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Abstract
In this paper, we consider the nonlinear discrete-time dynamic model proposed by
Bischi and Baiardi (Chaos Solitons Fractals 79:145-156, 2015a). The model consid-
ers players with adaptive adjustment mechanisms towards the best reply and a form
of inertia in adopting such mechanism. Moreover, we formulate an extension of the
original model, where endogenous market size is considered. Through numerical sim-
ulations, we show that multiple attractors may exist in the presence of homogeneous
agents and the emergence of non-synchronized trajectories both in the short (on-off
intermittency) and long (global riddling) run. Therefore, the article highlights that
strategic contexts exist in which the players’ knowledge of the market and the adop-
tion of the best reply do not always allow the use of the representative agent’s rhetoric
to describe the dynamics of the model.

Keywords Nonlinearity · Synchronization · Market share models · Representative
agent

JEL Classification C61 · C62

1 Introduction

In recent years the economic theory has become increasingly interested in the study
of contexts characterized by the presence of heterogeneous agents both in the macroe-
conomic, microeconomic, and financial spheres. Several modeling approaches have
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been considered. As far as this is concerned, we refer to Hommes and LeBaron (2018),
for an exhaustive review about the use of agent-based models and nonlinear systems
for describing the interaction among heterogeneous agents, and Massaro (2013), con-
cerning the possibility of dealing with heterogeneous expectations in the so called
Dynamic Stochastic General Equilibrium (DSGE) models.

Focusing on dynamic microeconomic models, the recent literature has shown how
even a low degree of heterogeneity among agents with bounded rationality produces
complex phenomena. Crucial along this line of research are the pioneering works of
Bischi et al. (1998, 1999), in which the authors show that a lack of knowledge of
the market (unknown market demand) and the interaction of two players with a little
mismatch in parameters may generate non-synchronization of decisions and related
complex phenomena.

On the same research strand, Fanti et al. (2015) show that in a duopoly market
the interaction between owners and managers may destabilize the system even in the
case in which agents are identical. Nevertheless, the agents’ higher knowledge of the
market, at least in the case of homogeneous players, seems able to avoid the onset of
dynamics that do not converge to the equilibrium. Think for example of the classic
article by Puu (1991) where the author considers players with complete knowledge of
themarket demand, having naive expectations on their competitors’ next period actions
and who use the best reply. In Puu’s work, the non-convergence to the equilibrium is
possible only if the duopolistic firms are very different from each other (if they have
very different marginal costs).

Recently, part of the literature has focused on understanding how the interac-
tion among groups of agents adopting heterogeneous strategies (Cavalli et al. 2015)
and the possibility of switching between groups (Bischi et al. 2015) can gener-
ate non-trivial dynamic phenomena. The present work is directly connected to the
articles of Bischi et al. (1998, 1999) and investigates whether the perfect knowl-
edge of the economic mechanisms characterizing the market and the adoption of
the best reply are capable of determining the loss (or achievement) of synchroniza-
tion (in the short and long run) among the behaviors adopted by players, when
applied to strategic contexts other than Puu (1991). In this context, we review the
marketing model proposed by Farris et al. (2005) and further deepened by Bischi
and Baiardi (2015a). We also consider an extension of the original model account-
ing for the dependence of the sales potential on customers’ attraction (endogenous
market size). We aim to show two main issues: (i) even in the presence of homo-
geneous agents, non-synchronized and complex behaviors can be observed due to
the presence of multiple equilibria, and (ii) a low degree of heterogeneity may
significantly affect the dynamics of the model among players due to existence of
non-topological (Milnor) attractors. In particular, this last point shows that using the
rhetoric of the representative agent to describe marketing dynamics may be mislead-
ing.

The paper is organized as follows. Section 2 shows the main features of the
map, and the study of the dynamics along the diagonal is provided. Section 3 intro-
duces the emergence of weak (Milnor) attractors. Section 4 is dedicated to the
interpretation of various dynamic scenarios to highlight some dynamic properties
of the model we consider. In Sect. 5 an extension of the model is formulated and
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possible achievements of synchronized trajectories are discussed. Section 6 con-
cludes.

2 Themap and its symmetries

We consider the discrete time dynamic map proposed in Bischi and Baiardi (2015a),
which is based on the marketing competition model introduced by Farris et al. (2005).
The model assumes n profit maximizing firms selling homogeneous goods, whose
decision variables are marketing efforts. Player i sets marketing spending xi to obtain
market share si defined as

si = Ai (t)

A

where Ai represents the attraction of consumers to i and A = ∑n
j=1 A j (t) is the

aggregate attraction. Following Farris et al. (2005) (see also Cooper and Nakanishi
1989), the specification Ai = ai x

βi
i is assumed, where ai ≥ 0 represents the effec-

tiveness of efforts expended by player i , while βi denotes the elasticity of attraction
of the firm with respect to its marketing effort. Assuming unitary elasticities, the one
period profit of firm i is given by

�i = Bsi − xi = ai xi
∑n

j=1 a j x j
− xi , i = 1, · · · n

where parameter B represents the sales potential of the market, or market size. From
the first-order condition, i’s best response is obtained

Ri

⎛

⎝
∑

j �=i

a j x j

⎞

⎠ =
√

B

∑
j �=i a j x j

ai
−

∑

j �=i

a j x j

At a given time period, the effort xi is assumed to be determined by the convex
combination between i’s best response to their competitors’ expected actions and its
previous period decision. Assuming static expectations, the dynamic model is given
by

x ′
i = (1 − λi )xi + λi Ri

⎛

⎝
∑

j �=i

a j x j

⎞

⎠ , i = 1, · · · n (1)

where ′ represents the unit time advancement operator, while λi ∈ (0, 1) measures i’s
inertia or anchoring attitude. Such a particular kind of adjustment proposed in Farris
et al. (2005) is known as adaptive adjustment towards the best reply (see also Puu
1991; Kopel 1996; Bischi et al. 2010). Map T : (x, y) → (x ′, y′), considered in
Bischi and Baiardi (2015a), is derived from (??) in the case of two firms in the new
rescaled variables x = a1a2x1 and y = a1a2x2:
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Fig. 1 Bifurcation diagram of
T� as a varies.
λ1 = λ2 = λ = 0.98

T :
{
x ′ = (1 − λ1)x + λ1a2

(√
y − y

)

y′ = (1 − λ2)y + λ2a1
(√

x − x
)
y′ = (1 − λ2)y + λ2a1

(√
x − x

) (2)

Feasible trajectories described by map T are those characterized by nonnegative
values of x and y. To avoid events in which map T generates negative values of the
state variables after a finite number of iterations (then trajectory stops existing), we
will assume ai ≤ 4 with i = 1, 2, such conditions ensuring the set S = [0, 1] × [0, 1]
to be a trapping region (that is formed by points whose forward iterations remain
included in S) and we will restrict the set of possible initial conditions to S.

2.1 The symmetric case

Local dynamic properties of map T have been extensively discussed in Bischi and
Baiardi (2015a), where existence conditions of fixed points of map T and related local
stability analysis have been provided. Moreover, the occurrence of global dynamic
scenarios where coexisting attractors (often with complex structure) paired with com-
plex structures of (often disconnected) basins of attractions has been discussed as well.
Here we combine such local analysis with a remark concerning the restriction T� of
map T to identical initial conditions, under the hypothesis of identical players. When
a1 = a2 = a and λ1 = λ2 = λ, map T becomes symmetric. This means that map T
remains invariant if variables x and y are swapped, that is T ◦ W = W ◦ T where
W : (x, y) → (y, x). This implies that the diagonal � = {(x, y) : x = y} is an
invariant manifold, i.e., a trajectory starting at (x0, y0) ∈ � lies on � for all t > 0,
namely (xt , yt ) ∈ � for all t > 0.

Synchronized trajectories are governed by restriction T� : � → �, where

T� : x ′ = f (x) := (1 − λ)x + λ a
(√

x − x
)
. (3)

The following proposition summarizes basic dynamic properties of map T . We refer
to Bischi and Baiardi (2015a) (Sect. 3) for the proof.

Proposition 1 Fixed points of map T� given in (3) are x∗
0 = 0 and x∗ = (a/(a+1))2.

Point x∗
0 is always unstable, while x∗ is locally asymptotically stable provided that

a < (4 − λ)/λ is given. At a = (4 − λ)/λ, point x∗ undergoes a flip bifurcation.
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Fig. 2 a Different shapes of map T� for λ = 0.682. Monotonic case for a = 0.135 (red curve) or unimodal
case for a = 3.983 (blue curve). The critical point xcr is evidenced by the dotted vertical line. b Parameters:
λ = 0.98, a = 3.994. Chaotic regime for the system, trapped in the absorbing interval defined by dotted
black lines (x0 = 0.047) (color figure online)

In Fig. 1 the bifurcation diagram of T� is provided as parameter a varies. It shows
the period doubling cascade phenomenon occurring after the loss of stability of x∗
through flip bifurcation.

The following proposition provides further characterizations of map T�.

Proposition 2 Assuming a ≤ 4, the map T� given in (3) is concave. Moreover,

(a) if a ∈
(
0, 2(1−λ)

λ

]
, then T� is monotonically increasing in [0, 1];

(b) if a >
2(1−λ)

λ
, the map has unimodal shape with critical point

xcr =
(

aλ

2(aλ + λ − 1)

)2

.

Proof (a) The proof is straightforward from the sign of both the first and second
derivatives of (3) and the limits of f .

(b) The expression of xcr is obtained by solving the equation f ′(x) = 0 and studying
the space of parameters for which xcr ∈ [0, 1].

��

Qualitative shapes ofmap T� are shown in Panel (a) of Fig. 2 for smaller and greater
values of parameter a with respect to the threshold 2(1 − λ)/λ. The unimodality of
f (x) and the period doubling cascade described in Fig. 1 suggest that, given λ, for a
sufficiently high value of a dynamics may become irregular. Panel (b) in Fig. 2 shows
this occurrence, where after a finite number of iterations, trajectory is trapped in an
absorbing interval, bounded by the critical point (in the Julia-Fatou sense) xcr and its
first four iterates.
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3 The problems of synchronization and chaotic synchronization

In Bischi and Baiardi (2015a) the authors complement the analysis provided in Farris
et al. (2005) stressing the dynamic consequences of heterogeneities highlighting the
way in which non-identical players, whose behaviors are characterized by different
effectiveness and inertia parameters, influence the equilibrium points, their stability
and bifurcations, as well as the global dynamic scenarios of the model.

A complementary approach has been adopted in Bischi and Baiardi (2015b), where
the authors critically discuss the assumption, often considered in economic theory, of
the existence of a representative agent, according to which identical or quasi identical
players behave in identical or quasi identical ways (see, e.g., Kirman 1992; Aoki 1998;
Bischi et al. 1999 for discussions on the topic). To this end, in the first part of that
work, the authors account for three different dynamic adjustment processes belonging
to the class of market share attraction models (see, e.g., Bell et al. 1975; Bonanno
and Zeeman 1985; Carpenter et al. 1988; Bischi et al. 2000 or Farris et al. (2005)).
The first adjustment consists in the model with the best reply and inertia introduced
in Sect. 2. The second adjustment is proposed in Bischi et al. (2000), where agents
are assumed to follow a profit-driven heuristic behavior with anchoring attitude. The
third model is considered in Bischi and Kopel (2003) and derived assuming agents to
follow the so called gradient adjustment mechanism (see Bischi and Naimzada 2000
and the reference therein). Remarkably, when such n-dimensional dynamicmodels are
reduced to one-dimensional maps under the assumption of identical players with the
same initial condition, the role of the numerosity n, taken as a bifurcation parameter,
has been shown to determine different and sometimes opposed behaviors of the related
synchronized dynamics. Then, in the second part of Bischi and Baiardi (2015b), the
authors deepen the analysis of the marketing model proposed in Bischi et al. (2000) if
two competing agents are assumed. The problem of synchronization achievement is
addressed by studying the stability property of the attractor placed along the (invariant)
synchronization manifold �. This corresponds to the search for conditions for which
limt→∞ ‖xt − yt‖ = 0 holds, given generic initial conditions (x0, y0). From an inter-
pretative point of view, this means that, when synchronization patterns are reached in
the long run, behavioral homogeneity among players is achieved, even when initial
configurations of the population are characterized by behavioral heterogeneity.

Along this line we ask whether synchronized or quasi-synchronized dynamics can
be described by map T , given in (2), in the non-generic situation in which identical
or quasi-identical agents are characterized by different initial conditions. Again, this
means establishingwhether identical (resp. similar) competitors starting fromdifferent
initial conditions will behave homogeneously (res. similarly) in the long run, so that
the asymptotic behavior of the system is governed by the one-dimensional restriction
T� (resp. takes place in a neighborhood of �). We present here a brief overview of
results that will be used to address this problem (see to this purpose Alexander et al.
1992; Ashwin et al. 1996; Buescu 2012; Venkataramani et al. 1996; Bischi et al. 1998;
Bischi and Gardini 2000 and Bischi and Cerboni Baiardi (2017)).

Let us start considering the case of identical players, assuming that a1 = a2 = a
and λ1 = λ2 = λ hold, and let As ⊂ � be a closed invariant set for T� such that
T (As) = As . The analysis of the transverse stability of As will reveal whether it is
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an attractor also for T and can be performed by considering the Jacobian matrix of T
and restricted to �:

J (x, x) =
(

l(x) m(x)
m(x) l(x)

)

(4)

The eigenvalues associated with a generic point (x, x) ∈ � are

ν‖(x) = l(x) + m(x) = 1 − λ + λa

(
1

2
√
x

− 1

)

, (5)

with eigenvector (1, 1) (parallel to �) and

ν⊥(x) = l(x) − m(x) = 1 − λ − λa

(
1

2
√
x

− 1

)

(6)

with eigenvector (1,−1) (orthogonal to �). When the invariant set As embedded
along � is a k-cycle of the form Ck = {(x1, x1), ..., (xk, xk)}, where k ∈ N\{0}, its
stability is measured by means of the product of the eigenvalues computed at each
point (xi , xi ) ∈ Ck , with i = 1, . . . , k, namely

ν
(k)
‖ =

k∏

i=1

(l(xi ) + m(xi ))

and

ν
(k)
⊥ =

k∏

i=1

(l(xi ) − m(xi ))

In detail, since ν‖ = f ′(x) for the one-dimensional map defined in (3), it follows that

ν
(k)
‖ is the eigenvalue of the k-cycle with eigenvector along the diagonal �, while ν

(k)
⊥

is the eigenvalue of the k-cycle along the direction normal to �. Then, the stability of
Ck along � is guaranteed by the condition |ν(k)

‖ | < 1, while the transverse stability of

the same cycle is guaranteed by the condition |ν(k)
⊥ | < 1. Then, when the two previous

conditions are matched, it can be concluded that a Ck is locally asymptotically stable.
Differently, if As is a chaotic attractor, the problem becomes more interesting and

the phenomenon of chaos synchronization may be observed (see, e.g., Fujisaka and
Yamada 1983; Pecora and Carroll 1990; Lai et al. 1996). Such an occurrence may be
paired with a weaker transverse stability property of As than local asymptotic stability.
In this case, Milnor attractors that are not stable in Lyapunov sense may appear (see
Milnor 1985). In order to understand the meaning of this phenomena, we recall for
convenience some well-known definitions. Let B(As) be the basin of attraction of As ,
namely the set of points whose ω-limit set belongs to As . The (strongest) notions of
stability are provided in the following definition.

Definition 3 The closed invariant set As is an asymptotically stable attractor (or topo-
logical attractor) if it is Lyapunov stable, i.e., for every neighborhood U of As there

123



514 A. Caravaggio et al.

exists a neighborhood V of As , V ⊂ U , such that T t (V ) ⊂ U for every t ≥ 0, and
B(As) contains a neighborhood of As .

According to Definition 3, when As is a topological attractor, then a neighborhood
(with positive Lebesgue measure) surrounding As and included in B(As) exists. This
implies that B(As) is characterized by a positive Lebesgue measure as well. Con-
versely, it is only necessary for As to be locally asymptotically stable to have B(As)

with positive Lebesgue measure.

Definition 4 A closed invariant set A is said to be a weak attractor in Milnor sense
(or simply Milnor attractor) if its basin of attraction B(As) has positive Lebesgue
measure.

Then, a topological attractor is also a Milnor attractor, whereas the converse is not
always true. Roughly speaking, a Milnor attractor may be unstable (in Lyapunov
sense) while attracting a set of points with positive measure.

In the present context, the chaotic set As ⊂ � may turn from an asymptotically
stable set to a weak or non-topological Milnor attractor, because it includes infinitely
many periodic orbits, dense in As , which are unstable in the direction along �. Such
cycles may be characterized by different degrees of transverse attractiveness and it
may happen that some of them are repelling in the direction orthogonal to �, while
some others are attractive along the same direction. Then, the presence of at least
one transversely repelling cycle will prevent B(As) from including a neighborhood of
As , since any initial condition placed out of � and sufficiently close to the cycle will
be iterated far from As . This, however, does not prevent B(As) from having positive
measure. The transverse attractiveness of a trajectory {xt = T t (x0), t ≥ 0} embedded
on As can be evaluated by means of the associated transverse Lyapunov exponent:

�⊥ = lim
T→∞

1

T

T∑

t=0

log |ν⊥(xt )| (7)

Clearly, if (x0, x0) is a point of a k-cycle, or belongs to the stable set of a k-cycle,
then �⊥ = ln |νk⊥| and the cycle is transversely stable when �⊥ < 0. Differently,
if (x0, x0) belongs to a generic aperiodic trajectory embedded inside the chaotic set
As , then �⊥ is the so called natural1 transverse Lyapunov exponent �nat⊥ , which
provides the measure of the average transverse attractiveness of As . It accounts for the
local average behavior of trajectories in a neighborhood of As and allows to identify
bifurcations such as the riddling bifurcation or the blowout bifurcation. Since infinite
cycles, all unstable along �, are embedded in a chaotic attractor As , a spectrum of
transverse Lyapunov exponents can be defined:

�min⊥ ≤ ... ≤ �nat⊥ ≤ ... ≤ �max⊥ (8)

where inequalities remark the property of�nat⊥ as the average between the transversely
repelling and transversely attracting cycles. In particular, (i) if �max⊥ < 0, then all the

1 The term natural refers to the Lyapunov exponent associated to the Sinai–Bowen–Ruelle measure, com-
puted for a typical trajectory taken in the chaotic attractor As (see, e.g., Buescu 2012.
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cycles embedded in As are transversely attracting and As is asymptotically stable for
map T ; (ii) if �max⊥ > 0 while �nat⊥ < 0, some cycles (together with their preimages)
nested in the chaotic set As exist, whose transverse Lyapunov exponents are positive,
so that they are transversely repelling. Then As is no longer Lyapunov stable. However,
since the majority of the trajectories on As are transversely attractive (which follows
from the average transverse attractiveness of As), a set of points with positive measure
belongs to B(As) and As reduces to a non-topological Milnor attractor.

The transition fromasymptotic stability to stability only inMilnor sense, recognized
through a change in the sign of�max⊥ from negative to positive, is the so-called riddling
bifurcation (or bubbling bifurcation). If also �nat⊥ becomes positive, the transversely
unstable periodic orbits embedded into As have a greater weight as compared to the
stable ones. Then, As is no longer a Milnor attractor, since it attracts a set of points of
zero measure, and it becomes a chaotic saddle. We refer to Buescu (2012) for deeper
discussions. The transition of As from a non-topological Milnor attractor to a chaotic
saddle occurs through the so called blowout bifurcation.

We dedicate a final remark in this section to highlight that riddling bifurcation
may have different consequences on global dynamic scenarios. Indeed, even if the
occurrence of riddling bifurcation is detected studying the sign of the natural Lyapunov
exponent, its effect depends by global dynamic properties of the system. In detail, after
the riddling bifurcation, trajectories that are locally repelled near the local unstable
manifolds of the transversely repelling cycles may be redirected on �. This event is
referred to as local riddling in the literature (see Venkataramani et al. 1996; Zimin et al.
2003), where such trajectories are characterized by few bursts away from � before
synchronizing on it, giving rise to the so-called on-off intermittency phenomenon (see
Ashwin et al. 1996; Venkataramani et al. 1996). Differently, trajectories that are locally
repelled away from As may reach another attractor, being included in its basin. This
event is referred to as local riddling in the literature. Global riddling is also paired
to emergence of so-called riddled basins (see Alexander et al. 1992), where each
subset of B(As) includes points of the basin of the other attractor. Similarly, effects of
blowout bifurcations are affected by global dynamic features of the system far from
the invariant manifold �. In detail, the trajectories starting close to the chaotic saddle
may be attracted by another attracting set far from the diagonal or, alternatively, they
remain enclosed inside a two-dimensional compact set surrounding As , giving rise to
an endless on-off intermittency. A method based on critical lines has been proposed
in Bischi and Cerboni Baiardi (2017) to characterize the dynamic consequences of
riddling and blowout bifurcations.

4 Synchronized and quasi-synchronized dynamic patterns and
related stability notions

In this section we provide some dynamic scenarios described by map T given in (2)
and we discuss them in the light of the arguments presented in Sect. 3. We place the
analysis in the symmetric case and set λ = 0.98 in simulations. It is worth noting
that both parameters a and λ influence transverse stability of attractors embedded
along�. This follows from the expression of the eigenvalue ν⊥ provided in (6), which
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Fig. 3 �⊥ = −0.46791, λ = 0.98, a1 = a2 = 3.87. a Bifurcation diagram with respect to the parameter
a highlights the occurrence of a 8-cycle (see the vertical line in red). b Associated Lyapunov exponent
diagram. c Basins of attraction in the plane (x, y) (color figure online)

depends on both parameters λ and a. However, at the same time, parameters a and λ

influence the dynamics along�, which follows from the dependence of the eigenvalue
ν‖ provided in (5) by both a and λ (see, e.g., the bifurcation diagram given in Fig. 1
obtained by varying parameter a). As a consequence, variations of even a single
parameter do not preserve chaotic dynamics along�. Hence, numerical computations
of �⊥ do not necessarily represent the natural transverse Lyapunov exponent �nat⊥
because when a parameter varies within a periodic window of the bifurcation diagram,
the trajectory is captured by a stable cycle. In this situation, �⊥ only represents the
Lyapunov exponent of that cycle. However, when the trajectory is captured by a high-
period cycle, the trajectory visits an important portion of the set As and its transverse
Lyapunov exponent can be considered an approximation of the natural one. We then
adopt the methods considered in Bischi and Cerboni Baiardi (2017) in studying the
dynamic system proposed in Bischi and Lamantia (2002a) or Bischi and Lamantia
(2002b). The sequence of the dynamic scenarios provided in this section is obtained
by varying parameter a and simulations are ordered to illustrate the sequence of (local
and global) riddling and bubbling global bifurcations in the way they are presented in
Sect. 3 (namely as zero moves from the right to the left in the Lyapunov exponent’s
spectrum).

The first scenario is presented in Fig. 3. In Panel (a) the bifurcation diagram of
map T� is paired with Panel (b) showing transverse Lyapunov exponents of trajec-
tories nested in � as a varies. (The red line highlights the selected value of a for
the simulation in Panel (c).) In detail, at a = 3.87, the bifurcation diagram reveals
the presence of a period 8-cycle along �, which is locally asymptotically stable. In
this case, the associate transverse Lyapunov exponent is negative (�⊥ = −0.46791).
It is interesting to note that, differently from many contributions involving duopoly
dynamics with symmetric maps (such as Bischi et al. 1999), where only attractors
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Fig. 4 λ = 0.98, a1 = a2 + 0.01, a2 = 3.87

along the diagonal exist, coexistence of multiple attractors is here observed.2 Those
are two attractors formed by an even number of pieces symmetrical with respect to
the diagonal (a 8-cycle and a chaotic attractor with 8 pieces) and two other chaotic
attractors in a symmetric position (see Panel (c) in Fig. 3). The different colors applied
in Panel (c) identify the different basins of attractions of the attractors described
above.

Since the 8-cycle along� is locally asymptotically stable, the introduction of small
heterogeneities among agents through slight changes between parameters a1 and a2
implies that the same period 8-cycle undergoes smooth changes with respect to the
symmetric case, as shown in Fig. 4. In this case, the description of the model with a
unique representative player instead of two similar competitors (with initial conditions
close to the attractor) provides a good approximation of the marketing dynamics. Of
course, besides the smooth modification of the 8-cycle originally included in �, the
mismatch between parameters a1 and a2 causes both local and global bifurcations,
as shown in Fig. 4, where the cycle along the diagonal has been transformed into
a 16-cycle not belonging to � via a flip bifurcation, while the contact between 8-
pieces chaotic attractor and the boundaries of its basin has destroyed the chaotic
attractor.

Going back again to the symmetric case, the second scenario is presented in
Fig. 5, obtained at a higher value of the parameter a, now fixed at a = 3.9449.
Such variation causes a crucial change in the scenario, where As is the unique attrac-

2 For sake of completeness, the occurrence of multistability together with synchronized trajectories has
been investigated in several contributions. See, for example, Maistrenko et al. (1997, 1998b), Popovych
et al. (2000, 2001), Kapitaniak (2001); Neumann et al. (2003).
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Fig. 5 �nat⊥ = −0.00867106, λ = 0.98, a = 3.9449

tor of the system (see Panel (c)). As shown in Fig. 5 Panel (a), the restricted map
T� exhibits a chaotic attractor (or a high-periodic cycle). At the same time, the
transverse Lyapunov exponent of the trajectory observed in simulation is negative
(precisely, �nat⊥ = −0.00867106, see Panel (b) in Fig. 5). Moreover, the trans-
verse Lyapunov exponent associated to the 2-cycle C2 embedded in As

3 results
�⊥(C2) = 0.316569 > 0. This shows that As is a non-topological Milnor attrac-
tor and attracts a set of points with positive (Lebesgue) measure. We stress that, in
Panel (c), the orange points represent the closure of the basin B(As) of As , namely
the numerical basin of As including infinitely many repelling cycles existing outside
�, the presence of which can be argued also from the simulations presented both in
Figs. 3 and 4.

Figure 6 Panel (a) shows how the convergence to attractor As from initial conditions
close to the diagonal can be very long with phases of on-off intermittency. This is a
consequence of the fact that As is a non-topological Milnor attractor. Indeed, the on-
off phenomenon can be explained by the presence of transversely repelling cycles
nested in As and characterized by positive transverse Lyapunov exponents. Their
presence indeed has the effect of iterating far from As trajectories approaching it.
Such trajectories, however, will be reinjected in to As in the long run, being attracted
by transversely attracting cycles of As .We furthermention that the riddling bifurcation
which caused the transition of As from a locally asymptotically stable attractor to a
non-topological Milnor attractor is of local type. In Figure 6 Panel (b), the scenario

3 The 2-cycle C2 embedded in As is C2 = {(x1, x1), (x2, x2)}, where

x1 =
(

λa

2(λ + λa − 2)

(

1 −
√

1 − 4

λ + λa

))2

x2 =
(

λa

2(λ + λa − 2)

(

1 +
√

1 − 4

λ + λa

))2
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Fig. 6 aTime series of x−y describing the on-off intermittency phenomenon,where�nat⊥ = −0.00867106,
λ = 0.98, a = 3.9449. b Change of the attractor when a mismatch between a1 and a2 is introduced;
λ = 0.98, a1 = a2 + 0.01, a2 = 3.9449

highlighted in Figure 5, obtained in the symmetric case, is varied introducing a small
mismatch between parameters a1 and a2. This causes the destruction of the invariant
manifold as well as an abrupt change of the qualitative behavior of the asymptotic
dynamics, which now appears to be a two-dimensional chaotic set confined within an
extended absorbing area. This outcome can be explained as follows: after the symmetry
breaking, synchronization no longer occurs and the action of transversely unstable
periodic cycles originally embedded in As now determines an alternate sequence of
departures and approaches of the trajectory from the invariant manifold, filling up the
minimal absorbing area surrounding As . This gives rise to endless on-off intermittency
where bursts never stop. In this situation, the use of the representative agent’s rhetoric
to describe marketing dynamics is certainly misleading.

Let us go back again to the symmetric case and let us fix a = 3.89672. As in the
previous scenario, the natural Lyapunov exponent is supposed to be negative and well
approximated by computation of�⊥ = −0.0363289. The related dynamic scenario is
sketched in Fig. 7 Panel (c). Also in this case, As is conjectured to be a non-topological
Milnor attractor. This supposition is justified by looking at the rarefied structure of As ’s
basin represented by orange points. The basin B(As) indeed looks intermingled with
the basin of the 4-pieces chaotic attractor placed out of � having its basin represented
by gray points, thus revealing the presence of riddled basins. Such an outcome is
coherent with the non-topological nature of As , whose transversely unstable orbits are
characterized by unstable manifolds belonging to the basin of an attractor different
from As . Even if numerical simulations cannot reveal the very fine structure of B(As)

near �, infinitely many (grey) tongues of the basin of stable chaotic set placed out of
� can be thought as picking out from As , including unstable manifolds of transversely
repelling cycles. The riddling is of global type in this case.

Starting from the same situation represented in the previous simulation, by further
increasing the value of a up to a = 3.9 the natural transverse Lyapunov exponent
becomes positive, being computed �⊥ = 0.11128 along a high-period cycle (see
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Fig. 7 �nat⊥ = −0.0363289, λ = 0.98, a = 3.89672

Fig. 8 �nat⊥ = 0.11128, λ = 0.98, a = 3.9

Panels (a) and (b) in Fig. 8). The rise of a then determines blowout bifurcation and
As turns into a chaotic saddle. The consequence of this global bifurcation on global
dynamics is to prevent synchronization frombeing achieved formost of the trajectories
that do not start along the diagonal, which are no longer attracted by As neither
confined in some area surrounding As (as highlighted in Fig. 8 Panel (c)). Indeed,
even if periodic cycles that are transversely attractive may still exist along �, the
initial conditions whose ω-limit set belong to � is a set of zero measure.

4.1 Absorbing areas and dynamic consequences of riddling and blowout

In the previous sectionswementioned that riddling and blowout bifurcationsmayhave,
each on its own, different consequences on global dynamic scenarios. We stress that
such different outcomes from each bifurcation are locally equivalent along� and can-
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Fig. 9 Blue lines are the iterations LCk = T k (LC) of the critical line LC , with k = 0, ..., 3, representing
boundaries of an absorbing area enclosing the chaotic attractor As embedded along the diagonal. Light
blue segments represent generating segments LC−1. Parameters in Panel (a) and (b) are as in Figs. 5 and 6,
respectively (color figure online)

not be distinguished on the basis of the study of the spectrum of Lyapunov exponents.
This problem is addressed in Bischi and Cerboni Baiardi (2017), where the authors
exploit properties of (minimal) absorbing areas associated to non-invertible maps to
explain occurrences of different global scenarios, observed after both riddling and
blowout. We remark that this idea is originally suggested in Bischi and Gardini (1998)
and in Maistrenko et al. (1998a) and considered also in Bischi et al. (1998) and Bischi
and Gardini (2000). This concept is based on the crucial property of absorbing areas
that are regions of the plane where trajectories entering such areas will never escape
out of them. Indeed, absorbing areas are, in the simplest case, made up of the finite
union of segments of the so called critical lines and their rank-k images, having pecu-
liar folding actions on portions of the plane inherited by the non-invertible structure
of the map. We refer to Abraham et al. (1997); Gumowski and Mira (1980) and Mira
et al. (1996) for more details. Then, different consequences of riddling bifurcation can
be understood when an absorbing area surrounds a non-topological Milnor attractor.
Local riddling occurs when locally repelled trajectories are folded back towards the
attractor by boundaries of the absorbing area. Differently, when the absorbing area
includes a portion of the basin of a second attractor (including it), trajectories that
locally repelled away from the synchronization manifold may belong to the basin of
the second attractor and move towards it in the long run. In the present context, the
former occurrence is related to the simulation provided in Fig. 5. Boundaries of the
minimal absorbing area enclose bursts occurring after synchronization is achieved and
are represented in Fig. 9 Panel (a). These boundaries are made up of the critical line
LC and its iterations T k(LC), with k = 1, 2, 3. In turn, the set LC is obtained by one
iteration through T of the so-called generating segments LC−1, given by the union of
two branches included in the set of points where the Jacobian matrix associated to map
T vanishes. Also, after the introduction of the small mismatch between parameters a1
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Fig. 10 Blue lines are the iterations LCk = T k (LC) of the critical line LC , with k = 0, ..., 3, representing
boundaries of an absorbing area enclosing the chaotic attractor As embedded along the diagonal. Light blue
segments represent generating segments LC−1. A second chaotic attractor included in the absorbing area
and placed out of � is present. Parameters are as in Fig. 7 (color figure online)

and a2 and the following symmetry breaking, the same slightly modified absorbing
area encloses bursts along the endless on-off intermittency and provides the bound-
aries for the chaotic set shown in Fig. 6 Panel (b). This is shown in Figs. 9 Panel (b),
10.

The latter occurrence is related to the simulation provided in Fig. 7. The absorbing
area surrounds As as well as the 4-piece chaotic attractor placed out of � together
with portions of both their basins. Hence, locally repelled trajectories from As can
move towards the second attractor, thus causing global riddling and determining the
presence of riddled basins. The absorbing area in this case is represented in Fig. 13.

5 Endogenousmarket size

In the formulation of themodel discussed in the previous sections, a fixedmarket size is
assumed. Therefore, the players compete in order to increase their own market share.
Nevertheless, strong marketing efforts may create positive spillovers for the entire
industry by attracting new consumers from other sectors. In particular, even if aimed
at contrasting rivals, marketing expenditures allocated to increase the firms attraction
may create positive effects on the entire market, which expands. See, e.g., Karnani
(1985), Basuroy and Nguyen (1998) or Federgruen and Yang (2009) for contributions
where aggregate sales have been considered as functions of the aggregate attraction.
For this reason, we consider here an extension of the model discussed in Bischi and
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Baiardi (2015a), according to which the market size B depends on A as

B(A) = B0A
θ , 0 ≤ θ < 1. (9)

where B0 > 0 and parameter θ represents the elasticity of the market size with
respect to the aggregate A4. Equation (9) entails that the marketing effort made by the
single player has two different effects: it affects the player’s market share and, at the
same time, it modifies the market size B. However, agents neglect to account for the
dependence of B on their own individual actions. In other words, each agent observes
the present value of B, but considers this value as given in determining the best reply.
Therefore, assuming that player have static expectations, best responses reads as

R̃i

⎛

⎝
∑

j �=i

a j x j ; B(A)

⎞

⎠ : =
√

B0Aθ

∑
j �=i a j x j (t)

ai
−

∑

j �=i

a j x j (t), i = 1, · · · , n

Adaptive adjustments towards the best reply lead to the following dynamic system

x ′
i = (1 − λi )xi + λi R̃i

⎛

⎝
∑

j �=i

a j x j ; B(A)

⎞

⎠ , i = 1, · · · n

where, again, parameters λi ∈ (0, 1) with i = 1, · · · n.
Remark 5 We remark that the model here considered boils down to the model consid-
ered in Bischi and Baiardi (2015a) when θ = 0.

Setting B0 = 1, the market size results B = (a1x1 + a2x2)θ and the dynamics in the
rescaled variables x = a1a2x1 and y = a1a2x2 is described by the two dimensional
map T̃ : (x, y) → (x ′, y′):

T̃ :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ′ = (1 − λ1)x + λ1a2

⎛

⎝

√

y

(
x

a2
+ y

a1

)θ

− y

⎞

⎠

y′ = (1 − λ2)y + λ2a1

⎛

⎝

√

x

(
x

a2
+ y

a1

)θ

− x

⎞

⎠

Differently from map T , whose dynamics are trapped in the region S = [0, 1]× [0, 1]
when ai ≤ 4 is assumed, for map T̃ it is difficult to analytically determine a condition
on the parameters such that all the trajectories live (at each iteration) in S. Regarding
the study of the region in which the dynamics of map T̃ takes place for each t ≥ 0, we
begin by noting that, without imposing any restrictions on the parameters, trajectories
starting on the axes are either (i) reinjected into the interior part of the nonnegative

4 The functional form considered in (9) has been introduced in Karnani (1985).
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Fig. 11 Critical curves
LC = LC(a) ∪ LC(b) (black)
which separates regions Z4, Z2
and Z0 whose points have 4, 2
and no rank-1 preimages,
respectively. Boundary H (red)
surrounds feasible region F

orthant, or (ii) become unfeasible in one iterate, or (iii) reach the fixed point O = (0, 0)
in one iteration starting from O−1

k , with k = 1, 2. Here, O−1
k is the rank-1 preimage

of the origin located along the x (resp. y) axis when k = 1 (resp. k = 2) with a
non-null coordinate equal to aθ/(θ−1)

2 (resp. aθ/(θ−1)
1 ). In particular, the interior points

of the segments ωk = [O, O−1
k ] are points on the boundary of the region F that are

reinjected into the interior part of the nonnegative orthant. The rank-1 preimages of
such segments form the region H = OO−1

1 O−1
2 O−1

3 shown in Fig. 11 where O−1
3 is

the preimage of O in the interior of the nonnegative orthant. The boundaries of that
region thus belong to the boundary of the feasible trajectories. From the study on the
number of preimages in the map, we deduce that T̃ is of type Z0 − Z2 − Z4. In the
case illustrated in Fig. 11, the preimages T̃−1(ωk) belong to the region Z0, that is a
region without further preimages. In this case the feasible region F coincides with
the region depicted in the figure. For high values of θ , the segments of H and LC
become tangent at first and subsequently intersect. In the latter case region H loses its
invariance and we witness the emergence of regions (holes), included in H , composed
of initial conditions that generate unfeasible trajectories.

5.1 The symmetric case and the problem of synchronization

We restrict our attention to the symmetric case, in which a1 = a2 = a and λ1 = λ2 =
λ. In this event, the following proposition shows some local dynamic properties of
map T̃ .
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Proposition 6 Assume λ1 = λ2 = λ and a1 = a2 = a. Points Ẽ∗
0 = (0, 0) and

Ẽ∗ = (x̃∗, x̃∗) are fixed points of map T̃ , where

x̃∗ =
(
2

a

)θ/(1−θ)

×
(

a

1 + a

)2/(1−θ)

Moreover, point Ẽ∗
0 is always unstable whereas point Ẽ∗ is locally asymptotically

stable provided that a < ã f and a < 3, where

ã f := 1

λ

(
4

1 − θ
− λ

)

Proof Imposing stationary conditions T̃ (x, y) = (x, y) and imposing x = y, the
equation

(1 − λ)x + λa

((
2

a

)θ/2

x (θ+1)/2 − x

)

− x = 0

is obtained, whose solutions are x̃∗
0 and x̃∗. This proves that Ẽ∗

0 and Ẽ∗ are stationary
states of map T̃ . Noting that Ẽ∗

0 , Ẽ
∗ ∈ �, stability of the fixed points can be evaluated

restricting the Jacobian matrix of map T̃ to �. It has the structure

J̃ (x, x) =
(

l̃(x) m̃(x)
m̃(x) l̃(x)

)

and its eigenvalues are ν‖(x) = l̃(x) + m̃(x) and ν⊥(x) = l̃(x) − m̃(x), where l̃(x) =
1−λ+ (λaθ/4) (2/a)θ/2 x (θ−1)/2 and m̃(x) = (λa/2) (2/a)θ/2 x (θ−1)/2 (1 + θ/2)−
λa. Since limx→0 ν‖(x) = +∞, then Ẽ∗

0 is always unstable. The stability conditions
|ν‖(x̃∗)| < 1 related to Ẽ∗ reads as

∣
∣
∣
∣1 − λ

1 − θ

2
− λa

1 − θ

2

∣
∣
∣
∣ < 1

which is satisfied for a < ã f . At a = ã f , ν‖ = −1 holds, namely flip bifurcation
occurs. The stability conditions |ν⊥(x̃∗)| < 1 related to Ẽ∗ read as

∣
∣
∣
∣1 − λ + λa − λ

2
(1 + a)

∣
∣
∣
∣ < 1

which is satisfied for a < ap := 3. ��
Remark 7 Note that x̃∗ is a decreasing function of θ such that x̃∗ = x∗ when θ = 0
and x̃∗ → 0 as θ → 1. We also remark that condition a < ã f ensures that point
Ẽ∗ is stable along the direction parallel to �, whereas condition a < 3 ensures that

123



526 A. Caravaggio et al.

Fig. 12 Red points are (a, λ)

pairs for which Ẽ∗ is stable
given θ = 0. As θ > 0 (θ = 0.1
in the graph), the stability region
enlarges in the direction of
arrows (color figure online)

point Ẽ∗ is stable along the transverse direction with respect to �. It follows that
parameter θ does not affect the transverse stability of the symmetric fixed point while
high values of θ favor the stability of x̃∗ along the direction parallel to �. In detail,
since ã f → +∞ as θ → 1, the condition a < ã f is always satisfied for values of θ

sufficiently close to 1.

Figure 12 gives a graphical illustration of what is described in Remark 7. Indeed, we
may notice that the set of pairs (a, λ) that guarantee the stability of the steady state
Ẽ∗ becomes larger, as the value of θ increases from 0.

Synchronized trajectories are governed by restriction T̃� : � → �, where

T̃� : x ′ = f̃ (x) = (1 − λ)x + λa

((
2

a

)θ/2

x (θ+1)/2 − x

)

The following corollary directly follows from Proposition 6.

Corollary 8 Fixed points of map T̃� are x̃∗
0 = 0 and x̃∗. Point x̃∗

0 = 0 is always
unstable, whereas the fixed point x̃∗ is locally asymptotically stable provided that
a < ã f . Moreover, point x̃∗ undergoes flip bifurcation at a = ã f .

We restrict the values of parameter a in order to have feasible trajectories of map
f̃ . The threshold for a is provided in the following proposition together with further
characterizations of map f̃ . Our aim is to highlight that initial conditions included in
the set S̃ generate trajectories included in S̃. Moreover, possible chaotic motions can
be observed in S̃ due to the existence of an absorbing set M ⊆ S̃.

Proposition 9 Assume a ≤ ãmax, where

ãmax := 1 − λ

λ
+ 1

λ(1 − θ)

(
4

(θ + 1)θ+1

)1/(1−θ)
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(a) If a ∈ (0, (1 − λ)/λ], then f̃ is monotonically increasing in [0,+∞)with absorb-
ing set M = {x̃∗};

(b) if a ∈ ((1 − λ)/λ, ãmax
]
, then f̃ is unimodal in the set S̃ = [0, x̃max], where

x̃max :=
(

λa

λ + λa − 1

)2/(1−θ)

×
(
2

a

)θ/(1−θ)

and an absorbing set M ⊆ S̃ exists.

Proof Map f̃ is concave, which follows from the continuity of f̃ in [0,+∞) and from
the relation f̃ ′′(x) < 0 that is satisfied for all x > 0. In addition, f̃ is monotonically
increasing in [0,+∞)when a ≤ (1−λ)/λ since in this case the inequality f̃ ′(x) > 0
is satisfied for all x > 0. The same restriction on a values implies local stability of the
fixed point, namely the singletonM = {x̃∗} is absorbing. Differently, if a > (1−λ)/λ,
f̃ reach its absolute maximum at the critical point

x̃cr =
(

λa(θ + 1)

2(λ + λa − 1)

)2/(1−θ)

×
(
2

a

)θ/(1−θ)

Moreover, the equation f̃ (x) = 0 is satisfied at 0 as well as at xmax. Hence, by
concavity, map f̃ is unimodal in S̃. We finally mention that the inequality f̃ (xcr ) ≤
xmax is equivalent to a ≤ ãmax, which can be deduced from direct computations. It
follows that, if (1−λ)/λ < a ≤ amax, an absorbing set M included in S̃ exists. Also in
this, M = {x̃∗} can occur. Alternatively, for values of a beyond the stability threshold
ã f , the absorbing set M can be an interval (as well as union of intervals) bounded by
rank k-images of the critical point x̃cr , with k ≥ 2. ��

5.1.1 Synchronization achievement and discussion

The implications that the assumption of endogenous market size has on the possible
achievement of synchronization patterns are here investigated. The first indication in
this direction originates from observing that when θ = 0, map T̃ reduces to T . Hence,
when θ is sufficiently close to zero, no abrupt change is expected in global scenarios
with respect to those arising when θ = 0, since small values of θ entail the weak
dependence of market size on aggregate attraction and, in turn, small step variations
of B values. In Fig. 13, complex attractors As along � (shown in the bifurcation
diagram in Panel (a)), observed for θ varying in a neighborhood of zero, are pairedwith
transverse stability and instability features of As (as shown by negative and positive
values of the Lyapunov exponent �⊥ shown in Panel (b)). Such an alternation of
stability property of As causes global bifurcation scenarios (such as global and local
riddling and blowout bifurcations) through the same mechanisms described in the
previous sections. A further indication about the effects of endogenous B comes from
the role that parameter θ plays on the stability of Ẽ∗ along the parallel direction to the
synchronization manifold. Indeed, in a scenario where a complex attractor is present
along � at a given θ , increasing values of this parameter will reduce such complexity,
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Fig. 13 a Bifurcation diagram of asymptotic dynamics of the restriction T̃� as θ increases. b Transverse
Lyapunov exponent �⊥ as the dynamics along the synchronization manifold � changes as θ increases.
Common parameters are λ = 0.98 and a = 4.1; in this case ãmax ∼ 4.102

following the typical period-halving sequence of flip bifurcations, up to reducing the
dynamics on� to convergence to the fixed point (see Remark 7). Then, for sufficiently
high values of θ , only cycles that are stable along � are present on it. Such cycles
are either locally asymptotically stable for the full map T̃ or unstable (saddles)5.
In the former case, occurrence of synchronized dynamics is a robust scenario that
can be observed for sets of initial conditions having positive measures. Moreover,
small differences between agents (namely slight differences between parameters a1
and a2 or λ1 and λ2) will not determine abrupt changes in global scenarios, and
quasi-synchronized states are robust long-run configurations as well. In the latter
occurrence, saddle cycles on � can be achieved only for initial conditions on � (a
set of zero measure in the plane) and synchronization can be observed only in non-
generic circumstances. In the bifurcation diagram in Fig. 13 Panel (a), only periodic
cycles appear on� for about θ > 0.04. The Lyapunov exponent�⊥ provided in Panel
(b) shows the related transverse attractiveness of the mentioned cycles. We note that,
for about θ > 0.2, point Ẽ∗ is stable along � and transversely unstable.6 Then, the
constant and positive value of�⊥ in this range is justified because trajectories starting
on � are caught by Ẽ∗.

5 besides non-generic cases of local bifurcation scenarios.
6 In the simulation a = 4.1 > 3; we recall that transverse attractiveness is not affected by θ (see Remark 7).
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6 Conclusions

In this article, we considered the map proposed by Bischi and Baiardi (2015a), which
is based on the market share attraction model considered in Farris et al. (2005). Fur-
thermore, an extension of the model taking into account possible dependence of the
sales potential from customers’ attraction (endogenous market size) was formulated.
We discussed some properties of the original map and its extension that had not been
deepened before. In detail, we addressed the problem of synchronization achieve-
ment, studying the transversal attractiveness of the attractor embedded in the invariant
synchronization manifold. The analysis was based on well-known results (see, e.g.,
Alexander et al. 1992; Ashwin et al. 1996; Buescu 2012; Venkataramani et al. 1996;
Bischi et al. 1998; Bischi and Gardini 2000; Bischi and Baiardi 2015b and Bischi and
Cerboni Baiardi (2017) among others). Through theoretical arguments, paired with
numerical simulations, we showed the existence of both multistability even in the
presence of homogeneous agents as well as in the presence of non-topological Milnor
attractors, which determines the occurrence of non-synchronization patterns both in
the short run (on-off intermittency) and in the long run (global riddling). Therefore,
the work allowed the authors to notice that there are strategic contexts in which the
players’ knowledge of the market and the adoption of the best reply do not allow the
use of the representative agent’s rhetoric to describe the dynamics of the system.
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