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Abstract
Recent advances in multiple myeloma therapy have increased the depth of response and ultimately survivals; 
however, the prognosis remains poor. The BCMA antigen is highly expressed in myeloma cells, thus representing a 
target for novel therapies. Several agents that target BCMA through different mechanisms, including bispecific T 
cell engagers drug conjugated to antibody and CAR-T cells, are now available or under development. 
Immunotherapies targeting BCMA have shown good results in efficacy and safety in multiple myeloma patients 
previously treated with several lines of therapy. This review will discuss the recent development of anti-BCMA 
targeted treatments in myeloma, with a special focus on currently available agents.
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INTRODUCTION
Multiple myeloma (MM) is a clonal plasma cell (PC) disorder accounting for 10% of hematologic 
neoplasms[1]. Novel therapies such as proteasome inhibitors (PI), immunomodulatory drugs (IMiDs), and 
anti-CD38 monoclonal antibodies (mAbs), together with autologous stem cell transplant (ASCT), have 
significantly improved treatment outcomes of newly diagnosed MM patients with a continuous increase of 
the overall survival (OS) that today reaches a median of 10 years[2-9]. However, MM patients still do relapse 
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and MM is considered an incurable disease[10,11]. In particular, triple-class refractory (refractory to PI, IMiDs, 
and anti-CD38 antibody) and penta-refractory (first and second-generation PIs, two generations of IMiDs, 
anti-CD38 antibody) patients have a median OS of 5.6 months, especially in the presence of high-risk 
cytogenetics (HR)[12-20] or positive minimal residual disease[21-26]. Therefore, novel therapies, especially for 
relapsed/refractory myeloma patients (RRMM), are necessary[25-26]. BCMA is a B-cell maturation antigen 
highly expressed in myeloma cells, thus offering an encouraging potential target for novel treatments[27-28].

BCMA in multiple myeloma
BCMA, i.e., CD269 or TNFRSF17, is a TNF receptor superfamily 17 member, expressed on differentiated 
plasma cells and plasmablasts under physiological conditions and nearly on all MM tumor cells[29-31]. BCMA 
ligands include APRIL (A Proliferations-Inducing Ligand) and BAFF (B-cell activating factor) which are 
involved in the maturation and differentiation of PCs[32]. APRIL can bind to BCMA more avidly than to 
BAFF, and both can induce BCMA downstream signals to PI3K-PKB/Akt (i.e., phosphoinositide-3-kinase-
protein kinase B/Akt), to RAS/MAPK (i.e., rat sarcoma/mitogen-activated protein kinase), and also to 
NF-κB (i.e., nuclear factor kappa-B), inducing increased plasma cells proliferation and survival[31,33-37]. 
Interestingly, PCs long-term survival in BCMA-/- mice is defective, suggesting BCMA is crucial for a 
sustained humoral immune response[38-39].

BCMA is overexpressed in myeloma PCs compared to normal ones, and its expression levels are elevated 
regardless of the stage of MGUS (monoclonal gammopathy of undetermined significance), SMM 
(smoldering multiple myeloma), and symptomatic MM[40-41]. Moreover, compared to healthy controls, 
APRIL and BAFF serum levels are 5-fold higher in myeloma patients. Recent studies showed that 
osteoclasts could be stimulated to produce more APRIL by MM cells, thus producing an 
immunosuppressive microenvironment[31,35,42] Interestingly, MM cell proliferation can be reduced, in a 
mouse xenograft model, by a moAb directed against APRIL. Anti-BCMA immunotherapies, together with 
APRIL inhibition, can defeat MM-induced immunosuppressive microenvironment and intensify the ADCC 
(antibody-dependent cell-mediated cytotoxicity) against myeloma cells[31,35,43].

sBCMA is the soluble form of BCMA, and it is produced by a γ-secretase acting on membrane BCMA[44]. 
sBCMA levels have been related to plasma cell infiltration in the bone marrow and may predict MM 
patients’ outcome. Indeed, some studies have shown that after MM treatment, the responsive patients 
resulted in lower sBCMA levels compared to patients with progressive disease[45-47]. Moreover, MGUS and 
SMM patients with higher levels of sBCMA showed a higher risk of progression to MM[48-49]. Thus, sBCMA 
might be used as a biomarker for disease progression and treatment response, allowing appropriate 
therapeutic management in case of drug resistance[10,50]. Additionally, one preliminary study in patients with 
non-secretory myeloma, for whom bone marrow aspirate and PET-CT scan are the only methods for 
disease monitoring, has shown that sBMCA levels correlate with the bone marrow PC infiltration, although 
this need to be confirmed[45-46]. Further studies are needed to validate sBCMA as a novel biomarker for MM 
and no approved diagnostic tool for measuring serum levels of sBCMA is available yet[10].

Finally, sBCMA reduces BCMA expression on PCs’ surface, thus resulting in reduced efficacy of BCMA-
targeted therapies and MM cells’ immune escape[27]. Additionally, authors showed that sBCMA at high 
levels might interfere with anti-BCMA therapy, thus reducing effective binding to MM cells[51]. Preclinical 
studies of γ-secretase inhibitor (GSI) have shown that it may decrease sBCMA levels and increase MM cells 
expressing surface BCMA, thereby improving response to BCMA chimeric antigen receptor T cell (CAR-T) 
therapy. Hence, the association of a GSI and BCMA-targeting therapy in MM patients is being evaluated in 
early-phase clinical trials[2,52].
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BCMA-TARGETED TREATMENT IN MULTIPLE MYELOMA
The evidence that BCMA could be a suitable target for effective antitumor activity in preclinical studies led 
to the development of drugs targeting BCMA with several mechanisms [Figure 1]. Presently, BCMA-
targeted therapies available are represented by: antibody-drug conjugates (ADCs), bispecific T cell engager 
(BiTEs), and chimeric antigen receptor (CAR)-T cells [Table 1][53,54].

BCMA antibody drug conjugates
Antibody-drug conjugate (ADC) consists of a monoclonal antibody directed against a tumor- antigen and a 
cytotoxic agent inducing cell death (payload). ADC is internalized after binding to the related antigen on 
the tumor cell’s surface, then the linker is hydrolyzed inside of the lysosomes or endosomes and the 
payloads are released to cause cell death. ADCs can selectively target malignant cells with great efficiency on 
tumor cells and limited toxicities. Auristatin is a tubulin polymerase inhibitor used as a payload for 
MM[55-60].

Belantamab Mafodotin (GSK2857916)
Belantamab mafodotin (Bel) is a humanized IgG1 ADC, first-in-class, originally approved by the FDA (US 
Food and Drug Administration) as monotherapy in relapsed myeloma patients treated with four prior 
therapies including a proteasome inhibitor, anti-CD38 monoclonal antibody, and an immunomodulatory 
agent[61]. Bel is formed by an antibody directed to BCMA and covalently linked to MMAF (the microtubule 
inhibitor monomethyl auristatin F)[62]. After binding to BCMA on MM plasma cell, Bel is internalized and 
MMAF is released, provoking cell-cycle arrest and apoptosis[63]. Other effects that seem to be mediated by 
Bel-binding BCMA are ADCC and antibody-dependent cellular phagocytosis (ADCP)[64,65].

The multicenter phase I trial (DREAMM1) enrolled 73 RRMM patients. An ORR of 60% and PFS of 12 
months were reported with acceptable toxicities. Corneal toxicity resulted in the most common non-
hematologic side effect[66,67]. Subsequently, the phase II registrational study DREAMM2 enrolled 196 MM 
patients. The recommended dose was intravenous 2.5 mg/kg, Q3W. Reported ORR was 31%, with toxicities 
confirmed as manageable. A program was established to evaluate possible Keratopathy (Risk Evaluation and 
Mitigation Strategy, REMS) prior to drug administration[68-71]. Bel is currently being studied in different 
combination regimens in MM patients. The randomized, phase II study DREAMM4 is investigating Bel 
with pembrolizumab in patients with MM refractory to multiple lines of therapy. The DREAMM5 is testing 
Bel with other mAbs, such as isatuximab. The DREAMM-6 trial is exploring the combination of Bel, 
bortezomib, and dexamethasone vs. Bel, lenalidomide, and dexamethasone, while the DREAMM-7 and the 
DREAMM-8 studies are comparing Bel, bortezomib and dexamethasone vs. daratumumab, bortezomib and 
dexamethasone and Bel, pomalidomide and dexamethasone vs. pomalidomide, bortezomib and 
dexamethasone, respectively. Finally, the DREAMM-9 is testing Bel in the induction therapy in NDMM 
patients[2,10,72,73]. However, in November 2022, the FDA withdrew belantamab’s US marketing authorization 
as the DREAMM-3 trial (Bel vs. pomalidomide in combination with low-dose dexamethasone in RRMM) 
did not meet its primary endpoint of PFS (11.2 vs. 7 months, HR 1.03; 95%CI: 0.72-1.47). Sustainability 
could be a reason. Other Bel studies are ongoing, and results are awaited. Other studies including different 
anti-BCMA mAbs as well as ADCs targeting BCMA are ongoing[74-76].

BCMA bispecifics
BITEs are bispecific T cell engagers and represent a different modality of immunotherapy targeting BCMA. 
These agents are engineered proteins with two different antigen-binding fragments that bind to MM cells 
and T cells, thus creating an immunological synapse with direct plasma cell killing by T-cells[77-79]. The two 
common antigens involved are CD3 and CD16, and BCMA is the target of MM plasma cells. Many studies 
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Table 1. Characteristics of currently approved BCMA targeted agents

Drug Mechanism of action Regimen of 
administration Adverse effects ORR/CR 

(%)*
PFS 
(months)*

Belantamab 
(ADCs)

Monoclonal antibody conjugated with a cytotoxic 
agent

Intravenous (every 
21 days)

Corneal toxicities 
Thrombocytopenia

31/3 2.8

Teclistamab (BITEs) Fully humanized IgG4 bispecific antibody 
redirecting, CD3-positive T-cells to BCMA

Subcutaneous 
(weekly)

CRS 
ICANS 
Hematological 
toxicities

63/39 11.3

Idecabtagene 
Vicleucel (CAR-T)

BCMA targeted CAR-T incorporating anti-BCMA 
antibody costimulation domain, CD3ζ signaling 
domain

Single intravenous 
infusion

CRS 
ICANS 
Hematological 
toxicities

73/33 8.8

Ciltacabtagene 
Autoleucel (CAR-T)

BCMA-targeted CAR-T-cell product with two 
single anti-BCMA domain antibodies, CD3-ζ 
signaling domain costimulatory domain

Single intravenous 
infusion

CRS 
ICANS 
Hematological 
toxicities

97/67 Not reached

*Data from the registrational study; CR: complete response; ORR: overall response rate; PFS: progression-free survival.

Figure 1. CAR: Chimeric antigen receptor.

with BITEs utilizing BCMA showed great efficacy with moderate toxicity, such as CRS (cytokine release 
syndrome) and associated neurotoxicity syndrome (ICANS)[80-82].
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Teclistamab (JNJ-64007957)
In the MajesTEC-1 clinical trial, Teclistamab (Tec) was tested as an IgG4 bispecific antibody targeting CD3 
on T-cells and BCMA in RRMM. Included patients were heavily pretreated, with two-thirds of them triple-
class refractory and 30% penta-refractory. Tec was initially administered intravenously or subcutaneously in 
different cohorts, and safety was particularly improved, particularly in terms of reduced CRS, for the latter 
formulation. The recommended dose was 1500 μg/kg weekly subcutaneously, after two escalating doses of 
60 and 300 μg/kg. The ORR was 63% (median PFS 11.3 months). CRS was observed in 72% of the patients 
(only 1 patient with a grade 3) and Il-6 inhibitor tocilizumab was needed in 37% of patients. The most 
common neurotoxicity reported was headache in 8% of the patients[83-86]. Those results were followed by Tec 
authorization for marketing as monotherapy in MM patients who showed disease progression during the 
last of three prior therapies, including a proteasome inhibitor, an immunomodulatory agent, and an anti-
CD38 antibody[87].

Others BITEs currently studied are Elranatamab (PF-06863135), ABBV-383, and alnuctamab (CC-93269). 
In addition, novel tri-specific agents that target BCMA are under preclinical evaluation and are 
demonstrating high clinical potential[88-97].

BCMA CAR-Ts
CART (Chimeric antigen receptor T) cell therapy act as cell-mediated immunotherapy. Briefly, after an in 
vitro gene transfer strategy, the patient’s T cells acquire the ability to can recognize tumor antigens (mostly 
used is BCMA) on MM plasma cells and thus destroy them. The CARs are formed by a receptor with an 
extracellular portion that binds to the antigen and an intracellular signaling domain. Moreover, the 
extracellular portion is formed by a single-chain variable fragment, i.e., scFv, connected to a transmembrane 
domain. CD28 is used as a costimulatory molecule. The final product results in a combination effect of 
mAbs and T cells cytotoxicit[98-103]. Leukapheresis of the patient’s T cells is the first step of CART generation. 
Thereafter, the scFv and costimulatory domains are introduced with a viral vector. Before reinfusion, 
patients usually receive a conditioning regimen of fludarabine and cyclophosphamide (a chemotherapy 
regimen used to achieve lymphodepletion) to decrease autologous T cells and permit  CARTs 
proliferation[104,105].

BCMA represents an ideal target for CAR-T therapy, and to date, two autologous BCMA-targeting CAR-Ts 
have been approved by the FDA, but several are being investigated in clinical trials[106-108]. BCMA is also 
being tested combined with CD19 for CAR-Ts multiple targeting[109-111]. A good efficacy has been 
demonstrated in early-phase clinical trials with bispecific CAR-Ts that target BCMA, CD19, or CD38[112]. 
Future alternative approaches could be represented by allogenic BCMA CAR-T cells or CAR-NK (CAR-
natural killer), which are now investigated in early clinical trials[113-121].

Ide-Cel, idecabtagene vicleucel ( bb2121)
Ide-Cel is a CAR-T of the second generation that targets BCMA. Ide-Cel includes a CD3ζ signaling domain 
and an scFv, a costimulating domain. A great efficacy has been shown in preclinical experiments against 
MM plasma cells. It is independent of levels of BCMA expression or sBCMA levels[107]. Ide-Cel showed an 
ORR of 85% and a median PFS of 11.8 months in heavily pretreated MM patients in a phase I study. 
Toxicities such as CRS and ICANS (mostly grade 1-2) were observed in 76% and 42% of patients, 
respectively[122]. The KarMMa phase II study was conducted in 128 MM patients who had previously 
received three or more lines of therapy, including a PI, an IMiD, and an anti-CD38 mAb. CAR-Ts infusion 
produced an ORR of 73%. Also, MRD negativity at 10-5 was seen in 26% of the patients (median PFS 8.8 
months, 20.2 months when CR was achieved). Of note, when CAR-T was employed in high-risk disease 
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patients (i.e., penta-refractory disease, extramedullary disease, or high-risk cytogenetic), results were 
confirmed. Toxicities were acceptable (CRS 84%, but only 7 patients (5%) with ≥ grade 3; ICANS 18%, 
with ≥ grade 3 in 4 (3%) MM patients[123]. Ide-Cel was approved by the US FDA thereafter for MM patients 
treated with four lines of therapy (comprehensive of a PI, an IMiD, and an anti-CD38 mAb)[124]. Ide-Cel is 
now being used in several trials to explore its efficacy in various scenario, including the use in first-line 
therapy or at early relapse[125-127].

Cilta-cel ciltacabtagene autoleucel LCAR-B38M/JNJ-4528; Carvykti
Cilta-cel is a CAR-T-cell targeting BCMA with two antibodies to increase the binding avidity, a CD3-ζ 
signaling domain and a 4-1BB costimulatory domain[109]. In a recent phase I clinical trial, responses were 
high (ORR 88%) in RRMM patients after three or more prior lines of therapy (median PFS of 15 months). 
Toxicities were mostly grade 1-2 (CRS 90%, ICANS in 1 case)[128]. Subsequently, Cilta-cel was tested in 97 
MM patients previously treated with multiple lines of therapy, with 40% of them being penta-refractory 
(CARTITUDE-1 trial). Interestingly, the response rate was quite high (> VGPR in 95%, MRD undetectable 
at 10-5 was achieved in 92%). Reported CRS and ICANS were similar to the previous study, but hematologic 
toxicities occurred more frequently (grade 3-4)[129]. Cilta-cel was then approved by FDA, in February 2022, 
for RRMM patients treated with > 4 prior lines of therapy including an anti-CD38 mAb, an IMiD, and a 
PI[130]. Recent ongoing phase III trials are CARTITUDE-2, evaluating cilta-cel efficacy and safety in different 
clinical settings in RRMM[131]; CARTITUDE-4, comparing Cilta-cel vs. pomalidomide, bortezomib and 
dexamethasone (PVd) vs. daratumumab, pomalidomide and dexamethasone (DPd) in RRMM; 
CARTITUDE-5, comparing bortezomib, lenalidomide, and dexamethasone (VRd) and Cilta-cel vs. VRd 
followed by lenalidomide and dexamethasone (Rd) therapy in transplant-ineligible patients MM at 
diagnosis[132].

BCMA, DRUG RESISTANCE, AND MM
While the efficacy and safety of BCMA-targeting agents have been demonstrated, data regarding drug 
resistance are also emerging, though the exact mechanisms of resistance towards these agents have not been 
fully understood[133]. Bone disease could be a reservoir for disease recurrence and a mechanism of resistance. 
Imaging is an important tool to detect residual disease outside the bone marrow or in extramedullary 
disease, although it is not known how BCMA antigen could be expressed on plasma cells outside the bone 
marrow. PET-CT is the gold standard technique to detect active disease and translated from lymphomas to 
MM[134,135]. In addition, whole body-MRI studies showed equal sensibility vs. PET-CT and can be used[136]. 
Downregulation of BCMA on PCs surface could be associated with resistance in a similar way as it has been 
described for CD19 and CD20 target therapies. Multi-targeted immunotherapies or the combination of 
BCMA targeting agents with γ-secretase inhibitors could overcome BCMA loss and both strategies are 
under investigation in clinical trials[52].

Humoral and cellular immune responses could limit the persistence of BCMA CAR-T, leading to loss of 
efficacy and disease relapse. Alternative manufacturing processes, such as the application of human scFVs 
or the removal of the light-chain domain from the CAR antigen-binding domain, have been demonstrated 
to reduce CAR-T immunogenicity. In addition, BCMA CAR-T persistency could be increased by the 
addition of a phosphoinositide 3 kinase inhibitor during ex vivo culture to augment the memory-like T cells 
of the final product. Besides, allogenic CAR-T could overcome resistance related to T cell exhaustion which 
may be present in RRMM patients[137-139].

Eventually, the tumor microenvironment is now considered to play a central role in promoting MM cell 
growth and has also been associated with drug resistance. Combination of BCMA targeting drugs with 
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immunomodulatory agents could overcome this intrinsic mechanism of resistance, while trials are 
evaluating the next generation of armored CAR-T cells engineered to secret immunostimulatory cytokines 
or antibodies against inhibitory immune checkpoint receptors such as PD-1 and PD-L1.

DISCUSSION
Despite novel therapeutic advantages in recent years, MM remains incurable. BCMA immunotherapies are 
a novel anti-MM therapeutic approach that holds promise to improve MM survival in the future. ADCs, 
BITEs, and CAR-T cells are the newest therapeutic options targeting BCMA. Early clinical trials showed 
great efficacy and safety even IN MM patients treated with > 4 prior therapy lines. Since comparative studies 
of anti-BCMA targeted therapies are still lacking, it is not yet known whether one of these classes of agents 
is superior to another; however, they all have unique toxicities and logistical challenges. ADC is an 
interesting and efficacious therapy, but corneal toxicities need further understanding. Bispecific antibodies 
are therapies that can be used with excellent clinical activity. Disadvantages of bispecific antibodies could be 
their short lifetime and the need to start treatment in a hospital setting, as severe CRS/ICANS side effects 
usually appear at the beginning of therapy.

CAR-T cells are also a great option, as clinical trials reported high response rates in heavily pretreated MM 
patients. The main drawbacks of CAR-T cells include manufacturing time and expenses, leukapheresis 
necessity, and use of chemotherapy and infusion in a hospital setting for toxicities management. In 
addition, a relevant mechanism of resistance could be represented by the limited CAR-T growth and 
contact with the adverse plasma cell myeloma microenvironment, thus resulting in limited therapeutic 
effects after one year[140]. To overcome these problems, new strategies are currently under investigation 
utilizing combos of drug agents with CAR-T, maintenance therapies after CAR-T, novel methods to extend 
CAR-T’s duration, and implementing CAR-T production[141]. Additionally, the combination of a checkpoint 
inhibitor with CAR-Ts is being tested as it may offer an advantage of reducing T cell downfall[142].

The appropriate timing when to utilize a BCMA-targeted therapy is presently under investigation, with 
trials evaluating its role in earlier lines of therapy, including frontline. In fact, T cell-stimulating agents, such 
as CAR-T cells and BITEs, could probably produce deeper and longer responses if used at diagnosis or after 
only one or two lines of therapy, when MM patients are not heavily treated and may be at lower risk for T 
cell exhaustion.

In conclusion, therapies that target BCMA will play an important role in MM therapy, with the ambitious 
purpose of improving the cure rate; however, further investigations are still necessary to better define their 
real impact in clinical practice.
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