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Summary 

In the last two decades, a revolution in biology has shifted the traditional reductive 

approach to a bottom-up study of virtual models. This discipline, known as System Biology, 

integrates information coming from individual components, in order to predict the 

functioning of biological systems, with the idea that complex systems are made up of many 

independent components that can interact within well-structured networks changing over 

time, and that the functional properties of biological systems emerge as a consequence of 

interactions among their components. This paradigm shift is enabled by rapid advancements 

in technologies providing high-throughput instruments able to analyse in detail biological 

processes at the single molecule and single cell scale. The vast amount of data produced by 

these experimental techniques asks for adequate methods of analyses. The present 

dissertation focues on structural based methods for simulating the functioning of biological 

molecules, and in particular on the role of Molecular Dynamics simulations. The advantage 

of Molecular Dynamics simulations is that it is based on physical description of the systems, 

and consequently it might offer an atomistic description of the process under investigation. 

The first chapter of this thesis will provide an introduction on the role of Molecular Genetics 

and Biology in Medicine, also considering new challenges for the prediction of protein 

interactions and for development of Precision Medicine. In the Second Chapters, Molecular 

Dynamics simulations will be discussed, with an emphasis on the methods for data analysis 

adopted in the research projects presented in the second part of the thesis. The third Chapter 

will be present the main research project produced during my PhD: the study of inactivation 

and drug binding in the hERG potassium channel. Side project and parallel collaborations 

are briefly discussed in the fourth Chapter, followed by concluding remarks. 
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PART I – Introduction 
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Chapter 1 - Molecular Genetics and Biology in Medicine 

1.1. Genomics and bioinformatics contribution to Precision Medicine 

We are living the era of omics science, a revolution in biology that has directed the 

traditional reductive approach to a bottom-up study of biological systems, known as Systems 

Biology. The new approach has been responsible for some of the most important 

developments in the science of human health. It is a holistic approach to deciphering the 

complexity of biological systems that starts from the understanding that living organisms are 

more than the sum of their parts. It is collaborative, integrating many scientific disciplines – 

biology, computer science, engineering, bioinformatics, physics, and others – to predict how 

these systems change over time and under varying conditions, and to develop solutions to 

the world’s most pressing health and environmental issues (Oltvai & Barabási, 2002; Sauer 

et al., 2007; Tavassoly et al., 2018) (Figure 1.1). 

 

Figure 1.1 System Biology. 



A fundamental tenet of systems biology is that solving challenging biological problems 

requires the development of new technologies in order to explore new dimensions of data 

space, and that new data types require novel analytical tools. This virtuous cycle of biology 

driving technology driving computation can exist only in a cross-disciplinary environment 

where biologists, chemists, computer scientists, engineers, mathematicians, physicists, 

physicians, contribute to tackle grand challenges (Hood et al., 2004). The Human Genome 

Project (Lander et al., 2001) could be considered a significant example of the result that can 

be achieved through the integration of new technologies in a multi-disciplinary open-source 

environment. The achievement of these extraordinary goals represents the starting point of 

an innovative process that is continuously developing. Deciphering the human genome, 

simultaneously to the complete examinations of the whole genomes of other numerous 

species (including numerous microorganisms, yeast, plants, and animals) with differing 

degrees of complexity, generated new techniques of data analyses (Xia, 2013), and several 

databases storing distinct genomes are now accessible, to allow for comparative study and 

reconstruction of evolutionary connections between single genes and genomes. Despite the 

researchers' original emphasis on the human genome's codifying region (< 3%), the 

examination expanded to the remainder area with the objective of discovering the 

significance of DNA sequences that are difficult to define as "useless" just because they are 

not codifying. Currently, genomic studies are focused on comparing the various genes, 

identifying sequences associated with a particular phenotype, and comprehending the 

function of the genes and their products (transcripts, proteins, and metabolites), as well as 

the complex interactions between them at multiple levels. Comparative analysis is possible 

at several stages: genomic, chromosomic, sub-chromosomic, and genic. For example, taking 

into consideration the genome of two closely related species, such as murine and human, 

and evaluating DNA sequences of single chromosomes, emerged that the order of the genes 

is conserved across the two species in many chromosomic areas. The identification of 

chromosomic regions in which the order and type of genes are preserved between two 

species enables fascinating comparisons between single genes. When two genes that derive 

from the same ancestral gene are compared (orthologous genes), it is possible to determine 

the presence of differences in their intron and exon composition, their regulatory sequences, 

and their codified product. There are, however, genes with sequence similarity that are not 

orthologous (in general, they have a different structure and function in the two organisms 
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under consideration) and genes derived from the duplication of a particular gene in one 

specie and subsequent diversification from one specie to the next (paralogous genes). The 

idea of sequence alignment is that a given DNA sequence will undergo random mutations 

over time; two identical sequences will thus diverge over time, barring the presence of 

certain constraints, such as selection against mutations (modifications to a sequence that 

codes for a specific product may be harmful to the individual). As a result, one can expect 

some “phylogenetic conservation” in the case of functionally relevant sequences, while 

strong and fast divergence is expected for non-functional sequences. Comparing the 

genomes of distinct organisms is a necessary tool for reconstructing both the phylogenesis 

and the convolution of the evolutionary history. Apart from establishing similarity (and 

occasionally identity) between codifying sequences in two distinct species, the principle of 

evolutionary conservation of the sequence leads the search for significant, but non-

codifying, sequences present in the genome. If functional annotations are required, they 

should be based on conserved phylogenetic sequences. While an organism's genome 

contains all the instructions for making proteins necessary for survival, interaction with the 

environment, and reproduction, protein expression allows individual cells to have distinct 

characteristics and functions. In fact, cells not only contain instructions for protein 

modification, but also information on the conditions in which amino acids must be 

synthesised. This information is encoded by complex regulatory and control mechanisms. 

An integrated analysis of these molecules (DNA, mRNA, and proteins) allows for new and 

solid experimental foundations for Systems Biology: gene sequences, how they are 

expressed and translated into proteins, the nature of these proteins and their function encode 

all information required for cell function and are therefore the events of interest. Genetic, 

genomic, and proteomic research aims to reveal the mechanisms that govern cellular 

processes to refine existing tools for early disease detection, prevention, and treatment 

development. Similarly, the development of pharmaceutical genomics and genetics is 

changing the way we treat diseases with a greater social impact, focusing on the development 

of new classes of drugs that can target biochemical pathways, or be personalized to an 

individual's genetic profile (Pirmohamed, 2001). A crucial step in all these scientific and 

technological advances has been the development of computerised systems for managing, 

analysing, and using heterogeneous and high-dimensional data generated by high-

throughput tools, due to drastically reduce the time to transfer molecular biology and 



genomics information to practical clinical application.  This progress steered the treatment 

of patients towards an approach called Precision Medicine (PM), due to the underlying 

concept of tailoring individual health according to medical model that use molecular 

profiling technologies for finding the right therapeutic strategy for the right person at the 

right time, and for maximizing the benefit-to-risk ratio (Stone, 2016). In particular, “The 

Precision Medicine Initiative”, by the “National Institute of Health”, reported (NIH, 2022): 

“Precision medicine is an emerging approach for disease prevention and treatment that 

takes into account people’s individual variations in genes, environment, and lifestyle.” 

Among the main goals of PM are to encourage research into a wide range of diseases, 

analysing pharmacogenomics, and finally create biological markers capable of objectively 

describing and accurately signalling disease risk. In this way, it will be possible to link 

genetic and environmental factors to a wide range of health outcomes. Notably, the goals of 

PM are not focused on a single patient, but rather on the categorization of individuals into 

subpopulations or patient groups. As reported from the U.S. National Research Council, PM 

rests on a “new taxonomy for human disease based on molecular biology” giving rise to the 

concept of “stratification”. The term "stratification" refers to the ability to cluster patients in 

groups basing on specific biological features that can be found through molecular and 

biochemical diagnostic tests. To achieve stratification, a vast amount of relevant data must 

be considered. Even tiny or routine aspects cannot be ignored; age, ethnicity, and ancestral 

population membership, as well as geographic and social context and conditions should all 

be considered. In this setting, identifying biomarkers is required to identify patient 

subgroups. Biomarkers are biological indicators, with a unique molecular, anatomic, 

physiological, or biochemical characteristic, that can be detected and accurately evaluated 

in a variety of ways. From this perspective, in clinical field, biomarkers have a wide range 

of uses in diagnostic, prognostic, risk assessment, and predictive objectives, among others 

(Bahcall, 2015; Iyengar et al., 2015; NIH, 2022) (Figure 1.2). 
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All these biomarker functions are possible because of genomics research that identifies and 

correlates certain indicators with clinical illness. However, genomic technologies may have 

limitations in some cases, such as false negative findings due to the high-dimensionality for 

data with respect to the number of samples usually available. Then, further approaches such 

as phenotypic studies, imaging, and functional in vivo studies, as well as scaling up 

population-based genome sequencing and combining it with clinical data, are necessary to 

enhance biomarker discovery for a particular clinical illness. Additionally, because it is ideal 

to identify biomarkers concurrently with drug research and development (a lengthy, 

expensive, and prone to failure process), a new discipline called Pharmacogenomic has lately 

gained increasing interest. This field of study is concerned with identifying genetic 

variations that change the pharmacokinetics or pharmacodynamics of drugs, by altering the 

target, or by perturbing a biological process (Bahcall, 2015). The identification of 

biomarkers remains a key element, especially in rare diseases. PM accomplishes this goal 

by establishing patient registries, utilising massive volumes of data to uncover possible 

correlations, and including patients as active participants. The associated process is complex 

and is distributed into four stages: discovery, development, validation, and application. 

Figure 1.2 Biomarker application in clinical field. 



Metadata involved in this process are collected in the Precision Medicine Ecosystem, a 

virtual "ecosystem" of several databases, in which new information is constantly stored, 

based on the previously mentioned criteria of stratification (Iyengar et al., 2015). 

1.2. Multiscale modelling  

The development of multiscale models of cellular functions, starting from its molecular 

constituents, represents one of the most promising sectors of Systems Biology. Although the 

genomes of many organisms have been completely sequenced, we are not yet able to 

associate a role with many genes and/or proteins. The bioinformatic analyses of the 

homology of sequences or structures of a molecular element with unknown function to 

sequences, or structures, with already known function, is useful for directing research, 

restricting the field of investigation to a limited number of elements. This approach, 

however, does not suggest whether a certain function is accomplished through the interaction 

between certain molecules. Mathematical modelling and numerical simulations are powerful 

tools to address this question. Multiscale models of cell functioning allow, in fact, to 

integrate current knowledge on interactions between molecules to predict the effects that 

emerge from such interactions at the cellular level. To exemplify the transition from the 

atomic to the macromolecular scale, this thesis focuses on the study of the relationship 

between structure and function of a channel protein, using Molecular Dynamics (MD) 

simulations and related in silico techniques. MD simulations was performed because starting 

from a generic model of the physics driving interatomic interactions, MD simulations may 

disclose the locations of all the atoms at femtosecond temporal precision (Karplus & 

McCammon, 2002). In fact, there are several applications where MD simulations provide 

predictive information useful for investigating complex biomolecular processes or assisting 

experimental data (Figure 1.3). 
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Figure 1.3. Applications of Molecular Dynamics simulations [reprinted from Hollingsworth 

and Dror, 2018]. 



Firstly, simulations can be employed to refine the accuracy of 3D structures of 

macromolecular entities or even investigating conformational flexibility and stability of 

various regions of a biomolecule, both if starting from an ab initio approach or not. In fact, 

crystal structures may suffer from purification and crystallization artifacts (Niedzialkowska 

et al., 2016), that can be corrected by performing a simulation starting from the initial 

coordinates and letting the structure to relax to a more favourable energetic (Burg et al., 

2015). X-ray crystallography, for example, is commonly refined by an MD-based simulated 

annealing protocol that fits multiple models to the experimental data preserving the physical 

properties of the structure (Hao et al., 2015). Another approach is regularly in use to solve 

atomistic molecular models from low-resolution cryo-EM density maps, specifically when 

high-resolution configurations of distinct elements of a complex are independently available 

(Scapin et al., 2018). MD simulations are also employed to refine ensembles from NMR 

experiments (Lindorff-Larsen et al., 2005). In a similar attempt, MD simulation, as other 

specific structure-based methods, can be used to assess the binding pose of ligands when 

cryo-EM produce conformational space with ambiguous density (Koehl, 2018). 

Alternatively, MD simulation can be used to observe response following some controlled 

change to the system. Perturbation involves the addition of a bias, and often a partial 

restrains; generally, they request several replicates in both the perturbed and unperturbed 

systems to identify consistent differences in the results. A typical application of this 

approach is the identification of protein-ligand interaction profile from an experimentally 

determined structure or from a homology model. Other applications might be related to 

observe response of the system following mutation into the protonation state of an acidic or 

basic amino acid or adding some post-translational modification, as phosphorylation (Fields 

et al., 2017; Groban et al., 2006; Liu et al., 2015). In last instance, MD simulation are 

frequently used to observe a biomolecular dynamic process over time, such in ligand 

binding, ligand- or voltage-induced conformational change, protein folding, or membrane 

transport (Hollingsworth & Dror, 2018) (Figure 1.3). 

The cellular function of all molecules-whether protein or otherwise- ultimately depends on 

interactions (a molecule that does not interact with any other component is irrelevant to the 

system). MD can study interactions because they are mediated by mechanisms and forces 

that also control conformational transitions. The binding to specific sites (allosteric) can 

modulate enzymatic activity in other parts of the protein, regulating its conformation and 
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therefore the binding properties to other ligands. The study of interactions finds immediate 

biotechnological application in pharmacogenomics. In traditional approaches, new drugs are 

developed by random and multiple modifications of existing molecules and subsequent 

selection of active moieties through the experimental characterization of the interaction with 

specific receptors or target molecules. Thanks to the study of protein structures and MD 

simulations, it is possible to greatly cut time and costs by creating libraries of modified 

ligands in silico and predicting their interactions. In the case of drug-target interactions, MD 

are used to support the study of the molecular aspect of the binding of known drugs. In Drug 

Discovery, potential new drug target interactions (DTI) are predicted by other methods, 

ranging from ligand/receptor-based methods (Cheng et al., 2007; Wang et al., 2013) to gene 

ontology-based (Mutowo et al., 2016), text-mining-based methods (Zhu et al., 2005), and 

reverse virtual screening techniques (reverse-docking) (A. Lee et al., 2016; Wang et al., 

2018), which are currently being developed. Docking calculations are commonly employed 

in receptor-based approaches, but they require 3D structures of target proteins, which are not 

always accessible. However, ligand-based techniques perform poorly when the number of 

known ligands is minimal, because they forecast DTIs based on the similarity of candidate 

to known target protein ligands. The fundamental limitation of both gene ontology and text 

mining techniques appears to be related to the query term. This is compounded by the 

frequent usage of duplicate drugs and target protein names. Moreover, since text-mining is 

confined to current information (i.e., published content), discovering new knowledge is 

difficult (Ruch, 2017). 

1.3. Artificial Intelligence methods 

Recent in silico approaches introduced Artificial Intelligence (AI) to address the 

limitations that involve large combinatorial spaces or nonlinear processes featuring 

structure-based techniques. AI refers to a procedure that creates an artificial system with a 

specific level of intelligence and employs computer software and hardware to replicate 

intelligent behaviours in a computer-simulated environment. AI-related algorithms can 

benchmark datasets with structural information provided in Protein Data Bank (PDB) 

(Berman et al., 2000; Westbrook et al., 2003) adding more information to validate structure-

based methods via scoring functions and docking techniques, or to refine prediction in the 



absence of structural data. Learning techniques used in in silico studies might be classified 

as: supervised learning, unsupervised learning, semi-supervised learning, active learning, 

reinforcement learning, transfer learning, and multitask learning, with each class having its 

own benefits and limitations (X. Yang et al., 2019), also in relation with the particular task 

at hand. For example, in peptide-MHC binding (Chapter 4.2) prediction is more suitable to 

handle with Machine Learning (ML) modelling framework implemented by supervised 

algorithm such as NetMHCpan, that is a popular tool trained integrating datasets with all the 

binding affinity information and/or data retrieved from eluted ligands (Reynisson et al., 

2020). These benchmark datasets are not only used to train models and check how well they 

work with standardised data, but also to be compared with state-of-the-art methods that are 

already in use to find the best performance. Taking up the previous DTIs example, there are 

three large datasets called BindingDB, Davis, and Kinase Inhibitor BioActivity that provide 

these binding affinities for interaction strength (Huang et al., 2021). In all three datasets, 

there are large-scale biochemical tests to see how well the kinase inhibitors work, because 

this protein family has more biological activity and is important for cancer cells 

communication (Tatar & Taskin Tok, 2019). As in other life sciences field, predictors based 

on sequence-data are data-driven, using AI and Deep Learning (DL) techniques for 

regression task rather than classification. AI and statistical analysis approaches are usually 

based on features or similarities. Known DTIs chemical descriptors for drugs and the 

descriptors for their targets are used by feature-based approaches to make feature vectors. 

Similarity-based AI techniques, on the other hand, employ the guilt-by-association criterion, 

which suppose that similar drugs tend to interact with similar targets and similar targets are 

targeted by similar drugs. Sometimes DL algorithms show better performance when 

compared to AI predictors (Thafar et al., 2019). Artificial Neural Networks (ANN) can be 

used for both supervised and unsupervised learning. They differ from each other in two main 

aspects. The first is related to the representation of input data by specific features, such as 

Simplified Molecular Input Line Entry System, Ligand Maximum Common Substructure, 

and Extended Connectivity Fingerprint in drug-target binding affinities prediction. The 

second is involving the different ANN types on which is implemented the system 

architecture (Krig, 2016). An ANN model comprises a series of connected layers; every node 

in the network performs a linear transformation of nodes in the previous layer and feeds it 
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through a non-linear activation function. The shape of the layers, and the choice of activation 

function are static hyperparameters of the network’s topology, whereas the weight of the 

linear transformations is tuned during training. A few of the most common ANN types 

include Feedforward, Radial Basis Function, Multilayer Perceptron, Recurrent, and 

Convolutional neural networks. Feedforward and Convolutional neural networks have been 

employed in the algorithms that predict drug-target binding affinities  (Thafar et al., 2019). 

Despite the last decade’s rising interest in AI -based computational models developed for 

the research environment, the persistence of several limitations constrained performance. 

Fortunately, today open-science initiative spanning new vision of unifying resource to 

systematically access and evaluate AI methods across the entire range of therapeutics, as 

emphasized from the new-born Therapeutics Data Commons (TDC) (Huang et al., 2021):  

“TDC supports the development of novel ML theory and methods, with a strong bent 

towards developing the mathematical foundations of which ML algorithms are most suitable 

for drug discovery applications and why.” 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2 – Molecular Dynamics (MD) simulations 

2.1 Molecular Dynamics and Force Fields 

In Molecular Dynamics, molecules are described as a set of elementary particles, usually 

corresponding to atoms, and forces are calculated using simple functional forms. Dynamic 

is simulated by numerical integration of the Newton’s equation of motion: 

 
𝑑𝑝

𝑑𝑡
= 𝐹                                                                                                                        𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.1                                                                           

where 𝑝 is the array of momenta of all particles and F is the array of forces. In classical 

atomistic MD simulations, one or more atoms are represented as a unique particle with fixed 

mass and charge. The acceleration of each atom in the system at each timesteps is determined 

by considering the coordinates and velocity that the atom had in the steps before. The 

functional form and the corresponding parameters used to compute the interatomic forces 

are collectively known as the Force Field (FF). Parameters of the FF are identified by a 

combination of quantum mechanical calculations and fitting to experimental data (Frenkel 

et al., 1997). A simplified scheme of an algorithm for MD simulations is reported in Figure 

2.1. Most of the software and FFs in use today for proteins and other organic molecules are 

based on pioneering studies starting in the 70’s, when the evolution of experimental and 

parameterization techniques boosted FF developments in organic chemistry. The ECEPP 

potentials (Hagler et al., 1974; Momany et al., 1975), and the Consistent FF (Warshel & 

Lifson, 1970), represented important milestones in the field. In the 1980’s, were first 

released some of the FFs still in use today, including CHemistry at HARvard Molecular 

Mechanics (CHARMM) (Brooks et al., 1983), Assisted Model Building with Energy 

Refinement (AMBER) (Cornell et al., 1995) and Optimized Potentials for Liquid 

Simulations All-Atoms (OPLS) (Jorgensen & Tirado-Rives, 1988). These FF are 

characterized by similar functional forms (Equation 2.2). Pragmatically, the potential 

energy of a molecule is described in terms of contributions from bonded (Equation 2.3 and 

Figure 2.2) and non-bonded interactions (Equation 2.4) (Frenkel et al., 1997): 

𝐸𝑇𝑂𝑇 = 𝐸𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑 + 𝐸𝑏𝑜𝑛𝑑𝑒𝑑                                                                              𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.2 
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𝐸𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑 = ∑ 𝜀𝑖𝑗 [(
𝑅𝑚𝑖𝑛,𝑖𝑗

𝑟𝑖𝑗
)

12

− 2 ∗ (
𝑅𝑚𝑖𝑛,𝑖𝑗  

𝑟𝑖𝑗
)

6

] +
𝑞𝑖𝑞𝑗

𝑟𝑖𝑗
𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑠

𝑝𝑎𝑖𝑟𝑠 𝑖𝑗

     𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.3 

𝐸𝑏𝑜𝑛𝑑𝑒𝑑 = ∑ 𝐾𝑏(𝑏 − 𝑏0)2

𝑏𝑜𝑛𝑑𝑠

+ ∑ 𝐾𝜃(𝜃 − 𝜃0)2𝐾𝜃(𝜃 − 𝜃0)2

𝑎𝑛𝑔𝑙𝑒𝑠

+ ∑ 𝐾𝜒[1 +cos(𝑛𝜒 − 𝜎)]

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

                                            𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.4 

 

Figure 2.1. Overview of MDs algorithm. 



The first term in Equation 2.3 defines the interaction between pairs of bonded atoms (stretch 

contributions) with a simple harmonic function that controls the length of covalent bonds b 

with respect to the reference value b0. Estimates of b0 can be obtained from X-ray diffraction 

experiments, while the spring constant may be estimated from infrared or Raman spectra. 

The harmonic potential is a good approximation for bond deformations smaller than 10% 

from the reference value. The use of harmonic functions implies that bonds are “hard-coded” 

in the initial system setup, and consequently, no change in the bonding structure can be 

simulated. This is one of the main limitations of FF-based MD simulations compared to ab 

initio methods. Occasionally, some other functional forms (in particular, the Morse’s 

potential) might be employed to improve accuracy. Nevertheless, because of the higher 

computation cost of computing Morse’s potentials, and the good approximation provided by 

harmonic functions for the simulation of biological systems, most of the existing FFs use the 

simpler harmonic functions.                                                             

In Equation 2.3, the angle bending contribution is also expressed by harmonic potentials. θ 

is the angle formed by the two bond vectors of the triplet of bonded atoms; Kθ and θ0 are the 

parameters describing the force constant and equilibrium value of the angle. Kθ can be 

estimated, experimentally or theoretically, from vibrational analysis of the molecule. 

Compared to the force constants associated with bond stretching, the ones associated with 

angle bending are usually lower. The third term in Equation 2.3 is the dihedral or torsional 

Figure 2.2. Schematic representation of the bonded terms contribution to a molecular 

mechanics’ force field. 
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potential. It describes the energetic contributions associated with rotation of dihedral angles 

defined by each group of 4 bonded atoms. Torsional energy is usually estimated by 

trigonometric functions. In the case of Equation 2.3, χ is the torsional angle, σ is the phase, 

n specifies the number of minima or maxima between 0 and 2π, and Kχ determines the peak 

of the potential energy barrier. Kχ is usually obtained starting from ab initio calculations that 

are successively refined by fitting to experimental data. 

The non-bonded terms (Equation 2.4) are, at least theoretically, calculated between any pair 

of atoms i and j, with position vectors, ri and rj. Non-bonded interactions are due to two 

terms, respectively represented by the Lennard-Jones and electrostatic potentials. Classical 

12-6 Lennard-Jones potentials are typically used to represent van der Waals interactions: 

𝑉𝐿𝐽(𝑟) =
𝐶𝑖𝑗

12

𝑟12
−

𝐶𝑖𝑗
6

𝑟6
                                                                                                  𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.5 

where 
𝐶𝑖𝑗

12

𝑟12  represent the Pauli repulsive term due to the short-range repulsive forces, while 

𝐶𝑖𝑗
6

𝑟6  provides the London attractive contribution due to dispersion force. In a widely used form 

of the Lennard-Jones potential, 𝐶12 and 𝐶6 values are replaced by σ and ε,  

𝑉𝐿𝐽(𝑟) = 4𝜀𝑖𝑗 [(
𝜎𝑖𝑗

𝑟
)

12

− (
𝜎𝑖𝑗

𝑟
)

6

]                                                                        𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.6 

Where σ represents the distance that nullifies the potential, and ε is the energy value at the 

minimum point of the function. At long distances, the negative part 4𝜀𝑖𝑗 (
𝜎𝑖𝑗

𝑟
)

6
 prevails, 

while the positive part 4𝜀𝑖𝑗 (
𝜎𝑖𝑗

𝑟
)

12
 is predominant at short distances (Figure 2.3). Values of 

σ and ε depend on the type of interacting atoms. Composition rules can be applied to define 

the parameters for the interaction between each pair of atoms starting from single-atom 

values. There are different types of combination rules; in Lorentz-Berthelot rule, a widely 

used one, the parameters for the pair of atoms i,j are obtained as: 

𝜎𝑖𝑗 =
𝜎𝑖𝑖 + 𝜎𝑗𝑗

2
                                                                                                      𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.7 

𝜀𝑖𝑗 = √𝜀𝑖𝑖𝜀𝑗𝑗                                                                                                           𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.8 



 

Non-bonding interactions between atoms covalently bonded or separated by two bonds are 

generally not included. In the case, on the other hand, of interactions between atoms 

separated by three bonds, the parameters of the LJ functions might be suitably reduced to 

avoid the strong repulsions that would occur at short distances. In Lennard-Jones potentials, 

the attractive term is due to the polarizability of the atoms which gives rise to an induced 

dipole-dipole interaction. The electronic cloud of the two atoms is organised on average to 

align the two dipoles, in order to minimise the electrostatic energy of polarisation. Based on 

the combination rules, Equation 2.7 and Equation 2.8, it is possible to define non-bonded 

Lennard-Jones potentials among any pair of atoms, once the values for pairs of identical 

atom-types are defined. Based on the combination rule Equation 2.7, σ and ε are defined by 

purely atomic quantities. The Van der Waals radii as well as the ε parameter for the atoms 

inserted in a protein depend, as just mentioned, on the chemical context. For example, a 

hydrogen atom bonded to an oxygen will have a smaller σ than that associated with a 

hydrogen atom bonded to an aliphatic carbon. This is because the hydrogen of the hydroxyl 

has on average fewer electrons around it than a hydrogens atom bonded to a carbon (sp2) 

which is a less electronegative atom than oxygen.  The electrostatic potential in a dielectric 

model is estimated using Coulomb’s law, as shown in Equation 2.9 in vectorial form. 

Figure 2.3. Lennard-Jones curve with parameters. 
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𝐹 =
𝑞𝑖𝑞𝑗

4𝜋𝜀0

𝑟𝑖 − 𝑟𝑗

|𝑟𝑖 − 𝑟𝑗|
3 =

𝑞𝑖𝑞𝑗

4𝜋𝜀0

�̂�𝑖𝑗

|𝑟𝑖𝑗|
2                                                                         𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.9 

Where 𝜀0 is the dielectric permittivity in vacuum, which is approximately equal to 8*10
−12

 

in the International System of Units (SI system), 𝑞𝑖 and 𝑞𝑗 are the partial charges of the 

atoms i and j, and  𝑟𝑖𝑗 is the distance between the atoms. Partial atomic charges arise due to 

the differences in the electronegativity of the atoms. For example, in the water molecule 

there are on average more electrons on oxygen than on hydrogens: oxygen in water, due to 

its greater electronegativity, has around it "on average" 8.8 electrons instead of 8 of the 

isolated atoms, while hydrogens have an "average" of 0.4 in place of 1 for the isolated atom. 

Experimental thermodynamic data, or methods based on quantum mechanics (i.e., variations 

that include electronegativity equalisation methods), can be used to derive partial charges 

for small molecules. 

Nowadays, while FFs are quickly evolved and several versions of them are available for 

biomolecular MD simulation studies (Figure 2.4), CHARMM, AMBER and OPLS still 

remains the most used by researchers (Zerze et al., 2019). 

 

Evolution of the AMBER force field did not introduce new terms in the general equation 

discussed above, as shown in Equation 2.10, except for the optional electrostatic description 

of hydrogen bonds. 

Figure 2.4. Overview of the improvements in the most popular all-atom force fields. 



 

𝐸𝑇𝑂𝑇 = ∑ 𝑘𝑏(𝑏 − 𝑏0)2

𝑏𝑜𝑛𝑑𝑠

+ ∑ 𝑘𝜃(𝜃 − 𝜃0)2

𝑎𝑛𝑔𝑙𝑒𝑠

+ ∑ 𝐾𝜒[1 +𝑐𝑜𝑠 𝑐𝑜𝑠 (𝑛𝜒 − 𝜎) ]

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

+ ∑ 𝜀𝑖𝑗 [(
𝑅𝑚𝑖𝑛,𝑖𝑗

𝑟𝑖𝑗
)

12

− 2 ∗ (
𝑅𝑚𝑖𝑛,𝑖𝑗

𝑟𝑖𝑗
)

6

] +
𝑞𝑖𝑞𝑗

4𝜋𝜀0𝑟𝑖𝑗𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑠
𝑝𝑎𝑖𝑟𝑠 𝑖𝑗 

+ ∑ [
𝑅𝑚𝑖𝑛,𝑖𝑗

𝑟𝑖𝑗
12 −

𝑅𝑚𝑖𝑛,𝑖𝑗

𝑟𝑖𝑗
10 ]

𝐻−𝑏𝑜𝑛𝑑𝑠

                                              𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.10 

Pivotal improvements of AMBER in recent years regarded conformational preferences for 

typical secondary structures of amino acids by somewhat non intuitive parameterization of 

protein backbone dihedral angles. In Amber, each dihedral profile is defined by a set of four 

atoms. The set of atoms used to define φ and ψ for glycine is as expected, following φ and 

ψ along the main chain, while, for other amino acids that have a side chain, an additional set 

of dihedrals also influences rotation around the φ/ψ bonds connecting the Cα atom to the 

amide C and N atoms. This extra set of terms corresponds to dihedral angles branched out 

to the Cβ carbon (Hornak et al., 2006). Refinement of these parameters was possible thanks 

to an increase in the resolution of experimental data. 

The newest CHARMM36m version and the complementary CHARMM General Force Field 

(CGenFF) have also been widely optimized for proteins, lipids, and drug-like ligands (Huang 

et al., 2017). As shown by Equation 2.11, differences from the general energy function 

include Urey-Bradley terms improper terms, which were introduced in order to refine the 

representation of in-plane deformations and out-of-plane bending modes. Moreover, since 

CHARMM22, the 2D dihedral energy grid correction (CMAP) was introduced to improve 

the description of both backbone and sidechain dihedral angles (Mackerell et al., 2004; 

MacKerell et al., 2004). 
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𝐸𝑇𝑂𝑇 = ∑ 𝑘𝑏(𝑏 − 𝑏0)2

𝑏𝑜𝑛𝑑𝑠

+ ∑ 𝑘𝑈𝐵(𝑆 − 𝑆0)2

𝑈𝐵

+ ∑ 𝑘𝜃(𝜃 − 𝜃0)2

𝑎𝑛𝑔𝑙𝑒𝑠

+ ∑ 𝐾𝜒[1 +𝑐𝑜𝑠 𝑐𝑜𝑠 (𝑛𝜒 − 𝜎) ]

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

+ ∑ 𝑘𝑖𝑚𝑝(𝜑 − 𝜑0)2

𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟𝑠

+ ∑ 𝜀𝑖𝑗 [(
𝑅𝑚𝑖𝑛,𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝑅𝑚𝑖𝑛,𝑖𝑗

𝑟𝑖𝑗
)

6

] +
𝑞𝑖𝑞𝑗

𝜀0𝑟𝑖𝑗𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑠
𝑝𝑎𝑖𝑟𝑠 𝑖𝑗 

         𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.11 

where 𝑘𝑈𝐵 and 𝑘𝑖𝑚𝑝 are force constants; S is the 1,3 distance; ϕ is the improper angle. As 

the previous two force fields, AMBER and CHARMM, OPLS also used a united atom 

representation initially and later moved to an all-atom representation. It is implemented 

directly with AMBER force field parameters for the bonded interactions terms, initially with 

the 1984 (UA version) and with 1986 Amber force field later (AA version), and uses neutral 

charge groups, like CHARMM. The OPLS-AA potential form is: 

𝐸𝑇𝑂𝑇 = ∑ 𝑘𝑏(𝑏 − 𝑏0)2

𝑏𝑜𝑛𝑑𝑠

+ ∑ 𝑘𝜃(𝜃 − 𝜃0)2

𝑎𝑛𝑔𝑙𝑒𝑠

+ ∑ 𝐾𝜒[1 +𝑐𝑜𝑠 (𝑛𝜒 − 𝜎) ]

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

+ ∑ 𝑘𝑖𝑚𝑝(𝜑 − 𝜑0)2

𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟𝑠

+ ∑ 𝑓𝑖𝑗 {4𝜀𝑖𝑗 [(
𝑅𝑚𝑖𝑛,𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝑅𝑚𝑖𝑛,𝑖𝑗

𝑟𝑖𝑗
)

6

]
𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑠

𝑝𝑎𝑖𝑟𝑠 𝑖𝑗 

+
𝑞𝑖𝑞𝑗

4𝜀0𝑟𝑖𝑗
}                                                                                     𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.12 

The non-bonding interactions contain the fij factor (fij = 0 if atoms i and j are within the same 

molecule and separated by less than three bonds; fij = 0.5 if the two atoms are within the 

same molecule and separated by exactly three bonds; fij = 1 if atoms are either not in the 

same molecule, or they are separated by more than three bonds). 

The previously described FFs have been successful in simulations of globular proteins 

and short peptides (Beauchamp et al., 2012) and are mature enough that protein folding 

simulations of small single domain proteins are feasible (Nguyen et al., 2014). More 

recently, however, detailed experimental data have revealed that these FFs have deficiencies 

in simulating intrinsically disordered proteins (Henriques et al., 2015; Rauscher et al., 2015), 



protein folding equilibria and their dependence on temperature (Lindorff-Larsen et al., 

2005), and correctly identifying protein folding pathways/intermediates (McKiernan et al., 

2017). The residue-specific FF (RSFF1) (Jiang et al., 2014), based on conformational local 

free-energy distributions of the 20 amino acids from the OPLS-AA FF, introduced single 

specific parameters from AMBER FF to refine the stability of both α-helix and β-sheet of 

residues for obtaining folding enthalpies and entropies in reasonably good agreement with 

available experimental results. These adjustments resulted in the RSFF2 FF (Zhou et al., 

2015). Beside the development of this alternative approach to improve accuracy of FF, there 

are some few specialised FFs in common use today for sugars, nucleic acids, or protein 

folding, that remain anchored to an extended-atom model, in which hydrogen atoms can be 

ignored to varying degrees, with the non-bonding parameters of the atom coupled to the 

hydrogen adjusted accordingly. While, in some cases, these FFs will explicitly include polar 

hydrogen atoms helping treatment of hydrogen bonding, certain interactions (i.e, π-π 

stacking) will be poorly treated leading to inaccurate simulations (Burley & Petsko, 1985). 

This is the case of the latest 53A5 and 53A6 versions of GROMOS (GROningen MOlecular 

Simulation) (van Gunsteren & Berendsen, 1987), that are widely used FFs for simulations 

of protein folding, or other protein structural changes. They are parameterized to reproduce 

free energies of solvation, using two different sets of partial atomic charges in polar and 

apolar solvents; consequently, it is advantageous only when considering a homogeneous 

environment due to the ambiguity in setting the charges of the molecule. 

Another fundamental aspect of FF parameterization is chemical perception: the process 

by which molecular simulation software recognizes the chemistry of a molecule with the 

goal of assigning appropriate FF parameters for that molecule. Up to now this has been done 

indirectly by first assigning predefined atom types to the molecule and then using these atom 

types to assign parameters. An alternative route is the use of direct chemical perception that 

automatically recognizes the entirety - or at least a large fragment - of the molecule and 

assigns parameters accordingly. Such an approach could substantially reduce the number of 

unique atom types and parameters necessary for biomolecular simulations, especially those 

involving small molecule ligands. Currently this approach is being pursued by Mobley et al. 

in the new SMIRNOFF format (Mobley et al., 2018), which uses the SMIRKS chemical 

query language to define molecular structure and topology. The use of a chemical query 
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language enables the parameterization engine to identify molecular substructures and assign 

parameters directly to them, thereby rendering large numbers of pre-defined atom types 

unnecessary (Nerenberg & Head-Gordon, 2018). 

In the next few years, FFs are expected to face some major challenges. Many challenges 

relate to accurate estimation of thermodynamic quantities of interest (Nerenberg & Head-

Gordon, 2018). Real physical systems polarise substantially when placed in a high-dielectric 

medium such as water, or even when a strongly charged system approaches a neutral body 

in the gas phase. The atomic charges are often increased in current biomolecular force fields 

to create molecular or fragment dipole moments that are roughly 10–20 percent greater than 

those seen in the gas phase, which just serves to average out this polarisation. Given that the 

frequently used non polarizable water models contain such charges, increased charges are 

required to accurately explain the bulk properties of liquid water and to achieve a proper 

balance between solvent-solvent, solute-solvent, and solute-solute interactions. The 

dielectric environment, and the polarisation response that results from it, can differ greatly 

across a biomolecular system. For instance, it may range from the nearly gas-phase 

environment of a nonpolar pocket in the protein interior to a nearly bulk-water environment 

at the protein surface. This heterogeneity limits the accuracy of the mean field approximation 

used by classical force fields. In addition, including polarizability in the gas phase 

environment can have a strong effect on the energy of intramolecular interactions, as 

Caldwell and Kollman showed in a seminal study on aromatic–cation interactions (Caldwell 

& Kollman, 1995). In such situations, ‘one size’, in atomic charge, does not ‘fit all’ and yet 

every widely used FF makes this approximation. Polarizable force fields, in contrast, allow 

the charge distribution to vary with the demands of the local environment (Halgren & Damm, 

2001). These were introduced over 20 years ago, but recent improvements in CPU/GPU 

parallelism have made them available for use in more complex systems. They show good 

agreement with experimental solvation and free binding energy (Albaugh et al., 2016; 

Bradshaw & Essex, 2016) and, in principle, provide the flexibility needed to capture the 

subtle energy landscapes of folded proteins, IDPs and protein folding intermediates 

(Nerenberg & Head-Gordon, 2018). Several methods exist for modelling induced 

polarisation, such as the classical Drude oscillator model. In the Drude-2013 polarizable FF, 

which is derived from the CHARMM additive force field, the electronic degrees of freedom 

are modelled by charge particles attached to the nucleus of their central atom by a harmonic 



spring (Lamoureux, 2003). The Drude model has the benefit of preserving the simple 

particle-particle Coulomb electrostatic interaction used in non-polarizable force fields, 

making its implementation in MD engines easier than alternative polarisation models. For 

instance, the MD engine NAMD conducts Drude oscillator integration by using a new dual 

Langevin thermostat to freeze the Drude oscillators while keeping the heated degrees of 

freedom at the proper temperature (Jiang et al., 2011). The Drude polarizable force field 

requires some extensions to the CHARMM force field (Lamoureux, 2003). The main 

difference between Drude oscillators and normal spring bonds is that they have a zero-

equilibrium length. A maximal bond length parameter is optionally added to the Drude 

oscillators, beyond which a quartic restraining potential is additionally applied. An 

anisotropic spring term provides for out-of-plane forces between a polarised atom and its 

covalently bonded neighbour with two additional covalently bonded neighbours (similar in 

structure to an improper bond). Thole's screened Coulomb correction is computed between 

pairs of Drude oscillators that would normally be excluded from non-bonded contact, as well 

as between non-excluded, nonbonded pairs of Drude oscillators that are within a defined cut-

off distance (Thole, 1981; van Duijnen & Swart, 1998). The use of off-centred massless 

interaction sites, known as “lone pairs” (LPs), to escape the restrictions of centrosymmetric-

based Coulomb interactions is also incorporated in the Drude force field (Harder et al., 

2006). Each LP site's coordinate is built from three "guide" atoms. The forces estimated on 

the massless LP must be transmitted to the guide atoms while maintaining total force and 

torque. The location of the LP is updated based on the three guide atoms, as well as additional 

geometry parameters that offer displacement and in-plane and out-of-plane angles (Harder 

et al., 2006) after an integration step of velocities and positions. The implementation of 

algorithms for simulations with the Drude-2013 force field in CHARMM, NAMD, 

OpenMM, and GROMACS, in conjunction with available input generation servers such as 

the "Drude Prepper" in the CHARMM-GUI and automated parameterization in GAAMP, 

enables widespread use throughout the theoretical chemistry community (Lemkul et al., 

2016). 

2.2 Simulation Protocol 

Before the production run, there are usually three phases necessary to set up the system 
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and equilibrate it. In the first phase, the system is incorporated in a bulk liquid, and through 

the use of a periodic boundary conditions (PBC) a theoretically infinite system is simulated 

by using unit cells (Frenkel et al., 1997). In PBC the unit cell is surrounded by translated 

copies in all directions to approximate an infinitely large system. When one molecule 

diffuses across the boundary of the simulation box it reappears on the opposite side. Each 

molecule interacts with its neighbours even though they may be on opposite sides of the 

simulation box. This approach replaces the artefacts present when simulating isolated 

systems in vacuum with PBC artefacts, which are in general much less severe (Braun et al., 

2019). There are several possible shapes for space-filling unit cells. Some periodic cells, like 

the rhombic dodecahedron and the truncated octahedron are better suited to the study of 

approximately spherical macromolecules in solution, since fewer solvent molecules are 

required to fill the box given a minimum distance between macromolecular images. At the 

same time, rhombic dodecahedra and truncated octahedra are the least symmetric unit cells 

of all types of periodic boxes. The unit cells adopted in PBC can be defined by three basis 

vectors, named in the following equations a, b, and c (Frenkel et al., 1997). The box vectors 

must satisfy the following conditions: 

𝑎𝑦 = 𝑎𝑧 = 𝑏𝑧 = 0                                                                                                  𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.13                                                              

𝑎𝑥 > 0, 𝑏𝑦 > 0, 𝑐𝑧 > 0                                                                                      𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.14                     

|𝑏𝑥| ≤
1

2
𝑎𝑥 , |𝑐𝑥| ≤

1

2
𝑎𝑥 , |𝑐𝑦| ≤

1

2
𝑏𝑦                                                                𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.15                                                               

Equation 2.13 can be satisfied by rotating the box, while inequalities Equation 2.14 and 

Equation 2.15 can be satisfied by adding and subtracting box vectors (Deiters, 2013). It is 

also possible to simulate without periodic boundary conditions, but it is usually more 

efficient to simulate an isolated cluster of molecules in a large periodic box, since searching 

for pairs of atoms that are within a certain cut-off radius of each other can only be used in a 

periodic system. According to the minimum image convention, the cut-off radius used to 

truncate non-bonded interactions may not be greater than half the length of the shortest box 

vector (Equation 2.16), since several images would otherwise be contained inside the force's 

cut-off distance (Deiters, 2013).  

𝑅𝑐 <
1

2
𝑚𝑖𝑛(‖𝑎‖, ‖𝑏‖, ‖𝑐‖)                                                                                 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.16 



This constraint alone is insufficient when a macromolecule, such as a protein, is investigated 

in solution, since, in theory, a single solvent molecule should not be able to observe both 

sides of the macromolecule  (de Souza & Ornstein, 1997). Accordingly, each box vector 

must be longer than the length of the macromolecule facing that edge plus twice the cut-off 

radius 𝑅𝑐. However, it is typical to adopt a compromise in this area and lower the solvent 

layer's size to reduce the computational cost. 

In the second phase of a classical simulation protocol, the potential energy of the system 

is minimized. The aim of this minimization step is to find a local energy minimum in 

molecular conformations by identifying a path that, through the variation of molecular 

freedom levels, leads, with the least possible number of calculations, to the nearest local 

minimum (Mackay et al., 1989). Algorithms for minimization often locate the minimum 

closest to the starting structure, as remote minima separated from the initial configuration 

by energetic barriers are difficult to identify, since their investigation entails a rise in the 

gradient of the function’s energy. Several minimization algorithms have been developed, 

with some of the most common in MD simulations being Steepest Descent and Conjugate 

Gradient (Curry, 1944; Hestenes & Stiefel, 1952). In most cases, the minimization step is 

only needed to remove possible steric clashes that could cause instabilities in case of 

numerical integration of the equations of motion, and consequently any algorithm capable 

of finding a local minimum of the potential energy can be used (Frenkel et al., 1997). 

Once the system has reached a local energy minimum, and steric clashes are removed, it 

is possible to start the following phase, usually referred to as Equilibration. The name refers 

to the fact that the aim of this phase is to move the system towards an equilibrium state, at 

the desired thermodynamic conductions (for instance of temperature and density) (Nosé & 

Klein, 1986; Rice & Sewell, 2008). The equilibration of the pressure is usually more 

complicated than the equilibration of the temperature, with fluctuations in the pressure value 

with respect to the reference value being common. Therefore, all properties calculated from 

pressure, such as interfacial tension, could be more very difficult to estimate. One of the 

most common practices is to carry out the Equilibration of the system in two stages: in the 

first, an NVT (Canonical ensemble: constant number of molecules, volume, and 

temperature) simulation is carried out to bring the temperature to the desired value; in the 

second, an NPT (Isothermal-Isobaric ensemble: constant number of molecules, pressure and 
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temperature) simulation is carried out to balance the density of the system. During the 

equilibration, the solute molecules (e.g. proteins or other macromolecules of interest) might 

be (at least initially) restrained to their experimental positions by inserting energy 

constraints. In this way, all the solvent molecules adapt to their positions to bring the 

quantities listed above to equilibrium. In order to obtain the desired value of pressure and 

temperature, a barostat and a thermostat are used respectively. Thermostat operates as a 

simulated heat bath, keeping the average temperature at a set value, for instance using 

Equation 2.17, while barostat can be applied to keep the pressure constant by adapting the 

volume, for instance according to Equation 2.18 (Hoover, 1985). 

𝜆𝑇 = √1 +
∆𝑡

𝜏𝑏𝑎𝑡ℎ
(

𝑇𝑏𝑎𝑡ℎ

𝑇
− 1)                                                                             𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.17 

𝜆𝑃 = 1 +
𝑘∆𝑇

𝜏𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑏𝑎𝑡ℎ
(𝑝𝑏𝑎𝑡ℎ − 𝑝)                                                                     𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.18      

Unlike thermostats, a barostat always applies to the entire system. Among the common 

methods, the Berendsen friction thermostat (Berendsen et al., 1984) and the Parrinello-

Rhaman barostat (Parrinello & Rahman, 1981), are described by Equations 2.19 and 

Equation 2.20: 

𝑑𝑇

𝑑𝑡
=

𝑇0 − 𝑇

𝜏
                                                                                                     𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.19 

where 𝑇0 and 𝑇 are respectively the reference temperature and the current temperature of the 

system, while 𝜏 is a time constant that depends on the total heat capacity of the system and 

on the total number of degrees of freedom; 

𝑑𝑏2

𝑑𝑡2
=

𝑉(𝑝 − 𝑝𝑟𝑒𝑓)

𝑊𝑏′
                                                                                        𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.20 

where the volume of the box is denoted 𝑉, and 𝑊 is a matrix that determines the strength of 

the coupling. The values 𝑝 and 𝑝𝑟𝑒𝑓 are the current and reference pressures, respectively. 



2.3 Analyses of MD trajectories 

Analysing MDs results is difficult for several reasons. A typical simulation tracks 

hundreds of thousands of atoms positions and velocities across billions of time steps, 

generating a large amount of data. In several circumstances, it is complicated to identify the 

most relevant and physiologically significant information, such as calculating interaction 

energy between a ligand and a protein to understand a functional mechanism of a pathway. 

Thus, to maximise the insights obtained from simulations, they must be interpreted 

considering all available experimental evidence (and, often, related systems as well). The 

analysis requires a good balance of visual and quantitative analysis. Most simulation projects 

benefit from building bespoke analysis programmes or scripts, which is made easier by 

numerous analysis software frameworks. Alongside this, a paradigm shift has begun to 

evolve, which involves the simulation of many short trajectories in parallel instead of a single 

long trajectory. Given that much of the calculation is wasted with systems trapped in an 

energy minimum waiting for rare events, the idea is to start many simulations in parallel of 

the same system, and then, as soon as a simulation escapes the minimum, stop the remaining 

trajectories converging in the new state. The new paradigm has found its maximum 

expression in the use of discrete state and of discrete time stochastic master equation models. 

The construction of these models involves: a discretization of the trajectory in low-

dimensional set of collective variables describing the essential position and velocities of all 

atoms, and the calculation of the transition probability matrix with respect to the lag-time, 

chosen so that the transition probability depends only on the current state and not on the 

entire trajectory. The resulting matrix approximates the dynamic behaviour of the system, 

allowing to extrapolate the time scales of the slower processes and the probability 

distribution at equilibrium, from which it is possible to evaluate thermodynamics and 

kinetics data. From a qualitative point of view, this type of analysis allows building multi-

stage models of the process under examination, identifying metastable states of the system 

(Husic & Pande, 2018; Kitao, 2022; Wu et al., 2017). 

Data featurization can be performed using several methods ranging from counting the 

number of atoms in a particular space, such as the number of water molecules in the binding 

site of a channel protein, to the set of collective variables describing the essential position 

and velocities of all atoms. The Root Mean Square Deviation (RMSD) is the most often used 
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expression for measuring the structural similarity between two molecular conformations 

(Kabsch, 1976). It is the average atom displacement from a reference structure, generally the 

initial frame of the simulation or an experimental structure (Damm & Carlson, 2006). It can 

be calculated for any type and subset of atoms, i.e. Cα or all heavy atoms of the entire protein, 

Cα atoms of all residues in a specific subset (e.g. the transmembrane helices, binding pocket, 

or a loop), by: 

𝑅𝑀𝑆𝐷(𝑡)  =  √
1

𝑀
∑ ‖𝑟𝑖(𝑡) − 𝑟𝑖(0)‖2

𝑁

𝑖=1

                                                           𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.21 

where 𝑀 = ∑ 𝑚𝑖 , 𝑤𝑖𝑡ℎ 𝑚𝑖 being the atomic mass of each atom of the ensemble; N the total 

number of atoms, vector 𝑟𝑖(0) is the reference position of the 𝑖-th particle, vector 𝑟𝑖(𝑡) is the 

position of the 𝑖-th particle at time 𝑡. RMSD is computed in two steps: alignment and 

optimum superposition. Aligning two conformations involves matching equivalent atoms, 

while optimal superposition corresponds to finding rotation and translation of one structure 

to minimize the weighted sum of the squares of the distances between equivalent atoms in 

the two structures (Coutsias & Wester, 2019). The RMSD is a valuable tool for analysing 

the structure's time-dependent movements. It is widely used to determine if a structure is 

stable or if it is deviating from the starting coordinates. Usually, a drift from its original 

coordinates is considered as an indication that the simulation is not equilibrated (Kabsch, 

1976). When a simulation is equilibrated, or rather when the system moves around a stable 

average conformation, it makes sense to calculate the fluctuations of each subset of atoms 

relative to the average structure of the simulation, called Root Mean Square Fluctuation 

(RMSF) (Pitera, 2014):  

𝑅𝑀𝑆𝐹𝑖  =  √
1

𝑀
∑ ‖𝑟𝑖(𝑡) − 𝑟𝑖‖2

𝑁

𝑖=1

                                                                       𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.22 

where 𝑟𝑖 is the average position of the i-th atom. 

RMSD or RMSF calculations for proteins often include the rigid-body alignment of the 

structures in each frame of the simulation to reference coordinates. High RMSDs or RMSFs 

may suggest that the entire structure is not equilibrated, or they may represent just massive 



displacements of a tiny structural subgroup within an overall stiff structure, respectively 

(Pitera, 2014). It becomes increasingly typical, as the number of structures investigated by 

MD simulations grows, to find high RMSDs that are due to substantial fluctuations in 

structural subsets that do not represent the structural fluctuations of the macromolecule. 

Because finding an optimal superimposition is an ambiguous task with several solutions 

each improving a specific parameter, all superimposition dependent approaches are 

restrained by the ambiguity of the problem. Methods that are not dependent on 

superimposition, such as contact-based measurements, are not affected by this issue. 

Additionally, concentrating on local similarities can help to prevent these problems. A local 

similarity score can be read as a sum of similarity scores for all sections of a protein or, 

alternatively, it can be used to focus on a single portion of the protein, such as, for example, 

a ligand binding pocket, while disregarding the rest of the protein's structure. 

After the featurization, the following task is usually to identify relevant combination of 

features that could accurately describe different states of the simulated system. A common 

method to reduce the number of dimensions in this step is Principal Component Analysis 

(PCA) (Jolliffe & Cadima, 2016).  This mathematical method is used to reduce the number 

of dimensions by projecting the coordinates on a linear subspace of the largest-amplitude 

motions. Dimensionality-reduction of a data set naturally comes at the expense of accuracy, 

but with the advantage of trading accuracy for simplicity. The idea of PCA is to simply 

reduce the number of variables of a data set, while preserving as much information as 

possible, following a four steps protocol: 

- Standardise the range of the continuous initial features thus all the variables will be 

transformed to the same scale. 

- Compute the covariance matrix aimed to identify a correlation among the variables of 

the input data set. 

- Compute the eigenvectors and eigenvalues of the covariance matrix and order them in 

descending order.  to identify the principal components in order of significance. The first 

coordinates of this new space are those having the most significant variances, or 

fluctuations. 

- Project the data along the principal components’ axes; the aim is to use the feature vector 

formed using the eigenvectors of the covariance matrix, to reorient the data from the 
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original axes to the ones represented by the principal components (hence the name 

Principal Components Analysis). 

In MDs, PCA has been used successfully to improve the accuracy of Markov State Models 

(MSM), even though there are no universal assurance that large-amplitude movements are 

linked with slow transitions (Kitao, 2022). As the aim is usually to identify states of the 

simulated systems that correctly describe slow state transitions, it would be helpful to 

directly use a metric that offers a good indicator of the slow processes and that allows for a 

proper approximation of the eigenfunctions to be achieved with a moderate number of 

clusters. With respect to this problem, Time-Lagged Independent Component Analysis 

(TICA) is one of the most useful improvements to cluster the slow transitions (Kitao, 2022; 

Molgedey & Schuster, 1994; Pérez-Hernández et al., 2013; Schwantes & Pande, 2013). 

TICA defines a linear transform of some (usually high-dimensional) set of input coordinates 

to some (usually low-dimensional) set of output coordinates. The transformation is chosen 

such that amongst all linear transforms, TICA maximizes the autocorrelation of transformed 

coordinates at a certain lag time τ. In other words, TICA finds a subspace of slow 

coordinates, or a subspace of good reaction coordinates, when the input coordinates come 

from MD. Given a sequence of multivariate data 𝑋𝑡, it computes the mean-free covariance 

and time-lagged covariance matrix: 

𝐶0 = (𝑋𝑡 − 𝜇)𝑇𝑑𝑖𝑎𝑔(𝜔)(𝑋𝑡 − 𝜇)                                                                      𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.23 

𝐶𝜏 = (𝑋𝑡 − 𝜇)𝑇𝑑𝑖𝑎𝑔(𝜔)(𝑋𝑡 + 𝜏 − 𝜇)                                                              𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.24 

where ω is a vector of weights for each time step. The weights are all equal to one by default, 

although other weights are possible (Wu et al., 2017). Subsequently, the eigenvalue problem 

is solved by: 

𝐶𝜏𝑟𝑖 = 𝐶0𝜆𝑖𝑟𝑖                                                                                                           𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.25 

where 𝑟𝑖 are the independent components and 𝜆𝑖 are their respective normalised time-

autocorrelations. 

The eigenvalues of the transition matrix of a MSM are related to the relaxation timescale by: 

𝑡𝑖 = −
𝜏

ln|𝜆𝑖|
                                                                                                     𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.26 



The input data is projected onto the dominating independent components when performed 

as a dimension reduction approach. Because the eigenvalues 𝜆𝑖 are indications of the 

slowness of their respective processes, these prominent components correspond to the 

slowest processes in the data. As shown in Section 3.4.2, TICA was crucial to discern the 

most significant clusters of the trajectory in simulations of potassium channels. 

2.4 Estimate of free energies 

The free energy is often considered to be the most important quantity in thermodynamics, 

as the difference in free energy between two states is what determines their relative 

probability. This also determines whether a process is energetically favourable so that work 

is obtainable from it, or unfavourable so that work needs to be done for the process to take 

place. The free energy of a system is directly related to its partition function. In the NVT 

and NPT ensembles respectively the Helmholtz free energy (A) and the Gibbs free energy 

(G) are used: 

𝐴(𝑇) = 𝑈 − 𝑇𝑆                                                                                                𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.28 

𝐺(𝑝, 𝑇) = 𝐴 + 𝑝𝑉 = 𝑈 − 𝑇𝑆 + 𝑝𝑉 = 𝐻 + 𝑝𝑉                                        𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.29 

where S is entropy of the system, T is temperature, H is the enthalpy, U is the internal energy, 

p is the pressure, and V the volume. 

These thermodynamic variables are the most complicated to calculate in numerical 

simulations due to difficulties in determining the dimensionality of a system.  Unlike what 

happens for the analyses inherent to the mechanical variables of the system, where it makes 

sense to use a partitioned approach on each frame to extrapolate the overall picture of the 

dynamics of a system, in thermodynamics it is possible to work only on the set of microstates 

of the system by reconstructing the energy profile. Indeed, the entropy is defined by: 

𝑆 = 𝑘𝐵 ln 𝛺                                                                                                        𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.30 

Where Ω is the number of microstates compatible to the observed thermodynamic 

macrostate, and kB is the Boltzmann constant. MD simulations of a molecular system have 

a propensity to explore restricted regions of the configurational space, which cause a poor 

estimation of the number of accessible microstates. Many methods have been developed to 
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improve free energies calculation, distinguished by different trade-offs between accuracy 

and computational costs (Hall et al., 2020; King et al., 2021). This dissertation is focused on 

the prediction of the biological activity of a ligand (small-molecules and drugs), which is 

related to its affinity for a protein target; so, in the next sub-sections it will be discussed two 

of the commonly used scoring approaches, based on the post-processing of snapshots from 

MD by a function that employs a physical or statistical potential. 

2.4.1 Implicit solvent end-point free energy methods 

Among all ensemble-based simulation approaches, the Molecular Mechanics Poisson-

Boltzmann Surface Area (MMPBSA) end-point free energy methods is recognized as an 

effective and reliable tool for modelling binding events, such as protein-ligand binding 

interactions (Gohlke & Klebe, 2002; Kollman et al., 2000). The development of techniques 

for calculating binding free energies has been a primary focus of molecular simulations. 

Indeed, both the free energy perturbation and thermodynamic integration methods, which 

are theoretically rigorous but computationally demanding, were introduced considerably 

earlier than the MMPBSA approach. These approaches have been proved to be more 

accurate than the MMPBSA method for basic and small systems when they can be 

implemented reliably. Their applicability to complex biomolecular systems, on the other 

hand, is hampered by the high computational costs. The MMPBSA approach makes many 

critical approximations that enable it to be used as an efficient and approximation for free 

energy calculations (Swanson et al., 2004). The PBSA model is used to estimate the 

contribution of solvation to the free energy using a continuum solvent model (Genheden et 

al., 2011; Guimarães & Mathiowetz, 2010). Additionally, the technique approximates the 

contributions of enthalpy and entropy to the free energy independently (Genheden & Ryde, 

2012; Swanson et al., 2004). The MMPBSA technique is commonly used in ligand-receptor 

recognition studies, such as small molecule screening, although large inter-biomolecular 

recognitions have also been reported, as DNA-protein interactions (Srinivasan et al., 1998). 

The binding free energy of the bound ligand-receptor complex in an aqueous solvent can be 

approximated as (Foloppe & Hubbard, 2006): 

∆𝐺𝑏𝑖𝑛𝑑,𝑎𝑞 = ∆𝐻 − 𝑇∆𝑆 ≈ ∆𝐸𝑀𝑀 + ∆𝐺𝑏𝑖𝑛𝑑,𝑠𝑜𝑙𝑣 − 𝑇∆𝑆                                𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.31 



∆𝐸𝑀𝑀 = ∆𝐸𝑐𝑜𝑣𝑎𝑙𝑒𝑛𝑡 + ∆𝐸𝑒𝑙𝑒𝑐 + ∆𝐸𝑣𝑑𝑊                                                           𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.32 

∆𝐸𝑐𝑜𝑣𝑎𝑙𝑒𝑛𝑡 = ∆𝐸𝑏𝑜𝑛𝑑 + ∆𝐸𝑎𝑛𝑔𝑙𝑒 + ∆𝐸𝑡𝑜𝑟𝑠𝑖𝑜𝑛                                                 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.34 

∆𝐺𝑏𝑖𝑛𝑑,𝑠𝑜𝑙𝑣 = ∆𝐺𝑝𝑜𝑙𝑎𝑟 + ∆𝐺𝑛𝑜𝑛−𝑝𝑜𝑙𝑎𝑟                                                              𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.35 

where ∆𝐸𝑀𝑀, 𝑇∆𝑆, ∆𝐺𝑏𝑖𝑛𝑑,𝑠𝑜𝑙𝑣, represent the gas-phase molecular mechanical energy 

change, the conformational entropy change, and the solvation free energy change upon 

binding, respectively. All of these changes are computed via ensemble averaging over a large 

set of sampled conformations. ∆𝐸𝑀𝑀 includes three terms calculated using molecular 

mechanics (MM): the covalent energy change (∆𝐸𝑐𝑜𝑣𝑎𝑙𝑒𝑛𝑡), the electrostatic energy change 

(∆𝐸𝑒𝑙𝑒𝑐), and the van der Waals energy change (∆𝐸𝑣𝑑𝑊). ∆𝐸𝑐𝑜𝑣𝑎𝑙𝑒𝑛𝑡 consists of changes in 

the bond terms (∆𝐸𝑏𝑜𝑛𝑑), the angle terms (∆𝐸𝑎𝑛𝑔𝑙𝑒), and the torsion terms (∆𝐸𝑡𝑜𝑟𝑠𝑖𝑜𝑛). The 

solvation free energy change (∆𝐺𝑏𝑖𝑛𝑑,𝑠𝑜𝑙𝑣) is usually separated into polar and non-polar 

contributions (∆𝐺𝑝𝑜𝑙𝑎𝑟 and ∆𝐺𝑛𝑜𝑛−𝑝𝑜𝑙𝑎𝑟). 

In binding affinity studies with the MMPBSA method, the MD simulations are almost 

always conducted in an explicit solvent model to obtain the most accurate snapshots and the 

multi-trajectory approach is preferred to the single-trajectory one (Wang et al., 2017). In 

case vacuum simulations are directly compared to simulations in solvent, the energy 

contributions coming from solvent-solvent interactions and the fluctuations in total energy 

would be an order of magnitude larger than binding energy, entailing an excessive amount 

of time to converge. According to the thermodynamic cycle in Figure 2.5, the energy 

estimates are usually obtained by (Hou et al., 2011): 

∆𝐺𝑏𝑖𝑛𝑑,𝑠𝑜𝑙𝑣 = ∆𝐺𝑏𝑖𝑛𝑑,𝑣𝑎𝑐𝑢𝑢𝑚 + ∆𝐺𝑠𝑜𝑙𝑣,𝑐𝑜𝑚𝑝𝑙𝑒𝑥

− (∆𝐺𝑠𝑜𝑙𝑣,𝑙𝑖𝑔𝑎𝑛𝑑 + ∆𝐺𝑠𝑜𝑙𝑣,𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟)                                     𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.36 
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The different contributions for the solvation free energies above, can be calculated by 

solving the linearised Poisson Boltzmann or Generalized Born equation for each of the three 

states and adding an empirical term for hydrophobic contributions: 

∆𝐺𝑠𝑜𝑙𝑣 = 𝐺𝑒𝑙𝑒𝑐,𝜀=80 − 𝐺𝑒𝑙𝑒𝑐,𝜀=1 + ∆𝐺ℎ𝑦𝑑𝑟𝑜𝑝ℎ𝑜𝑏𝑖𝑐                                           𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.37 

where ∆𝐺𝑏𝑖𝑛𝑑,𝑣𝑎𝑐𝑢𝑢𝑚 is obtained by calculating the average interaction energy between 

receptor and ligand and taking the entropy change upon binding into account if necessary: 

Figure 2.5 Evaluation of protein–protein complexes based on a continuum solvent model 

during MM-PBSA calculations. The binding process consists of an interaction contribution 

indicated in the lower panel (interaction energy is calculated as difference in the vacuum 

energies of the complex and the separate partners). The transfer of the partners and the 

complex into the aqueous environment (upper panel) adds a solvation contribution (also 

calculated as difference between complex and partner contributions). The solvation part 

consists typically of separate cavity terms and van der Waals interaction with the solvent 

plus an electrostatic reaction field (solvation) based on solving the finite difference PB 

equation numerically. Reprinted from (Siebenmorgen & Zacharias, 2020). 



∆𝐺𝑣𝑎𝑐𝑢𝑢𝑚 = ∆𝐸𝑀𝑀 − 𝑇∆𝑆                                                                                  𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.38 

 The entropy term can be estimated by performing normal mode analysis on the three 

species, but in practice entropy contribution can be neglected if only a comparison of states 

of similar entropy is desired. This is because computations involving normal mode analysis 

are computationally costly and frequently have a huge margin of error that creates a 

considerable amount of uncertainty in the outcome. In fact, all these terms are computed on 

each single frame of the MD simulations and those single values are averaged and an 

estimate of the binding free energy of the complex can be obtained. Both of the multi-

trajectory and single-trajectory strategies, which can be employed in the MM-PBSA as well 

as the complementary MM-GBSA technique, include approximations, and their 

performance varies strongly with the tested systems (Tuccinardi, 2021; Wang et al., 2017). 

2.4.2 Free energy estimates based on collective variables 

The standard atomistic MD methods do not adequately sample the ensemble of possible 

configuration, leading to inaccurate estimates of probabilities, and free energies, along 

collective variables. Consequently, a diverse range of methods have been developed to 

enhance sampling of biomolecular simulations. The bottleneck of MD simulations is 

correlated with the presence of high-energy barriers separating distinct 

structures/conformations, resulting in transitions between them appearing as rare events in 

the simulation. The addition of bias potentials to the Hamiltonian of the systems, i.e., 

lowering the energy barrier to increase the sample transition zones, is a straightforward and 

effective method of speeding up the exploration of the configuration space. Umbrella 

Sampling (US), adaptive biassing force method, and MetaDynamics (MetaD), are examples 

of such methods. These approaches make use of specified collective variables to efficiently 

accelerate sampling during the simulations (Y. I. Yang et al., 2019). 

CV, 𝑠(𝑟), are defined as low-dimensional functions of the atomistic coordinate r of the 

system, which are designed to describe the slower motions in the process of interest. The 

CV 𝑠(𝑟) has an equilibrium distribution 𝑝0(𝑠) and a free energy 𝐴(𝑠). 

𝑝0(𝑠) = ∫ 𝑑𝑟𝛿[𝑠 − 𝑠(𝑟)]𝑝0(𝑟) = 〈𝛿[𝑠 − 𝑠(𝑟)]〉                                           𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.39 
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where 𝑝0(𝑟) = 𝑒
−𝛽𝑈(𝑟)

∫ 𝑑𝑟𝑒−𝛽𝑈(𝑟)  is the Boltzmann distribution of the system with potential energy 

U(r). 

𝐴(𝑠) = −
1

𝛽
𝑙𝑜𝑔[𝑝0(𝑠)]                                                                                        𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.40 

And 𝛽 =
1

𝑘𝐵𝑇
 is the inverse temperature associated with the Boltzmann constant kB. 

In CV-based sampling methods, to overcome the energy barriers that divide two or more 

configurations in a defined region, a bias potential 𝑉(𝑟) along the CV 𝑠(𝑟) is introduced 

into the system. The free energy 𝐴(𝑠) may be determined in this case by: 

𝐴(𝑠) = −
1

𝛽
𝑙𝑜𝑔[𝑝(𝑠)] −𝑉(𝑠)                                                                             𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.41 

where 𝑝(𝑠) is the sampled distribution of collective variables 𝑠(𝑟) from simulation. 

In this thesis, US was used to estimate the Potential of Mean Force (PMF) (Torrie & Valleau, 

1977). The PMF is the driving force in stochastic dynamics models. It provides a free energy 

profile along a preferred coordinate, such as the distance between two atoms or the torsional 

angle of a bond in a molecule. The PMF describes the average force of all possible 

configurations of a given system (the ensemble average of the force) on particles of interest. 

When the system is in a solvent, the PMF incorporates solvent effects as well as the intrinsic 

interaction between the two particles. US allows the calculation of PMF along an arbitrary 

CV, 𝑠(𝑟), that describes the extent of the transformation under analysis. The technique 

consists in splitting the reaction coordinate domain in intervals (or windows) and separately 

sample each window with the addition of a biasing potential that allows to overcome possible 

energy barriers. In practice, the biasing potential restrains the reaction coordinate to the 

window centre, forcing the system to explore the centre neighbourhood. The name 

“Umbrella” derives from the fact that the restraining potential has a parabolic functional 

form, like a spring potential with the window centre as equilibrium distance. Thus, applying 

an adequate restraining potential, every point of the reaction coordinate domain can be 

explored, also states not spontaneously explored due to the presence of energy barriers. The 

higher the energy needed to restrain the system to a specific region, the higher the free energy 

corresponding to those configurations. The PMF profile is reconstructed from the probability 



distribution of the reaction coordinate, that is the practical result of an US simulation (Roux, 

1995) (Figure 2.6). 

 

The calculation of the PMF is not straightforward as in plain MD, because the resulting 

distribution is not canonical due to the bias presence. Various methods have been developed 

to unbias and recombine the results of US simulations; the Weighted Histogram Analysis 

Method (WHAM) of Kumar et al is the most adopted for Free Energy calculations (Kumar 

et al., 1992). Combining US simulations and WHAM, PMF can be computed (Souaille & 

Roux, 2001). It is worthy to notice that in principle a N-dimensional PMF can be obtained, 

but no more than two degrees of freedom are feasible because the number of sampling 

windows increases exponentially with the number of reaction coordinates. 

 

 

 

 

 

 

Figure 2.6 On the left, an example of US simulation with harmonic potential to restrain the 

ligand along Z-axis; on the right, a scheme of the approach used to recreate the PMF profile. 
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PART II – Research Projects 
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Chapter 3 - MD simulations of the hERG potassium channel 

3.1 Ion channels: the hERG K+ channel 

Ion channels are pore-forming transmembrane proteins that allow ions to flow across the 

plasma membrane according to electro-chemical gradients. The rate of transport can be as 

high as 106 ions per second, or greater. When a channel is in the closed state, its permeability 

for all kinds of ions and water is roughly zero, whereas in the open state they conduct 

electrical current by allowing specific types of ions to pass through them, and thus, across 

the plasma membrane of the cell (selective permeability). Transition between the open 

(conductive) and the closed (non-conducting) conformation is called gating.  A variety of 

cellular changes can lead to gating, depending on the ion channel, including voltage changes 

across the cell membrane (voltage-gated ion channels), chemicals interacting with the ion 

channel (ligand-gated ion channels), changes of temperature, elongation or deformation of 

the cell membrane (mechanosensitive ion channels), addition of a phosphate group to the 

ion channel (phosphorylation) and interaction with other molecules in the cell (i.e., G-

proteins). The rate at which one of these gating processes occurs in response to these triggers 

is known as gating kinetics. The intensity and direction of the ionic movement across the 

pore are governed by electrochemical gradients. In normal physiological conditions, sodium, 

calcium, and chloride ions tend to enter the cell, while potassium ions tend to exit. Selective 

permeability depends on the structural and electrostatic characteristics of the pore. The 

capacity to adjust ion flow because of ion channel development may have offered an 

evolutionary advantage by allowing single-celled organisms to control their volume in 

response to environmental changes.  Ion channels have evolved throughout time to perform 

many processes in excitable and non-excitable cells. The first quantitative description of the 

role of membrane currents in signalling dates to the Hodgkin and Huxley investigations on 

nerve transmission (HODGKIN & HUXLEY, 1952). Ion channels are associated with 

several physiological functions in all types of cells, such as cardiac, skeletal, and smooth 

muscle contraction, epithelial transport of nutrients and ions, T-cell activation, and 

pancreatic beta-cell insulin release. Furthermore, ion channels can be employed in a variety 



of technical applications (sensing of organic molecules, DNA sequencing) leading great 

interest to elucidate the molecular determinants of channel functions. 

The focus of this thesis is the hERG channel. In 1994, Warmke and Ganetzky firstly 

identified it as the 11th member of the voltage-gated potassium channels family (Warmke 

& Ganetzky, 1994). The functional channel is a homo-tetramer with each subunit containing 

six α-helices transmembrane domains, named as S1 to S6. S1 to S4 contribute to the voltage 

sensor domain, while the S5 and S6 segments, along with the intervening pore-loop (P-loop), 

contribute to the pore domain. The central cavity presents an atypically small central volume, 

surrounded by four deep hydrophobic pockets for potassium ions. The region responsible 

for the selective conduction of potassium ions, Selectivity Filter (SF), is located at the 

extracellular side of the central cavity. In addition to the membrane-spanning region, the 

hERG protein contains large intracellular amino and carboxy terminal domains. The N-

termini contains a Per-Arnt-Sim (PAS) domain that defines the ether-a-go-go subfamily of 

Kv channels. The PAS domain modulates the deactivation of the channel following 

membrane depolarization. The C-termini of the channel contains a cyclic nucleotide binding 

domain (CNBD), which has been linked to mutations affecting trafficking (Wang & 

MacKinnon, 2017) (Figure 3.1).  

 

Figure 3.1. Structural representation of the hERG potassium channel. Adapted from (Butler 

et al., 2019). 
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hERG has peculiar molecular features that distinguish it from other members of the Kv 

family. Firstly, the amino acid sequence TVGYG of the SF is a conserved pattern among the 

vast majority of potassium channels, and it is responsible for the selectivity function. In 

hERG, the threonine and the tyrosine of this motif are respectively replaced by serine and 

phenylalanine (SVGFG) (Perrin et al., 2008) (Figure 3.2). 

 

The aromatic residue, F, might contribute to the channel unusual susceptibility to block by 

a diverse range of drugs. Secondly, these promiscuous drug interactions might also be related 

to the lack of the S6 proline-X-proline (PXP) motif necessary to restrict the inner cavity size 

in other Kv channels and to accept limited drug molecule sizes. Finally, the S5-P linker is a 

large segment that assumes an amphipathic helical arrangement in membrane mimetic 

sodium dodecyl sulphate (SDS) micelles, that is believed to affect channel inactivation 

(Perrin et al., 2008; Torres et al., 2003; Wang & MacKinnon, 2017; Wulff et al., 2009; Zhou 

et al., 2011). 

Figure 3.2. Topology of potassium channels. Sequence alignment of the pore domain (PD) 

(S5–S6) which contains the TVGYG signature sequence (green) among the member of Kv 

channel. Highlighted in yellow is the highly conserved glycine residue in the middle of the 

inner pore helix. The PXP motif, absent in hERG is highlighted in red. 



3.2 Gating and inactivation of hERG 

Kv are characterised by three main conformational states: closed, open, and inactivated 

(Figure 3.3 -A). Variations in the kinetics and voltage dependence of the gating and 

inactivating processes give rise to phenotypic diversity among the different Kv channel 

subtypes. The Kv11.1 subfamily is characterized by its rapid onset of C-type inactivation at 

depolarized potentials (on the order of ms to tens of ms), followed by recovery from 

inactivation during the repolarization phase (Figure 3.3-B). This property, combined with a 

slow channel gating (on the order of hundreds of ms to s), results in an inward rectified 

current, that is crucial for maintaining a prolonged plateau phase of the cardiac action 

potential (Li et al., 1996; Perry et al., 2015; Sanguinetti et al., 1995) (Figure 3.3-C). 

 

Figure 3.3. Gating of hERG. [A] Three main conformational states: Closed (C), Open (O), 

and Inactive (I). [B] Typical traces showing kinetics: slow activation and deactivation, 

coupled with rapid inactivation. [C] Currents recorded during cardiac ventricular AP. 
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Just as importantly, the rapid and voltage-dependent recovery from inactivation during the 

terminal phase of cardiac repolarization coupled to slow deactivation during the early 

diastolic period confers upon these channels an important role in the suppression of ectopic 

beats during the late repolarization phase. Indeed, in patients with reduced hERG K+ channel 

activity, e.g., due to drug-block, the reduced hERG K+ current results in longer action 

potentials (AP) as well as lower current response to premature beats. The surface 

electrocardiogram (ECG) represents the summed activity of all the cells in the heart with the 

major deflections being the P-wave (representing atrial depolarization), the QRS complex 

(representing ventricular depolarization) and the T-wave (representing ventricular 

repolarization). The duration of the interval from the start of the QRS complex to the end of 

the T-wave (QT interval) is usually ~400ms (at a heart rate of 60 beats per minute). Patients 

with reduced hERG K+ channel activity have prolonged QT intervals on their surface 

electrocardiogram and an increased risk of developing ventricular arrhythmias initiated by 

ectopic beats. They are prone to develop a particular arrhythmia called “Torsades-de-

Pointes” (TdP) (Raschi et al., 2008; Vandenberg et al., 2012) (Figure 3.4). 

 

Figure 3.4. Diagram linking main causes of LQTS and associated arrhythmia with their 

effects on biological markers of the human cardiac ventricular repolarization. Reprinted 

from (Vandenberg et al., 2012). 



In silico kinetic modelling of ion channel activity provides a formal quantitative mechanism 

for testing hypotheses about how channels work. The biophysical accuracy of Kv11.1 

models in reproducing gating kinetics is particularly important for several reasons. Simpler 

models may be able to approximate the overall properties of the current but are less effective 

at reproducing more complex time- and voltage-dependent effects. Over the past 25 years, 

models of hERG behaviour have been developed from Hodgkin-Huxley type descriptions 

(Rockman et al., 2002), through quite simple linear Markov schemes (Wang et al., 1997), to 

more complex Markov descriptions containing multiple closed, open, and inactive states 

(Kiehn et al., 1999; Lu et al., 2001) as well as subunit cooperativity (Piper et al., 2003).  The 

simplest, and perhaps most used, model of voltage-gated ion channel behaviour is based on 

the formalism introduced by Hodgkin and Huxley 60 years ago (HODGKIN & HUXLEY, 

1952). In these formulations, the current passed through the channel is simply a function of 

two gating variables, that describes activation and inactivation. In 1997, Wang et al. 

developed a simple linear Markov scheme based on experimental data obtained from hERG 

currents expressed in oocytes (Wang et al., 1997). In contrast to the Hodgkin-Huxley type 

models, Markov schemes allow incorporation of multiple open, closed, and inactive states, 

with transitions between each individual state determined by voltage-dependent rate 

constants. Since the authors were able to fit their measured forward and reverse rate 

constants for inactivation with first-order voltage-dependent models, it was possible to 

include a single pre-open closed state in the linear gating scheme. Two years later, Kiehn et 

al. published an upgrade of this model that included inactivation from the final pre-open 

closed state (Kiehn et al., 1999). The authors proposed that this transition was necessary to 

explain the presence of channel openings upon repolarization when no channel openings had 

occurred during the preceding depolarization step and the voltage-dependence of the 

magnitude of the transient peak upon depolarization. The authors evaluated several Markov 

model structures by fitting to macroscopic Kv11.1 currents and showed that a closed to 

inactive transition was necessary to accurately reproduce the transient peak observed 

experimentally upon depolarization. The model, however, was only used to simulate a few 

simple voltage protocols. The “closed-state inactivation model” was not parameterized fully 

or used to simulate more physiologically relevant action potential waveforms until two years 

later when an adaptation of the model proposed by Kiehn et al. was used in an in silico 

evaluation of long QT syndrome and in evaluating the effects of premature stimulation on 
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Kv11.1 gating. Their data provided evidence that hERG encodes repolarizing K+ current 

(IKr) in cardiomyocytes. Recently, a similar model of gating current kinetics was used to 

describe hERG channel voltage sensor relaxation. In this model, two independent transitions 

per subunit are followed by a voltage-dependent concerted transition to the activated state, 

and a subsequent voltage-independent transition into the relaxed state. The model 

recapitulates the main features of hERG gating currents including voltage sensor mode-shift 

behaviour. Moreover, acceleration of the rate out of the relaxed state to mimic the 

destabilisation of relaxation observed at low pH, selectively abolished mode-shift behaviour 

without other gating consequences, recapitulating the experimentally observed voltage 

sensor behaviour. From this model, acceleration of de-relaxation, or exit from relaxed state, 

was sufficient to reduce voltage sensor mode-shift and supported the hypothesis that 

destabilisation of the relaxed state of the voltage sensor may drive voltage sensor return 

leading to accelerated deactivation. One limitation of this model is the absence of description 

of ionic activation and inactivation gating of the channel, which are needed to develop a 

more complete model of gating transitions of the hERG channel voltage sensor in 

conjunction with pore gating during voltage sensor stabilisation and relaxation. This might 

involve an approach used previously in Shaker and Kv1.2 channels to construct models that 

describe transitions of voltage sensor domains corresponding to those of the pore, which 

may be applicable for adaptation into a hERG scheme (Shi et al., 2020). 

hERG unique kinetic features make it an important channel in the repolarization phase of 

cardiac action potentials. Consequently, the pharmacology of Kv11.1 has become a topic of 

interest following the discovery that this channel is the molecular target of numerous 

compounds related to drug-related arrhythmias. Understanding the molecular basis for 

promiscuous drug block of hERG would be enormously beneficial in efforts to pre-screen 

drugs for hERG liability in drug development programs, and to reduce adverse effects in 

otherwise-useful drugs through targeted chemical modification. Likewise, insight into the 

molecular basis for hERG's anomalous gating properties, particularly the mechanisms of 

rapid onset and recovery from inactivation, should greatly facilitate development of 

therapeutic interventions for LQTS. 



3.3 Atomistic models of hERG 

Cryo‐Electron Microscopy (Cryo-EM) was firstly utilized to analyse small and periodic 

collections of proteins in the mid-1970s. Owing to advances in software development, cryo-

EM structure resolution improved steadily from sub-nanometre to near atomic resolution by 

the late 2000s. Cryo‐EM not only establish a revolution in resolution quality but can also 

capture protein's conformational states. In 2017, Wang and MacKinnon released the first 

cryo-EM structure of the hERG channel (Wang & MacKinnon, 2017). Although some 

missing residues remains in the extracellular loop regions (from His578 to Arg582, and from 

Asn598 to Leu602), this model (PDB entry 5VA2) offered the opportunity to study the 

dynamics of the hERG channel at the atomic scale, and it was used for the analyses presented 

in this thesis. Since the interest was in studying the binding of drugs to the central cavity, 

and the dynamics of the SF, only the pore region of the channel, from residue Tyr545 to 

residue Tyr667, was included in the atomic models (Wang & MacKinnon, 2017). 

MODELLER tool was used to modelling of the chirality and initial positions of missing 

residues. Ions were manually added at site S0, S2 and S4 (see Figure 3.2 for the definition 

of the binding sites). Restrain on the SF derive from a previous study by Furini et al. in the 

homologue KcsA channel in the open state (PDB entry 5VK6) (Furini & Domene, 2020; Li 

et al., 2018). The lipid membrane was a mixture of 1-palmitoyl-2-oleoyl-glycero-3-

phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphate (POPA), with a 

ratio of 3-POPC:1-POPA. The axis of the channel was aligned with the z-axis of the 

simulation box. The system was solvated using TIP3P water molecules (~17.000 molecules) 

and 200 mM of KCl were added. The ff14sb version of the AMBER force field was used, in 

combination with ion parameters by Joung and Cheatham for the TIP3P water model (Joung 

& Cheatham, 2009). Van der Waals interactions were truncated at 9 Å. Standard AMBER 

scaling of 1-4 interactions was applied. Long-range electrostatic interactions were calculated 

with the Particle Mesh Ewald method using a grid spacing of 1.0 Å. The SETTLE algorithm 

was used to restrain bonds with the hydrogen atom (Essmann et al., 1995; Tuckerman et al., 

1992). The temperature was controlled at 310 K by coupling to a Langevin thermostat with 

a damping coefficient of 1 ps−1. A pressure of 1 atm was maintained by coupling the system 

to a Nose−Hoover Langevin piston, with a damping constant of 25 ps and a period of 50 ps 

(Feller et al., 1995). NAMD2.12 was used for all the simulations (Phillips et al., 2005). The 
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equilibration protocol consisted of 10.000 steps of energy minimization, followed by 15 ns 

in the NPT ensemble with timestep equal to 1 fs and 70 ns in the NPT ensemble with timestep 

equal to 2 fs. During the equilibration protocol, restraints on protein and lipid atoms were 

gradually reduced to zero. The atomic coordinates at the end of this equilibration protocol 

were used to define the starting configurations for further studies of the thesis (Figure 3.5). 

3.4 In silico modelling of blockade by drug binding to the internal cavity 

The emerging picture is that drug binding to Kv11.1 may be a highly dynamic process 

with multiple drugs and channel conformations involved in the binding of any given drug 

(Vandenberg et al., 2012). The development of accurate computer models is critical to 

deciphering how the interaction or kinetics of a drug molecule are affected by the gating 

state of the channel. As a result, a better understanding of the molecular basis of hERG 

channel gating will facilitate computational drug design and discovery. In addition, the 

description of the physicochemical properties of the drug binding site will complement the 

pharmacophore models of the drugs (Asai et al., 2021). Toward this goal, several studies 

Figure 3.5 The atomic model of hERG used for the atomistic MD simulations. 



with site-directed mutagenesis and voltage clamp analysis of mutant channels try to elucidate 

which is the key role of specific residues at the polar surface area. In 2004, Fernandez et al. 

summarized evidence that emphasize the role of two aromatic residues, Tyr652 and Phe656, 

in determine the sensitivity to hERG blockers (Fernandez et al., 2004). These eight aromatic 

residues (2 for each subunit), located in the S6 domain facing the central cavity of the 

channel, combined to the lack of the PXP motif of hERG prevent bending of α-helix and the 

consequent alteration of the shape of the central cavity with respect to other potassium 

channels. Residues Thr623, Ser624, and Val625 close to the intracellular entrance to the SF 

domain results involved in drug binding as well as the two aromatic residues Tyr625 and 

Phe656. Whereas polar residues at the base of the pore helix are highly conserved among 

members of the Kv channel family, the aromatic residues on the S6 helices are not (Shealy 

et al., 2003). Early structural modelling of the hERG pore region based on the closed-state 

of the KcsA channel highlighted that the gating-dependent positioning of these residues 

relative to the inner cavity (particularly with inactivation) may be critical for high-affinity 

binding and could explain the higher potency of compounds for hERG compared with EAG 

block (Mitcheson et al., 2000). In addition, the pharmacophore models extended these 

findings to show that hydrophobic volume of Phe-656 and aromaticity of Tyr-652 determine 

the sensitivity of hERG to block by structurally diverse drugs known to cause acquired 

LQTS (Chen et al., 2002; Ficker et al., 2001; Herzberg et al., 1998). Finally, computational 

approaches proposed in this dissertation confirmed unusual features of the inner cavity 

associated to the different transition state of the gating, providing also important insight in 

the molecular recognition of drugs. These studies are described in the next sections. 

3.4.1 Proton Pump Inhibitors Directly Block hERG 

The pharmacology of Kv11.1 has become a subject of intense interest following the 

discovery that this channel is the molecular target for the majority of compounds associated 

with drug-induced arrhythmias. The relationship between Kv11.1 channel block, QTc 

prolongation, and TdP is crucial in order to identify the proarrhythmic risk of new and 

existing drugs. Proton Pump Inhibitors (PPIs) represent one of the best-selling class of drugs 

in the market, with millions of chronic users worldwide (Strand et al., 2017). Omeprazole, 

pantoprazole, lansoprazole, and esomeprazole, representing the commonly prescribed 
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molecules, are responsible for adverse events due to long-term overutilization (Patterson 

Burdsall et al., 2013). The potential cardiovascular harmfulness of PPIs is increasingly 

recognized, including a higher risk of malignant arrhythmias (Manolis et al., 2020). In 

particular, the 4 PPIs mentioned above are presently listed by the AriZona Center for 

Education and Research on Therapeutics (Woosley et al., 2020) as drugs with conditional 

risk of TdP. It is currently believed that PPI treatment can increase the LQTS/TdP risk only 

indirectly, by lowering magnesium levels (Chrysant, 2019). Although the exact mechanisms 

underlying PPI-induced hypomagnesemia are not completely elucidated, evidence points to 

gastrointestinal and renal magnesium losses (Famularo et al., 2013). Recent data suggest that 

PPIs may increase the TdP risk also beyond hypomagnesemia induction, due to a direct 

interference on the electrophysiological properties of cardiac myocyte. Lorberbaum et al. 

demonstrated that the PPI lansoprazole inhibited the hERG function and increased the risk 

of QTc prolongation when used in combination with the antibiotic ceftriaxone (Lorberbaum 

et al., 2016). Accordingly, cases of LQTS/TdP during PPI treatment but in the absence of 

low magnesium levels have been published (Lazzerini et al., 2017). Moreover, although PPI-

associated hypomagnesemia was found to be a common finding in a cohort of 48 TdP 

patients, in most of the PPI-treated subjects (≈60%), TdP developed in the presence of 

normal magnesium levels (Lazzerini et al., 2018). Defining whether PPIs can directly 

promote QTc prolongation, regardless of hypomagnesemia, has important clinical 

implications. In fact, it is currently recommended that in LQTS/TdP patients, PPI treatment 

is discontinued only if hypomagnesemia, resistant to replacement therapy, occurs. Thus, a 

significant number of subjects may continue to be unnecessarily exposed to a risk for TdP 

occurrence/recurrence. Accordingly, a Sweden register-based cohort study found that gastric 

acid secretion inhibitors were used in 32% of 410 TdP cases (Danielsson et al., 2020). By 

combining electrophysiology, MD simulations, and population data, in this project it was 

evaluated whether PPIs can:  

1. inhibit the hERG current in an in vitro cellular model, 

2. directly bind to hERG and enter the intracellular cavity of the channel by using MDs, 

3. independently increase the risk of QTc prolongation in a large cohort of US veterans. 

I was responsible for the second step of this project: the analysis of the possible hERG 

blockage by PPIs using MD simulations. 

As discussed in Chapter 2, drug-binding processes usually exceed the time scale 



currently accessible by all-atom MD simulations. Consequently, enhanced techniques are 

more suitable to accelerate sampling and to optimise the usage of computational resources. 

In this study US was employed for estimating free-energies of hERG in complex with PPIs, 

because they accelerate the sampling by "flattening" the energy barriers along the pre-

defined collective variables. The distributions of the collective variables collected from the 

set of independent simulations were combined by the WHAM, to estimate PMF profiles. 

Here, US simulation was performed using the atom-based model of hERG described in 

Section 3.3. Compounds are available in the DrugBank database with accession numbers 

DB00338 (Omeprazole), DB00213 (Pantoprazole), DB00448 (Lansoprazole) in the form of 

2D structures (Wishart et al., 2018) (Figure 3.6-A). The three-dimensional structure used 

for the simulations does not explicitly describe electrons, and consequently it cannot 

distinguish omeprazole from its S-isomer esomeprazole. The compounds were 

parameterized using the Antechamber software, adding atomic charges, atom types and bond 

types according to the General AMBER Force Field (GAFF) (Case et al., 2005). The drug-

specific parameters not included in the GAFF force field were estimated using ParmCheck 

and stored in a specific library. Next, ligands were docked into the extracellular space of the 

solvated and neutralised hERG channel system, removing all water molecules within a cut-

off of 2 Å. We repeated the procedure of parameterization with ParmCheck to the ligand-

protein complexes, adding the library of the drug-specific parameters. Then, an equilibration 

protocol consisting of 10.000 steps of energy minimization and 2 ns in the NPT ensemble 

was performed. The atomic coordinates at the end of this equilibration protocol were used 

to define the starting configurations for the three atomic systems used to analyse the binding 

of the three PPIs to the internal cavity of the hERG channel. The same equilibration protocol 

and simulation parameters described in Section 3.3 was used. The entrance of the drug into 

the channel cavity was described using as reaction coordinate (ξ) the distance along the z-

axis between the centre of mass of the drug and the centre of mass of the ring of carbonyl 

oxygens at the intracellular side of the SF (residues Ser624) (Figure 3.6-B).  
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Preliminary set of simulations, each 1 ns long, was collected moving the centre of the 

harmonic potential that act on the reaction coordinate ξ from the intracellular compartment 

(ξ = -35 Å) to the intracellular side of the SF (ξ = -6 Å) in steps of 1 Å. The simulation with 

the harmonic potential centred at -35 Å was initialised from the previously equilibrated 

atomic system with the drug in bulk solution. Then, the final snapshot of this simulation 

acted as starting configuration for the simulation with harmonic potential centred at -34 Å, 

and the same strategy was applied for the successive simulations. The aim of this initial set 

of simulations was only to create starting configurations of the drug at different positions 

along the axis of the channel. Afterward, these configurations were used to initialise a second 

set of simulations, with the aim to obtain a more exhaustive sampling of the drug movements 

inside the channel cavity. Each umbrella sampling simulation was extended until the reaction 

coordinate was at equilibrium (minimum length of each simulation was 20 ns). To check if 

the reaction coordinate was at equilibrium, the trajectory was divided into three segments, 

Figure 3.6. [A] 2D structure of the three PPI used in the USs; [B] schematic representation 

of US simulation using z-axis as RC. 



and the average of the reaction coordinate was compared between the last two segments. 

The simulations were extended until the average of the reaction coordinate in the last two 

segments of the trajectory was closer than 10-3 Å. The PMF was calculated by the WHAM 

algorithm using the last 2/3 of the simulated trajectories. 

Results indicate the binding energies were in the 8-10 kcal/mol range for all the compounds, 

despite their specific pose in the pore, confirming the hypothesis that the inhibitory effects 

on hERG-current might be due to a direct, steric interference with the channel function. From 

PMFs profiles it emerges that Omeprazole preferentially bound at the intracellular side of 

the cavity, where a swallow free-energy minimum exists, while Pantoprazole and 

Lansoprazole were characterised by well-defined energy minima profile in proximity of the 

SF. In support of the electrophysiological findings, simulation studies indicated that all the 

three PPIs evaluated can bind hERG by entering the channel cavity, thereby strongly 

supporting the hypothesis that the inhibitory effects on hERG-current might be due to a 

direct, steric interference with the channel function. Moreover, the evidence that each 

compound shows a specific binding pose, provides a molecular basis possibly accounting 

for the different potency of channel inhibition observed in the electrophysiological study. 

Notably, as this region is structurally stable in the different functional states of the channel, 

the binding pose of pantoprazole and lansoprazole might favour the trapping of the drugs at 

their binding sites when hERG is in the closed state, giving rise a more robust and durable 

blockade (Figure 3.7). 

The MD results qualitatively agree with experimental data. The whole-cell patch-clamp 

recordings performed in hERG human embryonic kidney 293 cells demonstrated that all 

PPIs tested were able to significantly inhibit the hERG current in a concentration-dependent 

manner, although with different potency. Notably, the concentrations effectively reducing 

the current were in a clinically relevant range (10–100 µmol/L), reached during routine 

therapy with PPIs (alone or, as it frequently occurs, in combination with other drugs or 

diseases slowing PPI metabolism). At these concentrations, pantoprazole was the most 

potent inhibitor (≈35%–85% current decrease), followed by lansoprazole (≈20%–50%) and 

then omeprazole/esomeprazole (≈10%–30%). Based on these mechanistic data, it was 

evaluated whether such electrophysiological effects translate in the clinical setting, by 

assessing the impact of PPI treatment on the QTc in a sample size of almost 4000 US 

veterans, including 1289 PPI users. In this cohort, PPI-treated subjects exhibited a 



57 
 

significantly longer mean QTc, as well as a higher QTc prolongation prevalence when 

compared with PPI-untreated subjects. Consequently, stepwise regression analysis of the 

cohort indicate that the PPI therapy can per se promote QTc lengthening, regardless of other 

concomitant QT-prolonging risk factors, including hypomagnesemia, thereby, confirming 

that the direct electrophysiological effects of these drugs observed in vitro and in silico have 

a clinically relevant impact in a large population of individuals. 

 

Figure 3.7. [A] PMF profiles calculated for USs. [B] Omeprazole, [C] Pantoprazole, and 

[D] Lansoprazole in the corresponding PMF minimum (VDW representation). Reprinted 

from (Lazzerini et al., 2021). 



The workflow adopted in this comparative study is summarized in Figure 3.8. 

 

3.4.2 MD simulations of C-type inactivation 

As mentioned in Section 3.2, the role of hERG in acquired and inherited cardiac 

arrythmias justifies the profound interest in characterising the atomic mechanism of its C-

type inactivation, also to provide useful information about the pharmacological properties 

of this channel, with potential implications on drug discovery. This process involves time-

dependent transition between two metastable conformations: the open-conductive (O/O) and 

Figure 3.8. Graphical abstract of the workflow used for this project including 

electrophysiology, molecular dynamics simulations, and population data. Reprinted from 

(Lazzerini et al., 2021). 
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the stable open deep C-type inactivated (O/I) states. Together with the structures associated 

with the closed-inactivated (C/I) and the closed conductive (C/O) states they recapitulate 

four distinct kinetic states of the gating cycle in the pore domain. Most of the current 

knowledge about the atomic mechanisms of the inactivating event has resulted from studies 

of the bacterial KcsA potassium channel. Evidence from functional measurements (Cordero-

Morales et al., 2007), X-Ray Crystallography (Cuello et al., 2010), NMR spectroscopy 

(Weingarth et al., 2014) and MD simulations (Li et al., 2018), support hypothesis that C-

type inactivation of the KcsA channel is due to a progressive constriction of the SF in the 

region corresponding to binding site S2. The constriction in S2 blocks the entry of further 

potassium ions, preventing ion conduction. Others voltage-gated K+ channels exhibit 

different mechanism of inactivation, i.e., C-type inactivation of the Shaker channel is 

attributed to an opening of the extracellular side of the filter (Reddi et al., 2021) (Figure 

3.9). 

 

In the case of the hERG channel, there are no direct experimental data about the atomic 

structure of the C-type inactivated state, as the cryo-EM structure presented the SF in the 

canonical conductive state. In this context, MD simulations are a powerful tool to 

complement the experimental data. The analysis of C-type inactivation by MD simulations 

is not expected to reveal all the transition steps involved in the process. Inactivation rate of 

Figure 3.9. Distances between carbonyl O atoms of residues in SF in (A) KcsA open-

conducting (PDB 3B5F), (B) KcsA open-inactivated (PDB 3F7Y), (C) Shaker open-

conducting (PDB 7SIP), (D) Shaker open-inactivated (PDB 7SJI). Only two subunits of SF 

are displayed for clarity with licorice representation. K+ ions (purple spheres) are shown at 

S1-S4 binding sites. 



hERG – while being an extremely fast process in the context of ion channel kinetics – it is 

still far beyond the time scale accessible by MD simulations. However, by comparing the 

dynamics of channels with different inactivation properties, it should be possible to unveil 

dynamic events related to the early steps of C-type inactivation. To these purposes, we 

simulated, together with the wild-type hERG channel, the altered inactivating F627Y 

(hERG-F627Y) and N629D (hERG-N629D) mutants. These mutants were selected because 

the substituted amino acids modify respectively the polarity or charge of the native S0 

binding site altering C-type inactivation: 

1. hERG-F627Y is a fast-inactivating mutant discovered by Guo et al. after 

investigating the molecular determinants of hERG channels in cocaine-hERG 

interactions using site-targeted mutations and patch-clamp method (Guo et al., 2006). 

2. hERG-N629D is a non-inactivating mutant of hERG that is stable in the conductive 

conformation; it was reported by Lees-Miller et al. as the first LQTS K+ channel 

mutation that exhibits gain of function (Lees-Miller et al., 2000). 

Methods involved a first phase of production data by MD simulations replicas using the 

model of the pore domain of the hERG channel described in Section 3.3. Models of hERG-

N629D and hERG-F627Y were built by manually replacing the mutated residues in the 

initial wild-type model using CHIMERA software (Pettersen et al., 2004). The same 

equilibration protocol and simulation parameters described in Section 3.3 was used for the 

three channel models. Eight independent replicas of 1 microsecond each were simulated for 

each channel model. In the second phase, trajectories were analysed by two different 

approaches to identify representative conformations and to compare channels with different 

inactivation properties, as described in the following sub-sections. 

Clustering using ion occupancy state of the SF 

Input featurization for the clustering analysis was performed calculating the occupancy 

states of binding sites S0-S4 by K+. Counting of ions was achieved by Equation 3.1: 

𝐶𝑖 = ∑
1 − (

𝑑𝑖,𝑗

𝑑𝑐
)

6

1 − (
𝑑𝑖,𝑗

𝑑𝑐
)

12

𝑗∈𝒜

                                                                                             𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.1 
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which calculates the coordination number 𝐶𝑖 at the position defined by index 𝑖 from 

contributions by atoms in selection 𝒜. 𝑑𝑖,𝑗 is the distance between atom 𝑗 and the position 

defined by index 𝑖, and 𝑑𝑐 is a cut-off distance after which the contribution of atom 𝑗 to the 

coordination number decreases to zero as dictated by the 6, 12 exponents. In the case of K+, 

all the potassium ions in the system were considered in 𝒜; the index 𝑖 identified the centre 

of the binding site, 𝑖 ∈ [S0, S1, S2, S3, S4], defined as the average position of the eight 

oxygen atoms delineating the site, and the cut-off distance was assumed equal to 1.4 Å, 

which corresponds to approximately half of the binding site length along the channel axis. 

In this way, the coordination number tends to 1 when a K+ ion is close to the centre of the 

corresponding binding site, and it approaches 0 if a binding site is empty. Outputs were used 

to cluster independently each MDs data. It was employed K-means algorithm with Euclidean 

distance and the Ward linkage criterion, setting the optimal number of clusters equals to the 

maximum value of the Silhouette score. The usage of ion occupancy as clustering features 

is motivated by the relationship between the presence of ions at specific binding sites and 

the conformation of the SF. Next, clustering was evaluated by computing Equation 3.1 to 

estimate the coordination number of oxygen atoms in binding sites S0-S4 (in this case, 𝒜 

equal to any oxygen atoms in the system and 𝑑𝑐=3.2 Å). The number of coordinating oxygen 

atoms  could be considered an index of structural integrity of binding sites S0-S4, with a 

value higher than 5 corresponding to a binding site in the conductive state (Furini & Domene, 

2011). In addition, it was calculated the number of K+ ions and water molecules in the 

intracellular cavity, with the same approach starting from a position 2 Å below the lower 

boundary of S4 in the intracellular direction and extending 20 Å toward the intracellular 

compartment. About potassium ions, it was considered the maximum values of 𝐶𝑖 to confirm 

their presence in the cavity regardless of the exact ion positions. While the presence of water 

molecules was evaluated by the minimum values of 𝐶𝑖, which can be used to identify 

possible regions with lack of hydration along the axis of the channel. Results show optimal 

number of clusters was 10, 8 and 4 respectively for hERG-N629D, hERG-WT, and hERG-

F627Y (a, b and c in Figure 3.10). 

 

 

 



 

Figure 3.10. The silhouette score as a function of the number of clusters is shown for hERG-

N629D (a), hERG-WT (b), and hERG-F627Y (c). From (d) to (f) are described the results 

of calculation of the number of oxygen atoms and K+ occupancy of S0-S4 and the cavity 

(blue and green bars, respectively), with the probability of each cluster. A representative 

snapshot of S0-S4 is shown illustrating K+ ions (green spheres), water molecules and 

residues of the SF (licorice). Reprinted from (Pettini et al., 2022). 
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The set of ion configurations explored by hERG-WT and hERG-N629D resembles the one 

described in MDs of other K+ channels, highlighting that all the most populated cluster share 

occupancy in the contiguous binding sites S2 and S3 by ions. The major difference was 

found in the geometry of binding sites S0 and S1, which can be attributed to the role of the 

presence of a ring of negative charges by Asp-629 to stabilize the opening at the outer 

entrance of the SF. This observation is confirmed by the evaluation of structural integrity of 

binding sites S0-S4: all clusters of hERG-N629D are characterized by more than five oxygen 

atoms in each of all binding site, while 3 cluster of the hERG-WT (about a total of 78.2% 

conformations) count fewer number of coordinating oxygens in S0-S1 (e1, e2, and e7 in 

Figure 3.10). The loss of oxygen atoms at a 3.2 Å distance from the centre of S0 and S1 is 

also observed in all the four clusters of hERG-F627Y. The conductive structure of binding 

site S0 and S1 was not sampled in any of the eight trajectories of hERG-F627Y. Therefore, 

the different distribution of ions in the three model systems agrees with expectations to found 

similarity between hERG-WT and hERG-N629D, but clear differences with respect to 

hERG-F627Y. Analysis of the intracellular cavity by ions and water suggest a general lack 

of stable binding of K+ ions and a remarkable constriction of the gate in the region occupied 

by the aromatic side chains of residues Tyr-652 for those clusters with average ion 

occupancy of the cavity closer to one at S4 (d9, e7, f1, and f2 in Figure 3.10). Configurations 

that belong to these specific clusters correspond to channel structures with a partially 

dehydrated intracellular cavity with might reduce the conductance of the channel. In none 

of the simulations of the three model systems, a constriction of binding site S2 was observed, 

at odds with previous simulations using the CHARMM force field (Miranda et al., 2020). 

Instead, widening events were observed in S0-S1. These widening events were more likely 

in the rapidly inactivating hERG-F627Y channel than in the wild-type channel, and they 

were totally absent in the non-inactivating hERG-N629D channel. These results support the 

hypothesis that inactivation of hERG is more similar to what observed in the Shaker 

potassium channel (widening of the extracellular portion of the SF) than what observed in 

the KcsA channels (constriction of binding site S2). 

Clustering by TICA projections 

TICA is a dimensionality reduction technique, which was described in Section 2.3, aimed 



to identify high-autocorrelation linear combinations of the input features. This technique was 

used as an alternative to the clustering presented in the previous sub-section to reveal 

metastable states in MD trajectories of the three model systems of the hERG channel: the 

wild-type model, hERG-F627Y and hERG-N629D. The input features for the TICA 

analyses were: 

- occupancy states of binding sites S0-S4 and of the cavity of the gate by K+, water 

molecules, and coordination oxygens, 

- distances among heavy atoms of the cavity of the gate, 

- distances among coordination oxygens of binding sites S0-S4. 

From projection of the first ten TICA components it was shown marginal changes for time 

intervals above 2 ns up to the first two TICA components, indicating three predominant 

density regions. Therefore, it was used t = 2 ns as lag time for constructing the transition 

matrix for clustering analysis. The calculation of inertia curve, in agreement with the mapped 

TICA signal, show that it was possible to restrict clustering analysis to three conformations. 

K-Means algorithm was set with a random initiation of centres among the features and with 

a stride of 10 frames, to choose centroids that minimise the inertia (Figure 3.11). 

 

For each cluster, it was calculated separately: 

- medium counts (with corresponding Standard Deviation) of water molecules in a cut-

off of 3.2 Å from the centre of mass of residues, indexing from T634 to Y667, which 

Figure 3.11. (A) Inertia curve of MD trajectories and (B) TICA signal mapped onto the first 

two component projections of the hERG-WT. 
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form all the α-helix delimiting the intracellular cavity (pink dots in Figure 3.12), 

- medium counts of potassium ions in a cut-off of 1.4 Å from the centre of mass of 

residues from T634 Y667, which form all the α-helix delimiting the intracellular 

cavity (green dots in Figure 3.12), 

- minimum and maximum values of the distance between alpha carbon of residues from 

I647 to Y667, which form part the α-helix surrounding the intracellular cavity, about 

opposing chains of the tetramers (respectively blue and red squares in Figure 3.12), 

- minimum and maximum values of the distance between coordination oxygen atoms 

of residues delimiting binding sites S0-S4 by ions (index from I647 to Y667) about 

opposing chains of the tetramers (respectively blue and red dots in Figure 3.12). 

Results of TICA projections confirms that the three model systems differs with respect 

to the occupancy state of the binding site S0-S4 by K+ ions and water molecules. In addition, 

these results suggest that the different distribution of water molecules in the intracellular 

cavity have an important role to refine the discretization step. Cluster 0 of hERG-N629D 

and Cluster 1 of hERG-WT confirm that S2 and S3 are always occupied by ions, and that 

water molecules tend to condense in the intracellular cavity in the region below S4. 

Moreover, the mutation of Asp629 favours the presence of ions in S0. We observed a 

different situation in Cluster 1 of hERG-N629D and Cluster 2 of hERG-WT, in which the 

probability to find an ion is higher at S3 and S4 and a gap in hydration is observed at the 

center of the cavity. This significant difference may be explained by the increase in structure 

compactness of the intracellular portion of hERG and the reduced distances among heavy 

atoms of the cavity of the gate. In fact, distances among heavy atoms of the cavity of the 

gate are reduced at the middle region, so the occupancy of the cavity by water molecules 

decreases. The more populated clusters show a very similar trend, with the difference that 

also in this case the mutation Asp629 causes the permanence of a potassium ion in S0. As 

far as hERG-F627Y is concerned, it is not possible to observe major differences between the 

two most populated clusters; instead, Cluster 1 confirms the relationship between hydration 

of the intracellular cavity and the presence of K+ ions in the contiguous S3 and S4 binding 

sites. 



 

In conclusion, MDs suggest that fast C-type inactivation requires geometrical 

reorientation of residues delimiting binding sites S0 and S1, and not closure of the selectivity 

filter, since no closure events of the SF was sampled in the three model systems over a 

cumulative simulation time of 24 µs. The extent of these structural changes runs in parallel 

to the degree of C-type inactivation, with hERG-F627Y > hERG-WT > hERG-N629D. The 

hypothesis that early steps of inactivation are consistent with an initial widening of the SF is 

Figure 3.12. Clustering results after K-Means algorithm of the three models. The X axis is 

in nm and represents the distance on the z-axis between the centres of mass of the triad of 

the first (+2.0) and last (-2.0) amino acid that make up the α-helix delimiting cavity of the 

gate. The Y axis is in Å if it represents the distance between two atoms of the opposing 

chains, otherwise it is a real number if it denotes the count of water molecules and K+ ions. 
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sustained by experimental data, confirming the robustness of employing MD simulations as 

a complementary tool to experimental analyses to help revealing the details of C-type 

inactivation (Domene & Furini, 2009; Gang & Zhang, 2006). Moreover, since C-type 

inactivation is dictated by the subtle atomic interactions of the SF and ions, water molecules, 

and protein residues, it is not surprising that the details of C-type inactivation may be channel 

dependent. The effect of inactivation on the properties of the cavity might have an impact 

on the drug recognition mechanism. 

3.4.3 Drug binding profile associated to inactivation 

In 2021, Asai et al. determined the cryo-EM structures of the hERG channel in the 

presence and absence of Astemizole, a well-known potassium channel inhibitor that 

increases the risk of potentially fatal arrhythmia (Asai et al., 2021). Although the quality of 

EM densities for astemizole was limited, structures validated the open state model 

determined by Mackinnon and colleagues and provided insights into the binding sites of 

hERG inhibitors, which have been predicted by various other studies but have not yet been 

characterized from the actual 3D structure (Wang & MacKinnon, 2017). The orientation of 

astemizole within the hERG, and its relationship to the amino acid residues in the vicinity 

of this inhibitor, may explain the promiscuous bind interaction of drugs to the hERG channel. 

On the other hand, the pathways by which inhibitors can access hERG and the relationship 

between inactivation and drug binding are still largely unknown. Experimental data revealed 

that C-type inactivation and the pharmacological properties are linked (Mitcheson et al., 

2000). However, to the best of our knowledge, in computational analysis of drug binding 

events, the open-conductive structure of the channel is always adopted. Since the previous 

analyses identified metastable states that might be involved in the early stages of 

inactivation, we decided to investigate by docking calculations how (and if) these structures 

exhibited different binding properties to well-known hERG blockers. The inhibitor-binding 

site of astemizole, reported by Asai et al, was compared with the three clusters. Meanwhile, 

the same prediction was performed on other two drugs to investigate how the binding-

affinity is dependent to the interactions with Ser624, Tyr652 and Phe656. 



For these analyses, we adopted Dofetilide and Moxifloxacin: 

-  Dofetilide is a methane-sulfonanilide compound, analogue of MK-499, about 

what is reported many experimental studies of its hERG inhibition effect (Stansfeld 

et al., 2007). In addition, it offers a three times bigger volume of topological polar 

surface area (121,57 Å) than astemizole, with a more flexible folding (11 rotatable 

bonds) and the possibility to establish more hydrophobic interactions with residues 

of the cavity (7 hydrogen bond acceptors and 2 hydrogen bond donors). These 

chemical properties combined with astemizole similar high binding affinity make 

dofetilide an excellent candidate for our study of binding sites in the intracellular 

cavity of the channel;  

- Moxifloxacin is a fluoroquinolone class of antibacterial, widely prescribed for the 

treatment of infections. Kang et al. reported clinically relevant positive voltage 

dependence of blockade of the hERG channel (Kang et al., 2001). However, data 

showed that only high concentration impact to inhibit potassium trafficking of 

hERG channel. Moxifloxacin binds to the open state of the channel and, to a lesser 

extent, the inactivated state, and drug binding occurs at the aromatic residue 

Tyr652 but not Phe656 in the inner cavity of the channel, making it an interesting 

case-study. Alexandrou et al. reported that mutagenesis of the S6 helix residue 

Phe656 to Ala failed to eliminate or reduce the Moxifloxacin-mediated block 

whereas mutation of Tyr652 to Ala reduced Moxifloxacin block by ∼66% 

(Alexandrou et al., 2006).  

Briefly, this study is aimed at: 

1) testing the hypothesis that drug binding features are dependent on the channel 

metastable states observed in MD trajectories; 

2) Validating in silico pharmacophore prediction of astemizole with Asai et al. 

structural information, by comparing with conformers of moxifloxacin and dofetilide 

after molecular docking simulations; 

3) Investigating the contribution of known interacting residues (Ser624, Tyr652 and 

Phe656) to the blockade, and which is the best pose that drugs can assumes in the 

inner cavity. 

The protocol of this study involves a phase of production data, in which configuration of the 
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drug binding protein was designated by the AutoDock Vina tool after water molecules and 

phospholipids removal (Eberhardt et al., 2021). It was performed a docking with rigid bonds 

and a sufficiently large cubic box to include the investigated residues in all the clusters, so 

as to more easily compare the results. The binding cavity was identified by selecting an area 

of 17 Å positioned at 15 Å from the center of the SF along z-plane. The selected area covered 

aromatic (Tyr652, Phe565) and polar (Tyr623, Ser624, Val625, Ser649 and Gly648) 

residues located on the pore helix and lining the inner cavity.  

Vina calculates the energetic score by Equation 3.2: 

 ∆𝐺 = ∑ 𝑓𝑡𝑖𝑡𝑗
(𝑟𝑖𝑗)𝑖<𝑗                                                                                        𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4.2 

where the summation is over all the pairs of atoms that can move relative to each other, 

normally excluding 1–4 interactions. Each atom 𝑖 is assigned a type 𝑡𝑖, and a symmetric set 

of interaction functions 𝑓𝑡𝑖𝑡𝑗
 of the interatomic distance𝑟𝑖𝑗 is defined.  

In order to validate the input structures for conformers analysis it is essential comparing 

energetic score with predicted  𝐼𝐶50 (𝑝𝐼𝐶50) values. The best pose of each frame was used 

to measure: 

- minimum radius distance (𝑅𝑚𝑖𝑛) between the drug and closest residues known to 

be directly involved in the inhibition mechanism, Ser624 (𝑅𝑚𝑖𝑛
𝑆624) and Tyr652 

(𝑅𝑚𝑖𝑛
𝑌652) (Table 3.1 and Figure 3.13). This measurement estimates where the drug 

ranks in relation to the SF for each cluster. 

- Distance between the two far atoms of the molecular structure of compounds 

(𝑅𝑚𝑖𝑛
𝑑𝑟𝑢𝑔

), able to establish interactions with residues of the protein (Table 3.1 and 

Figure 3.13). This data does not provide us with direct information on the spatial 

relationships of the elements that characterize a 3D pharmacophore, because it 

does not take into account the angles of rotation around single bonds and/or 

inversion of atomic centres: it only indicates whether the structural conformation 

opens proportionally to the ‘increase in the value of the distance between the two 

atoms. However, in the case of a ligand-receptor interaction characterized by the 

establishment of a dense network of hydrogen bonds or a large number of other 

strong interactions, it is very likely that the ligand binds to the receptor in a 

conformation that corresponds to a low energy conformation for the molecule in 



vacuum. Therefore, by comparing the average values of  𝑅𝑚𝑖𝑛
𝑑𝑟𝑢𝑔

with the minimum 

energy resulting from the calculation of the docking simulation, in each cluster, it 

is possible to have an idea of the degree of distension that the probable bioactive 

conformation can assume: if the value of Vina Score decreases as  𝑅𝑚𝑖𝑛
𝑑𝑟𝑢𝑔

 increases, 

the bioactive conformation could assume a spatial distribution bound to a main 

axis, limiting the number of interactions that can be established between the four 

channel chains, and vice versa. 

According to the rationale of this analysis, the position of the drug with respect to the 

distance between the two residues involved in the binding and the probable spatial 

conformation of the drug in the cavity can be useful to validate at a computational level the 

different value of 𝑝𝐼𝐶50  obtained from the experimental data. Furthermore, the subsequent 

analysis of the interaction profile can highlight how much the inner region of the cavity is 

involved compared to the SF in the inhibition of hERG, i.e., if Tyr656 and Phe652 show a 

higher number of bond donor atoms for the drug with respect to residues close to the SF it 

is reasonable to expect the intracellular region of the cavity to be essential for the inhibition 

mechanism in the sampled metastable state. Non-covalent interaction analysis of the most 

representative conformation of each cluster was performed with Protein–Ligand Interaction 

Profiler (PLIP) web server tool (Adasme et al., 2021).  

Results from the Vina scoring function confirms astemizole and dofetilide are strong 

inhibitors, while moxifloxacin is a weak inhibitor, in accordance with the predicted 𝐼𝐶50, 

reported by Cavalli et al. and Munawara et al. (Cavalli et al., 2012; Munawar et al., 2018): 

the mean value of ∆𝐺 in all frames decrease when 𝑝𝐼𝐶50 increase (Table 3.1). Frequencies 

distribution of 𝑅𝑚𝑖𝑛
𝑆624, 𝑅𝑚𝑖𝑛

𝑌652, and 𝑅𝑚𝑖𝑛
𝑑𝑟𝑢𝑔

, confirm that significant differences exist in the 

orientation and structural relaxation of the drugs among the clusters. This agrees with the 

difference in cavity and SF observed among clusters, and it provides evidence for proceeding 

to analyse the interaction profile of the most representative conformation of each metastable 

state. Indeed, frequencies distribution of 𝑅𝑚𝑖𝑛
𝑆624 and 𝑅𝑚𝑖𝑛

𝑌652 compared with ∆𝐺 indicate that 

the binding affinity of astemizole and moxifloxacin is strictly related to the interactions 

established with Ser624 and Tyr652, while the binding affinity of dofetilide is correlated to 

variation of the 𝑅𝑚𝑖𝑛
𝑑𝑟𝑢𝑔

. This observation agrees with the different chemical properties of 

dofetilide with respect to astemizole and moxifloxacin (Figure 3.13).  
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Figure 3.13. Frequency distribution of (A) Vina Score (B) 𝑅𝑚𝑖𝑛
𝑆624, (C) 𝑅𝑚𝑖𝑛

𝑌652, and (D) 𝑅𝑚𝑖𝑛
𝑑𝑟𝑢𝑔

; 

Cluster 0 is coloured in blue, Cluster 1 in orange, Cluster 2 in green. 



 

In the following paragraphs, the results of PLIP analyses for the three compounds are 

reported. 

Astemizole. In the most populated cluster, astemizole binds perpendicular to the pore, 

where it can establish interactions with residues surrounding the cavity (specifically 

hydrogen bonds with Ser624 and Phe656 side chains, and hydrophobic interactions with 

oxygen atoms of Tyr652, Ala653 and Phe656). A similar binding pose was observed in 

snapshots of the second most populated cluster, that also allow π-π stacking interaction with 

aromatic rings of Tyr652. Instead, in the less populated cluster, corresponding to structures 

with cavity radius smaller than in the previous two clusters, the drug is located parallel to 

the cavity making only interactions with Tyr652 (Table 3.2 and Figure 3.14). 

 

Classes 
Vina Score 

(Kcal/mol) 

𝐑𝐦𝐢𝐧
𝐒𝟔𝟐𝟒 

(Å) 

𝐑𝐦𝐢𝐧
𝐘𝟔𝟓𝟐 

(Å) 

𝐑𝐦𝐢𝐧
𝐝𝐫𝐮𝐠

 

(Å) 

ASTEMIZOLE ( 𝑝𝐼𝐶50= 9,0 (𝐼𝐶50=1x10-9 M)) (Zhou et al., 1999) 

All -9,60 10,15 5,25 10,25 

Cluster 0 -9,50 9,69 5,02 10,77 

Cluster 1 -9,80 10,76 5,93 9,36 

Cluster 2 -9,70 10,15 5,45 9,39 

DOFETILIDE ( 𝑝𝐼𝐶50= 7,9 and 𝑝𝐾𝑖  = 8,2 (𝐾𝑖  = 6,4x10-9 M)) (Singleton et al., 2007) 

All -8,30 8,55 4,94 9,46 

Cluster 0 -8,50 8,30 4,68 9,81 

Cluster 1 -7,90 9,52 5,42 10,30 

Cluster 2 -8,20 8,61 5,26 8,66 

MOXIFLOXACIN ( 𝑝𝐼𝐶50= 3,78 (𝐼𝐶50=1,65x10-5 M) (Abi-Gerges et al., 2011) 

All -7,50 9,38 5,72 12,09 

Cluster 0 -7,20 8,41 5,64 12,10 

Cluster 1 -8,20 9,55 5,79 12,09 

Cluster 2 -7,70 10,18 5,83 12,06 

Table 3.1 Median of measured Vina Score, 𝑅𝑚𝑖𝑛
𝑆624, 𝑅𝑚𝑖𝑛

𝑌652, and 𝑅𝑚𝑖𝑛
𝑑𝑟𝑢𝑔

, related to all frames 

and specific cluster. 
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Dofetilide. In the most populated cluster, dofetilide binds parallel to the pore folded in a 

“C” shape conformation with the two donor Oxygen atoms equidistant to Ser624 and 

Tyr652, such as highlighted from pharmacophore model (yellow colour in the Table 3.3). It 

can establish interactions with residues surrounding the cavity: hydrogen bonds with Ser624 

and Ala653, hydrogen bonds with Ser624 and Tyr652, and π-π stacking with aromatic rings 

of Tyr652. In Cluster 2, the pose of the compound is superimposable to the pose of Cluster 

0, but, due to different orientation of the terminal carboxyl, it cannot establish interactions 

Residues 
Occurrence 𝑹𝒎𝒊𝒏 

Clust 0 Clust 1 Clust 2 Clust 0 Clust 1 Clust 2 

Hydrophobic Interactions 

Y652 4 4 2 3,30 3,65 3,73 
A653 none none 1 none none 3,73 
F656 2 1 2 3,86 3,62 3,60 

H-Bonds 

S624 1 none none 3,69 none none 
S660 none none 1 none none 2,80 

π-π Stacking 

Y652 none none 1 none none 4,96 

Figure 3.14. Most representative pose of Astemizole docked in each cluster. 

Table 3.2. Protein-Ligand Interaction Profile of the most representative pose of Astemizole 

docked in the hERG cavity. 



with Ser624. Instead, in Cluster 1, the central scaffold of the drug responsible for H-bonds 

interactions is located closed to the Ser624, Tyr652 and Ser660 (Figure 3.15). 

 

 

Stansfeld et al. reported experimental results that show a similar binding profile between 

dofetilide and astemizole (Stansfeld et al., 2007). In the present study, molecular docking 

predictions of astemizole and dofetilide do not report similar interactions profile in any of 

the most representative pose of each cluster, even if the binding affinity score match with 

the experimentally measured 𝑝𝐼𝐶50. These discrepancies could be explained by the fact that 

the standard protocol of Molecular docking refinement phase considered just the best 10 

Residues 
Occurrence 𝑹𝒎𝒊𝒏 

Clust 0 Clust 1 Clust 2 Clust 0 Clust 1 Clust 2 

Hydrophobic Interactions 

Y652 5 2 4 3,52 3,6 3,59 
A653 1 None 1 3,74 none 3,57 

H-Bonds 

S624 2 2 none 2,85 2,96 none 
Y652 3 3 1 2,85 3,15 2,97 
S660 none 1 none none 3,49 none 

π-π Stacking 

Y652 1 none none 5,29 none none 

Figure 3.15. Most representative pose of Dofetilide docked in each cluster. 

Table 3.3. Protein-Ligand Interaction Profile of the most representative pose of Dofetilide 

docked in the hERG cavity. 
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poses, due to save time-consuming performance. Thus, it is plausible to have a docking 

prediction in accordance with experimental data just increasing exhaustiveness of the 

prediction parameters, because it is possible to cluster more poses. However, the prevalence 

of possible hydrophobic interactions and hydrogen bonds that dofetilide can established with 

Tyr652 respect to Phe656 underline the importance of this interaction and dissociation from 

SF binding site for the sensitivity to the blockade, as reported by Gomez-Varela (2006) 

(Gómez-Varela et al., 2006). 

 

Moxifloxacin. The pose of the drug in Cluster 0 a Cluster 2 is similar: the central scaffold 

of moxifloxacin intercepts the Z-plane at about 45°. As shown in Figure 3.16, the pose 

differed for the docked positioning in the box: the compound docked in the most populated 

cluster is closer to the selectivity filter allowing more interactions with amino acids 

surrounding the interior part of the cavity, while in Cluster 2 the drug is located closer to the 

entrance permitting possible interaction with Tyr652, Phe656, and Asn658 (Table 3.4). 

Instead, in Cluster 1, moxifloxacin assumes a stretched pose perpendicular to the XY-plane 

with the external carbonyl rings oriented towards the SF (Figure 3.16).  

 

 

 

 

Residues 
Occurrence 𝑹𝒎𝒊𝒏 

Clust 0 Clust 1 Clust 2 Clust 0 Clust 1 Clust 2 

Hydrophobic Interactions 

Y652 5 4 3 2,80 3,57 3,14 
A653 none 1 none none 3,72 none 
F656 3 none 3 3,48 none 3,52 

H-Bonds 

S624 2 1 none 3,42 4,02 none 
Y652 1 1 none 3,12 3,43 none 
F656 1 none 1 3,08 none 3,17 

π-π Stacking 

Y652 1 2 none 4,22 4,61 none 

Table 3.4. Protein-Ligand Interaction Profile of the most representative pose of 

Moxifloxacin docked in the hERG cavity. 



The most populated cluster of moxifloxacin is more suitable to represent the state closest to 

inactivation by drug binding, because: 

- binding pose of the drug move parallel to the z-plane, leading to establish the 

higher number of strength interactions with Y652, and adjacent residues, versus 

the minimum steric ingombrance; 

- 𝑅𝑚𝑖𝑛
𝑆624 and 𝑅𝑚𝑖𝑛

𝑌652 increase according to decrease of the number of possible 

interactions with Ser-624 and Phe-656 (Table 3.1). 

As dofetilide prediction, molecular docking of moxifloxacin reported higher number of 

probable contacts with Tyr652, concordant with an interaction in the channel inner cavity, 

resembling the mechanism of hERG blockade observed by Alexandrou et al. (Alexandrou 

et al., 2006). 

 

 

 

 

 

Figure 3.16. Most representative pose of Moxifloxacin docked in each cluster. 
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Chapter 4 – Side projects  

4.1 DNA-binding to LacI repressor protein 

DNA interactions with proteins are necessary for many of its functions: DNA-binding 

proteins have a central role in all aspects of genetic activity within an organism, such as 

transcription, packaging, rearrangement, replication, and repair. It is therefore essential to 

investigate the nature of DNA-protein complexes to understand how these cellular processes 

take place. For example, the expression degree of genes is regulated by a broad number of 

proteins, named transcription factors, which recognize and bind specific DNA-sequences 

(Luscombe et al., 2000). DNA-Protein binding is mediated by many factors such hydrogen 

bonds (H-bonds), Van der Waals (VdW) contacts, DNA shape, protonation states, flexibility, 

and many others (Hogan & Austin, 1987; Luscombe et al., 2001); while the stability of 

DNA-Protein complexes is linked to DNA–backbone interactions, proteins recognize 

specific DNA sequence by forming bonds between amino-acid side chains and DNA bases 

(Luscombe et al., 2001; Rohs et al., 2010; Rohs et al., 2009). Consequently, mutations 

occurring in DNA-binding proteins that alter the physical and chemical properties of the 

binding interfaces may influence binding specificity and affinity (Luscombe & Thornton, 

2002; Treisman et al., 1989). There has been an increasing interest in the role that DNA-

binding proteins may play in medicine and biology, and it has been shown that alteration in 

DNA-Protein binding affinity is involved in heart and neurological diseases, as well as 

cancer. Hence, understanding their molecular effects is crucial for deciphering disease 

origins and pursuing treatment (Chahrour et al., 2008).   

DNA-Protein interactions are of mainly two types: specific or non-specific interactions 

(Ganji et al., 2016; Hudson & Ortlund, 2014). In general, proteins interact with the major 

groove of B-DNA, because it exposes more functional groups that identify a base pair 

(Bewley et al., 1998). Recent single-molecule experiments showed that DNA binding 

proteins undergo rapid rebinding in order to bind in the correct orientation for recognizing 

the target site (Redding & Greene, 2013). DNA complexes with structural proteins, within 

chromosomes, are perfect examples of non-specific DNA-protein interactions. These 

proteins organise the DNA into a compact structure called chromatin. In eukaryotes, this 

structure involves DNA binding to a complex of small basic proteins called histones. The 



histones form a disk-shaped complex called a nucleosome, which contains two complete 

turns of double-stranded DNA packed around its surface (Dame, 2005). These interactions 

are formed through basic residues in the histones making ionic bonds to the acidic sugar-

phosphate backbone of the DNA, and are, thus, widely independent of the base sequence 

(Harteis & Schneider, 2014). Chemical alteration of these basic amino acid residues includes 

epigenetic mutations, such as methylation, acetylation, and phosphorylation (Javaid & Choi, 

2017). These chemical modifications alter the strength of the interaction between the DNA 

and the histones, making the Accessible Surface Area (ASA) at the interface accessible to 

transcription factors and changing the rate of transcription (Workman & Kingston, 1998). 

Other non-specific DNA-binding proteins in chromatin include the high-mobility group 

(HMG) proteins, which fold or distort DNA. Biophysical studies highlighted that these 

architectural HMG proteins bind, fold and loop DNA to perform their biological functions 

(Reeves, 2010). These proteins are important in bending arrays of nucleosomes and 

arranging them into the larger structures that form chromosomes. In contrast, other proteins 

bind to specific DNA sequences. Each transcription factor recognizes one specific set of 

DNA sequences, and activates or inhibits the transcription of genes linked to these sequences 

(Frietze & Farnham, 2011). The transcription factors do this in two ways: binding the RNA 

polymerase, directly or through other mediator proteins, or alternatively, binding enzymes 

that modify the histones at the promoter. This alters the accessibility of the DNA template 

to the polymerase. Consequently, changes in the activity of one type of transcription factor 

can interest lots of genes (Grove & Walhout, 2008). So, these proteins are the principal 

targets of the signalling pathways that control responses to environmental changes or cellular 

differentiation (Duronio & Xiong, 2013). The specificity of these transcription factors 

interactions with DNA come from the proteins making multiple contacts with the DNA 

sequence, until they recognize their binding site. Descriptions of DNA-binding proteins 

considering sequence-specificity, and competitive and cooperative binding of proteins of 

different types are usually conducted with the help of computational methods, to establish a 

collaboration among the major -omics tools aimed to perform a more accurate and less time-

consuming process (Rastogi et al., 2018). The purpose of the present research was to explore 

how residue mutations might impact on the nonspecific protein-DNA interactions, and if it 

was possible to identify general rules for modulating the movement of proteins along 

nonspecific DNA, inspired by a previous bioinformatic analysis (Gardini et al., 2017). The 
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analysis protocol was based on fully atomistic molecular dynamics simulation and MM-

PBSA energetic analysis to quantify the free-energy landscapes that underlie the dissociation 

kinetics of the lacI repressor in dimeric and monomeric conformation. The atomic structures 

of the protein-DNA complexes were based respectively on an altered specificity mutant of 

the lac repressor headpiece that mimics the gal repressor (available in RCSB database at 

PDB ID 2BJC) (Kopke Salinas et al., 2005) (Figure 4.1-A) and on the lacI repressor 

complexed to a nonspecific B-DNA template (available in RCSB database at PDB ID 1OSL) 

(Kalodimos et al., 2004) (Figure 4.1-B). 

 

The headpiece 62 (HP62) molecules of alpha chains were chosen for proteins and their 

bended double-helix portion for DNA fragment (5’-CGATAAGATAT-3' of 1OSL; 5′-

GAATTGTGAGC-3′ of 2BJC). We selected 5 mutants for the repressor complexed to 

specific DNA and 9 mutants for the LacI monomer 2BJC. All residues mutated are centred 

in the α-helix interacting with the major groove of DNA (Figure 4.1 and Table 4.1 for the 

list) and were selected by considering three main parameters of the side chains able to alter 

the recognition affinity to DNA: size, VdW, and electrostatic properties. 

 

A B 

Figure 4.1. [A] Cartoon representation of the atomic model of the lacI repressor complexed 

to its specific DNA (2BJC) and [B] to a non-specific DNA (1OSL). Residues selected to 

mutations are displayed, and labelled, in ball and stick (orange). 



The standard single-trajectory MM/PBSA protocol was employed to estimate binding 

entropy of each system. Dynamics of dimeric assembly were studied following the same 

ensemble with same energetic parameters and Force Field but using the 3-trajectories variant 

approach. In this case, it is crucial to consider the free energies of the complex in a bounded 

state or the single entity in the unbounded state, due to the presence of S-S bond in Cys52 

interface that could lead to estimation accuracy. The initial atomic coordinates of the two 

simulated systems and parameters of the ensemble were generated using CHARMM-GUI 

for the Gromacs MD engine (Jo et al., 2008; J. Lee et al., 2016). The protein-DNA complexes 

were solvated by ∼12500 TIP3P water molecules and 0.15 M NaCl was used to neutralize 

the electrical charge. The 36m version of the Charmm force field was used, in combination 

with ion parameters by Joung and Cheatham. Van der Waals interactions were truncated at 

12 Å. Long-range electrostatic interactions were treated using the Particle Mesh Ewald 

method with a real-space cut-off of 12 Å, and a grid spacing of 1,2 Å. Newton's equations 

of atomic motion were integrated by the Verlet algorithm with 2 fs time steps. The LINCS 

algorithm was used to constraint bonds and angles with the hydrogen atom. The temperature 

was controlled at 300 K by coupling to a velocity-rescaling scheme thermostat with a 

damping coefficient of 1 ps−1, due to ensure a more efficient kinetic energy distribution. 

Pressure of 1 atm was maintained by coupling the system to a Berendsen thermostat, with a 

damping constant of 2 ps. The equilibration protocol consisted of 50.000 steps of energy 

minimization by steepest descent algorithm, with an initial force step size of 0,1 Å, followed 

by a total of 30 ns in the NPT ensemble with timestep equal to 1 fs and 10 ns in the NPT 

ensemble with timestep equal to 2 fs. During the equilibration protocol, position restraints 

on protein and DNA atoms were gradually reduced to zero, except for the backbone of the 

two nucleotides at the 5’ and 3’ extremities which were maintained also in production 

trajectories. All the systems were subjected to a step of production, 1 µs long, in NPT 

condition with a time step equal to 2 fs each. Conformational snapshots were saved for each 

trajectory at 100 ps intervals, leading to a database of 150000 snapshots which represents 

150 Gb of data including solvent. Convergence assessment and structural analyses were 

performed by integrated tools of Gromacs. The initial 200 ns of the trajectories were treated 

as an extended equilibration period and only the remaining 800 ns of simulations were 

analysed. Energetic components were estimated with the approximate post‐processing end‐
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state method available in the g_mmpbsa python script (Kumari et al., 2014). Solvation 

energies and forces were determined with respect to a homogeneous medium with a 

dielectric constant of 1. Ionic strength was set to 0,15 M, radius of positive charged ions was 

set to 0,95 Å, radius of negative charged was set to 1,81 Å, and solvent probe radius was set 

to 1,4 Å. The linearized PB equation was solved using grid spacing of 0,5 Å, internal and 

external dielectric constants of 8 and 80, respectively. The non-polar solvation free energy 

calculation is calculated from the solvent accessible surface area using the traditional one 

component method. In this approach the surface tension, γ, was set to 0,00542 kcal mol−1 

Å−2) and the offset to 0,92 kcal mol−1. 

Results from the MMPBSA calculation are summarized in Table 4.1. As expected, 

2BJC mutations of internal amino acids in the alpha-helix show a progressive loss of affinity 

for DNA, which can be attributed to the concomitance of two factors: one of a structural 

type and one of a functional type. Hydrophobic index and occurrence of amino acids with 

negatively charged side chain can be used as tool to modulate protein mobility along DNA 

chains. Therefore, substitutions of Asparagine and Threonine with Glycine, a non-polar 

amino acid with aliphatic side chain, may represent a very feasible way to decrease affinity 

to DNA, as confirmed from positive values of ΔΔG. From a functional point of view, the 

range of specification may be attributable to the variation in non-bonding interactions with 

water molecules. Consequently, to these two factors the V17Y-A18Q to be the negative 

control on the other mutants, which appear to have a progressively lower affinity for DNA 

as it moves away from the alpha-helix. In the case of 1OSL, both the WT mutant and the 

T19G-N25G mutant, used as negative controls, have been shown to assume an unexpected 

state that invalidates the initial hypothesis: the WT seems to be the clearly more unstable 

complex of all. Furthermore, the residues known to be responsible for the interaction 

between DNA and protein do not show significant differences in terms of binding energy. 

These discrepancies might be related to a rude quality of the sampling and/or to 

inaccurancies of the Force Field.  

 



 

 

4.2 Peptide-MHC complexes in Sars-Cov2 

The pandemic COVID-19 (COronaVIrus Disease 2019) is caused by the SARS-CoV-2 

virus. The World Health Organisation (WHO) on March 3rd, 2020, reported that the lethality 

rate of the virus is 3,4%. One of the main characteristics of the disease is the high variability 

of symptoms in the population. Most affected patients have mild symptoms, while others 

develop acute pneumonia and require mechanical ventilation. Approximately 20% of cases 

require hospitalisation and 5% of them the intensive care unit. Patients who require 

respiratory assistance are often the elderly and/or are affected by previous pathologies, but 

this is not sufficient to explain the huge variability in response. The host genetic component, 

together with age and gender, leads to a different immune response or permissiveness to the 

virus, according to some studies (Brodin, 2021). Indeed, it has been reported that genetic 

LacI-monomer 
ΔG 
(KCal/mol) 

ΔG – ΔGWT 
(KCal/mol) 

2BJC  

Wildtype -31,84 - 

V17Y_A18Q -46,28 -14,44 

V17Y_A18Q_T19G -25,38 6,46 

V17Y_A18Q_N22G -21,30 10,54 

V17Y_A18Q_N25G -9,12 22,72 

V17Y_A18Q_T19G_N25G -23,95 7,89 

1OSL  

Wildtype -5,02 - 

T19G_N25G -35,57 -30,55 

N25R -26,79 -21,77 

V15R -27,34 -22,32 

V15G -22,33 -17,31 

T17G -23,01 -17,99 

T19G -22,73 -17,71 

T19R -10,91 -5,89 

N22G -7,42 -2,4 

N25G -23,41 -18,39 

Table 4.1 Energetic results from MMPBSA calculation. 
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factors, such as the type of Human Leukocyte Antigens (HLA), can affect the progression 

and the severity of the disease (Amoroso et al., 2021). The HLA locus is a polymorphic gene 

complex present on chromosome 6 (6p21.3), that encodes approximately 27,000 variant 

surface molecules, grouped into class I and class II, that bind peptides derived from different 

sources, determining resistance to infectious diseases and susceptibility to autoimmunity 

(Dendrou et al., 2018; Klein & Sato, 2000a, 2000b). Therefore, HLAs are essential for 

immune responses to viral infections, as they present the pathogen antigens to CD8+ and 

CD4+ T cells, promoting the elimination of infected cells and the production of antibodies 

(Dendrou et al., 2018). In addition, some HLA class I and II molecules can interact with 

specific natural killer (NK) cell receptors. The combination of HLA alleles is crucial during 

the immune response and can make an individual more susceptible to a specific disease 

(Choo, 2007; Klein & Sato, 2000a, 2000b), such as reported in virus-related diseases (SARS, 

influenza, HIV infection, hepatitis, cytomegalovirus (CMV) and Herpes simplex Virus 1 

(HSV-1)) (Hu et al., 2014; McAulay et al., 2007; Singh et al., 2007). Although Genome 

Wide Association Studies (GWAS) have not elucidated the role of HLA variability in 

susceptibility to SARS-CoV-2, targeted analyses have identified specific HLA variants 

associated with severity of COVID-19 in different populations (Augusto & Hollenbach, 

2022; Francis et al., 2022; Nguyen et al., 2020; Parker et al., 2021). Population-based studies 

across Italy reported that HLA diversity could impact on disease severity and susceptibility 

(Amoroso et al., 2021; Correale et al., 2020; Guerini et al., 2022; Novelli et al., 2020; Pisanti 

et al., 2020). Among them, Pisanti and colleagues reported that the HLA-A*01:01-B*08:01-

C*07:01-DRB1*03:01 haplotype shows a significant positive correlation with the incidence 

and mortality of COVID-19, while HLA-A*02:01-B*18:01-C*07:01-DRB1*11:04 has been 

shown to confer protection against serious illness. Littera and colleagues, from the study on 

the Sardinian population, showed that the three-loci haplotype HLA-A*30:02, B*14:02, 

C*08:02 is more frequent in patients with COVID-19 (Littera et al., 2021). Finally, Zhang 

and colleagues recently demonstrated overexpression of the HLA-B*18:01:01:01 and 

B*44:03:01:01 gene in human lung epithelial cells infected with the virus. The affinity of 

SARS-CoV-2 peptides for HLA molecules varies between polymorphic HLA alleles, 

potentially influencing antigen presentation and the strength of the immune response 

(Blackwell et al., 2009; Matzaraki et al., 2017). Several in silico studies showed that the 

various HLA alleles bind to peptides derived from SARS-CoV-2 nucleocapsid with different 



affinity. Successful presentation of peptides depends on their effective binding to HLA 

molecules via hydrogen bonds and salt bridge interactions, allowing for high affinity with a 

broader specificity. The autoimmune response to self-molecules is also mediated by the 

different binding affinity of peptides derived from them and individual HLA antigens. There 

are numerous autoimmune diseases that are associated with HLA class II alleles (Liu et al., 

2021; Naito & Okada, 2022). The combination of HLA molecules therefore defines the 

repertoire of both non self and self-peptides that can activate an adaptive immune response. 

Since the polymorphism of HLA genes is extreme, each individual expresses numerous 

different HLA molecules, each of which defines the repertoire of peptides that are presented 

with the greatest affinity. Ultimately, it is the combination of these that defines susceptibility 

to certain autoimmune diseases or the response to viral infections. Only when the HLA 

molecule plays a major role can an association be clearly identified between it and a certain 

disease, autoimmune or infectious. This is one of the reasons that explain why the numerous 

studies that have examined the HLA association with COVID-19 have often led to 

inconclusive, or difficult to replicate, results (Deb et al., 2022). In addition, it should be 

evaluated different population ancestries and clinical outcomes, with HLA frequencies that 

can vary significantly. Furthermore, the cases examined were not always of sufficient 

number, or HLA genotyping was not performed for all loci, or the disease phenotype was 

not always well defined.  

This project aimed to investigate the impact of HLA polymorphism on COVID-19 

severity in a cohort of 1,978 SARS-Cov-2 infected subjects with different disease severity 

belonging to the Italian GEN-COVID Multicenter study, a network of more than 40 Italian 

Hospitals (https://sites.google.com/dbm.unisi.it/gen-covid). This cohort has several 

advantages. First, it collects both severe and not severe cases allowing the use of infected 

asymptomatic subjects, as control, instead of the general population. This advantage leads 

to cleaner association. Second, it collects a relatively homogenous population: white 

ethnicity based in Italy. Third, the HLA haplotypes are well characterised in Italy including 

the ancestral ones. Besides, this study taken advantage of approach with haplotype versus 

single alleles association: it was reasoned that the HLA locus should be seen as a single 

functional entity and the global HLA response in terms of balance between response toward 

spike making, strong host defence, and response toward self, making weak host defence 

should be relevant for COVID-19 severity. Additionally, this study was aimed to evaluate 

https://sites.google.com/dbm.unisi.it/gen-covid
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how differential peptide specificities of HLA allotypes can affect immune response by 

alteration of antibody production. It was considered that higher antibodies affinity against 

Spike protein can decrease infection and disease severity, while increased antibodies 

recognizing an autoantigen, such as anti-interferon-α (anti-IFN-α), can impact negatively on 

infection clearance and contribute to severity (Bastard et al., 2020; Bastard et al., 2022) 

(Figure 4.2). Evaluation of the HLA allotypes and spike/IFN-α peptides affinity binding 

was performed by in silico prediction. 

 

Methods can be grouped as follows: 

1. Experimental steps performed by the GEN-COVID Multicenter of Siena: typing 

of both HLA class I (-A, -B, -C, -E, -F, -G) and class II genes (-DRB1, -DQA1, -

DQB1, -DPA1, -DPB1) from the cohort; plasma detection of IFN-α specific 

antibodies from hospitalized patients. 

Figure 4.2. Graphical abstract of the study describing the rational of the project. 

 



2. Statistical association study was performed in three steps: 

- Preliminary association analysis of the cohort divided according to 

hospitalization status: 403 patients with very mild symptoms, that could be 

treat from home (non-hospitalized), and 1575 patients who need any hospital 

assistance (hospitalized). Clinical and demographic feature (severity, sex, age) 

were included in the frequency’s evaluation by logistic regression. 

- Association study of HLA polymorphism with COVID-19 hospitalization, 

using Bonferroni correction on p-value after logistic regression. Regarding 

HLA class II, which are expressed as heterodimers with specific alleles 

encoding the respective α and β subunits, it was also analysed the two-locus 

haplotypes. 

- Association study with Italian population. Given the high variance of HLA 

across human populations, driven in part by their impact on infectious disease 

susceptibility, the 20 most frequent haplotypes in the Italian population were 

tested in the cohort.  

3. Binding affinity prediction by sequence-based tools. I performed prediction 

analysis between HLA molecules and SARS-CoV-2 spike protein. HLA allotypes 

were grouped according to the number of different peptides they can present: 

strong, weak or none. In both of in silico predictions, it was used netMHCpan v4.1, 

setting a <0.5% rank for strong binders and <2% rank for weak binders, and 

netMHCIIpan v4.0, setting a <0.5% rank for strong binders and <5% rank for weak 

binders. The spike protein of SARS-CoV-2 alpha (B.1.1.7) virus strain was used 

(UniProtKB P0DTC2); for HLA class I, binding affinities were estimated for 

peptides fragments of 8-11 amino acids in length, and for HLA class II the peptides 

were 15 amino acids in length. The parallel investigation of HLA allotypes having 

high affinity to IFN-α involved similar predictive protocol. IFN-α subunit protein 

sequences were retrieved from the GenBank NCBI reference database: 

EAW58609, EAW58611, EAW58621, EAW58615, EAW58613, EAW58620, 

EAW58610, EAW58619, AAI04160, EAW58618, EAW58617, EAW58623. A 

final evaluation of the HLA allele frequencies between patients with and without 

IFN-α specific antibodies completed the work. HLA-DRB1 was analysed alone 

due to lack of variability of HLA-DRA allotype. 
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Outline of the binding affinity prediction analysis was: 

- estimate the affinity for all SARS-CoV-2 spike protein related peptides in the 

NetMHCpan v4.1 dataset to any HLA allele, such as shown in Table 5.2 for MHC 

type I of patient with identifier ‘COV1’. The same procedure was performed for 

MHC type II by using netMHCIIpan v4.0 dataset. 

- calculate the total number of binding peptides to its HLA allele in each patient. 

The rational for counting the total number of peptides was the probability to 

present a peptide is higher when more alleles can bind to that peptide. 

 

From HLA typing analysis in the cohort, 94 HLA alleles resulted having frequency 

greater than 2%. After screening association, logistic regression association analysis with 

HLA alleles candidates indicated HLA class I alleles showing no significant differences after 

p-value correction, while HLA-DPB1*13:01 was enriched in non-hospitalized patients, 

when sex and age >60 years old were covariates. Non-classical HLA class I antigens (HLA-

E, G, F) were excluded from next analysis because they were founded no related to the 

severity of the disease. Next, the two-locus haplotypes that carry HLA-DPB1*13:01 with 

EPITOPE 
Patient ‘COV1’ 

HLA-A 
Allele1 
A*01:01 

HLA-A 
Allele2 
A*31:01 

HLA-B 
Allele1 
B*51:01 

HLA-B 
Allele2 
B*52:01 

HLA-C 
Allele1 
C*05:01 

HLA-C 
Allele2 
C*12:02 

LADAGFIKQY 0,08 18,38 12,93 19,66 1,40 0,70 

QTGKIADYNY 0,35 16,63 51,57 48,33 44,00 22,89 

ILDITPCSF 0,70 19,08 6,42 2,85 0,07 1,72 

SQSIIAYTM 6,49 8,06 6,49 0,34 3,24 0,82 

CYFPLQSY 7,93 11,22 18,10 18,75 29,40 4,64 

VQPTESIVRF 7,95 14,63 1,07 1,28 4,43 3,48 

QTNSPRRAR 8,68 0,04 44,38 41,77 24,26 7,32 

… … … … … … … 

Table 4.2. Schematic description of the binding affinity score in patients with identifier 

‘COV1’ related to HLA-A, -B and -C allotypes for each allele. In grey are strong binders, in 

gold are weak binders. 



HLA-DPA1 alleles shown HLA-DPA1*02:01 and HLA-DPA1*01:03 were more frequent 

in non-hospitalized than hospitalized patients. Also, these two heterodimers predicted to 

bind a variety of spike peptides, being classified as a strong binder. Interestingly, also 

DPA1*02:02-HLA-DPB1*13:01, the other allotype heterodimers observed in GEN-

COVID-19 cohort, have strong predicted spike peptide binding, highlighting the potential 

role of DPB1*13:01 in peptide presentation and preventing disease severity.  

About differential binding profile, HLA allotypes were divided into weak/strong presenters 

on a class-by-class basis, using as threshold the median of the number of high-affinity 

peptides in each class: 30 for HLA-A, -B, -C; 9 for HLA*DRB1. The threshold for IFN-α 

was set at five peptides in total from the 12 protein subtypes evaluated, for both HLA class 

I and II. Some HLA allotypes were exclusively strong binders for IFN-α or Spike peptides 

(Table 4.3).  

 

Allotypes 
Strong 

Spike  

Weak 

Spike  

No 

Spike  

Strong 

IFN-α  

Weak 

IFN-α  

No 

IFN-α  

A*01:01 X   X   

A*02:01  X  X#   

A*03:01 X   X   

A*24:02 X   X   

A*29:02 X   X   

A*30:01  X  X#   

A*30:02 X   X   

A*33:01  X  X#   

B*07:02  X  X#   

B*08:01  X  X#   

B*13:02 X$     X 

B*14:02  X  X#   

B*15:01 X   X   

B*15:17 X   X   

B*18:01  X  X#   

B*35:01 X   X   

B*35:02 X$     X 

B*35:03  X  X#   

B*44:03  X  X#   

B*57:01  X  X#   

C*03:03 X   X   
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C*04:01  X  X#   

C*05:01  X  X#   

C*06:02 X   X   

C*07:01 X   X   

C*07:02 X   X   

C*08:02  X  X#   

C*12:03 X   X   

C*16:01 X$     X 

DRB1*01:01  X  X#   

DRB1*01:02   X  X  

DRB1*03:01 X$    X  

DRB1*07:01 X   X   

DRB1*11:01   X  X  

DRB1*11:03  X  X#   

DRB1*11:04   X X#   

DRB1*12:01  X   X  

DRB1*13:02 X$    X  

DRB1*14:01  X   X  

DRB1*15:01 X$    X  

 

 

 

Results from association studies with the pre-pandemic cohort by Rendine et al. indicates 

frequencies of the 20 most common HLA haplotypes in the COVID-19 cohort diverge from 

the Italian population (Rendine et al., 2012). Specifically, 6 haplotypes (ranked as 1, 7, 10, 

14, 15 and 16) enriched at higher frequencies (pc < 0,05) than in COVID-19 patients. Table 

5.4 compare the binding predictions for both spike and IFN-α proteins considering the HLA 

allotypes present in those haplotypes. 

 

Table 4.3. HLA-A, -B, -C, and -DRB1 allotypes in Italian top-20 haplotypes and SARS-

CoV-2 Spike and IFN-α peptides affinity binding prediction analysis. [X$ HLA allotypes 

stronger spike binders and weak of absent IFN-α peptides binders; X# HLA allotypes strong 

IFN-α peptides binders and weak of absent spike peptides binders]. 



In conclusion, after screening HLA alleles frequencies, outcome of this study suggests HLA-

DPB1*13:01 was driving independent associations with protection of infected individuals 

from severe COVID-19, such as described in other virus infection (Ou et al., 2021). Results 

Rank 
Italian# 
F (%) 

All 
patients 
F (%) 

Peptides 
HLA-A 
allotype 

HLA-B 
allotype 

HLA-C 
allotype 

HLA-DRB1 
allotype 

Haplotypes enriched in pre-pandemic population 

1 
91 
(4.7%) 

90 
(2.3%) 

Spike A*01:01 B*08:01 C*07:01 DRB1*03:01 

IFN-α A*01:01 B*08:01 C*07:01 DRB1*03:01 

7 
23 
(1.2%) 

5 
(0.1%) 

Spike A*24:02 B*15:01 C*03:03 DRB1*11:03 

IFN-α A*24:02 B*15:01 C*03:03 DRB1*11:03 

10 
17 
(0.9%) 

6 
(0.2%) 

Spike A*01:01 B*57:01 C*06:02 DRB1*01:01 

IFN-α A*01:01 B*57:01 C*06:02 DRB1*01:01 

14 
14 
(0.7%) 

4 
(0.1%) 

Spike A*01:01 B*15:17 C*07:01 DRB1*13:02 

IFN-α A*01:01 B*15:17 C*07:01 DRB1*13:02 

15 
15 
(0.7%) 

7 
(0.2%) 

Spike A*02:01 B*35:01 C*04:01 DRB1*01:01 

IFN-α A*02:01 B*35:01 C*04:01 DRB1*01:01 

16 
16 
(0.7%) 

5 
(0.1%) 

Spike A*03:01 B*07:02 C*07:02 DRB1*15:01 

IFN-α A*03:01 B*07:02 C*07:02 DRB1*15:01 

Haplotypes enriched in Covid-19 cohort 

5 
23 
(1.2%) 

62 
(1.6%) 

Spike A*02:01 B*18:01 C*07:01 DRB1*11:04 

IFN-α A*02:01 B*18:01 C*07:01 DRB1*11:04 

17 
17 
(0.7%) 

34 
(0.9%) 

Spike A*24:02 B*35:02 C*04:01 DRB1*11:04 

IFN-α A*24:02 B*35:02 C*04:01 DRB1*11:04 

Table 4.4. HLA allotypes and spike and IFN-α peptides presenting prediction from 

haplotypes enriched in COVID-19 cohort or pre-pandemic population. In grey strong 

peptides binders, weak binders are underlined, and in yellow are the allotypes that do not 

bind any peptides in high affinity. [Italian population HLA haplotypes frequencies were 

obtained from (Rendine et al., 2012)] 
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from binding affinity prediction of HLA-DBP1*13:01 paired to HLA-DPA1 support this 

thesis, due can strongly bind viral spike protein peptides which can be recognized by CD4+ 

T cells (Anczurowski & Hirano, 2018). However, the pair DPB1*13:01-DPA1*02:01 is 

known to not affect CD4+ T cell response levels on SARS-CoV-2 infection (Hyun et al., 

2021). This lack of activation on CD4+ T cells by DPB1*13:01 could be related to low 

mRNA DPB1 expression levels in virus infection (Ou et al., 2021), and low protein 

expressed by CD14+ monocytes infected by SARS-CoV-2. Perhaps, DPB1*13:01 allotype 

could have distinct role in SARS-CoV-2 protein peptides presenting, not via CD4+T cells, 

modulating immune response to less severe disease outcome. Besides, data from association 

of GEN-COVID cohort and Italian top-20 HLA haplotypes showed production of 

autoantibodies to IFN-α is correlated with some HLA class II allele (DRB1*11:04) that it 

seems to be stratified in good or bad presenters. This suggests that in COVID-19 patients 

with predisposing HLA*DR alleles that bind with higher affinity to IFN-α derived peptides 

a strong activation and expansion of CD4+ T cells occurred, and that this specific subset 

could efficiently modulate help B cell to produce high levels if anti IFN-α autoantibodies. 

4.3 Phenotype/Genotype investigation in Alkaptonuria 

To extend PM to an ultra-rare condition such as Alkaptonuria (AKU, OMIM: 203500), 

it is critical to gather as much information about each patient as possible, without 

disregarding seemingly insignificant aspects, to obtain a first patient stratification. AKU is 

an autosomal recessive aminoacidopathy of the phenylalanine/tyrosine metabolism. It was 

first described as a heritable entity by Sir Archibald Garrod in 1902; a disease from which 

he later formulated the concept of inborn errors of metabolism (Garrod, 1908). It was 

estimated a prevalence of 1 case per 250.000–1.000.000 births (Phornphutkul et al., 2002) 

in the majority of ethnic groups and 1233 cases worldwide (Zatkova et al., 2020). AKU is 

caused by mutations in the Homogentisate 1,2-dioxygenase (HGD) gene, which leads to an 

enzyme deficiency, resulting in a deposition of Homogentisic acid (HGA) especially in 

connective tissues (La Du et al., 1958). The active form of the HGD enzyme is a highly 

complex hexamer (Titus et al., 2000) with a poor tolerance for mutations, including missense 

variations (about 65% of all known AKU substitutions), which might impair protein folding 

stability and thereby affect HGA accumulation (Nemethova et al., 2016). In 2000, Rodiguez 



et al. performed a correlation analysis between the most prevalent AKU-causing missense 

variations (G161R, M368V, and A122V) with the manifestation of varying quantities of 

unmetabolized HGA, resulting in varying serum and urine levels and, subsequently, varying 

disease severity. The three mutants displayed considerably lower activity than the wild-type 

enzyme, ranging from 1% for G161R to 37% and 34% for A122V and M368V, respectively 

(Rodríguez et al., 2000). It is possible that variations in the residual catalytic activity of the 

HGD protein due to various polymorphisms might be reflected in this alteration. In this 

perspective, a genotype–phenotype correlation study was done on 33 individuals, and a 

minor but statistically significant difference in urine HGA excretion was seen between 

patients carrying variations with 1% and >30% residual HGD activity (Ascher et al., 2019). 

The HGA in excess is mostly removed by urine, while the remaining part leads to the 

formation of an ochronotic pigment deposited in cartilage. Ochronosis plays a critical role 

in the early stages of arthropathy, lowering patients' quality of life and generating acute pain 

and locomotor deficits (Milch, 1961). Additionally, recent studies from Millucci et al. have 

shown that HGA overexpression causes oxidative stress and chronic inflammation in AKU 

(Millucci, Ghezzi, Bernardini, et al., 2014; Millucci, Ghezzi, Paccagnini, et al., 2014; 

Millucci et al., 2012). Moreover, they have classified AKU as a secondary amyloidosis, 

characterised by the condensation of serum amyloid A (SAA) fibres, a circulating protein 

produced at elevated levels (100–1000 times the normal plasmatic level of about 4-6 mg/L) 

during chronic inflammation, making SAA a sensitive biomarker of inflammation (Gabay 

& Kushner, 1999). The presence of ochronotic pigment and amyloid fibres in many AKU 

samples (i.e. cartilage, salivary glands, chondrocytes, and synoviocytes) confirms the 

increased plasma levels seen in AKU patients (Braconi et al., 2016; Braconi et al., 2018). 

Another indicator of persistent inflammation is chitotriosidase (CHIT1), a chitinase that is 

predominantly expressed in differentiated and polarised macrophages (Cho et al., 2014). The 

serum concentration of CHIT1 correlates with the progression and severity of numerous 

conditions (e.g., sarcoidosis, rheumatoid arthritis), suggesting that CHIT1 may act as an 

AKU biomarker []. Thus, in addition to inflammation, individuals with AKU experience 

considerable oxidative stress as a result of elevated systemic levels of HGA and its 

metabolites. Braconi et al. (Braconi et al., 2016) examined proteome changes in AKU 

samples from six individuals, which revealed intriguing parallels to other rheumatic 

disorders. In this regard, the Protein Thiolation Index (PTI) defines and summarises the 
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oxidative condition of AKU patients in an intriguing manner (Cicaloni et al., 2019). One of 

the primary challenges in doing clinical research on AKU is the absence of a consistent 

technique for assessing illness severity and response to therapy, which is confounded by the 

wide range of AKU symptoms seen in different individuals (Vilboux et al., 2009). A reliable 

way to monitor patients’ clinical condition and overall health status is the use in clinical 

practice and research of measures of Quality of Life (QoL). In the study of Braconi et al. 

was shown that, in a rare and multisystemic disease like AKU, QoL scores help to identify 

health needs and to evaluate the impact of the disease (Braconi et al., 2018). So, the presence 

of a correlation between QoL and the clinical data deposited in an AKU-dedicated digital 

platform, such as ApreciseKUre database (www.bio.unisi.it/aprecisekure/), could be helpful 

in shading light on AKU complexity and in discovery of new biomarkers.  

In this project, it was performed computational methods (such as ML) to achieve a first 

AKU patient stratification based on phenotypic and genotypic data in a typical precision 

medicine perspective, retrieved from ApreciseKUre. The workflow can be summarised in 

four steps, in which I performed the last one (Figure 4.3): 

1. Data pre-processing and preliminary statistical analysis. It performed a preliminary 

analysis based on Pearson Correlation Coefficient to evaluate the relationship 

between pairs of clinical data, biochemical parameters and QoL scores.  

2. Unsupervised Clustering. We applied both K-means and Hierarchical Clustering 

to stratify the AKU population into subgroups with similar features. The 

experiment was conducted using three different stratifications, i.e., setting (i) K=2, 

(ii) K=3 and (iii) K=4 to obtain two, three and four clusters respectively. The 

resulting clusters are grouped according to the severity of the AKU disease, by 

considering age, the levels of oxidative stress, inflammation, and amyloidosis 

biomarkers and QoL scores.  

3. Statistical Clusters Evaluation. To evaluate if the clusters were significantly 

identifying sub-groups of individuals, we applied the Kruskall–Wallis (KW) 

ranking non-parametric test. Additionally, we computed the Silhouette Score with 

the aim to test the consistency within elements which have been assigned to the 

same cluster.  

4. Genotype–phenotype correlation. Once AKU stratification and cluster validation 

were performed, it was investigated the HGD mutation distribution across the 



obtained clusters, paying attention to G161R, M368V and A122V (representing 

about 44% of AKU patients’ mutation in ApreciseKUre). Specifically, G161R 

mutation, responsible for a dramatic reduction of HGD activity, occurred in higher 

percentages in the most phenotypically severe clusters. On the contrary, for 

M368V and A122V mutations, in which enzymatic activity of HGD is conserved 

for more than 30%, the trend shows a higher percentage in less severe phenotypic 

sub-groups. 

 

Interestingly, in the first step, important biomarkers of chronic inflammation and 

amyloidosis like CHIT1 and SAA do not result strongly correlated with disease severity 

differently from PTI, which instead is correlated with KOOS scores and age. For both the 

clustering methods, we found that for K=2, the most severe phenotype seems to be the cluster 

number 1, cluster number 2 for K=3 and cluster number 4 for K=4. Statistical cluster 

evaluation by KW ranking non-parametric test and Silhouette Score corroborated the 

application of the K-means algorithm for K=2 and K=3, and hierarchical clustering for K=4 

for AKU patient stratification. Starting from this point, it was possible to detect the most/less 

severe subgroups based on demographics, QoL scores and biochemical markers. 

Specifically, for K = 2, cluster 1 turns out to group AKU patients with most severe symptoms 

Figure 4.3 Workflow applied to achieve AKU patient stratification based on phenotypic and 

genotypic data. Adapted from (Spiga et al., 2020). 
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and QoL scores, older age and higher levels of biomarkers of oxidative stress, chronic 

inflammation and amyloidosis. For K = 3, clusters 2 and 3 comprehend older patients 

(especially in cluster 2). In cluster 3 there are higher level of SAA and PTI, whereas higher 

values for CHIT1 are in cluster 2. Patients with less severe symptoms are present in cluster 

1, on the contrary patients with the worst QoL score are all included in cluster 2, which turns 

out to be the most severe one. For K = 4, older patients with more severe symptoms and 

higher levels of CHIT1, SAA and PTI are stratified in cluster 4, whereas in cluster 2 are 

grouped younger individuals with less severe AKU manifestations. To sum up the genotype 

results, this study shows that the mutations G161R, A122V, and M368V are always present 

in all the stratifications and in greater quantities than the others mutation, being the most 

frequent mutations in Europe. However, the G161R mutation, despite being present in all 

the clusters, is mostly represent in the phenotypically more serious subgroups according to 

a low enzymatic specific activity of 1% w-t. The A122V and P230S mutations, also present 

in all the clusters, are more represent in the phenotypically less severe subgroup. In these 

cases, the A122V mutation results agree with the experiments conducted in vitro for the 

measurement of the specific enzymatic activity (33.5% w-t), whilst the P230S specific 

enzymatic activity (4% w-t) is lower than expected (Rodríguez et al., 2000). Analogously, 

mutations D153G and F227S are always present in the phenotypically most serious 

subgroups. This agrees with the specific activity of mutation F227S (0.1 % w-t), whilst 

mutation D153G shows higher activity than expected (32.7% w-t). Mutations R225H and 

W97C are present only in the less severe phenotype subgroups. We only retrieved specific 

activity (0.1% w-t) for the R225H mutation. Finally, stop mutations are only found in 

phenotypically serious subgroups because they significantly destroy enzyme activity. 

Besides, the combination of a ML to analyse and re-interpret data shows the potential direct 

benefits for patient care and treatments, highlighting the necessity of patient databases for 

rare diseases, like ApreciseKUre. This approach can be turned into a best practice model 

also for other rare diseases and can be useful for overcoming the obstacles in small dataset 

management and analysis. Phenotype and genotype distribution of this results are reported 

in the following sections. 



4.3.1 Phenotype 

K=2 - In cluster 1 are stratified older patients showing high severity of AKU disease and 

with higher level of SAA, Chitotriosidase and PTI. The values of aopp, PSH, CySSP, 

CyGlySSP, HcySSP, yGCSSP, GSSP, RSSP are similar between the 2 clusters, so that they 

have little influence on stratification. Moreover, in the first cluster all the KOOS scores are 

low, which indicates that patients in cluster 1 have greater knee problems than those in 

cluster 2. Similarly, HAQ_hV, HAQ_hD have higher scores in cluster 1, indicating worse 

arthritic conditions. PHS (physical health status) and MHS (mental health status), have lower 

values in cluster 1, indicating worse physical and mental conditions. Analogously, cluster 1 

shows higher scores of AKUSSI, indicating greater severity of the disease. 

K=3 - In the three clusters stratification, cluster 2 and 3 contain older patients with higher 

level of SAA, Chitotriosidase and PTI. Patients with less severe symptoms are present in 

cluster 1. Significantly higher values of SAA can be observed in cluster 3 with respect to the 

other two clusters. Similarly, to the two-cluster stratification, also in this case the values of 

aopp, PSH, CySSP, CyGlySSP, HcySSP, yGCSSP, GSSP, RSSP are similar for all of the 

clusters, and therefore have little influence on stratification. In cluster 1 the values of KOOS 

are higher when compared to the other two clusters. Therefore, patients in cluster 2 and 3 

present greater problems at the level of knees. The same trend can be observed in the 

HAQ_hV, HAQ_hD scores, which are higher in clusters 2 and 3 with respect to cluster 1 

and thus the correspondent patients are in worse conditions. PHS (physical health status) and 

MHS (mental health status), have lower values in the cluster 2 and 3, indicating worse 

physical and mental conditions. As far as the AKUSSI values are concerned, cluster 2 shows 

higher scores, and, consequently, patients present greater severity of the disease. 

K=4 - In the stratification with four clusters, the analysis of the phenotype shows that 

older patients are stratified in cluster 4. In cluster 3 higher level of SAA can be observed. As 

observed in the previous stratifications, also in this case the values of aopp, PSH, CySSP, 

CyGlySSP, HcySSP, yGCSSP, GSSP, RSSP are similar for all the clusters, and therefore 

have little influence on the stratification. In cluster 1 and 3 are present much higher values 

of KOOS, compared to the other 2 clusters. Therefore, cluster 1 and 4 present patients with 

greater problems at the knee. The same trend is found in the HAQ_hV, HAQ_hD scores, 



97 
 

which are higher in clusters 1 and 4, therefore the correspondent patients are in worse 

conditions. PHS (physical health status) and MHS (mental health status), have lower values 

in clusters 1 and 4, indicating worse physical and mental conditions of the patients. Cluster 

1 and 4 show higher AKUSSI scores, consequently present patients with greater severity of 

the disease. 

 

Parameters 
K=2 K=3 K=4 

Statistic FDR Statistic FDR Statistic FDR 

Age  35,39 6,48E-09 36,08  2,58E-08  145,31  7,09E-08  

AJP  31,32 4,78E-08 29,49  2,74E-06  19,32  5,94E-06  

ASP  19,45 1,66E-05 21,31  0,00027  32,85  0,0010  

CHIT1  20,129 1,24E-05 22,26  2,35E-05  32,43  7,29E-07  
hapVAS  29,75 2,49E-11 26,84  7,98E-06  13,33  0,00033  

HAQ-DI  46,46 9,81E-08 36,70  1,34E-08  60,18  2,09E-09  

KOOS_QOL  71,43 1,72E-16 63,36  8,36E-14  55,61  1,72E-13  

KOOSdl  58,23 9,32E-14 51,01  2,88E-11  528,80  1,61E-12  
KOOSp  61,02 2,72E-14 51,19  2,88E-11  16,77  1,44E-12  

KOOSs  54,12 6,47E-13 49,20  6,21E-11  40,15  1,36E-11  

KOOSsp  74,21 5,62E-17 64,76  5,20E-14  45,13  1,10E-13  

MHS  87,93 0,0040 15,36  0,00061 65,49  0,0050  
PHS  48,60 9,44E-12 38,22  3,19E-08  37,53  8,47E-07  

PTI  23,68 2,10E-06 24,55  3,53E-05  60,69  2,16E-08  

SAA  981,52 0,0024 17,08  7,88E-07  67,05  6,38E-07  

Figure 4.4 Phenotype results of K-means clustering. Adapted from (Spiga et al., 2020). 

Table 4.5 Statistically significant values adjusted with multiple test (FDR < 0.05), related to 

the Kruskall–Wallis (KW) ranking of the biomarkers and QoL scores. Adapted from (Spiga 

et al., 2020). 



4.3.2 Genotype 

K=2 - Based on the previous phenotypic observations, the G161R, A122V, and M368V 

mutations are present at high extent in both clusters, i.e., both in patients with severe and in 

less severe AKU disease (Table 4.6). Furthermore, also the P230S, I216T and V300G 

mutations are present in both clusters even if in minor abundance. It is worth noticing that, 

in this first stratification represented by two clusters, mutations D153G and F227S are 

present only in the cluster of the most serious patients. While the R225H and W97C 

mutations are present only in the cluster of less severe patients. A further result revealed 

from this first stratification, is the presence of stop mutations, specifically R321* and W60*, 

only in the cluster of the most serious patients. 

K=3 - Based on the previous phenotypic analysis, the stratification with K=3 groups in 

cluster 1 patients with less severe disease, in cluster 2 the most serious patients and in cluster 

3 the patients with intermediate biomarkers values. Also, in this case the mutations G161R, 

A122V, and M368V, are present in all the clusters and in high amount (Table 4.6). P230S, 

I216T and V300G mutations are also found in all the three clusters, but in smaller quantities. 

Similarly to the previous stratification, also in this case the mutations D153G and F227S are 

present only in the cluster of the most serious patients, while the R225H and W97C 

mutations are present only in the cluster with the less severe patients. Moreover, the R321* 

and W60* stop mutations are present only in the cluster with elevated disease biomarkers. 

K=4 - Based on the previous phenotypic analysis the stratification with K=4 (4 clusters) 

presents the most severe AKU patients in clusters 1 and 4. Cluster 2 patients have the lowest 

biomarker values, while cluster 3 presents patients with intermediate values. The same trend 

of the previous stratifications is found. Which shows the G161R, A122V, and M368V 

mutation in all the clusters and in much greater quantity (Table 4.6). Also, in this 

stratification, mutations D153G and F227S are present only in the cluster of the most serious 

patients. While the R225H and W97C mutations are present only in cluster 2, which groups 

less severe patients. Also, in this case the stop mutations W60* and R321* are in cluster 4 

and cluster 1, respectively. 
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 Allele 1 Allele 2 

K-means = 2 G161R M368V A122V G161R M368V A122V 

Cluster 1 60 40 20 60 70 30 
Cluster 2 40 60 80 40 30 70 

K-means = 3 G161R M368V A122V G161R M368V A122V 

Cluster 1 30 60 80 30 40 70 
Cluster 2 50 30 20 40 60 30 
Cluster 3 10 10 0 30 0 0 

Hierarchical = 4 G161R M368V A122V G161R M368V A122V 

Cluster 1 25 30 55 10 25 60 
Cluster 2 25 60 45 20 25 30 
Cluster 3 15 10 0 35 0 0 
Cluster 4 35 0 0 35 50 10 

Table 4.6. Three most abundant missense mutations (G161R, M368 and A122V) and their 

normalized mutation percentages (order of magnitude) in each cluster. Adapted from (Spiga 

et al., 2020). 



Conclusions 

The research activity of my PhD was mainly focused on understanding of the molecular 

basis of heredited and drug-induced channelopathies by MD simulations in the Kv11.1 

channel. The first project employed Umbrella Sampling simulations to study the inhibitory 

effects on hERG-current by three known PPIs. Results indicated that the binding energies 

were in the 8-10 kcal/mol range for all the compounds, despite their specific pose in the pore, 

confirming the hypothesis that their inhibitory effects on hERG-current might be due to a 

direct, steric interference with the channel function. From PMFs profiles it emerged that 

Omeprazole preferentially bound at the intracellular side of the cavity, where a swallow free-

energy minimum exists, while Pantoprazole and Lansoprazole were characterized by well-

defined energy minima profile in proximity of the selectivity filter of the channel. The 

simulation results were in agreement with electrophysiological findings. Moreover, the 

evidence that each compound shows a specific binding pose, provides a molecular basis 

possibly accounting for the different potency of channel inhibition observed experimentally. 

The second phase of the study concerning hERG was aimed to identify possible metastable 

states related to hERG C-type inactivation, and to estimate how the ensemble of metastable 

states might impact on drug-binding. Results suggested that fast C-type inactivation requires 

geometrical reorientation of residues delimiting binding sites S0 and S1, and not a closure 

of the selectivity filter, as previously suggested. Docking calculations confirmed that 

significant differences exist in the orientation of the drugs among the various metastable 

states identified both for inactivating and non-inactivating mutants of the hERG channel.  

Molecular Dynamics simulations are certainly affected by severe limitations, as the 

limited time scales accessible by simulated trajectories, and the inaccuracies of the adopted 

Force Fields. However, results on the Kv11.1 channels presented in this thesis reveal how 

these atomistic simulations can assist for the analysis of biological processes. Indeed, MD 

kinetic modelling of ion channel activity provides a formal, quantitative mechanism for 

testing hypotheses about channel function. These models can then be used to investigate the 

relationship between molecular defects and whole-organ phenotypes. Recent advances in 

computational hardware have enabled organ-level simulations involving more complex 

biophysically accurate cellular models on practical timescales. However, to properly 

comprehend and eventually overcome the complexity of heart's electrical system and its 
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related safety-pharmacology challenge, it is anticipated that more reliable structural 

investigations would be required. MD simulations are a powerful strategy to investigate 

biological processes at the atomic scale, and to estimate parameters that could be useful in 

models on higher temporal and spatial scales to investigate biological processes in a classical 

System Biology approach. 
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