P-95

PREVALENCE AND CORRELATES OF HEPATIC STEATOSIS AND METABOLIC-ASSOCIATED FATTY LIVER DISEASE IN A COHORT OF PEOPLE LIVING WITH HIV

^{1,2}F Panza, ^{1,2}M Crispo, ¹D Romano, ^{1,2}M Sambo, ^{1,2}A Bailoni, ¹M Barsotti, ²F Pippi, ²M Trezzi, ^{1,2}F Montagnani, ^{1,2}M Tumbarello, ^{1,2}M Fabbiani. ¹Department of Medical Biotechnologies, University of Siena, Siena, Italy, ²Infectious and Tropical Diseases Unit, Siena University Hospital, Siena, Italy

10.1136/sextrans-ICAR-2024.190

Background Fat accumulation in the liver is increasingly being recognised in people living with HIV (PLWH), potentially due to a combination of traditional risk factors and HIV- or antiretroviral therapy-related variables. Therefore, the prevalence and correlates of Hepatic Steatosis (HS) and Metabolic-

Abstract P-95 Table 1 Main patients' characteristics at baseline

Variables	N (%) or Median (IQR
Age (years)	55 (47-62)
Female gender	29 (24.4)
Risk factor:	50 SAN AD DO AD AD SAN
- Heterosexual	49 (41.2)
- Homosexual/bisexual	47 (39.5)
- IDU	9 (7.6)
- Other/unknown	14 (11.9)
Comorbidities:	
- Diabetes	13 (10.9)
- Hypertension	38 (31.9)
- Ischemic heart disease	5 (4.2)
- Cerebrovascular disease	3 (2.5)
- Peripheral vascular disease	14 (11.8)
Concomitant therapies:	
- Statin	12 (10.1)
- Other lipid lowering drugs	13 (10.9)
Years from HIV infection	15.7 (8.6 - 22.6)
CD4 at nadir (cells/mmc)	166 (58 - 319)
Past AIDS defining events	15 (12.6)
Type of ART:	
- InSTI based	44 (37.0)
- PI based	4 (3.4)
- NNRTI based	19 (16.0)
- Dual	47 (39.5)
- Other	5 (4.2)
Weight change in the last 2 years (Kg)	0 (-2 - +2)
Current weight (Kg)	75 (65 – 85)
BMI (Kg/m^2)	25.6 (22.3 – 27.7)
Waist circumference (cm)	94 (85 – 104)
Hip circumference (cm)	99 (93 – 106)
Waist/hip ratio	0.96 (0.92 – 1.02)
Metabolic syndrome	20 (16.8)
10-year ASCVD category:	20 (10.0)
- Low risk (<5%)	53 (44.5)
- Borderline (5-7.4%)	14 (11.8)
- Intermediate (7.5-19.9%)	27 (22.7)
- High (≥20%)	10 (8.4)
- High (220%) - Unknown	15 (12.6)
Smoker	45 (37.8)
Regular physical activity	27 (22.7)
Familiarity for CV diseases	
	28 (23.5)
Insulin resistance	47 (39.5)
Total cholesterol (mg/dL)	175 (149 – 205)
Triglycerides (mg/dL)	93 (70 – 132)
HDL (mg/dL)	50 (40 – 60)
LDL (mg/dL)	112 (91 – 136)
HIV-RNA < 50copies/mL	103 (86.6)
CD4 (cells/mmc)	761 (545 - 1067)

associated Fatty Liver Disease (MAFLD) need to be adequately investigated in PLWH.

Methods A prospective single-center cross-sectional study was conducted, consecutively enrolling PLWH during routine visits at the University Hospital of Siena. Exclusion criteria were: age <18 years, active viral hepatitis, pregnancy, hazardous alcohol intake. Patients underwent transient elastography to measure HS by controlled attenuation parameter (CAP) and liver fibrosis by liver stiffness. MAFLD was defined according to literature criteria. Lifestyle habits were investigated by a structured questionnaire. Clinical and laboratory variables were retrieved through medical record review. Variables associated with CAP were explored by linear regression analysis, while those associated with MAFLD were investigated by logistic regression.

Results Overall, 119 PLWH were included (24.4% females, median age 55 years, 86.6% with HIV-RNA<50copies/mL, median CD4 761 cells/mmc) (see table 1 for main characteristics). Main comorbidities were: hypertension (31.9%), previous cancer (15.9%), chronic kidney disease (14.3%), peripheral vascular disease (11.8%) and diabetes (10.9%). Median BMI was 25.6 Kg/m2. Overall, advanced S2 and severe S3 steatosis were observed in 24 (20.2%) and 40 (33.6%) PLWH, respectively. Of these patients, 59 (92.2% of S2-S3 and 49.6% on the total population) met criteria for MAFLD. Significant liver fibrosis (F2-F4) was observed in 23 (19.3%) PLWH. After adjustment for several confounding factors, only BMI was found to be associated with CAP (mean change +6.2 dB/m for +1 Kg/m2, 95% CI 3.7-8.7, p<0.001). Regular physical activity was independently associated with reduced risk of MAFLD (aOR 0.32, 95% CI 0.12-0.87, p=0.026). HIV- and ART-related variables did not show any association with CAP or MAFLD. Both S2-S3 steatosis (OR 3.91, 95% CI 1.34-11.39, p=0.012) and MAFLD (OR 3.64, 95% CI 1.32-10.05, p=0.012) were found to be associated with higher risk of significant liver fibrosis (F2-F4).

Conclusions HS and MAFLD show a high prevalence in PLWH. BMI and lifestyle factors were strongly associated with HS and MAFLD, whereas a role of HIV- and ART-related variables was not demonstrated in this cross-sectional analysis. Given the association between HS/MAFLD and significant liver fibrosis, these metabolic conditions should be adequately approached in PLWH to avoid progression to advanced liver disease.

P-96

CNS-ASSOCIATED VZV VASCULOPATHY IN A YOUNG WOMAN LIVING WITH HIV

¹VM Vitaletti, ¹F Bai, ¹R Castoldi, ¹E Zaninetta, ¹G Giannetta, ¹T Beringheli, ¹A Copes, ¹A Dusina, ¹M Chiamenti, ²K Khouri Chalouhi, ¹L Gazzola, ¹GC Marchetti. ¹Infectious Diseases Department, San Paolo Hospital, University of Milan — Milan, Italy; ²Neuroradiology Department, San Paolo Hospital, University of Milan — Milan, Italy;

10.1136/sextrans-ICAR-2024.191

Background CNS-associated vasculopathy is a rare complication of VZV characterized by risk of cerebral stroke and hemorrhage; most cases are diagnosed in immunocompromised patients. To date, few cases describing VZV-induced vasculitis have been published and the optimal treatment strategy is not yet standardized.

Case Description A 31-year-old woman, with a history of childhood HIV-infection and poor adherence to antiretroviral therapy developed thoracic Herpes Zoster (August 2023: HIV-