolutional layers have stride 1 and the
third one stride 2. In the end, a linear function generates a feature
vector that represents the content of the map.

The obtained feature is concatenated to the feature generated
by the agent’s movement and by the one read from the memory,
for each timestep. All three are thus fed to the decoder which
makes predictions conditioned by the surrounding map as well
as the social context. We performed the experiments on the SDD
dataset for K=5 and K=20, obtaining a slight improvement in the
results, especially for K=5. Results are reported in Tab. 8.

Execution Time Analysis We have measured the compu-
tational time during the inference of SMEMO. The number of
predicted futures has an impact so we carried out the analysis for
K=5 and K=20 using an Nvidia GeForce RTX2080. As can be
seen in Tab. 9, on average the most computationally expensive
phases are memory reading and writing (42.8% and 34.41% in
case of K=20). Whereas writing does not depend on the number
of futures, execution time for reading depends on the number of
heads used for multimodal predictions. In addition, we report the
size of the SMEMO model in Megabytes. The Social Memory
Module does not significantly impact the overall size of the model
(22% for K=20, 9% for K=5). Furthermore, the external memory

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2024.3356755

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

TABLE 9
Execution time and space occupancy of SMEMO and its components.

K=5 K=20
Time (ms)

Encoding 12 (12.7%) 22 (14.2%)
Reading 28 (29.7%) 66 (42.8%)
Writing 51 (54.2%) 53 (34.4%)
Decoding 7 (7.4%) 13 (8.4%)
Total 94 (100%) 154 (100%)

Size (Mb - %)
Encoder-Decoder 0.629 (89.4%) 0.629 (76.3%)
Social Memory Module 0.064 (9.1%) 0.185 (22.4%)
External Memory 0.010 (1.4%) 0.010 (1.2%)
Total 0.703 (100%) 0.824 - 100%)

5 10 15 20 25 30 35 45 50 5535 41
0.0

0.2

0.4

0.6

0.8

1.0
agent: 0

5 10 15 20 25 30 35 45 50 5535 41
0.0

0.2

0.4

0.6

0.8

1.0
agent: 1

5 10 15 20 25 30 35 45 50 5535 41
0.0

0.2

0.4

0.6

0.8

1.0
agent: 2

Fig. 11. Explainability analysis of an example from SSA. Left : agent
trajectories at t=35 and t=41. Past and future are shown with a dashed
and thick line respectively. The thin line represents the complete trajec-
tory up to the final prediction horizon (t=60). Right : SMEMO’s reading
attention for each agent on the others for each timestep.

occupies only 0.01Mb, i.e. the 1.2% of the entire model, when
using a memory size |M| = 128.

5.6 Explainability Results

To demonstrate SMEMO’s capabilities to provide explainable
predictions, as described in Sec. 4, we report two examples, a SSA
scenario (Fig. 11) and a real-world scenario taken from ETH/UCY
(Fig. 12). In both examples three agents are present and their
trajectories are displayed focusing on two different timesteps that
exhibit interesting social interactions.

Along with the predicted trajectories, we show SMEMO’s
reading attentions during the whole episode. For each agent i we
plot atti(j) for each j ̸= i, highlighting how inter-agent attentions
change through time. Since attention values are normalized with a
softmax, all attentions sum up to 1 at each timestep. As a conse-
quence, when no relevant social interaction is present, attentions
for agent i over the others will have similar values that oscillate
around atti(j) = 1/(N − 1), i.e. one divided by the number of
agents in the scene excluded i. In Fig. 11 and Fig. 12, to predict the
future for each agent, SMEMO can focus only on the remaining
two agents, since a total of three agents is present in the social

4 8 12 1610 12
0.0

0.2

0.4

0.6

0.8

1.0
agent: 0

4 8 12 1610 12
0.0

0.2

0.4

0.6

0.8

1.0
agent: 1

4 8 12 1610 12
0.0

0.2

0.4

0.6

0.8

1.0
agent: 2

Fig. 12. Explainability analysis of an example from ETH/UCY. Left :
agent trajectories at t=10 and t=12. Past and future are shown with a
dashed and thick line respectively. The thin line represents the complete
trajectory up to the final prediction horizon (t=20). Right : SMEMO’s
reading attention for each agent on the others for each timestep.

context. Therefore, an attention of 0.5 on both agents indicates no
relevant interaction. In such examples, when the attention for an
agent over another increases above 0.5, SMEMO has considered
such agent relevant for determining the current trajectory and has
taken it into account to generate the prediction.

In the example from the SSA dataset (Fig. 11), modeling
social interactions is necessary to perform adequate predictions.
The agents have to pass through the center of the circle with a
precise order, depending on their speed and following the rule
described in Sec. 5.1: first agent 2, then agent 0 and at last agent
1. When agents get close to each other, i.e. when they need to
obey social interaction rules, we can observe spikes in SMEMO’s
reading attentions. At timestep 35, agent 0 and 1 both have a very
high attention value on agent 2 in order to predict a halt in their
prediction. Instead, agent 2 has equal attention on both agents
since no counter action is required for the fastest agent, that can
proceed along its trajectory, unaffected by the others. As soon as
agent 2 has crossed the center, SMEMO resumes agent 0 while
agent 1 still waits. This can be seen at instant 41, when agent 1
has a very high level of attention on agent 0, since it must wait
for it to pass before advancing. A similar analysis can be carried
out for the ETH/UCY example (Fig. 12). Agents 0 and 1 are in
a state of possible collision due to their speed and direction. By
observing the attention values at timestep 10 and 12, it can be
seen that SMEMO focuses on the second to predict the first and
vice-versa, ignoring the behavior of agent 2 which is not relevant
in such interaction. On the other hand, when predicting agent 2’s
future, there is no relevant peak of attention meaning that its future
can be determined without any social information.

Trying to provide a quantitative analysis is challenging. To
the best of our knowledge no existing metric to quantitatively
evaluate the accuracy of cause-effect relationships in trajectory
prediction has been introduced in literature. This stems from the
intrinsic difficulty of precisely annotating a dataset with cause-
effects, since subjective agent intentions and reactions to the envi-
ronment should be taken into account. As an attempt to quantify
this phenomena, we leverage the synthetic dataset SSA and the

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2024.3356755

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

TABLE 10
Comparison on SSA between methods that use inter-agent attention in
every future timesteps: SMEMO, SR-LSTM and AgentFormer. For each

method we compare the Cause-Effect Accuracy (CEA).

Method ADE ↓ FDE ↓ Kendall ↑ CEA ↑
AgentFormer [25] 0.243 0.385 0.701 0.39
SR-LSTM [66] 0.217 0.409 0.777 0.48
SMEMO 0.169 0.244 0.827 0.71

Cause-Effect Accuracy (CEA) defined in Sec. 5.3. Since motion
patterns are synthetically generated, we can explicitly identify
cause-effect relationships in social behaviors. For each timestep
where an interaction occurs, i.e. when an agent i is stopped
due to another one, we establish the cause of the interaction by
taking the agent j with the highest attention value in memory:
j∗ = argmaxj atti(j).

Since procedure can in principle be applied to any method
that computes an inter-agent attention for each timestep. Thus,
we compare the capacity of SMEMO to establish cause-effect
relationships against SR-LSTM [66], which exploits the attention
of a GNN, and AgentFormer [25], which uses the self-attention of
a transformer. We report the results in Tab. 10. SMEMO manages
to achieve a much higher CEA than the other methods (71%
against 48% and 39%). Interestingly, the three methods are the
only ones in Tab. 1 performing inter-agent attention for each future
timestep and are the top three competitors in terms of ADE, FDE
and Kendall. This suggests that modeling relative importance in
future timesteps can provide better predictions. It has to be noted
that other methods such as PECNet [34], Trajectron++ [26] and
Expert-Goals [35] perform an inter-agent attention limited to the
past or present timesteps and therefore cannot be used for correctly
evaluating CEA.

6 CONCLUSIONS

We present SMEMO, a neural network augmented with a SOcial
MEmory MOdule, dealing with the challenging task of multi-
modal trajectory modeling in social contexts. The algorithmic
nature of our approach is able to learn the set of social rules yield-
ing behaviors of pedestrian during their interaction. We created
a synthetic dataset to highlight the complex nature of social rule
modeling. Finally, we report state-of-the art results for SMEMO
on on ETH/UCY and SDD datasets. As a byproduct, we show that
SMEMO can provide explainable predictions by design, simply
looking at attention weights of its memory reading controllers.

ACKNOWLEDGEMENTS
This work was supported by the European Commission under European Horizon 2020
Programme, grant number 951911 - AI4Media.

REFERENCES

[1] P. Kothari, S. Kreiss, and A. Alahi, “Human trajectory forecasting in
crowds: A deep learning perspective,” arXiv preprint arXiv:2007.03639,
2020.

[2] A. Miyake and P. Shah, Models of working memory: Mechanisms of
active maintenance and executive control. Cambridge University Press,
1999.

[3] D. Helbing and P. Molnar, “Social force model for pedestrian dynamics,”
Physical review E, vol. 51, no. 5, p. 4282, 1995.

[4] S. Pellegrini, A. Ess, K. Schindler, and L. Van Gool, “You’ll never walk
alone: Modeling social behavior for multi-target tracking,” in 2009 IEEE
12th International Conference on Computer Vision. IEEE, 2009, pp.
261–268.

[5] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, “Social lstm: Human trajectory prediction in crowded
spaces,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 961–971.

[6] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “Social gan:
Socially acceptable trajectories with generative adversarial networks,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 2255–2264.

[7] B. Ivanovic and M. Pavone, “The trajectron: Probabilistic multi-agent
trajectory modeling with dynamic spatiotemporal graphs,” in Proceed-
ings of the IEEE International Conference on Computer Vision, 2019,
pp. 2375–2384.

[8] A. Sadeghian, V. Kosaraju, A. Sadeghian, N. Hirose, H. Rezatofighi, and
S. Savarese, “Sophie: An attentive gan for predicting paths compliant to
social and physical constraints,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2019, pp. 1349–1358.

[9] A. Mohamed, K. Qian, M. Elhoseiny, and C. Claudel, “Social-stgcnn:
A social spatio-temporal graph convolutional neural network for human
trajectory prediction,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020, pp. 14 424–14 432.

[10] A. Graves, G. Wayne, and I. Danihelka, “Neural turing machines,” arXiv
preprint arXiv:1410.5401, 2014.

[11] J. Weston, S. Chopra, and A. Bordes, “Memory networks,” arXiv preprint
arXiv:1410.3916, 2014.

[12] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka, A. Grabska-
Barwińska, S. G. Colmenarejo, E. Grefenstette, T. Ramalho, J. Agapiou
et al., “Hybrid computing using a neural network with dynamic external
memory,” Nature, vol. 538, no. 7626, pp. 471–476, 2016.

[13] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap,
“Meta-learning with memory-augmented neural networks,” in Interna-
tional conference on machine learning, 2016, pp. 1842–1850.

[14] F. Marchetti, F. Becattini, L. Seidenari, and A. Del Bimbo, “MANTRA:
Memory augmented networks for multiple trajectory prediction,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2020.

[15] F. Marchetti, F. Becattini, L. Seidenari, and A. D. Bimbo, “Multiple tra-
jectory prediction of moving agents with memory augmented networks,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45,
no. 6, pp. 6688–6702, 2023.

[16] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and
W. Samek, “On pixel-wise explanations for non-linear classifier decisions
by layer-wise relevance propagation,” PloS one, vol. 10, no. 7, p.
e0130140, 2015.

[17] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-cam: Visual explanations from deep networks via
gradient-based localization,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 618–626.

[18] F. Giuliari, I. Hasan, M. Cristani, and F. Galasso, “Transformer networks
for trajectory forecasting,” arXiv preprint arXiv:2003.08111, 2020.

[19] N. Lee, W. Choi, P. Vernaza, C. B. Choy, P. H. Torr, and M. Chandraker,
“Desire: Distant future prediction in dynamic scenes with interacting
agents,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017, pp. 336–345.

[20] S. Srikanth, J. A. Ansari, S. Sharma et al., “Infer: Intermediate represen-
tations for future prediction,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2019), 2019.

[21] M.-F. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett,
D. Wang, P. Carr, S. Lucey, D. Ramanan et al., “Argoverse: 3d tracking
and forecasting with rich maps,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2019, pp. 8748–8757.

[22] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krish-
nan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A multimodal dataset
for autonomous driving,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2020, pp. 11 621–11 631.

[23] N. Shafiee, T. Padir, and E. Elhamifar, “Introvert: Human trajectory
prediction via conditional 3d attention,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp.
16 815–16 825.

[24] Y. Ma, X. Zhu, S. Zhang, R. Yang, W. Wang, and D. Manocha,
“Trafficpredict: Trajectory prediction for heterogeneous traffic-agents,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
2019, pp. 6120–6127.

[25] Y. Yuan, X. Weng, Y. Ou, and K. Kitani, “Agentformer: Agent-aware
transformers for socio-temporal multi-agent forecasting,” arXiv preprint
arXiv:2103.14023, 2021.

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2024.3356755

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

[26] T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone, “Trajectron++:
Multi-agent generative trajectory forecasting with heterogeneous data for
control,” arXiv preprint arXiv:2001.03093, 2020.

[27] C. Tang and R. R. Salakhutdinov, “Multiple futures prediction,” in
Advances in Neural Information Processing Systems, 2019, pp. 15 398–
15 408.

[28] W. Mao, C. Xu, Q. Zhu, S. Chen, and Y. Wang, “Leapfrog diffu-
sion model for stochastic trajectory prediction,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2023, pp. 5517–5526.

[29] T. Gu, G. Chen, J. Li, C. Lin, Y. Rao, J. Zhou, and J. Lu, “Stochastic tra-
jectory prediction via motion indeterminacy diffusion,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 17 113–17 122.

[30] N. Deo and M. M. Trivedi, “Multi-modal trajectory prediction of sur-
rounding vehicles with maneuver based lstms,” in 2018 IEEE Intelligent
Vehicles Symposium (IV). IEEE, 2018, pp. 1179–1184.

[31] M. Lisotto, P. Coscia, and L. Ballan, “Social and scene-aware trajectory
prediction in crowded spaces,” in Proceedings of the IEEE International
Conference on Computer Vision Workshops, 2019, pp. 0–0.

[32] H. Zhao, J. Gao, T. Lan, C. Sun, B. Sapp, B. Varadarajan, Y. Shen,
Y. Chai, C. Schmid, C. Li, and D. Anguelov, “Tnt: Target-driven
trajectory prediction,” ArXiv, vol. abs/2008.08294, 2020.

[33] P. Dendorfer, A. Osep, and L. Leal-Taixe, “Goal-gan: Multimodal trajec-
tory prediction based on goal position estimation,” in Proceedings of the
Asian Conference on Computer Vision (ACCV), November 2020.

[34] K. Mangalam, H. Girase, S. Agarwal, K.-H. Lee, E. Adeli, J. Malik, and
A. Gaidon, “It is not the journey but the destination: Endpoint condi-
tioned trajectory prediction,” arXiv preprint arXiv:2004.02025, 2020.

[35] Z. He and R. P. Wildes, “Where are you heading? dynamic trajectory pre-
diction with expert goal examples,” in Proceedings of the International
Conference on Computer Vision (ICCV), Oct. 2021.

[36] K. Mangalam, Y. An, H. Girase, and J. Malik, “From goals, waypoints
& paths to long term human trajectory forecasting,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2021, pp.
15 233–15 242.

[37] V. Kosaraju, A. Sadeghian, R. Martin-Martin, I. Reid, H. Rezatofighi,
and S. Savarese, “Social-bigat: Multimodal trajectory forecasting using
bicycle-gan and graph attention networks,” in Advances in Neural Infor-
mation Processing Systems, vol. 32. Curran Associates, Inc., 2019.

[38] L. Shi, L. Wang, C. Long, S. Zhou, M. Zhou, Z. Niu, and G. Hua, “Sgcn:
Sparse graph convolution network for pedestrian trajectory prediction,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021, pp. 8994–9003.

[39] P. Kothari, B. Sifringer, and A. Alahi, “Interpretable social anchors for
human trajectory forecasting in crowds,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp.
15 556–15 566.

[40] Y. Huang, H. Bi, Z. Li, T. Mao, and Z. Wang, “Stgat: Modeling
spatial-temporal interactions for human trajectory prediction,” in 2019
IEEE/CVF International Conference on Computer Vision (ICCV), 2019,
pp. 6271–6280.

[41] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[42] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[43] S. Sukhbaatar, J. Weston, R. Fergus et al., “End-to-end memory net-
works,” in Advances in neural information processing systems, 2015, pp.
2440–2448.

[44] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “icarl:
Incremental classifier and representation learning,” in Proceedings of the
IEEE conference on Computer Vision and Pattern Recognition, 2017, pp.
2001–2010.

[45] T. Yang and A. B. Chan, “Learning dynamic memory networks for object
tracking,” in Proceedings of the European Conference on Computer
Vision (ECCV), 2018, pp. 152–167.

[46] Z. Lai, E. Lu, and W. Xie, “Mast: A memory-augmented self-supervised
tracker,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 6479–6488.

[47] A. Kumar, O. Irsoy, P. Ondruska, M. Iyyer, J. Bradbury, I. Gulrajani,
V. Zhong, R. Paulus, and R. Socher, “Ask me anything: Dynamic memory
networks for natural language processing,” in International conference on
machine learning, 2016, pp. 1378–1387.

[48] C. Ma, C. Shen, A. Dick, Q. Wu, P. Wang, A. van den Hengel, and
I. Reid, “Visual question answering with memory-augmented networks,”

in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 6975–6984.

[49] F. Pernici, M. Bruni, and A. Del Bimbo, “Self-supervised on-line
cumulative learning from video streams,” Computer Vision and Image
Understanding, p. 102983, 2020.

[50] T. Han, W. Xie, and A. Zisserman, “Memory-augmented dense
predictive coding for video representation learning,” arXiv preprint
arXiv:2008.01065, 2020.

[51] L. D. Divitiis, F. Becattini, C. Baecchi, and A. D. Bimbo, “Garment
recommendation with memory augmented neural networks,” in Pattern
Recognition. ICPR International Workshops and Challenges - Virtual
Event, January 10-15, 2021, Proceedings, Part II, ser. Lecture Notes in
Computer Science, vol. 12662. Springer, 2020, pp. 282–295. [Online].
Available: https://doi.org/10.1007/978-3-030-68790-8 23

[52] F. Marchetti, F. Becattini, L. Seidenari, and A. Del Bimbo, “Explainable
sparse attention for memory-based trajectory predictors,” in European
Conference on Computer Vision. Springer, 2022, pp. 543–560.

[53] C. Xu, W. Mao, W. Zhang, and S. Chen, “Remember intentions:
Retrospective-memory-based trajectory prediction,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 6488–6497.

[54] B. Yang, F. Fan, R. Ni, J. Li, L. Kiong, and X. Liu, “Continual
learning-based trajectory prediction with memory augmented networks,”
Knowledge-Based Systems, vol. 258, p. 110022, 2022.

[55] T. Fernando, S. Denman, A. McFadyen, S. Sridharan, and C. Fookes,
“Tree memory networks for modelling long-term temporal dependen-
cies,” Neurocomputing, vol. 304, pp. 64–81, 2018.

[56] C. Yu, X. Ma, J. Ren, H. Zhao, and S. Yi, “Spatio-temporal graph
transformer networks for pedestrian trajectory prediction,” in European
Conference on Computer Vision. Springer, 2020, pp. 507–523.

[57] L. Li, M. Pagnucco, and Y. Song, “Graph-based spatial transformer
with memory replay for multi-future pedestrian trajectory prediction,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 2231–2241.

[58] N. Deo and M. M. Trivedi, “Convolutional social pooling for vehicle tra-
jectory prediction,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, 2018, pp. 1468–1476.

[59] L. Berlincioni, F. Becattini, L. Seidenari, and A. Del Bimbo, “Multiple
future prediction leveraging synthetic trajectories,” 2020.

[60] T. Buhet, E. Wirbel, and X. Perrotton, “Conditional vehicle trajectories
prediction in carla urban environment,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision Workshops, 2019, pp. 0–0.

[61] A. Robicquet, A. Sadeghian, A. Alahi, and S. Savarese, “Learning
social etiquette: Human trajectory understanding in crowded scenes,”
in Computer Vision – ECCV 2016, B. Leibe, J. Matas, N. Sebe, and
M. Welling, Eds. Cham: Springer International Publishing, 2016, pp.
549–565.

[62] A. Sadeghian, V. Kosaraju, A. Gupta, S. Savarese, and A. Alahi, “Trajnet:
Towards a benchmark for human trajectory prediction,” arXiv preprint,
2018.

[63] S. Pellegrini, A. Ess, and L. Van Gool, “Improving data association by
joint modeling of pedestrian trajectories and groupings,” in Computer
Vision – ECCV 2010, K. Daniilidis, P. Maragos, and N. Paragios, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 452–465.

[64] A. Lerner, Y. Chrysanthou, and D. Lischinski, “Crowds by example,”
Comput. Graph. Forum, vol. 26, pp. 655–664, 09 2007.

[65] M. G. Kendall, “Rank correlation methods.” 1948.
[66] P. Zhang, W. Ouyang, P. Zhang, J. Xue, and N. Zheng, “Sr-lstm:

State refinement for lstm towards pedestrian trajectory prediction,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 12 085–12 094.

[67] J. Li, F. Yang, M. Tomizuka, and C. Choi, “Evolvegraph: Multi-agent
trajectory prediction with dynamic relational reasoning,” Proceedings of
the Neural Information Processing Systems (NeurIPS), 2020.

[68] D. Ridel, N. Deo, D. Wolf, and M. Trivedi, “Scene compliant trajectory
forecast with agent-centric spatio-temporal grids,” IEEE Robotics and
Automation Letters, vol. 5, no. 2, pp. 2816–2823, 2020.

[69] J. Sun, Y. Li, H.-S. Fang, and C. Lu, “Three steps to multimodal
trajectory prediction: Modality clustering, classification and synthesis,”
arXiv preprint arXiv:2103.07854, 2021.

[70] B. Pang, T. Zhao, X. Xie, and Y. N. Wu, “Trajectory prediction with latent
belief energy-based model,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2021, pp. 11 814–11 824.

[71] A. Bhattacharyya, M. Hanselmann, M. Fritz, B. Schiele, and C.-N.
Straehle, “Conditional flow variational autoencoders for structured se-
quence prediction,” 2020.

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2024.3356755

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1007/978-3-030-68790-8_23

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

[72] N. Deo and M. M. Trivedi, “Trajectory forecasts in unknown
environments conditioned on grid-based plans,” arXiv preprint
arXiv:2001.00735, 2020.

[73] J. Liang, L. Jiang, and A. Hauptmann, “Simaug: Learning robust
representations from simulation for trajectory prediction,” in European
Conference on Computer Vision. Springer, 2020, pp. 275–292.

[74] J. Liang, L. Jiang, J. C. Niebles, A. G. Hauptmann, and L. Fei-Fei,
“Peeking into the future: Predicting future person activities and locations
in videos,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 5725–5734.

[75] J. Li, H. Ma, and M. Tomizuka, “Conditional generative neural system
for probabilistic trajectory prediction,” 11 2019, pp. 6150–6156.

[76] T. Zhao, Y. Xu, M. Monfort, W. Choi, C. Baker, Y. Zhao, Y. Wang,
and Y. N. Wu, “Multi-agent tensor fusion for contextual trajectory
prediction,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 12 126–12 134.

[77] Y. Liu, Q. Yan, and A. Alahi, “Social nce: Contrastive learning of
socially-aware motion representations,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 15 118–15 129.

Francesco Marchetti received a master degree
cum laude in 2019 in computer engineering from
the University of Florence with the thesis “Tra-
jectories Prediction for Autonomous Driving with
Memory Networks” in collaboration with the re-
search institute IMRA Europe. Currently he is a
PhD student at Media Integration and Commu-
nication Center (MICC) and the research work
focuses on trajectories forecasting in the auto-
motive field.

Federico Becattini obtained his PhD in 2018
from the University of Florence under the su-
pervision of Prof. Alberto Del Bimbo and Prof.
Lorenzo Seidenari. Currently he is a Tenure
Track Assistant Professor at the University of
Siena. His research interest are Autonomous
Driving and Scene Understanding. He served to
the scientific community as a reviewer for scien-
tific journals and conferences and has organized
workshops and tutorials at international venues.

Lorenzo Seidenari is an Assistant Professor at
the Department of Information Engineering of
the University of Florence. He received his Ph.D.
degree in computer engineering in 2012 from the
University of Florence. His research focuses on
deep learning for object and action recognition
in video and images. He is an ELLIS scholar. He
is author of 16 journal papers and more than 40
peer-reviewed conference papers. He has an h-
index of 25 with more than 2200 citations.

Alberto Del Bimbo is a Full Professor of Com-
puter Engineering. His scientific interests are
multimedia information retrieval, pattern recog-
nition, image and video analysis, and hu-
man–computer interaction. From 1996 to 2000,
he was the President of the IAPR Italian Chapter
and the Member-at-Large of the IEEE Publica-
tion Board from 1998 to 2000. He was the Gen-
eral Co-Chair of ACMMM2010 and ECCV2012.
He was nominated as ACM Distinguished Scien-
tist in 2016. He received the SIGMM Technical

Achievement Award for Outstanding Technical Contributions to Multi-
media Computing, Communications and Applications. He is an IAPR
Fellow, and an Associate Editor of several international journals.

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2024.3356755

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Related Work
	Method
	Problem Formulation
	Architecture Overview
	Social Memory Module
	Addressing
	Reading
	Writing

	Explainability
	Experiments
	Datasets
	Training and Implementation
	Metrics
	Results
	Ablation Studies
	Explainability Results

	Conclusions
	References
	Biographies
	Francesco Marchetti
	Federico Becattini
	Lorenzo Seidenari
	Alberto Del Bimbo

