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A B S T R A C T

Graph Neural Networks (GNNs) have emerged as a powerful tool for data-driven learning on various graph
domains. They are usually based on a message-passing mechanism and have gained increasing popularity for
their intuitive formulation, which is closely linked to the Weisfeiler–Lehman (WL) test for graph isomorphism
to which they have been proven equivalent in terms of expressive power. In this work, we establish new
generalization properties and fundamental limits of GNNs in the context of learning so-called identity effects,
i.e., the task of determining whether an object is composed of two identical components or not. Our study
is motivated by the need to understand the capabilities of GNNs when performing simple cognitive tasks,
with potential applications in computational linguistics and chemistry. We analyze two case studies: (i) two-
letters words, for which we show that GNNs trained via stochastic gradient descent are unable to generalize
to unseen letters when utilizing orthogonal encodings like one-hot representations; (ii) dicyclic graphs, i.e.,
graphs composed of two cycles, for which we present positive existence results leveraging the connection
between GNNs and the WL test. Our theoretical analysis is supported by an extensive numerical study.
1. Introduction

Graph Neural Networks (GNNs) (Scarselli, Gori, Tsoi, Hagenbuch-
ner, & Monfardini, 2009) have emerged as prominent models for han-
dling structured data, quickly becoming dominant in data-driven learn-
ing over several scenarios such as network analysis (Fan et al., 2020),
molecule prediction (Wieder et al., 2020) and generation (Bongini,
Bianchini, & Scarselli, 2021), text classification (Malekzadeh et al.,
2021), and traffic forecasting (Jiang & Luo, 2022). From the appear-
ance of the earliest GNN model (Scarselli et al., 2009), many variants
have been developed to improve their prediction accuracy and gen-
eralization power. Notable examples include GraphSage (Hamilton,
Ying, & Leskovec, 2017), Graph Attention Networks (Veličković, Cu-
curull, Casanova, Romero, Lio, & Bengio, 2017), Graph Convolutional
Networks (GCN) (Kipf & Welling, 2016), Graph Isomorphism Net-
works (Xu, Hu, Leskovec, & Jegelka, 2018), and Graph Neural Diffusion
(GRAND) (Chamberlain et al., 2021). Furthermore, as the original
model was designed specifically for labeled undirected graphs (Scarselli
et al., 2009), more complex neural architectures have been designed to
handle different types of graph structures, such as directed graphs (Shi,
Zhang, Cheng, & Lu, 2019), temporal graphs (Longa et al., 2023), and
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hypergraphs (Zhang, Zou, & Ma, 2019). For a comprehensive review
see, e.g., Hamilton (2020). Over the last decade, there has been growing
attention in the theoretical analysis of GNNs. While approximation
properties have been examined in different flavors (Azizian & Lelarge,
2020; D’Inverno, Bianchini, Sampoli, & Scarselli, 2024; Keriven &
Peyré, 2019; Scarselli et al., 2009), most of the theoretical works in
the literature have focused on the expressive power of GNNs. From
this perspective, the pioneering work of Morris et al. (2019) and Xu
et al. (2018) laid the foundation for the standard analysis of GNN
expressivity, linking the message-passing iterative algorithm (common
to most GNN architectures) to the first order Weisfeiler Lehman (1–WL)
test (Leman & Weisfeiler, 1968), a popular coloring algorithm used
to determine if two graphs are (possibly) isomorphic or not. Since
then, the expressive power of GNNs has been evaluated with respect
to the 1–WL test or its higher-order variants (called 𝑘--WL test) (Morris
et al., 2019), as well as other variants suited to detect particular
substructures (Bodnar, Frasca, Otter et al., 2021; Bodnar, Frasca, Wang
et al., 2021). The assessment of the generalization capabilities of neural
networks has always been crucial for the development of efficient learn-
ing algorithms. Several complexity measures have been proposed over
https://doi.org/10.1016/j.neunet.2024.106793
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the past few decades to establish reliable generalization bounds, such
as the Vapnik–Chervonenkis (VC) dimension (Vapnik, Levin, & Le Cun,
1994), Rademacher complexity (Bartlett & Mendelson, 2002; Golowich,
Rakhlin, & Shamir, 2018), and Betti numbers (Bianchini & Scarselli,
2014). The generalization properties of GNNs have been investigated
using these measures. In Scarselli, Tsoi, and Hagenbuchner (2018) the
VC dimension of the original GNN model was established, and later
extended to message passing-based GNNs by Morris, Geerts, Tönshoff,
and Grohe (2023) for piecewise polynomial activation functions. Other
generalization bounds for GNNs were derived using the Rademacher
omplexity (Garg, Jegelka, & Jaakkola, 2020), through a Probably Ap-
roximately Correct (PAC) Bayesian approach (Liao, Urtasun, & Zemel,

2020) or using random sampling on the graph nodes (Maskey, Levie,
Lee, & Kutyniok, 2022).

An alternative approach for assessing the generalization capabilities
of neural networks is based on investigating their ability to learn
specific cognitive tasks (Marcus, 2003; Marcus, Vijayan, Bandi Rao,
 Vishton, 1999; Suárez, Richards, Lajoie, & Misic, 2021), which

have long been of primary interest as neural networks were originally
designed to emulate functional brain activities. Among the various
ognitive tasks, the linguistics community has shown particular interest
n investigating so-called identity effects, i.e., the task of determining
hether objects are formed by two identical components or not (Benua,

1995; Gallagher, 2013). To provide a simple and illustrative exam-
le, we can consider an experiment in which the words 𝖠𝖠,𝖡𝖡,𝖢𝖢

are assigned to the label ‘‘good’’, while 𝖠𝖡,𝖡𝖢,𝖠𝖢 are labeled as
‘‘bad’’. Now, imagine a scenario where a subject is presented with
new test words, such as 𝖷𝖷 or 𝖷𝖸. Thanks to the human ability of
abstraction, the subject will be immediately able to classify the new
words correctly, even though the letters 𝖷 and 𝖸 were not part of
the training set. Identity effects learning finds other examples in, for
instance, reduplication (which happens when words are inflected by
repeating all or a portion of the word) (Paschen, 2021) or contrastive
reduplication (Ghomeshi, Jackendoff, Rosen, & Russell, 2004). Besides
their relevance in linguistics, the analysis of identity effects can serve as
an intuitive and effective tool to evaluate the generalization capabilities
of neural networks in a variety of specific tasks. These tasks encompass
the identification of equal patterns in natural language processing (Wu
& Wang, 2010) as well as molecule classification or regression (Wieder
et al., 2020). In the context of molecule analysis, the exploitation of
molecular symmetries as in, for instance, the class of bicyclic com-
pounds) (Liebman & Greenberg, 1976) plays a crucial role as it can be
xploited to retrieve molecular orientations (Bunker & Jensen, 2006) or

to determine properties of molecular positioning (Pettinari & Santini,
2017). Furthermore, the existence of different symmetries in interacting

olecules can lead to different reactions.
Recently, it has been shown in Brugiapaglia, Liu, and Tupper (2022)

hat Multilayer Perceptrons (MLPs) and Recurrent Neural Networks
RNNs) cannot learn identity effects via Stochastic Gradient Descent nor

Adam, under certain conditions on the encoding utilized to represent
the components of objects. This finding, based on a framework intro-
duced in Tupper and Shahriari (2016), raises a fundamental question
hat forms the core focus of our paper: ‘‘Do GNNs possess the capability
o learn identity effects?’’ Motivated by this research question, this work
nvestigates the generalization limits and capabilities of GNNs when
earning identity effects. Our contributions are the following:

(i) extending the analysis of Brugiapaglia et al. (2022), GNNs are
shown to be incapable of learning identity effects via SGD train-
ing under sufficient conditions determined by the existence of
a suitable transformation 𝜏 of the input space (Theorem 3.1);
an application to the problem of classifying identical two-letter
words is provided by Theorem 3.3 and supported by numerical
experiments in Section 4.2;
2 
(ii) on the other hand, GNNs are shown to be capable of learning
identity effects in terms of binary classification of dicyclic graphs,
i.e., graphs composed by two cycles of different or equal length,
in Corollary 3.6; a numerical investigation of the gap between our
theoretical results and practical performance of GNNs is provided
in Section 4.3.

The paper is structured as follows. Section 2 begins by providing a brief
overview of fundamental graph theory notation. We then introduce
he specific GNN formulation we focus on in our analysis, namely the

eisfeiler–Lehman test, and revisit the framework of rating impossi-
bility theorems for invariant learners. In Section 3, we present and
prove our main theoretical results. Section 4 showcases the numerical
experiments conducted to validate our findings. Finally, in Section 5,
we provide concluding remarks and outline potential avenues for future
research.

2. Notation and background

We start by introducing the notation and background concepts that
will be used throughout the paper.

2.1. Graph theory basics

A node-attributed graph 𝐺 is an object defined by a triplet 𝐺 =
𝑉 , 𝐸 , 𝛼). 𝑉 is the set of nodes or vertices 𝑣, where 𝑣 can be identified

as an element of N ∶= {0, 1, 2,…}. 𝐸 is the set of edges 𝑒𝑢,𝑣, where
𝑒𝑢,𝑣 = (𝑢, 𝑣) ∈ 𝑉 × 𝑉 . The term 𝛼 ∶ 𝑉 → R𝑘 is the function assigning
a node feature (or vertex feature) 𝛼𝑣 to every node 𝑣 in the graph, with
𝑘 being the feature dimension. The number of nodes of a graph G is
enoted by 𝑁 ∶= |𝑉 |. All node features can be stacked in a feature
atrix 𝐗𝐺 ∈ R𝑁×𝑘. The adjacency matrix 𝐀 is defined as 𝐴𝑖𝑗 = 1 if
𝑖𝑗 ∈ 𝐸, 𝐴𝑖𝑗 = 0 otherwise. The neighborhood of a node 𝑣 is denoted by
𝑣 = {𝑢 ∣ 𝑒𝑢,𝑣 ∈ 𝐸}.

2.2. Graph neural networks

Graph Neural Networks (GNNs) are a class of connectionist models
that aim to learn functions on graphs, or pairs graph/node. Intuitively,
 GNN learns how to represent the nodes of a graph by vectorial
epresentations (which are called hidden states), giving an encoding
f the information stored in the graph. In its general form Gilmer,

Schoenholz, Riley, Vinyals, and Dahl (2017) and Scarselli et al. (2009),
or each graph 𝐺 = (𝑉 , 𝐸 , 𝛼) ∈  where  is a node-attributed graph

domain, a GNN is defined by the following recursive updating scheme:

ℎ(𝑡+1)𝑣 = UPDATE(𝑡+1)(ℎ(𝑡)𝑣 ,AGGREGATE(𝑡+1)({{ℎ(𝑡)𝑢 |𝑢 ∈ 𝑣}})
)

, (1)

for all 𝑣 ∈ 𝑉 and 𝑡 = 1,… , 𝑇 , where ℎ(𝑡)𝑣 is the hidden feature of node
at time 𝑡, 𝑇 is the number of layers of the GNN and {{⋅}} denotes

 multiset. Here {UPDATE(𝑡)}𝑡=1,…,𝑇 and {AGGREGATE(𝑡)}𝑡=1,…,𝑇 are
amilies of functions that can be defined by learnable or non-learnable
chemes. Popular GNN models like GraphSAGE (Hamilton et al., 2017),
CN (Kipf & Welling, 2016), Graph Isomorphism Networks (Xu et al.,

2018) are based on this updating scheme. The model terminates with
a READOUT function, chosen according to the nature of the task; for
instance, global average, min or sum pooling, followed by a trainable
multilayer perceptron are typical choices in the case of graph-focused
tasks. At a high level, we can formalizate a GNN as a function 𝑔 ∶  →

R𝑟, where  is a set of node-attributed graphs and 𝑟 is the dimension of
the output, which depends on the type of task at hand. The updating
scheme we choose as a reference for our analysis follows Morris et al.
(2019). This model has been proven to match the expressive power of
the Weisfeiler–Lehman test (Morris et al., 2019) (see also Theorem 2.1
below), and can therefore be considered a good representative model
of the message passing GNN class. The hidden feature ℎ(𝑡+1) ∈ Rℎ of
𝑣
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a node 𝑣 at the message passing iteration 𝑡 + 1, for 𝑡 = 1,… , 𝑇 − 1, is
efined as

ℎ(𝑡+1)𝑣 = 𝜎
(

𝑊 (𝑡+1)
upd ℎ(𝑡)𝑣 +𝑊 (𝑡+1)

agg ℎ(𝑡)𝑣
+ 𝑏(𝑡+1)

)

, (2)

where ℎ(𝑡)𝑣
= POOL{{ℎ(𝑡)𝑢 |𝑢 ∈ 𝑣}}, 𝜎 ∶ Rℎ → Rℎ is an element-

wise activation function and POOL is the aggregating operator on
he neighbor node’s features. The aggregating operator can be de-
ined as a non-learnable function, such as the sum, the mean or the
inimum, across the hidden features of the neighbors. With respect

o Eq. (1), we have that AGGREGATE(𝑡)(⋅) = POOL(⋅) ∀𝑡 = 1,… , 𝑇 ,
while UPDATE(𝑡+1)(ℎ𝑣, ℎ𝑣

) = 𝜎
(

𝑊 (𝑡+1)
upd ℎ𝑣 + 𝑊 (𝑡+1)

agg ℎ𝑣
+ 𝑏(𝑡+1)

)

. For
ach node, the initial hidden state is initialized as ℎ(0)𝑣 = 𝛼𝑣 ∈
𝑘. The learnable parameters of the GNN can be summarized as
∶= (𝑊 (0)

upd, 𝑊
(0)

agg, 𝑏(0), 𝑊 (1)
upd, 𝑊

(1)
agg, 𝑏(1),… , 𝑊 (𝐿)

upd, 𝑊
(𝐿)

agg , 𝑏(𝐿)), with 𝑊 (0)
upd,

(0)
agg ∈ R𝑘×ℎ, 𝑊 (𝑡)

upd, 𝑊
(𝑡)

agg ∈ Rℎ×ℎ, for 𝑡 = 1,… , 𝑇 , and 𝑏(𝑡) ∈ Rℎ, for
= 0,… , 𝑇 .

2.3. The Weisfeiler–Lehman test

The first order Weisfeiler–Lehman test (in short, 1–WL test) (Leman
 Weisfeiler, 1968) is one of the most popular isomorphism tests for
raphs, based on an iterative coloring scheme. The coloring algorithm
s applied in parallel to two input graphs, giving a color partition
f the nodes as output. If the partitions match, then the graphs are
ossibly isomorphic, while if they do not match, then the graphs are
ertainly non-isomorphic. Note that the test is not conclusive in the
ase of a positive answer, as the graphs may still be non-isomorphic;
evertheless, the 1–WL test provides an accurate isomorphism test for
 large class of graphs (Babai & Kucera, 1979). The coloring is carried

out by an iterative algorithm which takes as input a graph 𝐺 = (𝑉 , 𝐸 , 𝛼)
and, at each iteration, computes a node coloring 𝑐(𝑡)(𝑣) ∈  for each node
𝑣 ∈ 𝑉 , being  ⊆ N a subset of natural numbers representing colors.
The algorithm is sketched in the following.

1. At iteration 0, in the case of labeled graphs, the node color ini-
tialization is based on the vertex feature according to a specific
hash function HASH0 ∶ R𝑘 → ; namely, 𝑐(0)(𝑣) = HASH0(𝛼(𝑣)),
for all 𝑣 ∈ 𝑉 . For unlabeled graphs, a node color initialization is
provided, usually setting every color as equal to a given initial
color 𝑐(0) ∈ .

2. For any iteration 𝑡 > 0, we set

𝑐(𝑡)(𝑣) = HASH((𝑐(𝑡−1)(𝑣), {{𝑐(𝑡−1)(𝑛)|𝑛 ∈ 𝑣}})),

∀𝑣 ∈ 𝑉 , where HASH injectively maps the above color-multiset
pair to a unique value in .

The algorithm terminates if the number of colors between two itera-
ions does not change, i.e., when the cardinalities of {𝑐(𝑡−1)(𝑣)|𝑣 ∈ 𝑉 }
nd {𝑐(𝑡)(𝑣)|𝑣 ∈ 𝑉 }, namely, are equal.

We conclude by recalling two results establishing the equivalence
between GNNs’ and 1–WL test’s expressive power that will be instru-
mental for our analysis. A first result was proved in Xu et al. (2018) and
t characterizes the equivalence on a graph-level task for GNNs with
eneric message passing layers satisfying suitable conditions.

Another characterization, reported below, is due to Morris et al.
(2019) and states the equivalence on a node coloring level, referring
o the particular model defined in (2).

Theorem 2.1 (See Morris et al. (2019, Theorem 2)). Let 𝐺 = (𝑉 , 𝐸 , 𝛼)
be a graph with initial coloring 𝑐(0)(𝑣) ∈ R for each node 𝑣 ∈ 𝑉 (so that
𝑐(0) ∈ R|𝑉 (𝐺)|). Then, for all 𝑡 ≥ 0 there exists a GNN of the form (2) such
hat the hidden feature vector ℎ(𝑡) ∈ R|𝑉 (𝐺)| produced by the GNN at layer
coincides with the color vector 𝑐(𝑡) ∈ R|𝑉 (𝐺)| produced by the 1–WL test at

teration 𝑡, i.e., 𝑐(𝑡) ≡ ℎ(𝑡).
3 
2.4. Rating impossibility for invariant learners

We now recall the framework of rating impossibility from
Brugiapaglia et al. (2022), which we will then apply to the case of
dentity effects learning. In general, we assume to train a learning
lgorithm to perform a rating assignment task, where the rating 𝑟 is
 real number. Let  be the set of all possible inputs 𝑥 (that could
e, for instance, elements of R𝑑). Our learning algorithm is trained
n a dataset 𝐷 ⊆  × R consisting of a finite set of input-rating pairs
𝑥, 𝑟). Let  be the set of all possible datasets with inputs in . The
earning algorithm is trained via a suitable optimization method, such
s Stochastic Gradient Descent (SGD) or Adaptive Moment Estimation
Adam) (Kingma & Ba, 2014), that for any given training dataset 𝐷
utputs the optimized set of parameters 𝛩 = 𝛩(𝐷) ∈ R𝑝, which, in
urn, defines a model 𝑓 = 𝑓 (𝛩 , ⋅). The rating prediction on a novel input
∈  is then given by 𝑟 = 𝑓 (𝛩 , 𝑥). In summary, a learning algorithm

an thought of as a map 𝐿 ∶ × → R, defined as 𝐿(𝐷 , 𝑥) = 𝑓 (𝛩(𝐷), 𝑥).
Given the stochastic nature of neural network training, we adopt a

nondeterministic point of view. Hence we require the notion of equality
in distribution. Two random variables 𝑋 , 𝑌 taking values in R𝑘 are said
to be equal in distribution (denoted by 𝑋

𝑑
= 𝑌 ) if P(𝑋 ≤ 𝑥) = P(𝑌 ≤ 𝑥)

for all 𝑥 ∈ R𝑘, where inequalities hold componentwise.
With this notation, rating impossibility means that 𝐿(𝐷 , 𝑥1)

𝑑
=

(𝐷 , 𝑥2) for two inputs 𝑥1 ≠ 𝑥2 drawn from  ⧵ 𝐷. Sufficient con-
itions for rating impossibility are identified by the following the-
rem from Brugiapaglia et al. (2022) (here slightly adapted using

equality in distribution), which involves the existence of an auxiliary
transformation 𝜏 of the inputs.

Theorem 2.2 (Rating Impossibility for Invariant Learners, Brugiapaglia
et al. (2022, Theorem 1)). Consider a dataset 𝐷 ⊆  × R and a trans-
ormation 𝜏 ∶  →  such that

(i) 𝜏(𝐷)
𝑑
= 𝐷 (invariance of the data).1

Then, for any learning algorithm 𝐿 ∶ ×  → R and any input 𝑥 ∈  such
that

(ii) 𝐿(𝜏(𝐷), 𝜏(𝑥)) 𝑑
= 𝐿(𝐷 , 𝑥) (invariance of the algorithm),

we have 𝐿(𝐷 , 𝜏(𝑥)) 𝑑
= 𝐿(𝐷 , 𝑥).

This theorem states that under the invariance of the data and of
the algorithm, the learner cannot assign different ratings to an input 𝑥
nd its transformed version 𝜏(𝑥). This leads to rating impossibility when
(𝑥) ≠ 𝑥 and 𝑥, 𝜏(𝑥) ∈  ⧵𝐷.

We conclude by recalling some basic notions on SGD training. Given
a dataset 𝐷, we aim to find parameters 𝛩 that minimize an objective
function of the form

𝐹 (𝛩) = ((𝑓 (𝛩 , 𝑥), 𝑟) ∶ (𝑥, 𝑟) ∈ 𝐷), 𝛩 ∈ R𝑝,

where  is a (possibly regularized) loss function. We assume 𝐹 to be
differentiable over R𝑝 in order for its gradients to be well defined.
Given a collection of subsets (𝐷𝑖)𝑘−1𝑖=0 with 𝐷𝑖 ⊆ 𝐷 (usually referred to
as training batches, which can be either deterministically or randomly
enerated), we define 𝐹𝐷𝑖

as the function 𝐹 where the loss is evaluated
nly on data in 𝐷𝑖. In SGD-based training, we randomly initialize 𝛩0

and iteratively compute

𝛩𝑖+1 = 𝛩𝑖 − 𝜂𝑖
𝜕 𝐹𝐷𝑖

𝜕 𝛩 (𝛩𝑖), (3)

for 𝑖 = 0, 1,… , 𝑘− 1, where the sequence of step sizes (𝜂𝑖)𝑘−1𝑖=0 is assumed
o be either deterministic or random and independent of (𝐷𝑖)𝑘−1𝑖=0 . Note
hat, being 𝛩𝑖 a random vector for each 𝑖, the output of the learning
lgorithm 𝐿(𝐷 , 𝑥) = 𝑓 (𝛩𝑘, 𝑥) is a random variable.

1 By definition, 𝜏(𝐷) ∶= {(𝜏(𝑥), 𝑟) ∶ (𝑥, 𝑟) ∈ 𝐷}.
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3. Theoretical analysis

In this section we present our theoretical analysis. More specifically,
in Section 3.1 we establish a rating impossibility theorem for GNNs
under certain technical assumptions related to the invariance of the
training data under a suitable transformation 𝜏 of the inputs; then, we
illustrate an application to the case study of identity effects learning for
a two-letter word dataset in Section 3.1.1. In Section 3.2 we prove that
ymmetric dicyclic graphs can be distinguished from the asymmetric
nes by the 1–WL test, and consequently by a GNN.

3.1. What GNNs cannot learn: rating impossibility theorem

We assume the input space to be of the form  = R𝑑 × R𝑑 and the
learning algorithm

𝐿(𝐷 , 𝑥) = 𝑓 (𝐵 , 𝐺 𝑢 +𝐻 𝑣, 𝐻 𝑢 + 𝐺 𝑣), ∀𝑥 = (𝑢, 𝑣) ∈ , (4)

where 𝛩 = (𝐵 , 𝐺 , 𝐻) are trainable parameters and 𝐺 , 𝐻 ∈ R𝑑×𝑑 .
This class of learning algorithms perfectly fits the formulation given
in Morris et al. (2019), where the updating scheme is the one defined
y (2). In this case,

𝐺 = 𝑊 (1)
𝑢𝑝𝑑 , 𝐻 = 𝑊 (1)

𝑎𝑔 𝑔 ,
𝐵 =

(

𝑏(1), 𝑊 (2)
𝑢𝑝𝑑 , 𝑊 (2)

𝑎𝑔 𝑔 , 𝑏(2) … , 𝑊 (𝑁)
𝑢𝑝𝑑 , 𝑊 (𝑁)

𝑎𝑔 𝑔 , 𝑏(𝑁)
)

.

The learner defined by Eq. (4) mimics, in this specific setting, the
behavior of several GNN architectures, GCN included. In fact, when the
graph is composed by only two nodes, the convolution ends up being
a weighted sum of the hidden states of the two nodes, i.e., ℎ(𝑡)𝑡

= ℎ(𝑡)𝑢
and

ℎ(𝑡+1)𝑣 = 𝜎
(

𝑊 (𝑡+1)
upd ℎ(𝑡)𝑣 +𝑊 (𝑡+1)

agg ℎ(𝑡)𝑢 + 𝑏(𝑡+1)
)

.

This property will have practical relevance in Theorem 3.3 and its
xperimental realization in Section 4.2.

In the following result we identify sufficient conditions on the
dataset 𝐷 and the training procedure able to guarantee invariance of
GNN-type models of the form (4) trained via SGD to a suitable class of
transformations 𝜏 (hence verifying condition (ii) of Theorem 2.2).

Theorem 3.1 (Invariance of GNN-Type Models Trained Via SGD). Assume
the input space to be of the form  = R𝑑 × R𝑑 . Let 𝜏 ∶  →  be a linear
transformation defined by 𝜏(𝑥) = (𝑢, 𝜏2(𝑣)) for any 𝑥 = (𝑢, 𝑣) ∈ , where
𝜏2 ∶ R𝑑 → R𝑑 is also linear. Moreover, assume that

• the matrix 𝑇2 ∈ R𝑑×𝑑 associated with the transformation 𝜏2 is
orthogonal and symmetric;

• the dataset 𝐷 = {((𝑢𝑖, 𝑣𝑖), 𝑟𝑖)}𝑛𝑖=1 is invariant under the transformation
𝜏2 ⊗ 𝜏2, i.e.,
(𝑢𝑖, 𝑣𝑖) =

(

𝜏2(𝑢𝑖), 𝜏2(𝑣𝑖)
)

, ∀𝑖 = 1,… , 𝑛. (5)

Suppose k iterations of SGD as defined in (3) are used to determine
parameters 𝛩𝑘 = (𝐵𝑘, 𝐺𝑘, 𝐻𝑘) with objective function

𝐹 (𝛩) =
𝑛
∑

𝑖=1
𝓁
(

𝑓 (𝐵 , 𝐺 𝑢𝑖 +𝐻 𝑣𝑖, 𝐻 𝑢𝑖 + 𝐺 𝑣𝑖), 𝑟𝑖
)

+ 𝜆(𝐵),

for some 𝜆 ≥ 0, with 𝛩 = (𝐵 , 𝐺 , 𝐻) and where 𝓁, 𝑓 and  are real-valued
functions such that 𝐹 is differentiable. Suppose the random initialization of
the parameters 𝐵, 𝐺 and 𝐻 to be independent and that the distributions of
𝐺0 and 𝐻0 are invariant with respect to right-multiplication by 𝑇2. Then, the
earner 𝐿 defined by 𝐿(𝐷 , 𝑥) = 𝑓 (𝐵𝑘, 𝐺𝑘𝑢+𝐻𝑘𝑣, 𝐻𝑘𝑢+𝐺𝑘𝑣), for 𝑥 = (𝑢, 𝑣),
satisfies 𝐿(𝐷 , 𝑥) 𝑑

= 𝐿(𝜏(𝐷), 𝜏(𝑥)).

Proof. Given a batch 𝐷𝑖 ⊆ 𝐷, define 𝐽𝑖 ∶= {𝑗 ∈ {1,… , 𝑛} ∶
((𝑢 , 𝑣 ), 𝑟 ) ∈ 𝐷 } and
𝑗 𝑗 𝑗 𝑖

4 
𝐹𝐷𝑖
(𝛩) =

∑

𝑗∈𝐽𝑖

𝓁(𝑓 (𝐵 , 𝐺 𝑣𝑗 +𝐻 𝑢𝑗 , 𝐻 𝑣𝑗 + 𝐺 𝑢𝑗 ), 𝑟𝑗 ) + 𝜆(𝐵).

Moreover, consider an auxiliary objective function, defined by

𝐹𝐷𝑖
(𝐵 , 𝐺1, 𝐻1, 𝐻2, 𝐺2) =
∑

𝑗∈𝐽𝑖

𝓁(𝑓 (𝐵 , 𝐺1𝑣𝑗 +𝐻1𝑢𝑗 , 𝐻2𝑣𝑗 + 𝐺2𝑢𝑗 ), 𝑟𝑗 ) + 𝜆(𝐵).

Observe that 𝐹𝐷𝑖
(𝛩) = 𝐹𝐷𝑖

(𝐵 , 𝐺 , 𝐻 , 𝐻 , 𝐺). Moreover,
𝜕 𝐹𝐷𝑖

𝜕 𝐵 (𝛩) =
𝜕𝐹𝐷𝑖

𝜕 𝐵 (𝛩) (6)

𝜕 𝐹𝐷𝑖

𝜕 𝐺 (𝛩) =
𝜕𝐹𝐷𝑖

𝜕 𝐺1
(𝛩) +

𝜕𝐹𝐷𝑖

𝜕 𝐺2
(𝛩) (7)

𝜕 𝐹𝐷𝑖

𝜕 𝐻 (𝛩) =
𝜕𝐹𝐷𝑖

𝜕 𝐻1
(𝛩) +

𝜕𝐹𝐷𝑖

𝜕 𝐻2
(𝛩) (8)

Moreover, replacing 𝐷𝑖 with its transformed version 𝜏(𝐷𝑖) =
((𝑢𝑗 , 𝜏2(𝑣𝑗 )), 𝑟𝑗 )}𝑗∈𝐷𝑖

, we see that 𝐹𝜏(𝐷𝑖)(𝛩) = 𝐹𝐷𝑖
(𝐵 , 𝐺 , 𝐻 𝑇2, 𝐻 , 𝐺 𝑇2).

his leads to
𝜕 𝐹𝜏(𝐷𝑖)

𝜕 𝐵 (𝛩) =
𝜕𝐹𝐷𝑖

𝜕 𝐵 (𝐵 , 𝐺 , 𝐻 𝑇2, 𝐻 , 𝐺 𝑇2) (9)

𝜕 𝐹𝜏(𝐷𝑖)

𝜕 𝐺 (𝛩) =
𝜕𝐹𝐷𝑖

𝜕 𝐺1
(𝐵 , 𝐺 , 𝐻 𝑇2, 𝐻 , 𝐺 𝑇2)

+
𝜕𝐹𝐷𝑖

𝜕 𝐺2
(𝐵 , 𝐺 , 𝐻 𝑇2, 𝐻 , 𝐺 𝑇2)𝑇 𝑇

2 (10)

𝜕 𝐹𝜏(𝐷𝑖)

𝜕 𝐻 (𝛩) =
𝜕𝐹𝐷𝑖

𝜕 𝐻1
(𝐵 , 𝐺 , 𝐻 𝑇2, 𝐻 , 𝐺 𝑇2)𝑇 𝑇

2

+
𝜕𝐹𝐷𝑖

𝜕 𝐻2
(𝐵 , 𝐺 , 𝐻 𝑇2, 𝐻 , 𝐺 𝑇2). (11)

Now, denoting 𝓁 = 𝓁(𝑓 , 𝑟) and 𝑓 = 𝑓 (𝐵 , 𝑢, 𝑣), we have
𝜕𝐹𝐷𝑖

𝜕 𝐺1
=

∑

𝑗∈𝐷𝑖

𝜕𝓁
𝜕 𝑓

𝜕 𝑓
𝜕 𝑢 𝑣

𝑇
𝑗 ,

𝜕𝐹𝐷𝑖

𝜕 𝐻1
=

∑

𝑗∈𝐷𝑖

𝜕𝓁
𝜕 𝑓

𝜕 𝑓
𝜕 𝑢 𝑢

𝑇
𝑗 ,

𝜕𝐹𝐷𝑖

𝜕 𝐻2
=

∑

𝑗∈𝐷𝑖

𝜕𝓁
𝜕 𝑓

𝜕 𝑓
𝜕 𝑣 𝑣

𝑇
𝑗 ,

𝜕𝐹𝐷𝑖

𝜕 𝐺2
=

∑

𝑗∈𝐷𝑖

𝜕𝓁
𝜕 𝑓

𝜕 𝑓
𝜕 𝑣 𝑢

𝑇
𝑗 .

In addition, thanks to assumption (5), we have 𝑢𝑇𝑗 𝑇
𝑇
2 = 𝑢𝑇𝑗 and 𝑣𝑇𝑗 𝑇

𝑇
2 =

𝑣𝑇𝑗 for all 𝑗 ∈ 𝐽𝑖. Thus, we obtain
𝜕𝐹𝐷
𝜕 𝐺1

𝑇 𝑇
2 =

𝜕𝐹𝐷
𝜕 𝐺1

,
𝜕𝐹𝐷
𝜕 𝐻1

𝑇 𝑇
2 =

𝜕𝐹𝐷
𝜕 𝐻1

, (12)

𝜕𝐹𝐷
𝜕 𝐻2

𝑇 𝑇
2 =

𝜕𝐹𝐷
𝜕 𝐻2

,
𝜕𝐹𝐷
𝜕 𝐺2

𝑇 𝑇
2 =

𝜕𝐹𝐷
𝜕 𝐺2

. (13)

Now, let (𝐵′
0, 𝐺′

0, 𝐻 ′
0)

𝑑
= (𝐵0, 𝐺0, 𝐻0) and let (𝐵′

𝑖 , 𝐺′
𝑖 , 𝐻 ′

𝑖 ) for 𝑖 =
1,… , 𝑘 be the sequence generated by SGD, applied to the transformed
data 𝜏(𝐷). By assumption, we have 𝐵′

0
𝑑
= 𝐵0, 𝐺0

𝑑
= 𝐺′

0
𝑑
= 𝐺′

0𝑇2 and 𝐻0
𝑑
=

′
0

𝑑
= 𝐻 ′

0𝑇2. We now show by induction that 𝐵′
𝑖

𝑑
= 𝐵𝑖, 𝐺𝑖

𝑑
= 𝐺′

𝑖
𝑑
= 𝐺′

𝑖𝑇2
nd 𝐻𝑖

𝑑
= 𝐻 ′

𝑖
𝑑
= 𝐻 ′

𝑖 𝑇2 for all indices 𝑖 = 1,… , 𝑘. Using Eqs. (6) and (9)
and the inductive hypothesis, we have

𝐵′
𝑖+1 = 𝐵′

𝑖 − 𝜂𝑖
𝜕 𝐹𝜏(𝐷𝑖)

𝜕 𝐵 (𝐵′
𝑖 , 𝐺′

𝑖 , 𝐻 ′
𝑖 )

= 𝐵′
𝑖 − 𝜂𝑖

𝜕𝐹𝐷𝑖

𝜕 𝐵 (𝐵′
𝑖 , 𝐺′

𝑖 , 𝐻 ′
𝑖 𝑇2, 𝐻 ′

𝑖 , 𝐺′
𝑖𝑇2)

𝑑
= 𝐵𝑖 − 𝜂𝑖

𝜕𝐹𝐷𝑖

𝜕 𝐵 (𝐵𝑖, 𝐺𝑖, 𝐻𝑖, 𝐻𝑖, 𝐺𝑖)

= 𝐵𝑖 − 𝜂𝑖
𝜕 𝐹𝜏(𝐷𝑖)

𝜕 𝐵 (𝐵𝑖, 𝐺𝑖, 𝐻𝑖) = 𝐵𝑖+1.

Similarly, using Eqs. (7), (10) and (13) and the inductive hypothesis,
e see that

𝐺′ = 𝐺′ − 𝜂
𝜕 𝐹𝜏(𝐷𝑖) (𝐵′, 𝐺′, 𝐻 ′)
𝑖+1 𝑖 𝑖 𝜕 𝐺 𝑖 𝑖 𝑖



G.A. D’Inverno et al.

t

i

f
a
o
o
o

o
s
l

a

e
E

i

n

l

f

t

e

w

.2.

Neural Networks 181 (2025) 106793 
= 𝐺′
𝑖 − 𝜂𝑖

(

𝜕𝐹𝐷𝑖

𝜕 𝐼 (𝐵′
𝑖 , 𝐺′

𝑖 , 𝐻 ′
𝑖 𝑇2, 𝐻 ′

𝑖 , 𝐺′
𝑖𝑇2)

+
𝜕𝐹𝐷𝑖

𝜕 𝐿 (𝐵′
𝑖 , 𝐺′

𝑖 , 𝐻 ′
𝑖 𝑇2, 𝐻 ′

𝑖 , 𝐺′
𝑖𝑇2)𝑇

𝑇
2

)

= 𝐺′
𝑖 − 𝜂𝑖

(

𝜕𝐹𝐷𝑖

𝜕 𝐺1
(𝐵′

𝑖 , 𝐺′
𝑖 , 𝐻 ′

𝑖 𝑇2, 𝐻 ′
𝑖 , 𝐺′

𝑖𝑇2)

+
𝜕𝐹𝐷𝑖

𝜕 𝐺2
(𝐵′

𝑖 , 𝐺′
𝑖 , 𝐻 ′

𝑖 𝑇2, 𝐻 ′
𝑖 , 𝐺′

𝑖𝑇2)

)

𝑑
= 𝐺𝑖 − 𝜂𝑖

(

𝜕𝐹𝐷𝑖

𝜕 𝐺1
(𝐵𝑖, 𝐺𝑖, 𝐻𝑖, 𝐻𝑖, 𝐺𝑖)

+
𝜕𝐹𝐷𝑖

𝜕 𝐺2
(𝐵𝑖, 𝐺𝑖, 𝐻𝑖, 𝐻𝑖, 𝐺𝑖)

)

= 𝐺𝑖 − 𝜂𝑖
𝜕 𝐹𝐷𝑖

𝜕 𝐺 (𝐵𝑖, 𝐺𝑖, 𝐻𝑖) = 𝐺𝑖+1.

One proceeds analogously for 𝐻 ′
𝑖+1 using Eqs. (8), (11) and (12). Sim-

ilarly, one also sees that 𝐺′
𝑖+1𝑇2

𝑑
= 𝐺𝑖+1 and 𝐻 ′

𝑖+1𝑇2
𝑑
= 𝐻𝑖+1 combining

he previous equations with symmetry and orthogonality of 𝑇2.
In summary, we have

𝐿(𝐷 , 𝑥) = 𝑓 (𝐵𝑘, 𝐺𝑘𝑢 +𝐻𝑘𝑣, 𝐻𝑘𝑢 + 𝐺𝑘𝑣)
𝑑
= 𝑓 (𝐵′

𝑘, 𝐺′
𝑘𝑢 +𝐻 ′

𝑘𝑣, 𝐻 ′
𝑘𝑢 + 𝐺′

𝑘𝑣)
𝑑
= 𝑓 (𝐵′

𝑘, 𝐺′
𝑘𝑢 +𝐻 ′

𝑘𝑇2𝑣, 𝐻 ′
𝑘𝑢 + 𝐺′

𝑘𝑇2𝑣)

= 𝐿(𝜏(𝐷), 𝜏(𝑥)),
which concludes the proof. □

Remark 3.2 (On the Assumptions of Theorem 3.1). At first glance, the
assumptions of Theorem 3.1 might seem quite restrictive, especially
the assumption about the invariance of the distributions of 𝐺0 and 𝐻0
with respect to right-multiplication by the symmetric orthogonal matrix
𝑇2. Yet, this hypothesis holds, e.g., when the entries of 𝐺0 and 𝐻0
are independently and identically distributed according to a centered
normal distribution thanks to the rotational invariance of isotropic ran-
dom Gaussian vectors (see, e.g., Vershynin (2018, Proposition 3.3.2)).
This is the case in common initialization strategies such as Xavier
nitialization (Glorot & Bengio, 2010). In addition, numerical results

presented in Section 4 suggest that rating impossibility might hold
in more general settings, such as when the model 𝑓 includes ReLU
activations (hence, when 𝐹 has points of nondifferentiability) or for
models trained via Adam as opposed to SGD.

3.1.1. Application to identity effects
As a practical application of Theorem 3.1 to identity effects, we

consider the problem of classifying identical two-letter words of the
English alphabet  ∶= {𝖠,𝖡,… ,𝖹}, already mentioned in Section 1
and following Brugiapaglia et al. (2022). Consider a training set 𝐷
ormed by two-letter words that do not contain 𝖸 nor 𝖹. Words are
ssigned the label 1 if they are composed by identical letters and 0
therwise. Our goal is to verify whether a learning algorithm is capable
f generalizing this pattern correctly to words containing the letters 𝖸

r 𝖹. The transformation 𝜏 of Theorem 3.1 is defined by

𝜏(𝗑𝖸) = 𝗑𝖹, 𝜏(𝗑𝖹) = 𝗑𝖸, and 𝜏(𝗑𝗒) = 𝗑𝗒, (14)

for all letters 𝗑, 𝗒 ∈ , with 𝗒 ≠ 𝖸,𝖹. Note that this transformation is
f the form 𝜏 = 𝐼 ⊗ 𝜏2, where 𝐼 is the identity map. Hence, it fits the
etting of Theorem 3.1. Moreover, since 𝐷 does not contain 𝖸 nor 𝖹

etters, 𝜏(𝐷) = 𝐷. Hence, condition (i) of Theorem 2.2 is satisfied.
In order to represent letters as vectors of R𝑑 , we need to use

 suitable encoding. Its choice is crucial to determine the properties
of the transformation matrix 𝑇 associated with 𝜏 , needed to apply
2 2

5 
Fig. 1. Graph modeling of a two-letter word: a vertex feature 𝛼(𝑣) ∈ R𝑑 is attached to
ach node 𝑣 of a two-node undirected graph, according to a given encoding  of the
nglish alphabet . In this figure,  is the one-hot encoding.

Theorem 3.1. Formally, an encoding of an alphabet  is a set of vectors
 ⊆ R𝑑 , of the same cardinality of , to which letters can be associated
with. In our case, || = 26 = ||. We say that an encoding is orthogonal
f it is an orthonormal set of R𝑑 . For example, the popular one-hot

encoding  = {𝑒𝑖}26𝑖=1 ⊆ R26, i.e., the canonical basis of R26, is an
orthogonal encoding.

In this setting, every word is modeled as a graph defined by two
odes connected by a single unweighted and undirected edge. Each

node 𝑣 is labeled with a node feature 𝛼(𝑣) ∈ R𝑑 , corresponding to a
etter’s encoding. An example is depicted in Fig. 1.

Theorem 3.3 (Inability of GNNs to classify identical two-letter words
outside the training set). Let  ⊆ R26 be an orthogonal encoding of the
English alphabet  and let 𝐿 be a learner obtained by training a GNN of the
orm (2) via SGD to classify identical two-letter words. Assume that words

in the training set 𝐷 do not contain the letter 𝖸 nor 𝖹. Then, 𝐿 assigns the
same rating (in distribution) to any word of the form 𝗑𝗒 where 𝗒 ∈ {𝖸,𝖹},
i.e., 𝐿(𝐷 , 𝗑𝖸) 𝑑

= 𝐿(𝐷 , 𝗑𝖹) for any 𝗑 ∈ . Hence, it is unable to generalize
o identity effect outside the training set.

Proof. As discussed above, the transformation 𝜏 defined by (14) is of
the form 𝜏 = 𝐼 ⊗ 𝜏2. Moreover, the matrix associated with the linear
transformation 𝜏2 is of the form 𝑇2 = 𝐵−1𝑃 𝐵, where 𝐵 is the change-of-
basis matrix from the orthonormal basis associated with the encoding
 to the canonical basis of R26 (in particular, 𝐵 is orthogonal and
𝐵−1 = 𝐵𝑇 ) and 𝑃 is a permutation matrix that switches the last two
ntries of a vector, i.e., using block-matrix notation,

𝑃 =
⎡

⎢

⎢

⎣

𝐼 0

0 0 1
1 0

⎤

⎥

⎥

⎦

, 𝐼 ∈ R24×24.

Hence, 𝑇2 is orthogonal and symmetric, and therefore fits the frame-
ork of Theorem 3.1.

On the other hand, as discussed in Section 3.1, every GNN of
the form (2) is a model of the form (4). Thus, Theorem 3.1 yields
𝐿(𝐷 , 𝗑𝗒) 𝑑

= 𝐿(𝜏(𝐷), 𝜏(𝗑𝗒)), for all letters 𝗑, 𝗒 ∈ . In particular,
𝐿(𝐷 , 𝗑𝖸) 𝑑

= 𝐿(𝜏(𝐷), 𝗑𝖹), which corresponds to condition (ii) of Theorem 2
Recalling that 𝜏(𝐷) = 𝐷, also condition (i) holds. Hence, we can apply
Theorem 2.2 and conclude the proof. □

3.2. What GNNs can learn: identity effects on dicyclic graphs

We now analyze the expressivity of GNNs to learn identity effects
related to the topology of the graphs in the dataset. This novel setting
requires to design ex novo the formulation of our problem. In fact, we
are not focusing on the feature matrix 𝑋𝐺 of a graph anymore, but on
its adjacency matrix 𝐴, which contains all the topological information.
Here we focus on a particular class of graphs, which we call dicyclic
graphs. A dicyclic graph is a graph composed by an 𝑚-cycle and an
𝑛-cycle, linked by a single edge. Since a dicyclic graph is uniquely
determined by the length of the two cycles, we can identify it with
the equivalence class [𝑚, 𝑛] over the set of pairs (𝑎, 𝑏), 𝑎, 𝑏 ∈ N, defined
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as [𝑚, 𝑛] ∶= {(𝑚, 𝑛), (𝑛, 𝑚)}. A dicyclic graph [𝑚, 𝑛] is symmetric if 𝑚 = 𝑛
nd asymmetric otherwise.

In this section we provide an analysis of the expressive power of
NNs when learning identity effects on dicyclic graphs (i.e., classifying

whether a dicyclic graph is symmetric or not). We start by proving a
emma that shows how information propagates through the nodes of
 cycle, during the 1–WL test iterations, when one of the nodes has a
ifferent initial color with respect to all the other nodes.

Lemma 3.4 (1-WL Test On 𝑚-Cycles). Consider an 𝑚-cycle in which the
vertices are numbered from 0 to 𝑚 − 1 clockwise, an initial coloring 𝑐(0) =
[0, 1,… , 1]𝑇 ∈ N𝑚 (vector indexing begins from 0, and the vector is meant
to be circular, i.e., 𝑐(0)(𝑚) = 𝑐(0)(0)), and define the function HASH as
⎧

⎪

⎪

⎨

⎪

⎪

⎩

HASH(0, {{𝑗 , 𝑘}}) = 0
HASH(𝑖, {{𝑗 , 𝑘}}) = 𝑖 if 𝑗 ≠ 𝑘, 𝑖 < ⌊

𝑚
2 ⌋

HASH(𝑖, {{𝑗 , 𝑘}}) = 𝑖 + 1 if 𝑗 = 𝑘, 𝑖 < ⌊

𝑚
2 ⌋

HASH(⌊𝑚
2 ⌋, {{𝑗 , 𝑘}}) = ⌊

𝑚
2 ⌋

,

with 𝑗 , 𝑘 ≤ ⌊

𝑚
2 ⌋. Then, HASH is an injective coloring over the 𝑚-cycle at

each iteration 𝑡 of the 1–WL test. This gives, at each iteration 0 ≤ 𝑡 < 𝑇 =
𝑚
2 ⌋, the coloring

⎧

⎪

⎨

⎪

⎩

𝑐(𝑡)(𝑖) = 𝑖 if 0 ≤ 𝑖 ≤ 𝑡
𝑐(𝑡)(𝑖) = 𝑡 + 1 if 𝑡 < 𝑖 < 𝑚 − 𝑡
𝑐(𝑡)(𝑖) = 𝑚 − 𝑖 if 𝑚 − 𝑡 ≤ 𝑖 < 𝑚

, (15)

and the 1-WL test terminates after 𝑇 = ⌊

𝑚
2 ⌋ iterations (i.e., 𝑐(𝑇 ) = 𝑐(𝑇−1)),

iving ⌊

𝑚
2 ⌋ + 1 colors.

Proof. We prove the lemma by induction on 𝑡. Case 𝑡 = 1 We start
with 𝑐(0)(0) = 0 and 𝑐(0)(𝑖) = 1, for 𝑖 = 1,… , 𝑚 − 1. We only have three
hashing cases:

◦ HASH(0, {{1, 1}}) = 0, the color assigned to node 0;
◦ HASH(1, {{0, 1}}) = 1, the color assigned to nodes 1 and 𝑚 − 1;
◦ HASH(1, {{1, 1}}) = 2, the color assigned to all nodes 1 < 𝑖 < 𝑚− 1.

This shows that 𝑐(1) satisfies (15) and that HASH is injective at iteration
= 1. Hence, the claim is true for 𝑡 = 1. Inductive step 𝑡 → 𝑡 + 1 Assume
hat the inductive hypothesis is true for step 𝑡. Hence, our coloring is
f the form (15) and that HASH is injective at iteration 𝑡. This means
hat for 0 < 𝑖 ≤ 𝑡 we have 𝑐(𝑡)(𝑖 − 1) < 𝑐(𝑡)(𝑖) < 𝑐(𝑡)(𝑖 + 1) and for
𝑚 − 𝑡 ≤ 𝑖 < 𝑚 − 1 we have 𝑐(𝑡)(𝑖 + 1) < 𝑐(𝑡)(𝑖) < 𝑐(𝑡)(𝑖 − 1); thus, for
0 < 𝑖 ≤ 𝑡 or 𝑚 − 𝑡 − 1 ≤ 𝑖 < 𝑚 − 1, we see that

𝑐(𝑡+1)(𝑖) = HASH(𝑐(𝑡)(𝑖), {{𝑐(𝑡)(𝑖 − 1), 𝑐(𝑡)(𝑖 + 1)}}) = 𝑖.

For 𝑖 = 𝑡+ 1 we have 𝑐(𝑡)(𝑖− 1) < 𝑐(𝑡)(𝑖) = 𝑐(𝑡)(𝑖+ 1) and for 𝑖 = 𝑚− 𝑡− 2 we
have 𝑐(𝑡)(𝑖+ 1) < 𝑐(𝑡)(𝑖) = 𝑐(𝑡)(𝑖− 1); therefore, for 𝑖 = 𝑡+ 1 and 𝑖 = 𝑚−𝑡− 2,
we also have

𝑐(𝑡+1)(𝑖) = HASH(𝑐(𝑡)(𝑖), {{𝑐(𝑡)(𝑖 − 1), 𝑐(𝑡)(𝑖 + 1)}}) = 𝑖.

For all the remaining indices 𝑡 + 1 < 𝑖 < 𝑚 − 𝑡 − 2, we have 𝑐(𝑡)(𝑖 − 1) =
𝑐(𝑡)(𝑖) = 𝑐(𝑡)(𝑖 + 1), so
𝑐(𝑡+1)(𝑖) = HASH(𝑐(𝑡)(𝑖), {{𝑐(𝑡)(𝑖 − 1), 𝑐(𝑡)(𝑖 + 1)}})

= (𝑡 + 1) + 1 = 𝑡 + 2.
The HASH function is still injective, as for 0 < 𝑖 ≤ 𝑡 + 1 we have
𝑐(𝑡)(𝑖 − 1) < 𝑐(𝑡)(𝑖) < 𝑐(𝑡)(𝑖 + 1), for 𝑚 − 𝑡 − 1 ≤ 𝑖 < 𝑚 − 1 we have
𝑐(𝑡)(𝑖 + 1) < 𝑐(𝑡)(𝑖) < 𝑐(𝑡)(𝑖 − 1), and for 𝑡 + 1 < 𝑖 < 𝑚 − 𝑡 − 1 it holds
HASH(𝑐(𝑡)(𝑖), {{𝑐(𝑡)(𝑖 − 1), 𝑐(𝑡)(𝑖 + 1)}}) = HASH(𝑡 + 1, {{𝑡 + 1, 𝑡 + 1}}) = 𝑡 + 2.
Therefore, we have
⎧

⎪

⎨

⎪

⎩

𝑐(𝑡+1)(𝑖) = 𝑖 if 0 ≤ 𝑖 ≤ 𝑡 + 1
𝑐(𝑡+1)(𝑖) = 𝑡 + 2 if 𝑡 + 1 < 𝑖 < 𝑚 − 𝑡 − 1
𝑐(𝑡+1)(𝑖) = 𝑚 − 𝑖 if 𝑚 − 𝑡 − 1 ≤ 𝑖 < 𝑚

.

6 
Termination of the 1–WL test
At iteration ⌊

𝑚
2 ⌋ − 1 we have

⎧

⎪

⎨

⎪

⎩

𝑐(⌊
𝑚
2 ⌋−1)(𝑖) = 𝑖 if 0 ≤ 𝑖 ≤ ⌊

𝑚
2 ⌋ − 1

𝑐(⌊
𝑚
2 ⌋−1)(𝑖) = ⌊

𝑚
2 ⌋ if 𝑖 = ⌊

𝑚
2 ⌋ or 𝑖 = ⌈

𝑚
2 ⌉

𝑐(⌊
𝑚
2 ⌋−1)(𝑖) = 𝑚 − 𝑖 if ⌈

𝑚
2 ⌉ + 1 ≤ 𝑖 < 𝑚

.

This concludes the proof. □

A graphical representation of Lemma 3.4 can be found in Fig. 2. We
observe that the specific node indexing of Lemma 3.4 was adopted just
to ease computations; nevertheless, it is possible to construct a HASH
function for other choices of node indexing. This is due to the fact that
the mapping depends only on the topological structure in each node’s
neighborhood. This lemma represents the core of next theorem’s proof,
which establishes the ability of the 1-WL test to classify dicyclic graphs
with identical cycles. Intuitively, if we have a dicyclic graph where
node colors are uniformly initialized, one step of 1–WL test yields a
coloring depending entirely on the number of neighbors for each node.
In a dicyclic graph [𝑚, 𝑛] we always have 𝑚 + 𝑛 − 2 nodes of degree
two and 2 nodes of degree three, so 𝑐(1)(𝑖) = 1 for all 2-degree nodes 𝑖,
and 𝑐(1)(𝑗) = 0 for the two 3-degree nodes 𝑗. Hence, each cycle of the
icyclic graph satisfies the initial coloring hypothesis of Lemma 3.4.

Theorem 3.5 (1-WL Test on Dicyclic Graphs). The 1–WL test gives the
same color to the 3-degree nodes of a uniformly colored dicyclic graph [𝑚, 𝑛]
(i.e., 𝑐(0) = 0 ∈ N𝑚+𝑛) if and only if 𝑚 = 𝑛. Therefore, the 1–WL test can
classify symmetric dicyclic graphs.

Proof. After one iteration on the 1–WL test, regardless of the symmetry
of the dicyclic graph, we obtain a coloring in which only 3-degree
nodes have a different color, whose value we set to 0. We can therefore
split the coloring vector 𝑐(1) ∈ N𝑚+𝑛 in two subvectors, namely,
(1) = [(𝑐(1)1 )𝑇 , (𝑐(1)2 )𝑇 ]𝑇 corresponding to each cycle, respectively, and

where 𝑐(1)1 (0) and 𝑐(1)2 (0) correspond to the 3-degree nodes. We treat the
symmetric and the asymmetric cases separately.

The symmetric case We let 𝑐(0)1 = 𝑐(0)2 = 𝑐(0)0 , with 𝑐(0)0 = [0, 1,… , 1]. In
his case, we run the 1–WL test in parallel on both vectors 𝑐(𝑡)1 and 𝑐(𝑡)2 ,
here the HASH function in Lemma 3.4 is extended on the 3-degree

nodes as HASH(0, {{0, 𝑗 , 𝑘}}) = 0. Therefore, for each 𝑡 ≥ 0,

𝑐(𝑡+1)0 (0) = HASH(𝑐(𝑡)0 (0), {{𝑐(𝑡)0 (0), 𝑐(𝑡)0 (1), 𝑐(𝑡)0 (𝑚 − 1)}}) = 0.

Thanks to Lemma 3.4 we obtain 𝑐
(⌊ 𝑚

2 ⌋)
1 = 𝑐

(⌊ 𝑚
2 ⌋)

2 , which is a stable
oloring for the whole graph, as the color partition is not refined
nymore.

The asymmetric case Without loss of generality, we can assume 𝑚 =
length(𝑐(𝑡)1 ) ≠ length(𝑐(𝑡)2 ) = 𝑚 + ℎ for some ℎ > 0. We also assume for
now that 𝑚 is odd (the case 𝑚 even will be briefly discussed later). We
extend the HASH function from Lemma 3.4 to colors 𝑗 , 𝑘 > ⌊

𝑚
2 ⌋. For

 > ⌊

𝑚
2 ⌋ or 𝑘 > ⌊

𝑚
2 ⌋ we define

⎧

⎪

⎨

⎪

⎩

HASH(0, {{𝑗 , 𝑘}}) = ∞
HASH(𝑖, {{𝑗 , 𝑘}}) = ⌊

𝑚
2 ⌋ + 𝑖 if 𝑗 ≠ 𝑘, 𝑖 ≤ ⌊

𝑚
2 ⌋

HASH(𝑖, {{𝑗 , 𝑘}}) = ⌊

𝑚
2 ⌋ + 𝑖 + 1 if 𝑗 = 𝑘, 𝑖 ≤ ⌊

𝑚
2 ⌋

.

Running in parallel the 1–WL test on the two cycles, computing the
oloring vectors 𝑐

(⌊ 𝑚
2 ⌋+1)

1 and 𝑐
(⌊ 𝑚

2 ⌋+1)
2 up to iteration ⌊

𝑚
2 ⌋ + 1, for 𝑖 =

⌊

𝑚
2 ⌋ + 1 we have 𝑐2(𝑖) = ⌊

𝑚
2 ⌋ + 1. Therefore, given the extension of the

HASH function just provided, this new color starts to backpropagate
on the indices 𝑖 < ⌊

𝑚
2 ⌋ + 1, 𝑖 > 𝑚 − ℎ − ⌊

𝑚
2 ⌋ − 1 until it reaches the

index 0. As a consequence, it exists an iteration index 𝑇 such that
(𝑇 )
2 (0) = HASH(0, {{𝑗 , 𝑘∗}}) with 𝑘∗ > ⌊

𝑚
2 ⌋ and, finally, 𝑐(𝑇 )2 (0) = ∞,

giving 𝑐(𝑇 )1 (0) ≠ 𝑐(𝑇 )2 (0), as claimed.
The case in which 𝑚 is even works analogously, but we have to

modify the HASH function in a different way to preserve injectivity.
In particular, for 𝑗 , 𝑘 ≤ 𝑚∕2, we define
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Fig. 2. Graphical illustration of Lemma 3.4: a 6-cycle reaches a stable coloring in ⌊

6
2
⌋ = 3 steps with ⌊

6
2
⌋ + 1 = 4 colors. Numbers are used to identify nodes.
Fig. 3. Stable 1-WL coloring for different types of dicyclic graphs: as stated in
Theorem 3.5, 3-degree nodes have the same color in symmetric dicyclic graphs, and
different color in the asymmetric ones.

{

HASH(𝑖, {{𝑗 , 𝑘}}) = 𝑚
2 if 𝑗 = 𝑘, 𝑖 = 𝑚

2
HASH(𝑖, {{𝑗 , 𝑘}}) = 𝑚

2 + 1 if 𝑗 ≠ 𝑘, 𝑖 = 𝑚
2

.

This concludes the proof. □

Theorem 3.5 establishes in a deterministic way the power of the 1–
WL test in terms of distinguishing between symmetric and asymmetric
dicyclic graphs, given a sufficient number of iterations directly linked
with the maximum cycle length in the considered domain. Examples of
1-WL stable colorings on dicyclic graphs are presented in Fig. 3.

Employing well-known results in the literature concerning the ex-
pressive power of GNNs (see Morris et al., 2019; Xu et al., 2018 and in
particular Theorem 2.1), we can prove the main result of this subsection
on the classification power of GNNs on the domain of dicyclic graphs.

Corollary 3.6 (GNNs Can Classify Symmetric Dicyclic Graphs). There exist
a GNN of the form (2) and a READOUT function able to classify symmetric
dicyclic graphs.

Proof. Let [𝑚, 𝑛] be a dicyclic graph and 𝑐(𝑇 ) be the stable coloring
of [𝑚, 𝑛] produced by the 1-WL test with initial uniform coloring. By
Theorem 3.5 the graph can be correctly classified by the 1–WL test,
i.e., by its stable coloring. Using Theorem 2.1, a GNN 𝑓𝛩 exists such that
𝑓𝛩 can learn the stable coloring for each input graph for each iteration
step 𝑡. Let 𝑐(𝑇 ) be the stable coloring computed by a GNN for a dicyclic
graph [𝑚, 𝑛]. Let (𝑢, 𝑣) be the 3-degree nodes of the dicyclic graph. Then,
the READOUT can be modeled as

READOUT(𝑐(𝑇 )) =
{

1 if 𝑐(𝑇 )(𝑢) = 𝑐(𝑇 )(𝑣)
.

0 otherwise

7 
With such a READOUT, the GNN assigns the correct rating to the
dicyclic graph (i.e., 1 if the graph is symmetric, 0 otherwise). □

Remark 3.7 (The Gap Between Theory and Practice In Corollary 3.6).
Corollary 3.6 shows that GNNs are powerful enough to match the 1–
WL test’s expressive power for the classification of symmetric dicyclic
graphs (as established by Theorem 3.5). However, it is worth underlin-
ing that this result only proves the existence of a GNN model able to
perform this task. In contrast to the results presented in Section 3.1,
this corollary does not mention any training procedure. Nevertheless,
the numerical experiments in Section 4.3 show that GNNs able to
classify symmetric dicyclic graphs can be trained in practice, albeit
achieving generalization outside the training set is not straightforward
and depends on the GNN architecture.

4. Numerical results

This section presents the results of experimental tasks designed
to validate our theorems. We analyze the consistency between the-
oretical and numerical findings, highlighting the significance of spe-
cific hypotheses, and addressing potential limitations of the theoretical
results.

4.1. Experimental setup

We take in account two different models for our analysis:

• The Global Additive Pooling GNN (Gconv-glob) applies a sum
pooling at the end of the message-passing convolutional lay-
ers (Hamilton et al., 2017). In the case of the 2-letter words
setting, the resulting vector ℎglob ∈ Rℎ undergoes processing by
a linear layer, while in the dicyclic graphs setting, an MLP is
employed. A sigmoid activation function is applied at the end.

• The Difference GNN (Gconv-diff ), takes the difference between
the hidden states of the two nodes in the graph (in the 2-letter
words setting) or the difference between the hidden states of the
3-degree nodes (in the dicyclic graphs setting) after the message-
passing convolutional layers. The resulting vector ℎdiff ∈ Rℎ is
then fed into a final linear layer, followed by the application of a
sigmoid activation function.

The choice of the last READOUT part is driven by empirical obser-
vation on their effectiveness on the two different tasks.

Training is performed on an Intel(R) Core(TM) i7-9800X processor
running at 3.80 GHz using 31 GB of RAM along with a GeForce GTX
1080 Ti GPU unit. The Python code is available at https://github.com/
AleDinve/gnn_identity_effects.git.

4.2. Case study #1: two-letter words

To validate Theorem 3.1, we consider a classification task using the
two-letter word identity effect problem described in Section 3.1.1, fol-
lowing the experimental setup presented in Brugiapaglia et al. (2022).

https://github.com/AleDinve/gnn_identity_effects.git
https://github.com/AleDinve/gnn_identity_effects.git
https://github.com/AleDinve/gnn_identity_effects.git


G.A. D’Inverno et al.

r
u

t

e

f

t
t
o
h
(

o
H
e
m
a
i
i
s
v

t
f

t
s
(

t

c

c
s

c
l

t
d
w
s

c
g
s
f
l
i
s

Neural Networks 181 (2025) 106793 
4.2.1. Task and datasets
In accordance with the setting of Section 3.1.1, each word is rep-

esented as a graph consisting of two nodes connected by a single
nweighted and undirected edge (see Fig. 1). Each node is assigned

a node feature 𝑥 ∈ R26, corresponding to a letter’s encoding.
The training set 𝐷train includes all two-letter words composed of any

English alphabet letters except 𝖸 and 𝖹. The test set 𝐷test is a set of
wo-letter words where at least one of the letters is chosen from 𝖸,𝖹.

Specifically, we consider 𝐷test = {𝖸𝖸,𝖹𝖹,𝖸𝖹,𝖹𝖳,𝖤𝖸, 𝖲𝖹}.

4.2.2. Vertex feature encodings
In our experiments, we consider four different encodings of the

English alphabet, following the framework outlined in Section 3.1. Each
ncoding consists of a set of vectors drawn from R26.

• One-hot encoding : This encoding assigns a vector from the canon-
ical basis to each letter: 𝖠 is encoded as 𝑒1, 𝖡 as 𝑒2, . . . , and 𝖹 as
𝑒26.

• Haar encoding : This encoding assigns to each letter the columns
of a 26 × 26 orthogonal matrix drawn from the orthogonal group
O(26) using the Haar distribution (Mezzadri, 2007).

• Distributed encoding : This encoding assigns a random combination
of 26 bits to each letter. In this binary encoding, only 𝑗 bits are
set to 1, while the remaining 26 − 𝑗 bits are set to 0. In our
experiments, we set 𝑗 = 6.

• Gaussian encoding : This encoding assigns samples from the multi-
variate normal distribution  (0, 𝐼), where 0 ∈ R𝑛 and 𝐼 ∈ R𝑛×𝑛.
In our experiments, we set 𝑛 = 16.

Observe that only the one-hot and the Haar encodings are orthogonal
(see Section 3.1.1) and hence satisfy the assumption of Theorem 3.3.
On the other hand, the distributed and the Gaussian encodings do not
all within the setting of Theorem 3.3.

We run 40 trials for each model (i.e., Gconv-glob or Gconv-diff,
defined in Section 4.1) with 𝑙 layers (ranging from 1 to 3). In each
rial, a different training set is randomly generated. The models are
rained for 5000 epochs using the Adam optimizer with a learning rate
f 𝜆 = 0.0025, while minimizing the binary cross-entropy loss. The
idden state dimension is set to 𝑑 = 64, and Rectified Linear Units
ReLUs) are used as activation functions.

The numerical results are shown in Figs. 4–5, where we propose two
different types of plots:

• On the top row, we compare the ratings obtained using the four
adopted encodings. The first two words, 𝖠𝖠 and a randomly
generated word with nonidentical letters, denoted 𝗑𝗒, are selected
from the training set to showcase the training accuracy. The
remaining words are taken from 𝐷test, allowing assessment of the
generalization capabilities of the encoding scheme outside the
training test. The bars represent the mean across trials, while
the segments at the center of each bar represent the standard
deviation.

• On the bottom row, we show loss functions with respect to the
test set over the training epochs for each encoding. The lines
represent the average, while the shaded areas represents the
standard deviation.

Our numerical findings indicate that the rating impossibility the-
rem holds true for the one-hot encoding and the Haar encoding.
owever, notable differences in behavior emerge for the other two
ncodings. The 6-bit distributed encoding exhibits superior perfor-
ance across all experiments, demonstrating higher rating accuracy

nd better loss convergence. The Gaussian encoding yields slightly
nferior results, yet still showcases some generalization capability. It
s important to note that despite variations in experimental settings
uch as architecture and optimizer (specifically, the use of ReLU acti-
ations and the Adam optimizer), the divergent behavior among the
8 
considered encodings remains consistent. This highlights the critical
role of the transformation matrix 𝑇2 within the hypothesis outlined in
Theorem 3.3. It is interesting to notice that increasing the number of
layers contributes to the so-called oversmoothing effect (Cai & Wang,
2020; Oono & Suzuki, 2019): many message passing iterations tend
o homogenize information across the nodes, generating highly similar
eatures.

4.3. Case study #2: dicyclic graphs

We now consider the problem of classifying unlabeled symmetric
dicyclic graphs, introduced in Section 3.2. In Corollary 3.6 we proved
he existence of GNNs able to classify symmetric dicyclic graphs. In this
ection, we assess whether such GNNs can be computed via training
see also Remark 3.7). With this aim, we consider two experimental

settings based on different choices of training and test set: an extraction
ask and an extrapolation task, summarized in Figs. 8 and 10, respec-

tively, and described in detail below. Each task involves running 25
trials for the Gconv-glob and Gconv-diff models defined in Section 4.1.
The number of layers in each model is determined based on the specific
task.

The models are trained over 5000 epochs using a learning rate of
𝜆 = 0.001. We employ the Adam optimizer, minimizing the binary
rossentropy, and incorporate the AMSGrad fixer (Reddi, Kale, & Ku-

mar, 2019) to enhance training stability due to the large number of
layers. Labels are all initialized uniformly as ℎ(0)𝑣 = 1 for each node in
each graph. The hidden state dimension is set to 𝑑 = 100, and ReLU
activation functions are utilized.

The results presented in Figs. 6, 8, and 10 should be interpreted as
follows: each circle represents a dicyclic graph [𝑚, 𝑛]; the color of the
ircle corresponds to the rating, while the circle’s radius represents the
tandard deviation.

4.3.1. 1–WL test performance
In Theorem 3.5 we showed that the 1–WL test can classify symmet-

ric dicyclic graphs. This holds true regardless of the length of the longer
cycle, provided that a sufficient number of iterations is performed.
The results in Fig. 6 show that the 1–WL test achieves indeed perfect
lassification accuracy in 𝑛max iterations, where 𝑛max is the maximum
ength of a cycle in the dataset, in accordance with Theorem 3.5.

4.3.2. Extraction task
In this task, we evaluate the capability of GNNs to generalize to

unseen data, specifically when the minimum length of cycles in the
est dataset is smaller than the maximum length of those in the training
ataset. More specifically, the training set 𝐷train consists of pairs [𝑚, 𝑛]
here 3 ≤ 𝑚, 𝑛 ≤ 𝑛max and 𝑚, 𝑛 ≠ 𝑘 with 3 ≤ 𝑘 ≤ 𝑛max, while the test

et 𝐷test comprises pairs [𝑘, 𝑎] with 3 ≤ 𝑎 ≤ 𝑛max. Fig. 7 illustrates this
setting.

In our experiments, we set 𝑛max = 8 and consider 𝑘 values of 7,
6, and 5. In this setting, |𝐷test| = (8 − 2) ⋅ 2 − 1 = 11 and |𝐷train| =
(8 − 2)2 − |𝐷test| = 25. The number of GNN layers is 𝑙 = 𝑛max. The
numerical results are presented in Fig. 8. We observe that the Gconv-
diff model achieves perfect performance in our experiments (standard
deviation values are not reported because they are too low), showing
onsistence with the theoretical setting. On the other hand, the Gconv-
lob model demonstrates good, but not perfect, performance on the test
et. A critical point in our numerical examples seems to be 𝑘 = 5, which
alls in the middle range between the minimum and maximum cycle
engths in the training set (3 and 8, respectively). This particular value
s closer to the minimum length, indicating a relatively unbalanced
cenario.

Overall, the different performance of Gconv-diff and Gconv-glob
on the extraction task shows that, despite the theoretical existence
result proved in Corollary 3.6, the choice of architecture is crucial for
achieving successful generalization.
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Fig. 4. Numerical results for the rating task on the two-letter words dataset using Gconv-glob with 𝑙 = 1, 2, 3 layers. Rating should be equal to 1 if words are composed by identical
letters, 0 otherwise. The distributed and Gaussian encodings, which deviate from the framework outlined in Theorem 3.1, exhibit superior performance compared to the other
encodings. The other encodings makes the transformation matrix orthogonal and symmetric, being themselves orthogonal encodings.
Fig. 5. Numerical results for the rating task on the two-letter words dataset using Gconv-diff with 𝑙 = 1, 2, 3 layers. The same observations to those in Fig. 4 can be made here as
well.
4.3.3. Extrapolation task
In this task, we assess GNNs’ ability to generalize to unseen data

with cycle lengths exceeding the maximum length in the training
dataset. Specifically, the training set 𝐷train comprises pairs [𝑚, 𝑛] where
3 ≤ 𝑚, 𝑛 ≤ 𝑛max, while the test set 𝐷test consists of pairs [𝑛max + 𝑘, 𝑛′]
with 0 < 𝑘 ≤ 𝑔 and 3 ≤ 𝑛′ ≤ 𝑛max + 𝑔. Fig. 9 illustrates the extrapolation
task.

In our experiments, we set 𝑛max = 8 and consider values of 𝑔 as 1, 2,
and 3. The number of GNN layers is 𝑙 = 𝑛max + 𝑔. Therefore, |𝐷train| =
(8 − 2)2 = 36, |𝐷test,𝑔=1| = (9 − 2)⋅2 − 1 = 13, |𝐷test,𝑔=2| = (10 − 2)⋅4 − 4 = 28
and |𝐷test,𝑔=3| = (11 − 2) ⋅ 6 − 9 = 45. Numerical results are presented in
Fig. 10. In the extraction task, both models achieved perfect training
accuracy. Conversely, in the extrapolation task, the Gconv-glob model
struggles to classify the training set accurately, especially when the
number of layers is equal to 9. This behavior may be attributed to the
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homogeneous nature of sum pooling at the end of the message passing,
as it does not take into account the role of 3-degree nodes (which play a
key role in our theory, as illustrated by Theorem 3.5 and Corollary 3.6).

On the other hand, the Gconv-diff model consistently achieves
perfect training accuracy over the training set and achieves perfect gen-
eralization for 𝑔 = 1, showing once again the importance of architecture
choice in practice. However, when 𝑔 ≥ 2 there is a noticeable region
of misclassification for pairs [𝑚, 𝑛] where 𝑚, 𝑛 ≥ 𝑛max. This behavior
could be explained by the limited capacity of the hidden states, but the
optimization process might also play a significant role. Moreover, for
𝑔 ≥ 2 the numerical results of the extrapolation task resemble the rating
impossibility phenomenon observed in the two-letter words framework.
However, it is important to note that, at least for the Gconv-diff model,
we observe significantly different ratings between graphs [𝑚, 𝑛max + 𝑔]
where 𝑚 < 𝑛 and graphs [𝑛 + 𝑖, 𝑛 + 𝑗] with 𝑖, 𝑗 > 0. In contrast,
max max max
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Fig. 6. Perfect classification of symmetric dicyclic graphs by 𝑛max iterations of the 1-WL test.
Fig. 7. Graphical illustration of the extraction task. In this example, 𝑛max = 6 and 𝑘 = 5.
in the two-letter words framework ratings typically do not exhibit such
a consistent and distinguishable pattern.

5. Conclusions

This work extensively investigates the generalization capabilities
of GNNs when learning identity effects through a combination of
theoretical and experimental analysis. From the theoretical perspective,
in Theorem 3.3 we established that GNNs, under mild assumptions,
cannot learn identity effects when orthogonal encodings are used in
a specific two-letter word classification task. On the positive side,
in Corollary 3.6 we showed the existence of GNNs able to success-
fully learn identity effects on dicyclic graphs, thanks to the expressive
power of the Weisfeiler–Lehman test (see Theorem 3.5). The experi-
mental results strongly support these theoretical findings and provide
valuable insights into the problem. In the case of two-letter words,
our experiments highlight the key influence of encoding orthogonal-
ity on misclassification behavior. Our experiments on dicyclic graphs
demonstrate the importance of architecture choice in order to achieve
generalization.

Several directions of future research naturally stem from our work.
First, while Theorem 3.3 identifies sufficient conditions for rating im-
possibility, it is not known whether (any of) these conditions are
also necessary. Moreover, numerical experiments on two-letter words
show that generalization outside the training set is possible when
using nonorthogonal encodings; justifying this phenomenon from a
theoretical perspective is an open problem. On the other hand, our
numerical experiments on dicyclic graphs show that achieving gen-
eralization depends on choice of the architecture; this suggests that
rating impossibility theorems might hold under suitable conditions on
10 
the GNN architecture in that setting. Another interesting open problem
is the evaluation of GNNs’ expressive power on more complex graph
domains. In particular, conducting extensive experiments on molecule
analyses mentioned in Section 1, which naturally exhibit intricate
structures, could provide valuable insights into modern chemistry and
drug discovery applications.
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Fig. 8. Extraction task performed by different GNN models, namely Gconv-glob (left) and Gconv-diff (right). We set 𝑛max = 8, 𝑙 = 8 and, from top to bottom, 𝑘 = 7, 6, 5.

Fig. 9. Graphical illustration of the extrapolation task. In this example, 𝑛max = 5 and 𝑔 = 2.
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Fig. 10. Extrapolation task performed by different GNN models, namely Gconv-glob (left) and Gconv-diff (right). We set 𝑛max = 8, 𝑙 = 8 and, from top to bottom,
(𝑙 , 𝑔) = (9, 1), (10, 2), (11, 3).
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