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Simple Summary: Epstein–Barr virus (EBV) is associated with a variety of malignancies. In this
review, we discuss EBV-encoded microRNAs and ncRNAs and consider how their detection could
aid in the diagnosis, prognostication, and monitoring of treatment in patients with EBV-associated
malignancies, including classical Hodgkin’s lymphoma (cHL), Burkitt lymphoma (BL), diffuse large
B-cell lymphoma (DLBCL), nasopharyngeal carcinoma (NPC), and gastric carcinoma (GC).

Abstract: EBV is a direct causative agent in around 1.5% of all cancers. The oncogenic properties of
EBV are related to its ability to activate processes needed for cellular proliferation, survival, migration,
and immune evasion. The EBV latency program is required for the immortalization of infected B
cells and involves the expression of non-coding RNAs (ncRNAs), including viral microRNAs. These
ncRNAs have different functions that contribute to virus persistence in the asymptomatic host and to
the development of EBV-associated cancers. In this review, we discuss the function and potential
clinical utility of EBV microRNAs and other ncRNAs in EBV-associated malignancies. This review is
not intended to be comprehensive, but rather to provide examples of the importance of ncRNAs.

Keywords: microRNAome; miRNA; EBV; immune evasion; carcinogenesis; classical Hodgkin’s lym-
phoma; Burkitt lymphoma; diffuse large B-cell lymphoma; nasopharyngeal carcinoma; gastric carcinoma

1. Introduction

In 2018, an estimated 2.2 million infection-attributable cancer cases were diagnosed
worldwide. A conservative estimate suggests that almost 1.4 million of these were as-
sociated with oncogenic viruses [1], including the hepatitis B virus, hepatitis C virus,
Kaposi sarcoma-associated herpesvirus, human T lymphotropic virus type 1, human papil-
lomaviruses, and Epstein–Barr virus (EBV) [2]. The oncogenic properties of these viruses
are directly related to their ability to activate processes needed for cellular proliferation,
survival, migration, and immune evasion [3]. Among these viruses, EBV, formerly des-
ignated as the human herpesvirus type 4 (HHV-4), is a y-herpesvirus containing a linear,
double-stranded DNA genome of ~172 kilobase pairs (kbp), encoding nearly 80 proteins
and 46 functional small untranslated RNAs [2,4]. The genetic material of EBV is enclosed in
an icosahedral nucleocapsid surrounded by the viral tegument and lipid-containing outer
envelope. EBV is transmitted through oral contact, particularly in the early years of life,
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usually without causing disease [5]. EBV can also be transmitted through organ transplan-
tation and blood transfusion [6]. The life cycle of EBV primarily involves the infection of
lymphocytes and potentially epithelial cells. Although EBV often exists as an asymptomatic
infection, it is involved in the development of about 1.5% of all cancers worldwide [7]. In
fact, EBV was the first virus to have been directly associated with cancer in humans. EBV-
associated neoplasms affect both immune-competent and immunocompromised hosts,
including, for example, some organ transplant recipients. Immune dysregulation and
genetic susceptibility are probable co-factors in most, if not all, EBV-associated cancers [8].

The EBV life cycle begins when the virion enters naïve B-lymphocytes, or in some cases,
perhaps memory B-lymphocytes, probably following initial infection of epithelial cells [9].
Although the exact mechanisms of EBV entry into epithelial cells are becoming clearer, how
the virus crosses the epithelial barrier to infect B cells in vivo remains unknown [10]. The
virus may infect the epithelial cells, replicate, and then be released to infect B cells in the
underlying areas, but there is no direct evidence for this and normal epithelial cells appear
to be resistant to infection from the apical (i.e., mucosal) side [11]. If the virus is unable
to infect epithelial cells directly, then it may be able to traverse the epithelial membrane
barrier to access B cells, perhaps when the epithelial lining is damaged, or becomes leaky
during inflammation [12]. Conversely, on exit to the oropharynx, there is some evidence
that transfer infection of a virus from B cells to epithelial cells can occur via the basolateral
surface [12].

Following cell entry, the viral genome is released into the nucleus where it becomes
circularized, an event that maintains the EBV genome as an extrachromosomal episome
that is readily replicated and is used as a marker of viral clonality [13]. Furthermore, the
EBV genome carrying few epigenetic tags associates itself with histones and becomes
methylated due to the similarity of its nucleosomal structure with that of the host genome.
DNA methylation and histone modification are vital epigenetic mechanisms that regulate
gene expression necessary for completing the viral life cycle [14]. To ensure its persistence
in infected B cells, EBV enters the latency phase resulting in the silencing of some viral
genes, an event that is crucial for evading host cell immunity [9]. There are different latency
states. For instance, expression of the latency III or the ‘growth program’ consisting of six
EBV nuclear antigens (EBNA-1, -2, -3A, -3B, -3C, -LP) and three latent membrane proteins
(LMP-1, -2A, -2B) results in the proliferation and immortalization of primary B cells [15].
Latency II or the ‘default program’ consisting of EBNA1, LMP1, LMP2A, and LMP2B, is
expressed in EBV-infected germinal center B cells. The latency I program, which is limited
to the expression of only one protein, EBNA1, is responsible for maintaining viral episomes
in dividing memory B cells [13]. Latency 0, characterized by the absence of viral gene
expression, is observed in non-dividing memory B cells [9]. During these different latency
programs, the virus utilizes non-coding RNAs, including viral microRNAs [16]. Latency is
halted and viral reactivation begins when memory B cells terminally differentiate to plasma
cells. The new virions are then released from B cells and may infect epithelial cells where
the virus is amplified for cell-to-cell spread or infection of a new host [17]. Compared to B
cells, the nature of EBV infection of epithelial cells is less well understood [18].

The small non-coding, non-polyadenylated RNAs EBER-1 and EBER-2 are also abun-
dantly expressed in both EBV-infected non-malignant and cancerous cells [19]. Owing to
the significantly longer half-life of EBER-1, it is usually present at ten-fold higher levels
compared with EBER-2 [20]. The EBERs do not code any proteins and their abundance
makes them a valuable diagnostic tool for EBV detection; using in situ hybridization,
the detection of EBER has been established as the most sensitive and practical method
for detecting EBV [21]. However, the precise contribution of the EBERs to the viral life
cycle and to malignant transformation remain unclear. The EBERs are not required for
EBV-induced transformation of primary B-lymphocytes, but assemble into stable ribonucle-
oprotein particles with the La and L22 proteins [22,23], and bind the interferon-inducible,
double-stranded RNA-activated protein kinase PKR, suggesting that they may be involved
in suppressing the antiviral effects of the interferons [24]. EBER2 RNA may regulate the
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levels of LMP2 and it has been shown to exist in a complex with PAX5; this complex can
regulate LMP2A/B and LMP1 expression [25]. Knockdown of EBER2 also decreased EBV
lytic replication [26]. In a recent study, EBER2 was shown to be able to substitute for the
Marek’s disease virus telomerase RNA-like viral RNA [27].

Apart from its non-coding EBER, EBV can also express a number of microRNAs
(miRNAs). miRNAs are highly conserved, small, non-coding RNAs important for gene
expression in various organisms, including humans. Although small, miRNAs outnumber
coding sequences in the human genome. Their role in gene expression is not limited to nor-
mal functions but are also important in the development of disease. Of particular interest,
here is the dysregulation of miRNAs in cancer [28–31]. miRNA genes are transcribed into
primary RNA (pri-miRNA) by RNA polymerase II or III; and then cleaved into precursor
miRNA (pre-miRNA) by a microprocessor complex comprised of endonuclease enzymes,
DROSHA or DGCR8. The pre-miRNA is then transported from the nucleus into the cyto-
plasm via a nucleocytoplasmic exporter, which contains exportin-5 (XPO5) and RAN-GTP.
In the cytoplasm, the pre-miRNA is cleaved into a miRNA duplex by a complex of DICER
and transactivating response RNA-binding protein (TRBP), and further cleavage results in
the generation of the mature miRNA. The mature miRNA is incorporated within the RNA
induced silencing complex (RISC) and Argonaute proteins (Ago2). This protein complex
is responsible for regulating translation of the target mRNAs [29,30]. Dysregulation in
any step of miRNA biogenesis, for example by genetic, epigenetic, and transcriptional
mechanisms, may result in alterations in mRNA translation. For instance, upregulation
of oncogenic miRNAs (oncomiR) (for example, those involved in regulation of the cell
cycle), and/or downregulation of tumor suppressive miRNAs (tumor-suppressor miR) can
contribute to carcinogenesis [30,32]. Some well-studied oncomiRs include miR-155, which
is over-expressed in some types of lymphoma and leukemia [33,34]. Let-7 miRNA is an
example of a tumor-suppressor miR, and is downregulated in lung cancer [35]. However,
some miRNAs can be oncogenic or tumor suppressive depending upon the type of cancer.
For example, miR-17-92 is upregulated in lung cancer [36], but downregulated in breast
cancer [37]. Moreover, a single miRNA may be involved in more than one biological
pathway [28–32].

Apart from miRNAs, other non-coding RNAs including long non-coding RNAs
(lncRNAs) are also increasingly linked to cancer. The first lncRNA shown to be involved
in cancer was HOX Antisense Intergenic RNA (HOTAIR), which is upregulated in breast
cancer [38]. Another lncRNA, the Metastasis-Associated Lung Adenocarcinoma Transcript
1 (MALAT1), is also upregulated in lung and colorectal cancers [39,40].

Due to the observed changes in the expression of miRNAs in cancer, miRNAs in
circulating body fluids are being investigated as potential minimally invasive biomarkers
that could help in both the diagnosis and monitoring of patients [32,41,42]. In this review,
we consider the functions of the EBV-encoded miRNAs and of other ncRNAs, in normal
and cancer cells, and highlight their potential clinical utility.

2. Classical Hodgkin’s Lymphoma

Classic Hodgkin’s lymphoma (cHL) is the prototypic ‘inflamed lymphoma’, having an
unusual histology characterized by usually single malignant Hodgkin’s–Reed–Sternberg
(HRS) cells surrounded by a prominent inflammatory infiltrate [43,44]. HRS cells secrete
chemokines and other soluble factors that recruit and retain the immune cells to create a
tissue microenvironment that functions to support the survival and growth of the HRS
cells, while at the same time allowing them to evade tumor-specific immunity [45].

Constitutive activation of a family of transcription factors, collectively referred to as
the nuclear factor kappa B (NF-κB) family, is a key pathogenic feature of HRS cells [46].
NF-κB signaling contributes essential functions in HRS cells, which could be especially
important in the absence of a functional BCR pathway, which is a hallmark of HRS cells.
For example, it has been shown that inhibition of this pathway leads to increased sensitivity
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of HL cell lines to apoptosis after growth factor withdrawal and impaired tumorigenicity
in severe combined immunodeficiency (SCID) mice [47,48].

EBV-positive HRS cells display a strict latency II type, in which there is consistent
expression of EBNA-1, LMP-1, and LMP-2A [49–52]. While the contribution of these EBV
latent proteins to the pathogenesis of cHL is increasingly better-understood [53], the roles
of the EBV miRNAs have only just begun to be explored.

Before considering the contribution of EBV miRNA to the pathogenesis of B cell
lymphomas, including cHL, it is important to first reprise the most likely mechanism used
by EBV to persist in the lymphoid compartment. In this model, originally proposed by
Thorley-Lawson, EBV infection of naïve B cells drives them into a proliferative state in
which the full latency III program of virus gene expression occurs [54,55] (Figure 1). Upon
further differentiation, the EBV-infected B cells enter a germinal center (GC) reaction, where
they express a latency II program. Eventually, the EBV-infected memory B cells that emerge
from the germinal center shut down virus gene expression (latency 0), only occasionally
switching on EBNA1 expression when they are required to proliferate (latency I) [56,57].
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Figure 1. A model to explain the life cycle of EBV in B cells and the origin of EBV-positive B cell lymphomas. Trafficking
B cells are presumed to become infected as they pass close to epithelium, potentially in the tonsils. The infected B cells
probably then undergo proliferation driven by the Latency III virus gene expression program. The infected B cells enter
a germinal center reaction in which only the EBNA1, LMP1, and LMP2A viral proteins are expressed (Latency II). LMP1
is a CD40 homologue and LMP2A is a B cell receptor (BCR)-mimic. Together LMP1 and LMP2A are thought to provide
the signals necessary for the EBV-infected cells to survive a germinal center reaction and to differentiate into memory B
cells and plasma cells. Plasma cells replicate the virus leading to the release of new virions, which can pass out into the
oropharynx for infection of other susceptible hosts. Memory B cells provide the vehicle for long-term virus persistence and
are characterized by an absence of virus protein expression (Latency 0). Memory B cells may switch on EBNA1 expression
when they proliferate (Latency I). Distinct patterns of miRNA expression in ‘normal’ EBV-infected B cells are associated
with Latency III and the other restricted forms of latency II/I/0 (listed in top right of figure). Latency I/0 is characterized
by a strong expression of EBV BART4, 6-3p, 7 and a significantly higher expression of miR-17-5p compared to latency II
showing modest level of EBV BART3*, 6-5p, and 8-5p. Latency III is characterized by intermediate level of EBV BART7*,
10, 11-3p, 13*, 14*, 15, 18-3p, and EBV-miR-BHRF1-2, 1-3, not expressed in the other forms of latency. The origin of the
EBV-associated B cell lymphomas remains uncertain. Assumptions of origin are based largely on resemblance to normal
B cell phenotypes and virus latency programs. BL tumors phenotypically resemble normal GC B cells and are probably
derived from this stage of B cell differentiation. However, because BL usually expresses a Lat I phenotype, it has been
suggested by others that BL could be derived from proliferating memory B cells. Figure made with Servier Medical Art.
2021. SMART—Servier Medical ART (online). Available online: https://smart.servier.com/, accessed on 5 July 2021.
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Profiling of EBV miRNAs at these different stages of EBV infection has shown that the
transit from EBV-driven growth, characterized by the latency III program of lymphoblas-
toid cell lines, into more restricted forms of latency in EBV-infected germinal center and
memory B cells is also associated with changes in the expression of the EBV miRNA [58].
EBV-immortalized lymphoblastoid cells express a subset of BART miRNA (including ap-
proximately half of Cluster 2), as well as three of the four BHRF1 miRNAs, which are
subsequently turned off in germinal center B cells and memory B cells [58]. EBV-infected
germinal center B cells and memory B cells upregulate the remaining BART miRNAs by
5–10-fold [58].

Notable differences in the levels of the different BART and BHRF1 miRNA are ob-
served in different EBV-positive tumors, even of the same type [59–61]. It has been sug-
gested that this could be because of strain variations [62,63]; in one study, variations in
transformation potential between different virus isolates were associated with different
levels of BHRF1 miRNA [64]. There could also be technical reasons for the differences
observed between studies. These technical variations are potentially exacerbated in cHL in
which the HRS cells are often scarce and the sensitivity of miRNA detection is compromised
by the large numbers of non-malignant cells included in a bulk analysis of the tumor.

Notwithstanding these caveats, a limited number of studies have suggested potential
roles for EBV miRNA in the pathogenesis of cHL. Thus, BART2-5p has been shown to
be expressed in cHL; it can act as an antisense miRNA to the EBV DNA polymerase
BALF5 [65]. As a result, the level of BALF5 protein and in turn the production of infectious
virions is decreased; this is of potential importance in the pathogenesis of EBV-positive
cHL, in which entry to the lytic cycle appears to be downregulated and undetectable in
most cases [66]. BART2-5p has also been shown to reduce B cell receptor signaling, which
might be important in maintaining latency in cHL, in which there is a characteristic loss
of BCR functions [67] (Figure 2). Other EBV genes, including LMP1, can also reduce the
expression of BCR signaling components in B cells [68].

It has been known for some time that EBV-miRNAs can be transferred to recipient
cells via exosomes [69]. BART13-3p is one of the most highly expressed viral miRNA
in cHL, and can be released into the circulation via exosomes [61]. BARTs present in
exosomes derived from EBV-positive cells have been shown to induce changes in the
phenotype of macrophages, which include increased production of cytokines, such as the
pro-inflammatory cytokine, tumor necrosis factor (TNF)-α, and the immunosuppressive
cytokine, IL-10 [70]. Thus, in this way, BART can shift macrophage phenotypes towards a
pro-tumor state that can reduce host responses to EBV. It is noteworthy that infiltration by
immunosuppressive macrophages is a poor prognostic indicator in cHL [71].

EBV also influences host miRNA expression in cHL. For example, Navarro et al. ob-
served a subset of 10 host miRNAs the expression of which was influenced by the presence
of EBV [72]. Among these, miR-96, -128a, and -128b were selectively downregulated in
EBV-positive cHL. The authors also reported a distinctive signature of 25 miRNAs that
were differentially expressed between cHL and reactive lymph nodes [72]. Among the dif-
ferentially expressed miRNAs, miR-21, miR-30e/d, miR-92b, and miR-124a were reported
to be highly upregulated in HL, and were described as prognostic biomarkers [73,74]
(Table 1).

Limited data are available regarding the expression of lncRNA in cHL (Table 1).
Tayari et al. defined a lncRNA profile in HL cell lines, which showed a pattern different to
that seen in naïve and memory B cells [75,76], but more similar to that observed in GC B
cells. Three lncRNAs (FLJ42351, LINC00116, and LINC00461) showed a tumor cell-specific
expression in cHL cell lines and in cHL tissues. However, the majority of ncRNAs have
not yet been thoroughly investigated and little is known about their function and role in
cHL pathogenesis. Fan et al. observed that NEAT1 might contribute to HL progression by
promoting cell proliferation and invasion capability via miR-448 mediated doublecortin like
kinase 1 (DCLK1) expression [77]. Furthermore, Liang et al. identified a set of 18 lncRNAs
(GGTA1P, PCBP1-AS1, GK3P, IL10RB-AS1, PGM5-AS1, HCG18, CHRM3-AS2, PSMD6-
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AS2, SNHG6, LOC102606465, LOC100190986, GAS5, MIR29B2, PRKCQ-AS1, ITGB2-AS1,
MIR142, LOC101060091, and LINC00926) whose deregulated expression was observed in
late-relapse HL samples compared to early-relapse HL [78]. Another study demonstrated
that the overexpressed lncRNA H19 was positively correlated with the proliferation of
HL cells via the AKT pathway and negatively associated with overall survival (OS) of HL
patients [79].
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Table 1. Clinical potential of miRNAs/lncRNAs in cHL.

miRNA/ncRNA Putative Role Clinical Potential References

25-miRNA OncomiR Diagnostic biomarker [72]

has-miR-21 OncomiR Prognostic biomarker [73]

has-miR-30e/d OncomiR Prognostic biomarker [73]

has-miR-92b OncomiR Prognostic biomarker [73]

has-miR-124a OncomiR Prognostic biomarker [74]

18-lncRNA Oncogene Prognostic biomarker [78]

FLJ42351 Oncogene Diagnostic biomarker [75]

LINC00116 Oncogene Diagnostic biomarker [76]

LINC00461 Oncogene Diagnostic biomarker [76]

lncRNA H19 Oncogene Prognostic biomarker [79]

3. Burkitt Lymphoma

Burkitt lymphoma (BL) is a highly aggressive B cell non-Hodgkin’s lymphoma
(NHL), which manifests in three distinct variants: endemic (eBL), sporadic (sBL), and
immunodeficiency-associated (idBL). Each variant exhibits differences in terms of epidemi-
ology, geographical distribution, clinical presentation, genetic features, and association
with EBV [80,81].

eBL is most common in equatorial Africa, while sBL is found at a lower incidence
throughout the world. Both sBL and eBL have a predilection for extranodal sites (e.g., jaw,
kidney, distal ileum/proximal cecum, central nervous system) in comparison to idBL,
which often presents with bulky lymph node involvement and occurs commonly in patients
infected with the human immunodeficiency virus (HIV) [82]. The hallmark of BL is
the constitutive activation of the MYC oncogene driven by its juxtaposition to one of
the immunoglobulin genes. In 80% of cases, the translocation is between the telomeric
region of chromosome 8 and the immunoglobulin heavy chain gene (IgH) on chromosome
14 [t(8:14)] [80–82].

MYC regulates BL cell fate in a direct mode at the transcriptional level and indirectly at
the translational level by influencing the miRNA profile [83–89]. Indeed, the three subtypes
of BL share a homogenous cellular miRNA profile, with only marginal miRNA expression
differences, while revealing a strong dysregulation of several MYC-regulated miRNAs
when compared to normal germinal center B cells [83–89]. This suggests a characteristic
MYC-induced miRNA expression profile wherein MYC is able to reduce as well as to
increase the expression of miRNAs involved in B-cell malignancies. For example, miR-
17-92 cluster gene, reported to be activated by MYC, encodes for six distinct miRNAs
(miR-17, miR-18a, miR-19a, miR-19b, miR-20a, miR-92) that suppress chromatin regulatory
genes and the apoptosis regulator BIM, acting together with MYC to accelerate tumor
development [90]. Multivariate analysis describes upregulated miR-17 as a significant
predictor of shortened OS [90]. MYC is also able to induce the expression of miR-9* [91,92].
Remarkably, downregulation of miR-9*, as well as miR-34b, has been described as a
diagnostic tool which can define a subset of BL cases in which the MYC translocation cannot
be detected [92]. Several other MYC-regulated miRNAs implicated in B cell lymphoma are
dysregulated in BL [84]. Among the most studied is miR-let-7 the downregulation of which
contributes to maintain MYC-induced growth in BL cell lines [93]. miR-21 and miR-155
promote the progression of BL by activating PI3K/AKT signaling [94].

The three BL subtypes differ with respect to their EBV association; the virus is de-
tectable in the neoplastic cells of almost all patients affected by eBL, in approximately
15–30% of cases of sBL, and in 25–40% of idBL [95–97]. While EBNA-1 and the EBERs
were assumed to be the only EBV genes expressed in eBL, later studies revealed that a
small proportion of EBV-positive BL has a novel form of latency with a broader gene
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expression profile. In this so-called Wp-restricted form of BL, the BHRF1 gene is also
expressed [98–101].

EBNA-1 and the EBERs are implicated in preventing apoptosis and enhancing tumor
cell survival [102,103]. For example, EBNA1 regulates cell viability through NOX2 [87].
EBNA-1 is able to induce the overexpression of hsa-miR-127, which results in the impair-
ment of B-cell differentiation by modulating the expression of BLIMP-1 and XBP-1, two
key regulators of terminal B cell differentiation [104]. The EBERs might also contribute to
the malignant phenotype of BL; they are implicated in resistance to apoptosis in BL cells
and can increase expression of IL-10, an autocrine growth factor for BL cells [105].

Viral miRNAs represent an alternative mechanism adopted by EBV to contribute to
BL pathogenesis. Some EBV miRNAs are highly expressed in BL; approximately 2.7% of
the miRNAs detected in eBL samples are EBV-miRNAs. BART7, -10, -11-3p, -6-3p, and
-17-5p are the most highly expressed BART miRNAs [106,107]. BHRF1 miRNAs are nearly
restricted to latency III and thus are hardly detectable in BL samples [108].

EBV miRNAs play important roles in maintaining viral latent infection and in modulat-
ing major cell changes without eliciting a strong adaptive immune response. It seems that
BL cells depend in part upon BART miRNAs to exhibit their tumor-related properties [109].
EBV BART6-3p is important for maintaining the viral latent phase and has been shown to
work synergistically with the cellular miR-142 and miR-197 to promote the proliferation
of BL cells via the targeting of PTEN and IL-6 signaling [110,111]. Furthermore, EBV
BART6-3p behaves as an oncomiR interfering with the function of important cell signaling
pathways, including NF-κB and Akt/PI3K, thus affecting the global gene expression of
EBV-associated BL [112–114].

It is important to note that while eBL expresses varying levels of EBV miRNAs, to
date no association between the expression of EBV-encoded miRNAs and patient outcome,
or other clinical features, has been reported [107]. On the contrary, high expression of some
host miRNA such as miR-17, miR-21, and miR-23a are associated with poorer outcome
in pediatric BL [90,115], and are correlated with clinicopathologic parameters (i.e., tumor
staging, size > 6 cm) suggesting they may be candidates for monitoring therapeutic ef-
ficacy [107]. The expression of miR-10a-5p is significantly lower in jaw tumors relative
to abdominal tumors, and in eBL patients who did not survive after chemotherapy [107]
(Table 2).

There is evidence to suggest that lncRNAs are also involved in BL pathogenesis. For
example, a study focused on MYC-regulated lncRNAs identified 13 differentially expressed
lncRNAs. Among these, MYC-induced long non-coding RNA (MINCR) showed a positive
correlation with MYC expression [116]. Long non-coding RNA, plasmacytoma variant
translocation 1 (PVT1) has also been reported to be associated with MYC expression as well
as with alterations in cell cycle-associated genes in the Raji cell line [117]. The antisense
non-coding RNA in the INK4 locus (ANRIL) is another lncRNA that has been identified as
a regulator of cell proliferation and apoptosis in multiple types of cancer, including BL, and
does so by regulating TGF-β1 signaling [118]. LncRNA-ANRIL also promotes gastric cancer
progression by enhancing NF-κB signaling [119] and regulates STAT3 in liver cancer [120].
Recently, Guo et al. identified a novel lncRNA (MCM3AP-AS1) that was upregulated in BL
tissues and associated with poor prognosis [121]. Knockdown of MCM3AP-AS1 increased
drug sensitivity, enhanced cell cycle progression, and facilitated apoptosis by regulating
miR-15a/EIF4E and its downstream anti-apoptotic proteins in vitro and in vivo [121].
Another study highlighted the potential prognostic significance of lncRNA showing that
the lncRNA deleted in lymphocytic leukemia 1 (DLEU1) may in part function as a tumor
suppressor gene and was associated with treatment resistance in children and adolescents
with BL in a miR-15a/16-1 dependent manner [122] (Table 2).
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Table 2. Clinical potential of miRNAs/lncRNAs in BL.

miRNA/ncRNA Putative Role Clinical Potential References

hsa-miR-17 OncomiR Prognostic biomarker [90]

hsa-miR-21 OncomiR Prognostic biomarker [94]

hsa-miR-23a OncomiR Prognostic biomarker [123]

has-miR-10a-5p OncomiR Prognostic biomarker [107]

MCM3AP-AS1 Oncogene Prognostic biomarker [121]

DLEU1 Tumor suppressor Prognostic biomarker [122]

4. Diffuse Large B-Cell Lymphoma

Diffuse large B-cell lymphoma (DLBCL) is the most common form of NHL in adults,
accounting for more than 80% of cases of aggressive lymphoma [124]. DLBCL is a diverse
group of B-cell lymphomas showing pathological and biological heterogeneity as well
as differences in clinical presentation and outcome [125]. Gene expression profiling has
identified three major molecular subtypes of DLBCL: germinal center B-cell-like (GCB) DL-
BCL, activated B-cell-like (ABC) DLBCL, and primary mediastinal large B-cell lymphoma
(PMLBCL) [125,126]. GCB-DLBCL is characterized by frequent translocations involving
the BCL2 gene, REL amplifications, and somatic hypermutation of the immunoglobulin
genes. Both ABC-DLBCL and PMBCL show constitutive activation of NF-κB signaling
with the more aggressive ABC-DLBCL having a poorer clinical outcome [124–127]. Clinical
responses to rituximab-CHOP (cyclophosphamide, doxorubicin, vincristine, prednisolone)
immunochemotherapy, the current standard-of-care, are variable [128]. Thus, unfortu-
nately, a large number of DLBCL patients will die of their disease. The precise mechanism
underlying drug resistance in DLBCL has not yet been determined.

Recently, cellular miRNAs have contributed significantly to our understanding of the
biology of DLBCL and have been incorporated into models for distinguishing different
types of DLBCL, and as tools for differential diagnosis. Thus, a specific miRNAs signature
including miRs-155, -221, -222, -146a, and -146b has been reported to distinguish GCB–
DLBCL from ABC–DLBCL [89,129,130]. miR-155 expression is 10- to 30-fold higher in
DLBCL cells than in normal circulating B cells and is significantly associated with treatment
failure following R-CHOP [33,131].

Several miRNAs, including those containing MYC-regulated and NF-κB pathway
associated miRNA (i.e., miRs-155, -29b, -146a, -17-3p, -365, -30b, -595, -663, -573, -26b, -374,
-520d, -92, -let7f, -516-3p, -9, -629, -9*, -34b) can discriminate between BL and DLBCL or
between DLBCL and follicular lymphoma (FL) (i.e., miR-330, -17-5P, -106A, -210) with an
overall accuracy of around 98% [88,123,132,133].

Approximately 15% of DLBCL are EBV positive. The virus establishes a latency II or
latency III pattern of viral gene expression with expression of all BART miRNAs except for
BART15 and BART20. BART7, BART10, BART11-5p, BART16, and BART22 are the most
abundantly expressed miRNAs [61,134]. EBV contributes to DLBCL by regulating key cell
signaling pathways through its viral proteins and miRNAs. For instance, LMP1 is able to
increase miR-34a, -146a, and -155 expression via the NF-κB pathway, while BART3, BART9,
and BART17-5p can downregulate BCL6 and thereby increase NF-κB activation [135–138].

miRNA signatures are also associated with drug resistance and clinical outcome in
DLBCL patients treated with immunochemotherapy (Table 3). For instance, miR-18a, -21,
-181a, and -222 can predict OS and progression-free survival (PFS) in R-CHOP–treated
DLBCL patients [129]. Upregulation of miR-455-3p and -33a was found to be associated
with chemosensitivity, while upregulation of miR-125b, -130a, -224, -1236, and -520d-3p
were associated with chemoresistance [129,139].

Numerous studies have suggested a close relationship between DLBCL and aberrant
lncRNA expression [140–145] (Table 3). For instance, Zhu et al. showed a significantly dif-
ferent expression of lncRNAs in DLBCL cell lines compared to normal B cells; NAALADL2-
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AS2 exhibited the strongest upregulation, and NON-HSAT120161 the strongest downregu-
lation [141]. Another study of 116 DLBCL patients confirmed the differential expression of
lncRNAs between tumors and normal B cells wherein two-thirds of 2632 lncRNAs were
not expressed in normal B cells and more than one-third of lncRNAs were differentially
expressed between ABC and GCB subtypes [145]. Zhou et al. performed a comparative
analysis of lncRNA profiles of a large cohort of DLBCL (n = 905) and identified a 17-
lncRNA signature (ENTPD1-AS1, SACS-AS1, SH3BP5-AS1, RP11-101C11.1, AC009892.10,
RP1-68D18.4, MIR600HG, RP11-278 J6.4, RP11-203B7.2, CSMD2-AS1, CTC-467 M3.1, RP4-
788P17.1, RP11-553 L6.5, CRNDE, RP11-519G16.3, RP11-21 L19.1 and MME-AS1) able to
classify GCB and ABC subtypes, and which also predicted OS and PFS [144]. In addition, a
meta-analysis conducted by Sun et al. demonstrated that a 6-lncRNA signature (SACS-AS1,
MME-AS1, CSMD2-AS1, RP11-360F5.1, RP1125K19.1, and CTC-467M3.1) could be used
to classify patients with significantly different outcomes [146] (Table 3). Functionally, a
number of lncRNAs have been shown to be involved in DLBCL pathogenesis. For example,
SNHG16 can induce apoptosis of DLBCL cells in vitro [147]. SNHG14 could promote
DLBCL immune evasion by regulating the PD-1/PD-L1 checkpoint [148]. Other lncRNA
have been separately associated with different clinical features. For example, expression
of HOTAIR, which can regulate PI3K/AKT/NF-kB signaling, is significantly correlated
with tumor size, clinical stage, and poor prognosis [149]. NEAT1 is a marker of poor
prognosis [150], while NONHSAG026900 is associated with a favorable prognosis [151].
MALAT1 is reported to be involved in chemotherapy sensitivity in DLBCL cell lines by
enhancing autophagy-related proteins [152]; and PEG10, a lncRNA activated by MYC
and reported to be upregulated in DLBCL tissues and in cell lines, acts as an oncomiR by
promoting cell proliferation [153]. PEG10 expression also correlates with poor prognosis in
DLBCL patients [154].

Table 3. Clinical potential of miRNAs/lncRNAs in DLBCL.

miRNA/ncRNA Putative Role Clinical Potential References

hsa-miR-155 OncomiR Prognostic biomarker [155,156]

hsa-miR-221/222 OncomiR Prognostic biomarker [129]

hsa-miR-146a OncomiR Prognostic biomarker [156]

hsa-miR-146b OncomiR Prognostic biomarker [157]

hsa-miR-18a OncomiR Prognostic biomarker [158]

hsa-miR-21 OncomiR Prognostic biomarker [159]

hsa-miR-181a OncomiR Prognostic biomarker [129,160]

hsa-miR-222 OncomiR Prognostic biomarker [129]

19-lncRNA Oncogene Prognostic biomarker [123]

17-lncRNA Oncogene Diagnostic and
prognostic biomarker [144]

6-lncRNA Oncogene Prognostic biomarker [146]

NAALADL2-AS2 Oncogene Diagnostic biomarker [141]

NON-HSAT120161 Oncogene Diagnostic biomarker [141]

PEG10 Oncogene Prognostic biomarker [154]

HOTAIR Oncogene Prognostic biomarker [149]

NEAT1 Oncogene Prognostic biomarker [150]

NONHSAG026900 Tumor suppressor Prognostic biomarker [151]
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5. Nasopharyngeal Carcinoma

EBV is also an etiological agent in nasopharyngeal carcinoma (NPC) [161]. The EBV
genome is detectable in almost all cases of undifferentiated NPC. EBV’s protein-coding
genes, EBNA1 and LMP1, are crucially involved in disease pathogenesis [162,163]. The
EBERs may also contribute to some of the characteristic features of NPC. For example,
when introduced into a canine epithelial cell line (MDCK), EBER expression enhanced cell
growth [164]. The EBERs were shown to induce an inflammatory response in NPC cells
through Toll-like receptor 3 (TLR3) signaling [165]. Zhang et al. also reported that EBER-1
expression was negatively correlated with the intergenic non-coding RNA LINC00312,
which may act as a tumor suppressor in NPC [166]. Other cellular lncRNAs are regulated
by EBV in NPC. He at al. described the upregulation of three lncRNAs (MALAT1, AFAP1-
AS1, AL359062) following EBV infection of immortalized normal nasopharyngeal epithelial
(NP69) cells [167]. Although it is still unclear how EBV infection regulates signaling path-
ways affecting expression of these three lncRNAs, the recognition of crosstalk between EBV
infection and lncRNAs could provide a novel mechanism for EBV-induced carcinogenesis.

There have also been efforts to elucidate the role of EBV-encoded miRNAs in NPC
(Table 4). For instance, Chen et al. used deep sequencing technology to establish a
complete BART miRNA transcriptome wherein 44 mature EBV microRNAs, including
four novel subtypes, were identified from the 22 distinct precursor hairpins in the BART
region [168]. Interestingly, a widespread sequence variation was detected in the 44 BART
miRNAs [169,170]. Among the EBV BART miRNAs, BART3-3p, BART5-5p, and BART9-
3p were highly upregulated [168]. In particular, BART5-5p was previously reported to
regulate the pro-apoptotic gene PUMA and protect NPC cells from etoposide-induced
apoptosis [171]. Meanwhile, BART7-3p was found to regulate epithelial-to-mesenchymal
transition (EMT) which is one of the mechanisms implicated in NPC metastasis [172,173].
In a different study, BART1 was found to influence the expression of the oncogenic PSAT1
and PHGDH genes in NPC [174], resulting in the activation of PTEN-dependent pathways,
including PI3K/Akt, FAK-p130Cas, and Shc-MAPK/ERK1/2 signaling. With the activation
of these signaling pathways, there is increased EMT favoring the migration, invasion, and
metastasis of NPC [175].

BART7 contributes to the resistance of NPC cells to both cisplatin and radiation
therapy [168]. In particular, BART7-3p was found to induce expression of c-myc and c-jun
by activating the PTEN/PI3K/Akt pathway [176]. Additionally, BART8-3p promoted
radioresistance in NPC by upregulating ATM/ATR signaling [177]. BART9 is also highly
upregulated in EBV-positive NPC tumors and may play a role in repressing E-cadherin,
thereby upregulating β-catenin to promote the metastatic spread of NPC [178]. In tumor
tissues of a cohort of 106 NPC patients, BART10-3p expression was negatively correlated
with BTRC expression and was found to be associated with poor prognosis [179]. BART10-
3p promoted the invasion and migration of NPC cells by targeting BTRC and facilitating
metastatic spread through EMT [175]. BART2-5p promoted the migration and invasion of
EBV-negative NPC cells, whereas its genetic downregulation in EBV-positive NPC cells
decreased metastasis [180]. BART2-5p also decreased expression of the RND3 Rho family
GTPase to promote ROCK signaling, cell motility, and the metastatic behavior of NPC
cells [180].
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Table 4. EBV-encoded miRNAs in NPC.

miRNA/ncRNA Putative Role Clinical Potential References

BART5-5p OncomiR Prognostic biomarker [171]

BART9-3p OncomiR Prognostic biomarker [172,173]

BART1 OncomiR Prognostic biomarker [175]

BART8-3p OncomiR Prognostic biomarker [177]

BART2-5P OncomiR Prognostic biomarker [180]

BART8-3p OncomiR Diagnostic biomarker [181]

BART10-3p OncomiR Diagnostic biomarker [182]

BART19-3p OncomiR Diagnostic biomarker [183]

With potential clinical utility, there have been initiatives to detect circulating EBV-
encoded miRNAs in serum, plasma, or whole blood of individuals with NPC. Using the
Exiqon miRNA qPCR panel, Zou et al. identified a signature of five miRNAs (let-7b-5p,
miR-140-3p, miR-192-5p, miR-223-3p, miR-24-3p) that were significantly upregulated in
serum samples of patients with NPC compared with non-cancer controls [181]. In another
study, Gao et al. performed qPCR on plasma from patients with NPC [182]. For recurrent
NPC, plasma levels of BART2-3p, BART2-5p, BART5-3p, BART5-5p, BART6-3p, BART8-
3p, BART9-5p, BART17-5p, BART19-3p, and BART20-3p were significantly upregulated.
BART19-5p was the miRNA that performed best in identifying NPC in patients with
undetectable levels of plasma EBV DNA. For recurrent NPC, BART8-3p and BART10-
3p performed best in identifying cancer in EBV DNA undetectable plasma [182]. Wu
et al. showed that BART19-3p was significantly upregulated in the serum and tumor
tissues of NPC patients with a sensitivity and specificity of 71.7 and 72.3%, respectively,
for the detection of cancer vs. non-cancer controls [183]. Furthermore, profiling miRNA
expression levels in whole blood of patients with NPC led to the identification of two
miRNA signatures (8-miRNA and 16-miRNA signatures) with high diagnostic accuracy
for NPC. In particular, the 16-miRNA signature (hsa-miR-1224-3p, -1280, -155-5p, -1908,
-1973, -296-5p, -361-3p, -425-5p, -4284, -4436b-5p, -4439, -4665-3p, -4706, -4740-3p, -5091,
and -5091) is the first meaningful diagnostic signature to differentiate NPC from other
head–neck tumors and healthy subjects [184].

6. Gastric Carcinoma

Up to 10% of gastric cancers (GC) are EBV-positive [185–188]. Indeed, a proposed clas-
sification separates GC into four subtypes: EBV-positive, microsatellite instable (MSI), chro-
mosomal instable (CI), and genomically stable (GS). EBV-associated gastric cancer (EBVaGC)
is usually localized in the proximal stomach (the cardia section and body) [189–191]. Ade-
nocarcinomas of the gastroesophageal junction, but not esophageal adenocarcinomas, are
also EBV-associated in some cases, suggesting that characteristics of the epithelial cells
that are only found in the gastroesophageal junction and the proximal stomach are impor-
tant for persistent EBV infection [192]. EBVaGC is likely to be ‘immunogenic’ given the
observation of high levels of tumor infiltrating lymphocytes (TILs) which are a positive
prognostic marker [193,194]. Unlike many other solid tumors, PD-L1 expression in EBVaGC
is predominantly observed in the immune infiltrate and can predict success with immune
checkpoint inhibitors [195,196]. EBVaGC expresses EBNA1, EBER1/2, and BART miRNA.
LMP2A expression is present in around one-half of all cases [186,188,197,198]. EBNA1
contributes to the downregulation of both p53 and transforming growth factor-beta (TGF-β)
signaling, and promotes tumor growth by enhancing NF-κB activation in both EBVaGC
and NPC [199–201]. The EBERs are also implicated in the pathogenesis of EBVaGC, for
example, by increasing the expression of insulin-like growth factor 1, which can act as an
autocrine growth factor [202–204].
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The effects of these EBV genes may also be indirect as they can affect the expression
of other miRNAs that contribute to cancer proliferation [188]. For instance, a decrease in
pri-miR-200 transcription was observed in gastric carcinoma cell lines infected with EBV,
resulting in a decrease of E-cadherin expression and loss of cell adhesion [205].

BART14-3p is highly expressed in EBVaGC [206]. In contrast, BART22 expression,
while high in other tumors expressing a type I form of EBV latency, is low in EBVaGC [206].
EBV miRNAs were shown to target multiple points in the apoptotic cascade in EBVaGC.
For example, BART4-5p was found to reduce the activity of the pro-apoptotic protein Bid
leading to reduced apoptosis in gastric cancer cell lines [206]. BART5-3p also downregulates
p53 expression in NPC and EBVaGC [207]. Multiple BART miRNAs, including BART1,
BART3, BART9, BART11, and BART12, can reduce expression of the pro-apoptotic gene,
Bcl-2-interacting mediator of cell death (BIM) in GC cells [208]. BART20-5p inhibited
the apoptosis of gastric carcinoma cells through its ability to target the Bad protein [209].
BART10-3p and BART22 are also implicated in worse 5-year OS and are associated with
lymph node metastasis and activation of the Wnt signaling pathway in EBVaGC [210].

Differential expression of cellular miRNAs between malignant and benign gastric
mucosa was also observed. Although hsa-miR-21 and -155 are involved in inflammation,
which is a feature of both benign and malignant tissues, both miRNAs are upregulated in
gastric cancer tissues [211]. Other upregulated miRNAs in gastric carcinomas include hsa-
miR-196a, -196b, -185, and -let-7i. Downregulated cellular miRNAs include hsa-miR-18a,
34a, 187, -200a, -423-3p, -484-, and -744 [211].

Several lncRNAs are also associated with EBVaGC pathogenesis. For example, SNHG8
was found to be more highly expressed in EBVaGC than in EBV-negative gastric carcinomas.
Although the exact mechanism is still unclear, SNHG8 was found to interact with EBV
proteins LF3, BHLF1, BHRF1, and BNLF2a which regulate the expression of cellular genes
TRIM28, EIF4A2, NAP1L1, PLD3, RPL18A, and TRPM7 that play a role in the pathogenesis
of gastric cancer [212]. The clinical potential of measuring ncRNA in gastric cancer is
summarized in Table 5.

Table 5. miRNAs/lncRNAs in gastric carcinoma.

miRNA/ncRNA Putative Role Clinical Potential References

BART4-5p OncomiR Diagnostic biomarker [206]

BART5-5p OncomiR Diagnostic biomarker [213]

BART20-5p OncomiR Prognostic biomarker [214]

BART10-3p OncomiR Prognostic biomarker [210]

BART22 OncomiR Prognostic biomarker [210]

hsa-miR-196a OncomiR Diagnostic biomarker [211]

hsa-miR-196b OncomiR Diagnostic biomarker [211]

hsa-miR-185 OncomiR Diagnostic biomarker [211]

hsa-miR-let-7i OncomiR Diagnostic biomarker [211]

SNHG8 Oncogene Diagnostic biomarker [212]

7. Role of ncRNA in Immune Evasion

We briefly outline below the emerging importance of ncRNA in immune evasion in
EBV-associated malignancies.

Recent evidence supports a role for EBV miRNAs in modulating host cytokine signal-
ing during different stages of the viral life cycle. For example, in an analysis of TCGA data,
expression of the BART cluster of EBV-encoded miRNAs (BART2, BART4, BART5, BART18,
BART22) was shown to be associated with expression of IL-10 and TGF-β1, inhibitory cy-
tokines that can suppress host immune responses to EBV, and with PD-1/PD-L1 expression
and poor survival [215]. Some miRNAs (e.g., BART6-3p) can inhibit RIG-I signaling and
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the type I interferon response, both crucial for innate antiviral immunity [216]. Another
key mediator of the innate immune response is the NLRP3 inflammasome. NLRP3 is a
protein complex activated by pathogen-associated molecular patterns (PAMPs). Exosome-
mediated secretion of BART15 can abrogate the inflammatory capacity of NLRP3 [217]. In
nasal NK cell lymphoma, BART20-5p and BART8 suppress IFN-γ-STAT1 signaling [218].
Targets of EBV miRNAs were also shown to be enriched for genes with functions in innate
and adaptive immune responses [219]. Moreover, the increased levels of the EBV miRNA
correlated with reduced immune cell infiltration in both BL and GC [219]. It is noteworthy
that this same study showed that EBV miRNAs form thermodynamically stable complexes
with their targets at a higher efficacy than cellular miRNAs, indicating that they are likely
to override any regulation of immune targets by cellular miRNA [219].

BART miRNAs can induce a regulatory phenotype in tumor-associated macrophages
(TAMs) by enhancing their expression of IL-10, TNF-α, and arginase 1 [70]. As described
earlier, BART13-3p is highly expressed in cHL and can be delivered to TAMs via exosomes
promoting TAM differentiation towards a pro-tumor phenotype. Similarly, BART1, BART2,
and BHRF1-2 can suppress secretion of IL-12 from infected B cells thus inhibiting MHC
class II-dependent neo-antigen processing, the differentiation of CD4+ Th1 cells, and the
recognition and elimination by CD4+ effector T cells [220]. Moreover, miRNA-mediated
downregulation of the proinflammatory cytokine IL-12 can abrogate CD8+ cytotoxic T cell
surveillance of EBV-infected cells [221].

miRNA can induce expression of immune checkpoint molecules. Elevated expression
of immune checkpoint molecules, including PD-L1, is a feature of several EBV-associated
malignancies (e.g., cHL, NPC, GC) [195,222–225]. Increased PD-L1 expression could be
mediated by the exosomal delivery of EBV miRNAs from transformed cells to cells of the
tumor microenvironment. Mapping of EBV miRNA sequences from the Cancer Genome
Atlas (TCGA) has shown that the BART cluster is significantly associated with PD-1/PD-L1
expression and aggressive phenotypes in EBV-associated malignancies [215]. BART5-5p
can induce PIAS3 downregulation, STAT3 activation and, subsequently, PD-L1 upregula-
tion [213]. However, it is likely that many of the underlying mechanisms governing how
EBV-encoded miRNAs regulate immune checkpoints are yet to be fully discovered. EBV
miRNAs exert their immune regulatory functions in a combinatorial fashion with their
host cellular counterparts. Therefore, the ‘immune targetome’ of EBV miRNAs may only
be fully appreciated with a systems medicine approach to characterize the full network of
virus-host interactions.

8. Clinical Potential of miRNAs and Other Non-Coding RNAs

As outlined below, EBV miRNAs and other ncRNAs may have clinical utility in the
diagnosis of cancer, in more accurate outcome prediction, or in therapy (Figure 3).

Serological assays to detect levels of antibodies to EBV antigens, e.g., EBV viral capsid
antigen (VCA) and EBV early antigen (EA), have been useful as an aid to diagnosis and
in disease monitoring in some settings. Thus in NPC, combined antibody panels are able
to improve diagnostic utility in endemic regions [226]. However, an unmet need exists
for novel biomarkers for early screening in at risk populations given that EBV serology
tests often have low positive predictive value [215]. The assessment of circulating cell-free
EBV-DNA load is also a promising minimally invasive tumor marker [227]. However, there
remains no consensus on its clinical use. In NPC, for example, this is mainly because cutoff
levels and timing of EBV DNA detection differ between studies [228,229].
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Figure 3. Potential clinical utility of EBV-encoded miRNAs. BART13-3p could aid in the detection of preclinical NPC, a
cancer, which often presents late and when advanced, is associated with poor prognosis. In NKTL, which is characterized
by early invasion and metastasis, miR-BART2-5p may have a role as diagnostic and predictive biomarker with the potential
to identify those likely to respond to therapy. Identification of the risk of recurrence after potentially curative resection
in patients with gastric cancer remains a priority; BART20-5p levels in EBVaGC might be useful in predicting recurrence
free survival. Finally, rapidly emerging mRNA therapeutic technologies can be adopted to inhibit or mimic the action of
miRNAs with oncogenic or tumor suppressive roles, respectively.

Circulating miRNAs can be actively and selectively secreted from living cells and
passively leaked from apoptotic cells [230]. As such, circulating microRNA detection in
‘liquid biopsy’ has potential as a clinical biomarker [42]. For instance, the measurement of
EBV-encoded miRNAs in combination with other biomarkers may be an optimal strategy
for early NPC detection [231]. Among the BART miRNAs that have been analyzed and
validated in clinical samples, BART7-3p, BART13-3p, and BART 2-5p appear to be the
best performing NPC-selective biomarkers [230–236]. Separate studies on Chinese and
Malaysian populations showed that plasma BART7-3p levels were higher in NPC patients,
especially in advanced stages, compared to clinically healthy controls [234–236]. However,
since these EBV-encoded miRNAs have also been detected in some non-NPC samples,
appropriate ‘normal ranges’ may need to be defined if these biomarkers are to be adopted
in the clinical setting. The diagnostic accuracy of BART13-3p detection outperformed
existing methods, i.e., EBV DNA load and EBV IgA titers in some studies [235]. BART
2-5p was also proposed as a sensitive and specific biomarker for screening preclinical NPC
patients in a high-risk population [233]. Circulating BART2-5p, BART7-3p, BART13-3p,
and BART1-5p levels could also be used to identify patients with nasal natural killer/T-cell
lymphoma (NKTL) [230]. It should be noted, however, that the presence of miRNAs in
tissue samples does not guarantee their concordant presence in plasma. The reasons for
such discrepancies are not known, but have implications for the development of clinical
assays [211].

While the aforementioned studies made use of serum or plasma samples, another
promising application is the less invasive use of nasopharyngeal brush sampling to detect
and quantify elevated levels of BART1-5p in NPC. In addition to over 90% sensitivity,
specificity, and a positive correlation between high BART1-5p and tumor progression, this
approach can also detect early-stage NPC missed through conventional methods [237].

miRNAs might also be used to provide more accurate information on likely pa-
tient outcomes. For example, BART7 overexpression contributes to resistance to cisplatin
chemotherapy and radiotherapy in NPC [238]. Similarly, high BART20-5p expression may
predict recurrence-free survival for patients with EBVaGC [214]. Large-scale studies will be
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required to confirm the utility of BART7-3p and BART13-3p levels in monitoring treatment
efficacy as they have been observed to be significantly reduced post-therapy [231,234],
as well as BART7-3p levels as a potential prognostic marker for distant metastasis in
NPC [234]. Moreover, additional studies on the use of BART17-5p to monitor relapse or
presence of residual cells in NPC patients are needed [232].

There is also the potential to use miRNAs in therapeutic applications. Highly over-
expressed EBV BART-miRNAs in epithelial tumors have classically been the target. For
example, miRNA-sponges or anti-miRNA oligonucleotide therapeutic ‘antagomirs’ have
been utilized to effectively suppress EBV-driven tumors [176,239]. A new technology is
‘exosome-based therapy’ with loaded immunostimulatory cargo as cell-free immunother-
apy for EBV-associated malignancies [240]. The tumor-suppressive role for other miRNAs
(miR-216b) through inhibition of KRAS-related AKT and ERK signaling has also been
shown in NPC as a proof of concept [241].

The recently described EBV circular RNAs (circRNAs) have expanded the spectrum
of potential therapeutic viral targets [242–246]. Moreover, the better stability of circRNAs
compared to their linear counterparts, makes them attractive biomarker candidates in
liquid biopsy. One such possibility is EBV-circLMP2A, which has been shown to induce
and maintain stemness in EBVaGC; high expression of EBV-circLMP2A was also signif-
icantly correlated with metastasis and poor prognosis [247]. In NPC, EBV-circRPMS1
promotes epithelial-mesenchymal transition (EMT) which could serve as an early marker
of metastasis [248]. Finally, long non-coding RNAs of EBV (BART lncRNAs and BHLF1
lncRNA) are increasingly recognized to be of importance in different facets of the viral life
cycle, including virus replication [249].

9. Concluding Remarks

The emerging field of ncRNA biology is already providing multiple opportunities,
not only to better understand the pathogenesis of malignant disease, but also in the
development of new biomarkers of disease, in defining novel therapeutic targets and/or
even as alternative therapies. Although EBV was the first human virus identified to express
miRNA, challenges remain before applications involving EBV miRNA, or other ncRNA
encoded by the virus, can be routinely adopted into clinical practice.
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