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We mine the leaked history of trades on Mt. Gox, the dominant Bitcoin exchange from 2011 to 
early 2014, in order to detect the triangular arbitrage conducted on the platform. To this end, 
we exploit user identifiers per trade to identify and describe the individual trading patterns of 
440 arbitrageurs. Moreover, we introduce proxies for expertise and document that the expert 
users’ distribution of profits first-order stochastically dominates that of non-expert users. Most 
importantly, by including user fixed effects, we show that expert users make profits on arbitrage 
by reacting quickly to plausible exogenous variations on the official exchange rates. A small 
number of expert arbitrageurs are able to conduct the vast majority of the arbitrage actions and 
systematically yield higher profits: our results provide empirical evidence that arbitrageurs are 
few and sophisticated users, characterized by the ability to incorporate information and to quickly 
react to exogenous shocks within short time scale intervals.

1. Introduction

Arbitrage, the simultaneous purchase and sale of the same asset in two different markets for a risk-free profit, is a key concept 
in economics and finance. The concept is vitally important because the absence of arbitrage opportunities is a necessary condition 
for market equilibrium (Harrison and Kreps, 1979). Intuitively, whenever an arbitrage opportunity emerges, some arbitrageur will 
exploit it until the mechanism of supply and demand has eliminated the price difference. This “law of one price” makes the no-
arbitrage principle a powerful solution concept in financial theory. It is a common foundation of the capital asset pricing model 
(Sharpe, 1964; Lintner, 1965; Mossin, 1966), the arbitrage pricing theory (Ross, 1976), the theory of option pricing (Merton, 1973; 
Black and Scholes, 1973), the efficient market hypothesis (Fama, 1970), and many other theories.
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In practice, arbitrage is never risk-free. Since purchases and sales are not executed in an atomic1 transaction across markets, the 
arbitrageur bears the risk of incomplete execution or concurrent price changes. Moreover, the asset traded in both markets may not 
be exactly the same, and there may be political risk premia if the markets operate in different jurisdictions (Aliber, 1973). These 
risks, in addition to other certain transaction costs, impose a lower bound on the price difference needed for profitable arbitrage. The 
orthodox economic response, in line with the efficient market hypothesis, is to imagine that many small arbitrageurs each take an 
infinitesimally small portion of the risk (and hence profit). However, Shleifer and Vishny (1997) challenge exactly this view in their 
landmark work on practical arbitrage in financial markets:

“[A]rbitrage is conducted by relatively few professional, highly specialized investors who combine their knowledge with resources 
of outside investors to take large positions.” (p. 36)

The authors support this claim by referring to the bounded rationality of many investors: “millions of little traders are typically 
not the ones who have the knowledge and information to engage in arbitrage.” (p. 36) While this is plausible and has likely been 
cross-checked by expert market participants, the evidence remains anecdotal. In this work, we use rich micro data at the trader level 
to provide a partial answer to this question, limiting our scope to investigating whether the arbitrageurs are many small traders or a 
few sophisticated investors.

We mine a leaked dataset of individual and identified trades from Mt. Gox, a now-defunct exchange between convertible currency 
and cryptocurrency that enjoyed a dominant market position in the early years of Bitcoin, before its collapse in 2014. Crucially for 
our purposes, Mt. Gox allowed users to trade within the same exchange bitcoins against different fiat currencies, thus providing 
opportunities to execute triangular arbitrage activities. Using bitcoin as a vehicle currency, investors could compare the implied 
relative price of traditional currencies (information that we observe in the private ledger of a single exchange) to the official exchange 
rate and look for the presence of mispricings. Moreover, the exchange limited users to only one personal account at a time to which 
a unique label was assigned. We exploit these two unique features of Mt. Gox to identify the arbitrage actions through an algorithm 
based on the analysis of identified sequences of trades conducted by the same user. We detect the actions of arbitrage as pairs of legs 
satisfying the textbook properties of arbitrage — that is, two legs (from different trades) executed by the same user — in different 
currency markets and within a reasonably small neighborhood of time and volume.2

After having identified which trading actions constitute arbitrage, and therefore which players act as arbitrageurs in the exchange, 
we quantify the magnitude of the triangular arbitrage activity within the Mt. Gox platform. Consistent with the anecdotal evidence, 
we find that only a restricted group of users perform at least one arbitrage action, while an even smaller group of sophisticated users 
are responsible for the vast majority of trades; the users in this subset tend to be active in multiple currency markets rather than in a 
single one, they conduct complex strategies (i.e., metaorders), and prefer limit to market orders.3 We then introduce proxy measures 
for the trading ability of the investors to determine whether expert users conduct more profitable actions. We first note that the 
expert users’ distribution of profits first-order stochastically dominates that of non-expert users. Next, using variation across trades 
executed using the same pair of currencies and within the same hour, and controlling for the volume of the trades, expressed in USD 
dollars, we estimate an average profit achieved by the expert arbitrageurs that is 1.29% (of the hourly official rate between the fiat 
currencies) higher than that obtained by the unsophisticated arbitrageurs — a difference which is slightly above a standard deviation 
in profitability. The arbitrage activity of sophisticated investors is on average profitable. Instead, the arbitrage activity attributable 
to the non-expert users is, to a large extent, non-profitable. These findings hold for different definitions of expertise and are unlikely 
to be explained by a “learning-by-doing” process or by the specific way in which we define a triangular arbitrage action.

Next, we investigate why expert users are more likely to make profits on arbitrage relative to non-experts. Using a wide range 
of definitions for trader expertise, we document that expert arbitrageurs are more able to exploit temporary arbitrage opportunities 
in their favor. Specifically, we use the (unsigned) rate of change of the official exchange rate between two fiat currencies to capture 
such temporary arbitrage opportunities and demonstrate that expert users make profits on arbitrage by reacting quickly to plausible 
exogenous variations on the official exchange rates. Remarkably, this finding also holds when we include user fixed effects, which 
allow us to absorb a relatively large set of unobservables at the user level that are likely to correlate with our measure of trade 
ability, including education, financial literacy, and wealth. Varying the way in which we identify a triangular arbitrage action 
yields similar estimate results. Consistent with our story, we find that arbitrage profits increase (and so too does the premium the 
expert arbitrageurs attain relative to the non-sophisticated traders) when we restrict the sample of triangular arbitrage to the actions 
completed during available price deviations. Finally, we also provide several falsification tests that help to rule out “learning” as a 
likely channel for our findings. Overall, these findings indicate that arbitrageurs are few and sophisticated users, characterized by 
the ability to incorporate information and quickly react to exogenous shocks within small time scale intervals. While these results 
are drawn from the analysis of a peculiar cryptocurrency market, we exhaustively discuss below how to interpret them if applied to 
other temporal and market contexts.

Our study contributes to the understanding of arbitrageurs’ behavior by examining their investment strategies as well as their 
responsiveness to temporary opportunities that arise from their comparisons of different market indices. In this respect, our paper 

1 Incidentally, this has changed with the introduction of decentralized exchanges on programmable cryptocurrency platforms (Makridis et al., 2023).
2 A similar approach to ours has been proposed by Luckner et al. (2023) to identify cross-border Bitcoin capital flows and by Aloosh and Li (2019) to detect wash 

trading. The latter exploit the same dataset, but their algorithm design detects a wash trade when its buy and sell legs have the same user ID; thus, the two approaches 
identify non-overlapping sets of trades.
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complements prior works (e.g., Roll and Ross, 1980; Malkiel, 2003; Lamont and Thaler, 2003) that assess the validity of consolidated 
theories on arbitrage based on the analysis of aggregate information on trading in several markets. We build on these works by 
providing econometric evidence that is inferred from micro-data, that is, from the analysis of the behavior of individual traders 
over a two-year period. In doing this, our study also relates to recent works that use financial data at the trader level. Hasso et 
al. (2019), for example, exploit user-level data from an online brokerage service to investigate the individual characteristics of 
cryptocurrency investors, such as their demographics and other trading activities, but they do not investigate individual sequences 
of trades. Meanwhile, other studies that use user-level data lack identifiers (e.g., Lee and Ready, 1991; Lee and Radhakrishna, 
2000), or focus largely on risk profiling (e.g., Kourtidis et al. (2011); De Bortoli et al. (2019); Borsboom and Zeisberger (2020)). 
Exchanges typically guarantee anonymity to their customers, and distributed ledger technologies are publicly auditable, but possibly 
privacy-preserving, making it difficult to track the same user over time. A prominent example of this is represented by Wang et al. 
(2022), who identify the cyclic arbitrages executed in decentralized exchanges (DEXs) within the Ethereum ecosystem. However, the 
Ethereum protocol design limits the potential to trace users exactly.

Furthermore, our results speak to the literature that investigates market anomalies despite the presence of rational investors in 
financial markets (Harris and Gurel, 1986; De Long et al., 1990; Froot and Dabora, 1999; Lamont and Thaler, 2003).4 Our paper 
partially fills an existing gap between the theoretical description of the arbitrage activity and the practical evidence from real markets 
by providing empirical evidence that arbitrageurs are few and sophisticated in trading (Shleifer and Vishny, 1997). What is more, 
we identify a group of non-sophisticated arbitrageurs who perform arbitrage in a non-profitable way — a fact that we demonstrate 
is reliant on their poor ability to quickly exploit opportunities in the market as well as to take into account transaction costs in their 
arbitrage decisions (in a mechanism that is similar to the monetary illusion phenomenon; see Shafir et al. (1997)).5

2. Background

2.1. Cryptocurrency exchanges and arbitrage strategies

Bitcoin, the most prominent cryptocurrency in terms of market capitalization,6 is a decentralized system which records transfers 
between parties denominated in bitcoin (units of cryptocurrency) in a public ledger. By contrast, exchanges are centralized entities 
that provide interfaces to conventional payment systems by allowing its users to trade units of cryptocurrency against fiat money 
(Böhme et al., 2015). Typical exchanges manage and match orders in a private limit order book and update their customers’ account 
balances in cryptocurrency or fiat money when trades are executed. As a result, exchanges are where price formation occurs (Hal-
aburda et al., 2022). Trades on exchanges are kept in a private ledger and have no effect on the public ledger unless users withdraw 
cryptocurrency from the exchange to a wallet under their own control.

Two arbitrage strategies are particularly relevant for cryptocurrency markets: arbitrage across exchanges and within one ex-
change. In the former, arbitrageurs maintain a stock of both bitcoins and fiat money in accounts at multiple exchanges to enable 
them to react quickly to price differences. The funds can be balanced at a lower frequency and are not necessarily correlated with 
observable price differences. Therefore, while arbitrage opportunities are measurable from published data, it is more difficult to 
identify arbitrageurs from the public ledger. The latter is triangular arbitrage: most of the cryptocurrency exchanges offer the possi-
bility to trade bitcoins (or other cryptoassets) against more than one fiat currency. Using bitcoin as a vehicle currency, investors can 
compare the implied relative price of traditional currencies to the official exchange rate and look for the presence of mispricings. 
We restrict our analysis to the second strategy, as this form of arbitrage has the advantage that information required to identify the 
two legs composing one arbitrage action is contained in the private ledger of a single exchange (additional external information is 
needed to compare the implied exchange rates across fiat currencies within the market to the prices outside of the market).

2.2. Literature on triangular arbitrage in cryptocurrency markets

Triangular arbitrage in the Bitcoin ecosystem has been widely investigated in the literature, documenting systematic unexploited 
arbitrage opportunities in cryptocurrency markets, especially before 2018. Focusing on the early years of Bitcoin trading (which 
are relevant for our work), Dong and Dong (2015) test for the presence of triangular arbitrage opportunities between the main 
cryptocurrency exchanges and the spot currency markets, finding evidence of persistent price deviations. Similarly, Smith (2016)
examines Mt. Gox aggregate data, finding that shocks in that market did not affect rates in conventional venues and that the efficiency 
observed in the market could be explained by the presence of arbitrageurs. Other studies indicate the presence of triangular arbitrage 
opportunities during the period from 2013 to 2017 (Pichl and Kaizoji, 2017; Reynolds et al., 2021; Pieters and Vivanco, 2015; 
Makarov and Schoar, 2020; Yu and Zhang, 2018; Hirano et al., 2018; Nan and Kaizoji, 2019). Remarkably, Reynolds et al. (2021)
show that persistent mispricings arise only when Bitcoin is used as a vehicle currency, finding no evidence of deviations from parity 
when considering the implied rate between traditional fiat currencies. Makarov and Schoar (2020) and Yu and Zhang (2018) both 

4 For a survey on the limits of arbitrage, see Barberis and Thaler (2003) and Gromb and Vayanos (2010).
5 Finally, in describing the Mt. Gox market structure and its internal trading mechanisms, we also make a connection to the literature on the role of cryptocurrency 

exchanges in the Bitcoin ecosystem (e.g., Moore et al., 2018; Griffin and Shams, 2020). In a similar vein to Dyhrberg et al. (2018), who investigate transaction costs 
and the liquidity of bitcoin, we account for explicit transaction costs paid within a cryptocurrency exchange (in contrast to previous research that focuses on the 
transactions costs in the Bitcoin network; see e.g., Möser and Böhme (2015), Dimitri (2019), and Easley et al. (2019)).
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6 Bitcoin is valued at around 500 billion $ at the time of writing (according to Coinmarketcap.com https://bit .ly /3iXhZnj).
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indicate that capital controls are behind market frictions that give rise to arbitrage opportunities, while Hirano et al. (2018) show 
that such opportunities are more frequent in minor currency markets. However, recent studies suggest that in more mature markets, 
and especially after 2018, price deviations scarcely exist because of the presence of informed institutional investors and websites 
such as bitsgap, tokenspread, and cryptohopper that collect information on mispricings before providing it to retail investors (Borri 
and Shakhnov, 2022; Crépellière et al., 2023).

In summary, based on heterogeneous methods and the study of periods with data of different frequency, the literature relatively 
consistently reports unexploited arbitrage opportunities in cryptocurrency markets, especially before 2018. This does not imply that 
arbitrage did not occur but rather that the costs and risks of arbitrageurs are underestimated. Indeed, anecdotal evidence from 
forums, the existence of web-based arbitrage tools, and code repositories for trading bots indicate that arbitrage did occur even at 
the early stages of the Bitcoin ecosystem (Petrov and Schufla, 2013).

2.3. The Mt. Gox exchange and the leaked dataset

All the studies reviewed above have in common that they analyze aggregated price (and sometimes volume) time series. Our 
approach represents a departure from these studies in that we use individual-level data from the internal ledger of a major exchange, 
Mt. Gox.

Mt. Gox played a prominent role during the early years of Bitcoin. It was established in 2010 as essentially the first cryptocur-
rency exchange and dominated the market with around 80–90% of the total trading volume until late 2012. Moreover, it was 
structured as an order-driven market based on a continuous two-sided auction and formally without any designated specialists. The 
first competitors entered the market within a short time delay: Bitstamp and BTC-e in mid-2011, and BTC China at the end of 2011.

Since the beginning of Spring 2013, a series of events gradually undermined the credibility of Mt. Gox,7 with customers starting 
to experience delays when withdrawing fiat money.8 Consequently, the volume traded in Mt. Gox decreased significantly in the 
following months, and the bitcoins started to be traded at a large premium in Mt. Gox9: in Spring 2013 the competitors of Mt. Gox 
had already gained a consistent share of the market, pushing Mt. Gox to just under 60% in the summer of 2013. The exchange 
stopped withdrawals at once on 7 February 2014, and filed for bankruptcy two weeks later. The former CEO was then arrested 
after being charged with fraud and embezzlement in 2015 and found guilty of falsifying data in 2019. Exchange closure is a common 
phenomenon in the cryptocurrency space, and a source of concern for investors, as witnessed by the survival analysis of 80 exchanges 
in Moore et al. (2018).

Our main dataset was leaked to the public in 2014 as a series of CSV files. They contain around 7.5 million trades executed from 1 
April 2011 to 30 November 2013. Each of these trades is composed of two buy and sell legs, reported in separate rows. Some variables 
are trade-specific (trade identifier, date of execution, amount of bitcoins exchanged), while other variables are leg-specific (buy or 
sell type, user identifier, transaction costs paid). Further information on the variables is provided in Online Appendix Section C. The 
vast majority (87.9%) of trades are in USD, followed by EUR (7.7%).

Fig. 1 visualizes selected indicators on how Mt. Gox’s user base has evolved over time, reaching a total of more than 125,000 by 
the end of 2013. The plots outline intuitively that the peaks of interest towards the cryptoasset (Panel a) and of activity within the 
market (Panel b) correspond with periods of exponential growth of the bitcoin price.

Whilst the dataset covers a longer period of time, we restrict our sample and exclude the trades executed after March 2013 due to 
the increasing difficulties in managing withdrawal operations and because of the other factors documented above. The total number 
of active users from April 2011 to March 2013 was approximately 72,000, while the number of trades were around 5.5 million. 
We further restricted the sample because the option to trade in currencies other than USD was introduced in September 2011.10

Thus, the identified arbitrage actions fall in the time period ranging from September 2011 to March 2013. As Fig. 1 shows, the time 
window considered also coincides with an epoch of constant activity within the exchange platform as well as with the linear growth 
rate of new registered users.

The leaked dataset has been widely analyzed already by a number of prior works but in relation to research topics distinct from 
arbitrage, e.g., the presence of metaorder executions (Donier and Bonart, 2015), unusual price jumps in the BTC/USD exchange rate 
(Scaillet et al., 2020), the effects of distributed denial-of-service (DDoS) attacks on trading activity (Feder et al., 2018), the impact 
of suspicious activity in the Mt. Gox exchange that likely engaged price manipulation (Gandal et al., 2018, and Chen et al., 2019, 
the latter trying to answer the same question through the lenses of network science), herding behavior (Haryanto et al., 2019), and 
wash trading (Aloosh and Li, 2019)).

In summary, the dataset we explore in this study has been analyzed by various previous researchers and is therefore already 
largely accepted in the literature. This, along with our own comparisons to external aggregate information reported in Online 

7 11 March 2013: Mt. Gox suspends bitcoin deposits after hard fork. https://bit .ly /2GWPklj; 11 April 2013: Mt. Gox went down after unexpected increase in the 
trading activity. https://bit .ly /3lEuSUW; 2 May 2013: Coinlab files a lawsuit against Mt. Gox https://bit .ly /3duT755; 14 May 2013: the Department of Homeland 
Security issues a seizure warrant for an account owned by a Mt. Gox’s U.S. subsidiary. https://bit .ly /3k0yhwV; 5 August 2013: Mt. Gox announces significant losses 
due to crediting deposits. https://bit .ly /317TA8n.

8 18 April 2013: users point out withdrawal delays. https://bit .ly /3lHAyO7; 4 July 2013: Mt. Gox resumes the U.S. withdrawals halted on 20 June. https://
bit .ly /3doQxxH, https://bit .ly /3lEvPfY.

9 See https://bit .ly /2FshVy6.
10 From September 2011 onwards, users were also permitted to trade bitcoins in exchange for EUR, CAD, GBP, CHF, RUB, AUD, SEK, DKK, HKD, PLN, CNY, SGD, 
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TBH, NZD, and JPY (https://bit .ly /314a5Cg).
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Notes: Panel (a) shows the growth of registered users in relation to the bitcoin price (the latter is reported on a logarithmic scale). Panel (b) shows the number of daily 
active users. The brown vertical line indicates the date of introduction of the multi-currency trading; the gray shaded area represents the area excluded by the sample.

Fig. 1. Descriptive statistics of Mt. Gox users.

Appendix Section C, support its validity and authenticity.11 Moreover, according to the Guardian,12 several members of the Bitcoin 
community claimed to have found their own transactions in the dataset. Finally, certain facts established in the court case against 
the former CEO of Mt. Gox seem to plausibly explain patterns in the dataset.13

We rely on the work of Gandal et al. (2018), Feder et al. (2018), and Scaillet et al. (2020) to pre-process and clean the original 
leaked dataset. This stage chiefly consists of finding duplicate rows and identifying misreported data. The procedure is described in 
more detail in Online Appendix Section C. It is worth noting that our aggregation technique differs from the above reference in that 
we aggregate the trades belonging to the same user occurring within the same second. Put differently, we assume that such actions 
belong to the same executed order, in compliance with the operating principle of the Mt. Gox filling mechanism.14 Order speed 
analyses on other cryptocurrency exchanges reveal that a one-second time scale is suitable for measuring order execution delays15; 
traditional financial markets show much shorter latencies (see, e.g., Budish et al. (2015); Hasbrouck and Saar (2013); Kirilenko and 
Lamacie (2015)).

Finally, a comment on research ethics and data privacy stands to reason. The internal ledger of Mt. Gox contains data that, in 
principle, can be linked to natural persons by matching it with other records. Moreover, the users appearing in this dataset had 
no expectation that their individual trades would become public. We therefore take the utmost care in ensuring that none of our 
analyses singles out users that have not been singled out in other work. Furthermore, user identifiers in our figures cannot be directly 
related to identifiers in the data source. Therefore, we believe that the harm caused by our study is minimal, whereas the benefits 
that we provide by shedding light on an important area of finance are very clear.

3. Identification and description of arbitrage activity

3.1. Detection of the arbitrage actions

By definition, triangular arbitrage opportunities in currency markets arise when the exchange rate implied by the ratio of two fiat 
currencies quoted against a third vehicle currency (in our context, bitcoin) diverges from the official exchange rate. Thus, an investor 

11 Comparisons refer to the data published by Bitcoincharts.com. In addition, as in Scaillet et al. (2020), we match our data with an aggregated dataset published 
by Mt. Gox.
12 https://bit .ly /2Iu77Rk.
13 This statement is based on personal communication. The authors have not read the Japanese files.
14 https://bit .ly /33YCxaG.
15 See https://bit .ly /3iRJBdu. Tests show that the time required to add limit orders and execute market orders are comparable, and that execution delays last on 
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average from 10 ms to 100/200 ms, with skewed tails, while there are a non-negligible number of trades whose latency approaches the second level.
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both the two other legs. Note also that a leg can form a single arbitrage action, and if there is more than a matching leg, the closest in time is chosen.

Fig. 2. Algorithm to identify the arbitrage actions. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

seeking to exploit such opportunities requires access to at least two currency markets quoted against the same third currency: Mt. 
Gox users could trade within the same platform in multiple fiat-to-bitcoin markets and were entitled to have only one personal 
account at a time.16 Bearing in mind that all the legs are labeled by individual identifiers, this setting is ideal to study triangular 
arbitrage at the micro (individual) level. We start by selecting only those investors who traded bitcoins against more than one fiat 
currency, which amounts to only 3,825, out of 71,808 users in our sample; nonetheless, around 1,600,000 legs in the leaked dataset 
are attributable to them. A subgroup of 307 investors exchanged bitcoins for more than two fiat currencies, being involved in around 
800,000 legs.

Next, we implement an algorithm to identify arbitrage actions. The underlying idea of the algorithm is illustrated in Fig. 2. 
Using the information in the leaked dataset, it is possible to detect a potential arbitrage action in the form of a pair of (buy, sell) 
legs executed in two separate trades, by the same investor, and using different currencies, such that the first leg closes the second 
leg. Textbook definitions posit that arbitrage is performed through simultaneous actions involving equivalent securities. Our data, 
however, highlight a mass of potentially triangular actions that are temporally retarded and/or executed with a marginal volume 
mismatch. We illustrate the distribution of these potentially triangular actions in Fig. 3 in the space (𝛿𝑇 , 𝛿𝑄), respectively the 
distance in time and volume between the two legs composing such action. While the distribution presents, as expected, a marked 
peak in the density in the proximity of the origin (i.e. 𝛿𝑇 = 0 s, 𝛿𝑄 = 0%), we note a small-scale probability mass around the 
origin.

To ensure that we do not discard relevant information, we account for the possibility of a marginally imperfect match and 
therefore set reasonably small boundaries for the maximum time delay, Δ𝑇 , and volume difference, Δ𝑄, between the pair of legs, 
that represent the two parameters of the algorithm17; likewise, to ensure that we are not including false positive actions, we provide 
alternative identification strategies varying both Δ𝑇 and Δ𝑄 (and especially including Δ𝑄 = 0%) and, furthermore, by restricting the 
sample to actions that are traded when a likely arbitrage opportunity occurs (i.e., when the official exchange rate exceeds a certain 
threshold). Reassuringly, all these robustness checks, which will be presented below, are consistent with each other and provide 
evidence that our conclusions do not depend on the choice of the specific values of the parameters Δ𝑇 and Δ𝑄.

We therefore explore the Mt. Gox log searching for pairs of buy and sell legs that move a nearly equivalent amount of bitcoin, 
executed (almost) simultaneously by the same user in two separate trades, and exchanged for different fiat currencies — hence, in 
different fiat-to-bitcoin currency markets. In our main analysis, we identify triangular arbitrage actions that are executed within a 
maximum delay of up to 300 seconds and with a maximum volume mismatch of 10% (that is, using the boundaries Δ𝑇 = 300𝑠 and 
Δ𝑄 = 10%). The resulting sample comprises 6,629 actions.

16 https://bit .ly /2Fu1Rfp and https://bit .ly /3j0EkAl.
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17 The parameters Δ𝑇 and Δ𝑄 and the action-specific variables 𝛿𝑇 and 𝛿𝑄 are defined in Table 1.

https://bit.ly/2Fu1Rfp
https://bit.ly/3j0EkAl
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Notes: each arbitrage action is characterized by a 𝛿𝑇 and a 𝛿𝑄, representing the distance in time and volume between the two legs composing such action. By 
construction, they are respectively smaller than Δ𝑇 = 300 s and Δ𝑄 = 10%. Darker shades indicate a higher number of actions (in logarithmic scale).

Fig. 3. Distribution of the arbitrage actions by 𝛿𝑇 and 𝛿𝑄, given Δ𝑇 and Δ𝑄.

3.2. Profitability of the arbitrage actions

Each arbitrage action, which is conducted on a specific fiat-to-fiat currency market, entails some profits (or losses) for the 
investor, depending on the spread between the exchange rate implied by the same action and the official rate. We then measure the 
profitability of an arbitrage action as follows:

𝑆𝑝𝑟𝑒𝑎𝑑 = 𝐼𝑚𝑝𝐸𝑅−𝑂𝑓𝑓𝐸𝑅

𝑂𝑓𝑓𝐸𝑅
⋅ 100,

where 𝑂𝑓𝑓𝐸𝑅 is the hourly official rate18 and 𝐼𝑚𝑝𝐸𝑅 is the implied one. To compare them, by construction we use the direct 
quotation with the currency of the buy leg acting as the (fixed) foreign currency. That is,

𝑂𝑓𝑓𝐸𝑅 = 𝐶𝑈𝑅𝐵𝑡𝑜𝐶𝑈𝑅𝑆,

where 𝐶𝑈𝑅𝐵 is the fiat currency used to trade bitcoins on the buy side, and 𝐶𝑈𝑅𝑆 on the sell side,19 and

𝐼𝑚𝑝𝐸𝑅 =
𝐹 𝑖𝑎𝑡𝑆

𝐵𝑇𝐶𝑆

⋅
𝐵𝑇𝐶𝐵

𝐹 𝑖𝑎𝑡𝐵
.

Notably, the leaked log includes information on the explicit transaction costs incurred by the Mt. Gox users (i.e., the fees associated 
with each leg of all trades).20 Although additional costs may (and are in fact likely to) exist,21 this feature of the dataset is especially 
important, as it allows us to account for the costs within the exchange that directly affect the profitability of the arbitrage activity. 
Thus, in the baseline investigation we adjust the actual profitability by incorporating the leg-specific fees in the prices paid to trade 
bitcoins, as described formally in Table 1, which provides a recap of the main variables introduced in this work. However, as a 
robustness check, we consider two additional ways to account for the explicit fees (i.e., in the first scenario we exclude them, in the 
other scenario we estimate the fees a user would expect to pay given the official Mt. Gox schedule), which are discussed in Online 
Appendix Section B.

18 Our choice of using the hour-level official exchange rate, instead of a more granular scale, relies on two considerations: First, we observe little variation in the 
main exchange rates at a lower level, which would have considerably undermined the statistical power of our analysis. Second, we allow an investor to complete 
a triangular arbitrage action up to 300 seconds. For consistency, we need to measure profits at a time interval that is sufficiently large to carry all the relevant 
information to the trader in taking his/her investment decision.
19 We use the hourly open prices of the official exchange rates published on https://www .histdata .com/. This dataset lacks information for a few minor currencies 

(CNY, THB, NOK, RUB). As a result, we could not calculate the associated profits for 35 arbitrage actions, which are excluded from the analyses where this data is 
required, e.g., user 5121X in Fig. 5d conducted 796 arbitrage actions, but we can calculate the profitability only for 782 of them.
20 Payable in bitcoins or in fiat currency, and sometimes partly in bitcoin and partly in fiat currency. Users could configure how to pay fees: see https://bit .ly /

34Wyb3h.
21 In addition to the Mt. Gox fees, investors potentially also incur implicit transaction costs and other explicit costs when closing the triangular arbitrage action on 
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external markets, e.g., trading fees or commissions, bid-ask spreads due to low liquidity, or concurrent price changes (Stoll, 2000).

https://www.histdata.com/
https://bit.ly/34Wyb3h
https://bit.ly/34Wyb3h
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Table 1

Definitions of the main variables.

Variable Description/formalization

Arbitrage action Action composed of two legs executed by the same user in different trades using different currencies. The time delay and volume 
difference cannot exceed a threshold [Δ𝑇 , Δ𝑄]. Each arbitrage action is obtained by merging a buy and sell leg.

𝐴𝑟𝑏𝑖𝑡𝑟𝑎𝑔𝑒𝐴𝑐𝑡𝑖𝑜𝑛= (𝐿𝑒𝑔𝐵𝑢𝑦,𝐿𝑒𝑔𝑆𝑒𝑙𝑙) (1)

Δ𝑇 Maximum time delay allowed (e.g., 300 seconds in the baseline analysis).
Δ𝑄 Maximum volume difference allowed (e.g., 10% in the baseline analysis).
𝛿𝑇 Time delay between 𝐿𝑒𝑔𝐵 and 𝐿𝑒𝑔𝑆 , expressed in seconds. By definition smaller or equal to Δ𝑇 :

𝛿𝑇 = |𝑇𝐵 − 𝑇𝑆 | ≤Δ𝑇 (2)

𝛿𝑄 Volume difference (Bitcoins traded) between 𝐿𝑒𝑔𝐵 and 𝐿𝑒𝑔𝑆 , expressed as a percentage. By definition smaller or equal to Δ𝑄:

𝛿𝑄 =
|𝑉 𝑜𝑙𝐵 − 𝑉 𝑜𝑙𝑆 |

(𝑉 𝑜𝑙𝐵 + 𝑉 𝑜𝑙𝑆 )∕2
⋅ 100 ≤Δ𝑄 (3)

Official exchange rate By convention, each arbitrage action is compared to the official exchange rate in the following way:

𝑂𝑓𝑓𝐸𝑅= 𝐶𝑈𝑅𝐵𝑡𝑜𝐶𝑈𝑅𝑆 (4)

that is, if the buy leg of an arbitrage action is performed in EUR and the Sell one is in USD, then we consider the official exchange 
rate EURtoUSD. If the Buy side is in USD, and the Sell one in EUR, then it is compared to the e.r. USDtoEUR.

|Δ𝑅| Hourly unsigned percentage variation of the official exchange:

|Δ𝑅| =
|𝑂𝑓𝑓𝐸𝑅𝑡1

−𝑂𝑓𝑓𝐸𝑅𝑡0
|

𝑂𝑓𝑓𝐸𝑅𝑡0

⋅ 100 (5)

Dyad Pair of currencies that defines the fiat-to-fiat currency market to which the arbitrage action belongs. E.g., the dyad (EUR,USD) refers 
to actions whose currencies are 𝐶𝑈𝑅𝐵 = EUR and 𝐶𝑈𝑅𝑆 = USD or viceversa (as they ‘refer’ to the same currency market).

Implied exchange rate The implied exchange rate is calculated by comparing the price of bitcoins in the two legs. The latter row includes fees.

𝐼𝑚𝑝𝐸𝑅 =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝐹 𝑖𝑎𝑡𝑆

𝐵𝑇𝐶𝑆
⋅ 𝐵𝑇𝐶𝐵

𝐹 𝑖𝑎𝑡𝐵
without fees

𝐹 𝑖𝑎𝑡𝑆−𝐹𝑒𝑒𝑓,𝑆

𝐵𝑇𝐶𝑆+𝐹𝑒𝑒𝑏,𝑆
⋅
𝐵𝑇𝐶𝐵+𝐹𝑒𝑒𝑏,𝐵

𝐹 𝑖𝑎𝑡𝐵−𝐹𝑒𝑒𝑓,𝐵
with fees

(6)

The pedices B and S refer to the buy and sell side; 𝑓 and 𝑏 indicate respectively if the term 𝐹𝑒𝑒 is denominated in fiat or in bitcoins.
Profit (Spread) Spread between the implied and the official rate divided by the official rate, as a percentage. By construction, profits arise when 

ImpER > OffER.

𝑆𝑝𝑟𝑒𝑎𝑑 = 𝐼𝑚𝑝𝐸𝑅−𝑂𝑓𝑓𝐸𝑅

𝑂𝑓𝑓𝐸𝑅
⋅ 100 (7)

Metaorder Metaorders are identified as sequences of at least 5 arbitrage actions executed by the same user, in the same market, and such that the 
time passed between each action is less than one minute. Note: we partly follow the methodology described in Donier and Bonart 
(2015), with some differences: the authors consider a larger time delta (one hour) between each action, and contrary to them we use 
an arbitrary parameter (N=5) to define the minimum length of a metaorder. While we do not provide the results here, we varied the 
two thresholds and noticed that the differences are negligible for our purposes.

Aggressive Arbitrage action composed by at least one aggressive leg (that is, a leg that initiated a market order).
Equiv. $ Value of a trade expressed in dollars. We use this variable to indicate the value of a trade since the bitcoin value is not stable in time.

The average arbitrage action is worthy of a profit which is 0.42% of the hourly official rate between the fiat currencies. The 
average amount of bitcoins traded are equivalent to 52 USD (see Panel A of Table 2 for summary statistics).

3.3. A preliminary inspection of the data

The structure of micro-data we collect allows us to uncover a number of patterns regarding the behavior and nature of the 
arbitrageurs. Notably, in disagreement with theory, we note that arbitrageurs are few — the set of 6,629 identified arbitrage actions 
is executed by a total of 440 users (roughly 0.6% of the users in our sample). Furthermore, the arbitrageurs’ behavior seems to 
indicate a heterogeneous pattern. First, a majority of 395 arbitrageurs explored the presence of opportunities on a single implied 
fiat-to-fiat currency market — i.e., they exchanged bitcoins for exactly two fiat currencies.22 Others (N = 45) traded in multiple 

22 All arbitrage actions involve two fiat currencies traded against bitcoins. Thus, arbitrage actions always refer to a specific fiat-to-fiat currency market. From now 
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on we will imply this concept.
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Notes: the plot on the left reports the actions executed by arbitrageurs that exploited a single market. Viceversa, the central plot refers to the arbitrageurs who operated 
on multiple markets. The y-axis reports the profitability of the actions (including fees), depicted as dots, and the x-axis shows their evolution and deployment in time. 
Note that a negligible number of values may exceed the threshold [−5%, 5%] on the y-axis. We do not show them (here and in the following plots) to focus on the 
area of interest. Finally, the right panel shows the cumulative probability of the Spread variable for the expert (blue) and non-expert users (red). The former first-order 
stochastically dominates the latter.

Fig. 4. Profitability of the arbitrage actions. Users grouped by the number of currency markets exploited for arbitrage.

fiat-to-fiat markets by exchanging bitcoins for at least three fiat currencies. Significant differences are seen when comparing the 
two groups: Fig. 4 reports the arbitrage activity of the users who exploited a single market — Panel (a) — and multiple markets 
— Panel (b). Each dot is an arbitrage action whose x-coordinate is the time of execution and whose y-coordinate is the associated 
percentage profit/loss. Actions above the gray line are profitable, while actions below the gray line are losses; the dashed line denotes 
the average profitability. The plots provide graphical evidence that the arbitrage actions executed by users in the latter group are 
on average more profitable and positive, while those in the former, which comprise traders who possess less expert knowledge, are 
on average negative. Even more importantly, Panel (c) shows that for any value of arbitrage profits the mass distribution for the 
second group (in blue) lies below that for the first group (in red). In other words, the former distribution first-order stochastically 
dominates the latter one. We therefore assume that this variable is a proxy of a user’s level of expertise: investors who exploited a 
single market are less expert, while those that exploited multiple markets are more expert. In the following paragraphs we provide 
additional empirical evidence to support this assumption.

Panels B and C of Table 2 respectively refer to users who exploited single and multiple markets and report additional relevant 
information specific to individual actions, such as the profitability with alternative measurements of the explicit transaction costs, 
the time delay, or the volume difference between the buy and sell sides. They show that the actions executed by users who exploited 
single markets are on average non-profitable, unless fees are excluded, while those conducted by users who exploited multiple 
markets are on average profitable. The expected fees overestimate the real fees paid for both groups, and the differences between 
the actual fees paid and the expected fees are larger for the “Multiple” group. Differences in time distribution appear too. The 
actions in that group are more precise (𝛿𝑇 and 𝛿𝑄 are on average closer to zero) and, interestingly, are smaller in terms of moved 
volumes, both considering the amount of bitcoins and fiat currency. To partially explain this unexpected result, we hypothesize that 
the conventional principal-agency relationship discussed by Shleifer and Vishny (1997) might not take place in this context. Indeed, 
we recall that the Bitcoin ecosystem was in its early stages at the time of our study, and large institutional investors did not engage 
in bitcoin trading (we will discuss the specific aspects of our context in Section 7).

Second, from Table 2, it also emerges that most of the arbitrage activity is conducted by the users who exploited multiple markets 
(N = 5,906 against N = 723). Indeed, the three most active users performed 32.8%, 12%, and 10.4% of the total actions, and all 
of them were active in multiple currency markets. Among those who executed arbitrage on a single-currency market, only 11 users 
performed 10 or more actions, with the most active user performing just 27 actions. Table 3 provides further information on the 
number of actions executed by the two groups.

Third, arbitrageurs that operate on multiple markets are also more acquainted with sophisticated algorithms, such as metaorders. 
We follow Donier and Bonart (2015) and define as metaorder a group of at least 5 arbitrage actions executed by the same user in the 
same market (and in the same “buy/sell direction”), so that the delay between each sequential action never exceeds 60 seconds.23

As illustrated in Table 4, only 13 arbitrageurs executed metaorders, which are typically composed of fewer than 10 actions — each 
delayed by around 20 seconds — and moved an average amount of bitcoin equivalent to a few hundred dollars. Only five users 
performed more than five metaorders, all of whom exploited multiple currency markets and executed more than 100 arbitrage 
actions.

23 Note that it is not our primary goal to precisely define metaorders; rather, we use this measure as an indicator to verify which users exploit these strategies more 
systematically. As a robustness check, we repeated the procedure by changing the minimum number of actions and the time delay, and found that the differences are 
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Table 2

Descriptive statistics of the arbitrage actions.

Panel A: all arbitrage actions (N = 6629)

Mean St.D. Min 25% 50% 75% Max

Profits, fees, % 0.42 1.26 −11.35 0.064 0.618 1.094 18.16
P., exp. fees, % 0.28 1.22 −7.46 −0.186 0.358 0.979 18.24
P., no fees, % 1.04 1.21 −6.40 0.472 1.108 1.693 19.60
Bitcoins 4.12 12.56 0.00 0.039 0.807 3.261 334.14
‘Equiv. $’ 52.54 169.63 0.00 0.359 7.400 41.424 4666.66
𝛿𝑇 (s) 29.04 59.09 0 0 1 24 300
𝛿𝑄 (%) 1.30 2.46 0.00 0.000 0.215 0.863 9.99

Panel B: actions of users who exploited single markets (N = 723)

Profits, fees, % −0.98 1.94 −11.35 −2.167 −0.857 0.107 18.16
P., exp. fees, % −0.93 1.90 −7.46 −2.151 −0.839 0.158 18.24
P., no fees, % 0.11 1.89 −6.40 −1.099 0.087 1.233 19.60
Bitcoins 7.89 21.16 0.00 0.253 2.000 7.472 288.35
‘Equiv. $’ 118.06 340.25 0.00 4.014 27.299 95.708 4666.66
𝛿𝑇 (s) 59.95 68.21 0 13 34 86 297
𝛿𝑄 (%) 1.04 1.77 0.00 0.461 0.602 0.602 9.82

Panel C: actions of users who exploited multiple markets (N = 5906)

Profits, fees, % 0.59 1.02 −7.40 0.205 0.687 1.126 10.13
P., exp. fees, % 0.42 1.02 −7.34 −0.007 0.444 1.017 10.15
P., no fees, % 1.16 1.04 −6.28 0.573 1.174 1.719 10.79
Bitcoins 3.66 10.97 0.00 0.030 0.606 2.995 334.14
‘Equiv. $’ 44.52 132.48 0.00 0.318 5.767 35.087 3862.71
𝛿𝑇 (s) 25.26 56.74 0 0 1 16 300
𝛿𝑄 (%) 1.34 2.53 0.00 0.000 0.000 0.928 9.99

Notes: actions identified at Δ𝑇 = 300 s and Δ𝑄 = 10%. Panel A describes the main features of all the 
arbitrage actions, while Panel B reports the statistics for the subset of actions (N = 723) executed by users 
that performed arbitrage in a single currency market. Panel C refers to those executed by investors active 
in multiple markets (N = 5,906).

Table 3

Statistics on the number of actions executed by the arbitrageurs.

Mean Std Min 25% 50% 75% 90% 95% Max

Group Single (N = 395) 1 2 1 1 1 2 2 5 27
Group Multiple (N = 45) 131 366 2 4 11 28 392 690 2175

Notes: we split the users in two groups, that is, those who performed arbitrage on a Single and on Multiple

markets. The statistics describe the mean, standard deviation, minimum, maximum, and percentiles of the 
number of actions performed by the two subgroups of users. Note that, by construction, the users in the group 
Multiple performed at least two arbitrage actions; thus, they are involved in at least four trades. Similarly, 
users in the group Single conducted at least two trades.

Table 4

Arbitrage actions executed via metaorders, descriptive statistics.

Percentage Number of metaorders Avg. length Avg. time delay Avg. bitcoins Avg. equiv. dollars

18X 54.07 91 12.92 13.33 52.54 369.38
1245X 80.00 2 6.00 23.83 7.43 97.73
1964X 44.10 11 7.82 26.73 35.81 178.17
2173X 18.52 1 5.00 14.00 40.00 234.55
2286X 35.71 1 5.00 26.25 5.00 297.55
2717X 3.45 1 5.00 47.00 0.59 6.45
2940X 91.30 1 21.00 17.75 2.36 25.80
3174X 63.28 40 10.60 29.22 30.81 346.89
4156X 29.00 7 8.29 28.46 9.97 70.54
4325X 22.73 1 5.00 29.50 55.00 1118.86
4901X 56.06 1 37.00 11.36 16.55 162.88
5121X 29.40 26 9.00 15.51 1.32 35.86
6688X 20.97 2 6.50 20.07 7.36 242.74

Notes: for each user (rows), we identify the sequences of actions with the characteristics of metaorders. Only the 13 users reported 
here performed metaorders. Percentage indicates the number of actions that are part of metaorders over the total number of arbitrage 
actions executed by the user; the second column represents the number of metaorders identified. The other columns describe average 
values on the metaorders executed by each user and respectively report the average number of actions that compose a metaorder, the 
average time delay between the actions in the same metaorder, the mean volume of a metaorder expressed in bitcoins and in dollars. 
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Notes: the panels report the two most active users in a single currency market (above) and in multiple markets (below). The y-axis indicates the profitability of the 
actions, depicted as dots, and the x-axis shows their evolution and deployment in time. The different colors correspond to actions conducted in different currency 
markets. We do not report the legend for the two plots below as the number of markets is too high (15 and 32). We hide the last unit of each user identifier to preserve 
the anonymity. A negligible number of values may exceed the threshold [−5%, 5%] on the y-axis.

Fig. 5. Profitability and trading patterns across arbitrageurs.

Table 5

Descriptive statistics of the aggressive arbitrage actions (N = 313).

Mean St.d. Min 25% 50% 75% Max

Arbitrage actions (N) 6.572 8.223 1.000 1.000 2.00 11.0 28.000
Spread (%) −1.074 1.425 −5.354 −2.106 −0.911 0.0 2.243
𝐶𝑢𝑟𝑟𝑒𝑛𝑐𝑖𝑒𝑠𝑑 (dummy) 0.278 0.449 0.000 0.000 0.00 1.0 1.000

Notes: out of N = 6,629 arbitrage actions, just N = 313 are aggressive actions, that is, arbitrage actions 
in which at least one of the two legs of the arbitrage action is an aggressive order. They are executed 
by users who performed few arbitrage actions (1𝑠𝑡 row: 6.57 on average, and maximum 28); on average 
they are not profitable (2𝑛𝑑 row), and they are executed primarily by users active only on single markets 
(3𝑟𝑑 row).

Fourth, arbitrageurs that operate on multiple markets are less likely to behave aggressively. In order book-based markets, traders 
that place bid and ask orders (i.e., limit orders) contribute to creating liquidity. Aggressive trades, though, demand liquidity from 
the order book by closing the limit orders. These are called market orders. Aggressive trades have a higher impact on costs: taking 
market orders usually incurs larger costs as liquidity is taken and not provided (Crépellière et al., 2023). We follow Scaillet et al. 
(2020) and define the aggressive bids and asks respectively as the buy or sell legs that initiate the market orders. Thus, an aggressive 
arbitrage action is an action with at least one aggressive leg. Table 5 shows that aggressive orders have been used only by users who 
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executed fewer than 30 actions and that, on average, they are not profitable.
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Notes: the graph refers to arbitrageurs active on multiple markets. For about 70% of them, only 0 to 14 days passed between the first arbitrage action and the first one 
in another currency market (1𝑠𝑡 bin).

Fig. 6. Days passed between the first arbitrage action of a user and the first one in a new market.

Notably, clustering the arbitrage actions executed by the same users unearths interesting insights and provides further evidence 
that such differences map into heterogeneous patterns of profitability of arbitrage. In Fig. 5, for instance, we illustrate graphically 
the trading pattern of the most active users in a single-currency market (Panels a and b) and in multiple markets (Panels c and d).24

The dots indicate the profits/losses (y-axis) across time (x-axis) on arbitrage actions. From this, it can be seen that the differences 
in profits are considerable. While users in (a) and (b) systematically incur losses when trading (as dots lie below the gray line), the 
others typically make profits by executing far more complex trading patterns. It is also worth highlighting important differences 
between their strategies (e.g., when comparing users 18X and 5121X). Trades performed by the first group are concentrated in just a 
few weeks (around July 2012); these actions appear to be consequential and related and are likely to be part of one or a sequence of 
metaorders. The trading pattern of the second group, meanwhile, is steady and spans across a longer period of time. In spite of these 
differences, though, both strategies are profitable, non-trivial, and likely executed via algorithmic trading.

4. Trade ability and profitability of arbitrage

In this paper we hypothesize that arbitrage profitability is a function of the user’s trade ability. As laid out in the previous section, 
our preferred indicator for trade ability is arbitrage on multiple markets (which we complement with three other variables — 
number of actions, execution of metaorders, and execution of aggressive orders).25 Indeed, it is relatively simple to conduct arbitrage 
exploring opportunities on a single-currency market. Evidence suggests that most of the users attempt to conduct arbitrage in this 
form (and non-systematically, i.e., in few and dispersed trials, which is on average non-profitable). Few users, however, explore 
more than one market in search of arbitrage opportunities. This activity is in fact far from trivial and requires skills and expertise: 
users active in multiple markets must set up complex — and likely automated — strategies in order to handle funds in different fiat 
currencies and to correctly incorporate the increasing amount of disposable information on price variations (the potential number 
of markets to observe grows non-linearly with the number of currencies used). The descriptive evidence provided above suggests 
also that users that engage in arbitrage through multiple markets obtain higher profits. This conclusion is potentially threatened 
by two facts, though. First, trade ability may not be fixed but, rather, may increase with trading. Second, the correlation between 
trade ability and profits may be affected by an omitted variables bias. In this section, we take these two aspects into account in our 
analysis.

4.1. Learning-by-doing and trade ability

The validity of our analysis relies on the assumption that arbitrage through trading on multiple markets is a sign of trade ability 
that a user holds before they begin operating on Mt. Gox. Thus, our analysis fails to capture the link between expertise and profits if, 
for example, a user conducts arbitrage on a single market for an extended period of time and only after a period of training the user 
starts to conduct arbitrage using other currencies. In Fig. 6, we show that such a scenario is unlikely to hold in our sample. The plot 
illustrates the distribution of arbitrageurs active in multiple markets across days passed between the first arbitrage action of a user 
and the first one in a new market. As can be seen, the distribution is concentrated in the first bin, which gathers arbitrageurs that 
operate on a new market within 14 days of its first arbitrage action. This bin collects approximately 70% of the arbitrageurs active 
in multiple markets, indicating that for the vast majority of arbitrageurs the time that passes between their first arbitrage action 
and the first one in a new currency market is short. While this is evidence that users’ expertise does not change considerably over 
time, we note that the learning process could have occurred in an earlier period (i.e., before September 2011). For this reason, we 
conduct additional robustness checks to provide evidence that the relationship between expertise and arbitrage profit is not driven 
by a learning-by-doing mechanism. The estimation results are presented in Online Appendix Section A and will be discussed later.

24 For completeness, we provide the trading patterns of other traders in Figure A.1.
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25 To further explore the relationship between these variables, we perform a principal component analysis (PCA), whose results are reported in Table A.1.
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4.2. Regression analysis

The difference in profits recorded by users that operate on a single market and users that operate on multiple markets is likely 
to be biased. For one thing, the latter group may invest a considerably larger amount of money on arbitrage than the former group 
of arbitrageurs. As the expected profit from trading is larger, one may expect that the level of effort is also higher. For another, 
profitability may stem from a specific feature of a market or on specific shocks that operate on a single time frame (e.g., external 
events affecting the volatile Bitcoin ecosystem, sharp price variations and high volatility, and also internal structural changes within 
Mt. Gox).

A more rigorous way to investigate such differences in profit from arbitrage actions between the two groups of users is to estimate 
the following regression:

Spread𝑖,𝑗,𝑝,𝑡 = 𝛽0 + 𝛽1TradeAbility𝑗 + 𝛽2 USD𝑖,𝑗,𝑝,𝑡 + 𝜃𝑝 +𝜙𝑡 + 𝜀𝑖,𝑗,𝑝,𝑡, (8)

where 𝑖 indicates arbitrage actions, 𝑗 users, 𝑝 the pair of currencies identifying a dyad, and 𝑡 hours. Residuals, 𝜀𝑖,𝑗,𝑝,𝑡, are clustered at 
the user level to account for redundant information across actions made by the same user.

The outcome, Spread𝑖,𝑗,𝑝,𝑡, is the profit that a user 𝑗 obtains by completing an arbitrage action 𝑖, using a dyad of currencies 
𝑝, in percentage of the official exchange rate observed in the hour 𝑡. As described in Section 3.2, by construction the arbitrage 
action is profitable when the implied exchange rate is larger than the official exchange rate. The explanatory variable of interest, 
TradeAbility𝑗 , is a variable conveying information on the expertise of the user 𝑗 who conducted the action 𝑖. The coefficient of 
interest is thus 𝛽1, the conditional difference in profits between expert and non-expert users (whose profits are captured by the 
constant, 𝛽0).

Eq. (8) also controls for the volume of the trades, expressed in dollars (and divided by 10,000). This variable is preferred to the 
volume of bitcoins traded because the latter is subject to high price volatility in time. To construct this variable, prices of the actions 
not in USD are converted to enable comparisons across currency markets. Most importantly, we include a set of currency pair (dyad) 
fixed effects, 𝜃𝑝, which allow us to compare arbitrage actions operated using the same couple of currencies. We also introduce hourly 
time fixed effects, 𝜙𝑡. As we have explained in Section 2, Mt. Gox operated at the outset of the Bitcoin uptake, was the first exchange 
platform with a significant relevance, and it was hit by several shocks. Time fixed effects allow us to absorb any potential shocks that 
occurred on the market. In addition, by comparing arbitrage actions conducted in the very same hour, we likely capture contingent 
conditions of the market strictly related to risk, such as liquidity, volatility, and market depth, that otherwise would be difficult to 
capture given the “two-leg” (and “two-currency”) structure of the arbitrage actions.26

In Table 6 we present our estimation results where trade ability is proxied by the dummy variable 𝐷(𝐶𝑢𝑟𝑟𝑒𝑛𝑐𝑖𝑒𝑠), equal to 0 if the 
user conducted arbitrage in a single-currency market, and 1 if arbitrage is conducted in multiple markets. Overall, these estimations 
are statistically significant and corroborate our hypothesis that sophisticated arbitrageurs trade on average at a positive premium, 
relative to less sophisticated users. Namely, column (1) reports the estimate of the correlation between profitability and expertise; 
in columns (2) and (3) we add separately time and dyad fixed effects; in column (4) we add both fixed effects in the regression. 
Some observations are omitted when including the fixed effects, either because in some hours one single trade was executed, or 
because a trade is the only one executed in a minor market. The effect is economically relevant: focusing on column (4), we find that 
the average sophisticated user traded at a premium of 1.292%, relative to the unsophisticated arbitrageurs — a difference which is 
slightly above a standard deviation in profitability.

In column (5) we test the robustness of this exercise and exclude users who perform just one arbitrage action. This group of 
users might comprise investors who engaged in arbitrage believing they would easily make risk-free profits, only to suddenly realize 
they could not, meaning they only acted once. Arguably, their inclusion might inflate the difference in profits we estimate between 
experts and non-experts. While this is partially true, as the estimated coefficient in column (5) is slightly smaller, the difference is 
still positive and statistically significant at the level of 1%. Further robustness checks are presented in Online Appendix. Table A.2 
replicates column (4) for different selected parameters Δ𝑄 and Δ𝑇 , whilst Table A.3 does the same for different values of Δ𝑄, holding 
fixed Δ𝑇 to 300 seconds. Moreover, Table A.4 repeats it when we identify a triangular arbitrage activity during a clear temporary 
opportunity (i.e., when the official exchange rate deviates above a given threshold). Reassuringly, all these checks demonstrate that 
the relationship between expertise and arbitrage profit does not depend on the way we identify the triangular arbitrage actions.27

In addition, we show that this relationship does not depend on the specific proxy of users’ expertise. With this purpose in mind, 
Table 7 replicates column (4) of Table 6 (which is reported in column (1) for easiness of comparison) using for expertise the following 
user-specific measures: the (logarithm of) the number of currencies used (column 2); the (logarithmic) number of arbitrage actions 
executed by the user (column 3); the dummy variable 𝐷(𝑀𝑒𝑡𝑎𝑜𝑟𝑑𝑒𝑟), which is equal to 1 for all the actions conducted by users that 
executed at least one metaorder (column 4); the dummy variable 𝐷(𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒) that indicates whether the user executed at least one 
aggressive action (column 5); finally, in column 6 of Table 7, we use the scores of the first component obtained with the principal 

26 We selected this time scale as a result of a trade-off between the granularity and feasibility of the analyses (a smaller scale would be too demanding for an 
FE-based analysis).
27 We note that when we set Δ𝑄 = 0%, the sample drops by around half (column (3) of Table A.3). This might explain why the estimated coefficient, while still 
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Table 6

Relationship between trade ability and profits.

Dep. var.: Spread (with fees)

Specification: Baseline 𝑁𝑎𝑐𝑡 > 1

(1) (2) (3) (4) (5)

D(Currencies) 1.6180∗∗∗ 1.5791∗∗∗ 1.2421∗∗∗ 1.2917∗∗∗ 0.9832∗∗∗

(0.1900) (0.1943) (0.1584) (0.1659) (0.2319)

Equiv. $ 3.4652∗∗ 2.6151∗ 0.6556 0.1912 0.4108
(1.7532) (1.5862) (1.2465) (1.1280) (1.1327)

Constant −1.0420∗∗∗ −0.9985∗∗∗ −0.6141∗∗∗ −0.6506∗∗∗ −0.3558
(0.1593) (0.1775) (0.1500) (0.1604) (0.2253)

Time FE N N hour hour hour
Dyad FE N Y N Y Y
N 6594 6582 5307 5284 5176
R-squared 0.16 0.20 0.68 0.69 0.69

Notes: the Table reports OLS estimates of the relationship between the dependent variable Spread, 
that captures the profitability of an arbitrage action, and the variable D(Currencies), which is a 
proxy of the user trade ability, equal to 1 if the user conducted arbitrage in multiple markets, and 
0 otherwise. We consider four different specifications of the model: (1) without including fixed 
effects, (2) with dyad fixed effects, (3) with time fixed effects, (4) with both. Column (5) is an 
additional specification excluding all the users that conducted only one arbitrage action (𝑁𝑎𝑐𝑡 > 1). 
All columns include an additional control for the amount of volume traded, expressed in USD (and 
divided by 10,000). We report only the overall 𝑅2. Errors are clustered at the user-level to account 
for intra-class correlation. Standard errors are reported in parentheses. ∗ 𝑝 < 0.1, ∗∗ 𝑝 < 0.05, ∗∗∗
𝑝 < 0.01.

Table 7

Relationship between trade ability and profits, alternative proxies.

Dep. var.: Spread (with fees)

(1) (2) (3) (4) (5) (6)

D(Currencies) 1.2917∗∗∗

(0.1659)
Log(Currencies) 0.9326∗∗

(0.4439)
Log(Actions) 0.3165∗∗∗

(0.0627)
D(Metaorder) 0.2877

(0.1914)
D(Aggressive) −1.5280∗∗∗

(0.1796)
PC1 0.2242∗∗∗

(0.0466)
Equiv. $ 0.1912 0.1525 1.2060 0.0733 0.3375 0.8175

(1.1280) (1.2621) (1.3191) (1.3384) (1.1244) (1.3500)
Constant −0.6506∗∗∗ −1.0453 −1.4603∗∗∗ 0.3359∗∗ 0.6113∗∗∗ −1.0717∗∗∗

(0.1604) (0.7807) (0.4143) (0.1614) (0.0424) (0.3593)

Time FE hour hour hour hour hour hour
Dyad FE Y Y Y Y Y Y
N 5284 5284 5284 5284 5284 5284
R-squared 0.69 0.69 0.72 0.67 0.69 0.70

Notes: the Table reports OLS estimates of the relationship between the dependent variable Spread and alternative 
proxies of the user trade ability: (1) D(Currencies) provides a baseline reference by repeating column (4) of Table 6; 
(2) Log(Currencies) is the logarithm of the number of currency markets exploited by the user; (3) Log(Actions) is the 
logarithm of the number of arbitrage actions executed by the user; (4) and (5), D(Metaorder) and D(Aggressive), are 
respectively dummy variables that indicate whether the user conducted metaorders or aggressive actions. (6) PC1 
is the score of each variable obtained by performing a PC analysis as explained in Table A.1. All columns include 
time and dyad fixed effects, as well as an additional control for the amount of volume traded, expressed in USD (and 
divided by 10,000). We report only the overall 𝑅2 . Errors are clustered at the user-level to account for intra-class 
correlation. Standard errors are reported in parentheses. ∗ 𝑝 < 0.1, ∗∗ 𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01.

component analysis. Overall, these additional results are consistent with a positive relationship between expertise and arbitrage 
profits.28
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28 Furthermore, in Online Appendix we show that these additional estimation results are, to a large extent, not sensitive to varying the boundaries for the identifi-
cation of the triangular arbitrage action (i.e., Δ𝑄 and Δ𝑇 ). See Tables A.5 and A.6. Similar results are found if we consider only arbitrage actions executed when the 
exchange rate exceeds a certain threshold.
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Finally, we show that this relationship is not likely to be driven by a “learning-by-doing” process. For example, excluding from 
the sample the users who start investing using a new dyad of currencies only after a relatively long period (of fourteen days) yields 
estimations that are consistent with those presented in Table 7, regardless of the measures of expertise we use (see Online Appendix 
Table A.12). We obtain similar conclusions if we further exclude the users who were active on Mt. Gox before September 2011 (see 
Table A.14).

5. Trade ability and responsiveness in arbitrage

The evidence documented thus far suggests that expert users are more likely to make profits on arbitrage relative to non-experts. 
Why is this the case? In this section we show that the differences in profits stem from a better ability among the former to respond 
quickly to fluctuations, which makes arbitrage more (or less) profitable. Indeed, a typical profitable situation in financial markets 
arises when unexpected deviations occur in fundamental values. Due to structural frictions, adjustments across markets are not 
automatic, giving rise to opportunities to conduct arbitrage operations. We exploit this fact in our analysis and reconstruct, from the 
hourly evolution of the official exchange rate in a market, the unsigned percent variation in the exchange rate with respect to the 
previous hour (see Table 1 for the formal definition). Our variable |Δ𝑅|𝑝,𝑡 takes a higher value when the official exchange rate, on a 
pair of currencies 𝑝, observed in the hour 𝑡, changes more relative to the previous hour. It is therefore worth remarking that |Δ𝑅|𝑝,𝑡
varies both across currency markets and time but not within.

The advantage in using this strategy is twofold. First, the exploitation of these temporary opportunities is typically not obvious but, 
rather, requires expertise and/or the execution of automated orders. Hence, when variation in the exchange rate is more prominent 
than in typical times it is likely that expert users take advantage of this to make profits. Second, as the users who trade are small 
(as we will discuss later, there are likely no institutional investors operating on Mt. Gox), their actions are unlikely to affect such 
deviations. It is therefore reasonable to assume that users are exchange rate takers and that deviations in the official exchange rate 
are exogenous.

We employ this variable |Δ𝑅|𝑝,𝑡 on the right-hand side of our regression and interact it with trade ability to test whether profits 
obtained by expert arbitrageurs are larger when fluctuations in the exchange rates are larger. This is written as follows:

Spread𝑖,𝑗,𝑝,𝑡 = 𝛽1(TradeAbility𝑗 × |Δ𝑅|𝑝,𝑡) + 𝛽2|Δ𝑅|𝑝,𝑡 + 𝛽3 USD𝑖,𝑗,𝑝,𝑡 + 𝛼𝑗 + 𝜃𝑝 + 𝜙𝑡 + 𝜀𝑖,𝑗,𝑝,𝑡. (9)

As one can see, our main variable of interest in Eq. (9) is now time variant. This is important as it allows us to employ a set of 
user fixed effects, 𝛼𝑗 , which permit us to absorb any sort of heterogeneity that one may expect across users. This includes education, 
financial literacy, and other unobservables that are likely to correlate with our measure of trade ability. The inclusion of 𝛼𝑗 also 
implies that our chief variation in the identification of 𝛽1 is the variation across hours within a user. 𝛽1 can now be interpreted as the 
difference in profit between expert and non-expert users, following a 1% increase in (the absolute value of the) rate of change of the 
official exchange rate. 𝛽2 captures the effect of a 1% increase in (the absolute value of the) rate of change of the official exchange 
rate on the arbitrage profits made by non-expert users. These effects are additionally identified by including hour time fixed effects, 
𝜙𝑡, and currency dyad fixed effects, 𝜃𝑝, and by controlling for the USD equivalent amount of bitcoin traded, USD𝑖,𝑗,𝑝,𝑡. Standard errors 
are clustered at the user-level as above.

Table 8 reports the estimates of the main coefficients of interest using different measures of trade ability. In the first two columns, 
we use the variable 𝐷(𝐶𝑢𝑟𝑟𝑒𝑛𝑐𝑖𝑒𝑠). We then repeat the analyses by using the alternative proxies of expertise that have been used 
above. Overall, we find that an increase in the (absolute value of the) rate of change of the official exchange rate generates a higher 
profit for arbitrage made by expert users, even when user fixed effects are included (columns 2, 4, 6, 8, 10, 12). However, we 
note that 𝛽1 is not statistically significant in columns (2) and (6), perhaps due to the fact that the inclusion of user fixed effects is 
particularly demanding — indeed, as we showed in Table 3, many of the users active in a single market executed just one action. 
This leads to the exclusion of a significant number of observations from this group, making it more difficult to obtain stable and 
statistically significant results. Finally, the result for column (10) — relative to the aggressiveness of the actions — goes against our 
expectations, but the coefficient is statistically imprecise. Overall, these findings indicate that sophisticated investors are more able 
to take into account and exploit in their favor quick changes in the official exchange rate than are non-expert users, and that this 
ability leads to higher profits. For example, looking at the effect reported in column (12) of Table 8, we estimate that an arbitrageur 
with a trade ability score that is a standard deviation above the mean obtained a profit of 1.347% following a 1% increase in the 
rate of change of the official exchange rate (i.e., 0.476 ×2.83); note that this premium accounts for more than a standard deviation of 
the dependent variable. Our interpretation, indeed, is that the expert arbitrageurs are more able with respect to the others to react 
to price deviations, and thus their activity is also more profitable.

Varying the way in which we identify a triangular arbitrage action yields estimate results that are qualitatively comparable. When 
we use a more conservative algorithm we obtain similar, if not more statistically robust, estimates (for example, Table A.7 replicates 
our analysis setting Δ𝑄 = 1% and Δ𝑇 = 30 s, while Table A.8 does it with Δ𝑄 = 0% and Δ𝑇 = 300 s).29 Conversely (and in line with 

29 We note that when we use 𝐷(𝐶𝑢𝑟𝑟𝑒𝑛𝑐𝑖𝑒𝑠) as the proxy of expertise and set a boundary for the volume of the triangular arbitrage that is smaller or equal to 1% 
(i.e., Δ𝑄 ≤ 1%) the sample shrinks by more than one quarter and the estimated coefficient 𝛽2 drops. This is potentially explained by the fact that we might have few 
traders that execute arbitrage just using a couple of fiat currencies (in a given hour) when we identify these actions perfectly (i.e., in a tight neighborhood of Δ𝑄). 
We also point out that when we use continuous variables to measure expertise, like the principal component, we still have sufficient variation in trade sophistication 
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Table 8

Responsiveness to official rate variations.

Dep. var.: Spread (with fees)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

|Δ𝑅|×D(Currencies) 6.905∗∗∗ 1.442
(1.139) (5.314)

|Δ𝑅|×Log(Currencies) 3.213∗∗ 1.703∗∗

(1.528) (0.723)
|Δ𝑅|×Log(Actions) 1.427∗∗∗ 0.150

(0.202) (0.409)
|Δ𝑅|×D(Metaorder) 3.693∗∗ 2.228∗∗∗

(1.600) (0.821)
|Δ𝑅|×D(Aggressive) −6.786∗∗∗ 3.593

(1.595) (3.461)
|Δ𝑅|×PC1 1.048∗∗∗ 0.476∗∗

(0.159) (0.211)
|Δ𝑅| −5.441∗∗∗ −0.742 −4.744∗∗ −2.426 −7.060∗∗∗ −0.258 −2.341∗ −1.045 0.168 0.617 −5.791∗∗∗ −2.810∗

(1.196) (5.279) (2.125) (1.590) (1.320) (2.423) (1.241) (0.854) (0.526) (0.956) (1.187) (1.546)
Equiv. $ 1.150 −0.732 0.732 −0.861 2.128 −0.751 0.766 −0.804 0.824 −0.741 2.225 −0.812

(1.700) (0.833) (1.762) (0.878) (1.815) (0.827) (1.647) (0.871) (1.896) (0.838) (1.800) (0.866)

User FE N Y N Y N Y N Y N Y N Y
Time FE N hour N hour N hour N hour N hour N hour
Dyad FE N Y N Y N Y N Y N Y N Y
N 6594 5142 6594 5142 6594 5142 6594 5142 6594 5142 6594 5142
R−squared 0.05 0.75 0.02 0.75 0.07 0.75 0.02 0.75 0.02 0.75 0.06 0.75

Notes: the Table describes the responsiveness to variations of the official exchange rate for the main proxies of trade ability, and their effect on profits. It reports OLS 
estimates for 12 different specifications, each including an interaction term between the official rate variation and a proxy of trade ability: D(Currencies) in (1-2), 
Log(Currencies) in (3-4), Log(Actions) in (5-6), D(Metaorder) in (7-8), D(Aggressive) in (9-10), PC1 in (11-12). |Δ𝑅| is unsigned, i.e. it is in absolute values. The first 
column of each alternative proxy is without fixed effects, while the second includes time, dyad and user fixed effects. All columns include a control for the amount of 
volume traded, expressed in USD (and divided by 10,000), and for the official rate variation. We report only the overall 𝑅2 . Errors are clustered at the user-level to 
account for intra-class correlation. Standard errors are reported in parentheses. ∗ 𝑝 < 0.1, ∗∗ 𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01.

our expectations), estimates become more imprecise when we use a more inclusive algorithm (i.e., with Δ𝑄 = 20% and Δ𝑇 = 600𝑠) 
that likely adds noise in the identification of arbitrage trades (Table A.9). Reassuringly, our main conclusions also hold when we 
further restrict the identification along other relevant dimensions. For example, by restricting a triangular arbitrage action to those 
executed in an hour in which the official exchange rate fluctuates prominently (i.e., |Δ𝑅| > 𝑟, with 𝑟 = {0.01%, 0.05%, 0.1%}), we still 
obtain a positive and statistically significant premium for the expert users that (as expected) is larger the more we zoom in on more 
profitable timeframes (Table A.10).30

Finally, we turn to the possible alternative story of users learning how to perform arbitrage by trading. To be sure that this 
channel does not explain our findings, in Online Appendix we present a battery of robustness checks. We first replicate Table 8 with 
user fixed effects by removing from the sample the users who search for new arbitrage opportunities on new currency markets after 
a relatively large period (Table A.13); we then remove the users who operated on Mt. Gox before September 2011 (Table A.15). 
In both exercises, we find estimates that are comparable to our baseline analysis. Even more importantly, we show that our results 
hold even when relaxing the assumption that expertise is fixed in a user. In Table A.16, for example, we include user-by-month fixed 
effects in place of user fixed effects. This means that we identify the effect of responsiveness to arbitrage opportunity on arbitrage 
profits by exploiting variation across the trades executed by a user in a given month. To do this, we assume that within a given month

the user’s expertise is fixed. Reassuringly, this exercise also hints at a relationship between expertise and arbitrage profit that is not 
explained by alternative mechanisms, like the “learning-by-doing” process.

6. Why is non-expert users’ arbitrage unprofitable?

Our analysis indicates that expert users obtain on average a positive profit from arbitraging. Looking closer at the regression 
tables, we also note that, throughout all the specifications we test, the constant term — 𝛽0 — in the regression Eq. (8) is either 
negatively estimated or not statistically significant. This indicates that non-expert users’ arbitrage is on average unprofitable. In this 
section, we try to shed light on the reasons for this apparently puzzling finding.

Table 8 suggests that, unlike the expert users, non-sophisticated arbitrageurs have a limited ability to exploit quick and temporary 
deviations in the exchange rates. What is more, they seem to make mistakes when prices fluctuate considerably (we actually estimate 
a negative 𝛽2, not statistically significant in some columns). This is likely because they do not incorporate the relevant information in 
their investment strategies (neither using APIs nor automated trading algorithms) and make mistakes in choosing when conducting 
the arbitrage actions: to reiterate, our evidence underlines the importance of the timing of execution at the micro scale, which in 

30 Our results do not change if we further restrict arbitrage actions to those with Δ𝑄 = 0% in addition to |Δ𝑅| > 𝑟. See Table A.11, which replicates the analysis 
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conducted in Table A.10.
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Notes: the plots show the arbitrage activity in two different time windows. Each action is reported twice, once including and once excluding the transaction costs (the 
former is slightly transparent, in order to distinguish them). The y-axis reports the profits/losses, and the x-axis the date of execution. In both cases the non expert 
users (in red) conduct less profitable activity, and once the fees are included their actions yield losses.

Fig. 7. The ‘monetary illusion’ effect.

turn determines a crucial difference between a profitable and a non-profitable action. Further inspections provide limited evidence 
that losses are moderately higher when arbitraging with a larger amount of USD dollars; instead, we do not find evidence that a 
retarded action (i.e., a large Δ𝑇 ) or a large mismatch in the trade’s volume (i.e., a large Δ𝑄) explain why this group of users obtain 
losses from arbitraging (see Online Appendix Table A.17).

Our data also suggest a potential explanation that is based on the transaction costs users have to pay to the exchange. In Online 
Appendix Table B.4, for example, we repeat this analysis by computing the spreads with alternative measures of the transaction 
costs, with the results indicating that the constant term is non-negative only when the transaction costs are not taken into account. 
It is therefore possible that the non-sophisticated users do not account correctly for the costs of conducting the arbitrage strategy 
in a mechanism akin to the one originating the monetary illusion phenomenon (Shafir et al., 1997) and thus incur unprofitable 
activity. Fig. 7 provides an example for two different illustrative time windows (27 October 2012 and 24 March 2013), which is 
consistent with this interpretation: each action is reported twice, once without the transaction costs (and slightly transparent) and 
once including the fees paid. Red dots represent the actions executed by investors who engaged in arbitrage in a single market, while 
the blue dots denote the actions executed by expert investors active in multiple markets. The x-axis is the time of execution of the 
action, the y-axis is the profit/loss. All these arbitrage actions are affected by the transaction costs, which reduce the yielded profits. 
However, in the case of the non-expert users, the actions are in general less profitable and even unprofitable once the transaction 
costs are included, both when they are similar across users (Panel 7a) and when they vary across them (Panel 7b).

7. Interpretation in temporal and market context

Before presenting our conclusions, we discuss how our results might be interpreted if applied to other temporal and market 
contexts. To this end, we begin by noting that the body of previous literature that applies financial econometrics to time series 
data from cryptocurrency exchanges is vast and not easy to navigate.31 Most studies use relatively short and often non-overlapping 
samples, which makes it difficult to derive general conclusions regarding arbitrage conducted in cryptocurrency markets. This is 
stylized in Fig. 8 where we report a selection of prior works on arbitrage using bitcoins (in gray bands) and on triangular arbitrage in 
particular (in black bands). The temporal sample these works investigate is represented by the x-axis. Focusing on the latter group, 
one can see that some studies (e.g., Smith, 2016; Dong and Dong, 2015) have analyzed the rising period of Bitcoins (2011–2013); 
the majority of works we find in the literature analyzed arbitrage during the years 2014–2018 (e.g. Hirano et al., 2018; Pieters and 
Vivanco, 2015; Makarov and Schoar, 2020; Nan and Kaizoji, 2019; Reynolds et al., 2021; Pichl and Kaizoji, 2017), while the recent 
years have arguably been understudied.

In the y-axis of Fig. 8, we draw the Bitcoin price in USD on a logarithmic scale to better account for differences across epochs. 
By doing this, it becomes easy to spot even graphically multiple structural breaks in the time series. The value of the Bitcoins has 
increased rapidly over the USD — by 5 orders of magnitude in just 10 years. This has changed the structure of the cryptocurrency 
markets, including the market size and the composition of traders as well as the probability of getting temporary arbitrage opportu-
nities. The available studies trace some general trends that help us to understand in which directions these markets have changed. On 
the one hand, trade volumes have significantly increased over the years and so too have the number of websites and cryptocurrency 

31 E.g., Glaser et al. (2014); Garcia et al. (2014); Brandvold et al. (2015); Yermack (2015); Cheung et al. (2015); Ciaian et al. (2016); Athey et al. (2016); Bouri et 
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Notes: bitcoin price in USD on log scale. Black shaded works focus on triangular arbitrage. The gray ones study other forms of arbitrage within the Bitcoin ecosystem.

Fig. 8. Related work on arbitrage in temporal and market context (links for bibliography: Badev and Chen, 2014; Bistarelli et al., 2019; Hattori and Ishida, 2021; 
Hautsch et al., 2018; Kroeger and Sarkar, 2017; Krückeberg and Scholz, 2020; Lee et al., 2020; Pieters and Vivanco, 2017; Shynkevich, 2020).

platforms (e.g., Borri and Shakhnov, 2022). On the other hand, arbitrage opportunities have declined (Crépellière et al., 2023), 
despite volatility in the Bitcoin price not falling (e.g., Bourghelle et al., 2022).

Our findings are drawn from the analysis of a nascent cryptocurrency market (the orange band in Fig. 8 draws our sample period). 
In light of these changes, one may wonder how easily generalizable our conclusions are and how they might apply to a more mature 
market context like the current cryptocurrency market. We can see two directions of bias in our estimates (if compared to a current, 
changed world). For one thing, given that trade volumes and exchanges have increased, one should expect to observe many more 
investors trading Bitcoins, potentially, without any specific financial skills. One should therefore expect the share of expert users to 
be lower than the share we observe in our context. Moreover, since arbitrage opportunities have declined over recent years, one 
should expect expert investors to have become more sophisticated and responsive. In other words, one should expect there to be 
fewer, yet more sophisticated, expert arbitragers in today’s market. On top of that, we highlight that during the earlier years of 
the cryptocurrency market, traders investing in bitcoin were self-selected traders with the minimum level of sophistication required 
to figure out how cryptocurrencies worked. This is at odds with the current context, in which we observe a population of Bitcoin 
investors who possess a good general knowledge of what cryptocurrencies are and how they work. This means that one should expect 
non-expert users today to be less sophisticated than in the context we study. These two facts suggest that our estimates might be 
downward biased.

For another one, the rapid increase in the number of websites and cryptocurrency platforms now provides more information to 
traders. Investors’ searching costs in detecting arbitrage opportunities are therefore expected to be lower today than in our context — 
a change that could make expertise today a less important feature in conducting arbitrage (which suggests that our estimates might 
be upward biased). In different contexts, one effect may dominate the other. Understanding which one of the two prevails can help 
us to understand the magnitude of the impact of expertise on arbitrage profits.

8. Concluding remarks

In this paper we use trader-specific information from the leaked dataset of a Bitcoin trading platform, Mt. Gox, to identify the 
triangular arbitrage activity and to investigate whether the arbitrageurs are many small traders or a few sophisticated investors. The 
conventional economic interpretation of theoretical arbitrage would foresee, in the presence of risk, the intervention of many small 
traders with homogeneous expectations, not subject to capital constraints, and risk-neutral towards a sufficiently small exposure 
on the market. Anecdotal evidence indicates that arbitrageurs are few, sophisticated, and specialized traders. Our analysis provides 
empirical evidence to support this statement. We find that sophisticated arbitrageurs make systematic profits from these triangular 
actions and that the distribution of their profits first-order stochastically dominates that achieved by the non-expert arbitrageurs. 
They do so by reacting more effectively to exogenous shocks, such as temporary movements in the official exchange rate. We show 
that our conclusions are not sensitive to a number of robustness checks, such as alternative identification of a triangular arbitrage 
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While our findings are drawn from the analysis of a singular cryptocurrency market, Mt. Gox, there are elements that suggest 
that our results are also valid in traditional markets or similar contexts. For instance, the arbitrage activity in Mt. Gox was likely 
conducted by individual traders and not by specialized professionals who operate on someone else’s funds (as in Shleifer and Vishny 
(1997)). Despite this, our data document considerable variation in the level of expertise and a premium (in terms of profits) in favor 
of the most sophisticated users. Moreover, recent findings based on the Ethereum ecosystem confirm that expert users’ actions are 
more profitable because they are conducted using sophisticated methods like private smart contracts that require deep knowledge of 
the working ecosystem (Wang et al., 2022). In this paper, we discuss several contextual factors that might help the reader to interpret 
how our conclusions can apply to a more mature cryptocurrency market.

Some limitations to our work stand out. Firstly, our data do not cover the user-specific characteristics of the arbitrageurs, which 
prevents us from conducting a more general analysis linking demographic features to arbitrage. Moreover, we do not know whether 
the users we observe participate in other trading activities, including on other markets. Triangular arbitrage aligns prices in one 
market, whereas an essential function of arbitrage is its function of “information carrier” across markets. While the evidence might 
be stronger for triangular arbitrage within the same market, our results may provide a broader picture if complemented by studies 
investigating the behavior of arbitrageurs conducting other arbitrage strategies that are either more complex or executed across 
multiple markets.
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