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Abstract

Lactobacillus crispatus is a member of the vaginal and gastrointestinal human microbiota. Here we determined the complete 
genome sequence of the probiotic strain M247 combining Nanopore and Illumina technologies. The M247 genome is organ-
ized in one circular chromosome of 2 336 109 bp, with a GC content of 37.04 % and 2303 ORFs, of which 1962 could be anno-
tated. Analysis of the M247 mobilome, which accounts for 14 % of the whole genome, revealed the presence of: (i) Tn7088, a 
novel 14 105 bp long integrative and mobilizable element (IME) containing 16 ORFs; (ii) ΦM247, a novel 42 510 bp long sipho-
virus prophage containing 52 ORFs; (iii) three clustered regularly interspaced short palindromic repeats (CRISPRs); and (iv) 
226 insertion sequences (ISs) belonging to 14 different families. Tn7088 has a modular organization including a mobilization 
module encoding FtsK homologous proteins and a relaxase, an integration/excision module coding for an integrase and an 
excisionase, and an adaptation module coding for a class I bacteriocin and homologous to the listeriolysin S (lls) locus of Lis-
teria monocytogenes. Genome- wide homology search analysis showed the presence of Tn7088- like elements in 12 out of 23  
L. crispatus complete public genomes. Mobilization and integration/excision modules are essentially conserved, while the adap-
tation module is variable since it is the target site for the integration of different ISs. Prophage ΦM247 contains genes for phage 
structural proteins, DNA replication and packaging, lysogenic and lytic cycles. ΦM247- like prophages are present in seven  
L. crispatus complete genomes, with sequence variability mainly due to the integration of ISs. PCR and sequencing showed 
that the Tn7088 IME excises from the M247 chromosome producing a circular form at a concentration of 4.32×10−5 copies per 
chromosome, and reconstitution of the Tn7088 chromosomal target site occurred at 6.65×10−4 copies per chromosome. The 
ΦM247 prophage produces an excised form and a reconstituted target site at a level of 3.90×10−5 and 2.48×10−5 copies per 
chromosome, respectively. This study identified two novel genetic elements in L. crispatus. Tn7088 represents the first example 
of an IME carrying a biosynthetic gene cluster for a class I bacteriocin in L. crispatus.

DATA SummARy
The complete genome sequence of Lactobacillus crispatus M247 is available under GenBank accession no. CP088015, whereas 
Nanopore and Illumina sequencing reads are available under Sequence Read Archive (SRA) accession no. SRR17479173 and 
SRR17479172, respectively.
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InTRoDuCTIon
Lactobacillus crispatus is a member of the vaginal and gastrointestinal human microbiota. In healthy women, it is the most 
commonly isolated species among the vaginal lactobacilli and its presence correlates with a reduced risk of preterm delivery, 
sexually transmitted infections and bacterial vaginosis [1, 2]. The ability of L. crispatus to colonize the vagina following oral or 
local administration has also been reported [3, 4]. Exopolysaccharide (EPS) production has been associated with beneficial effects 
of L. crispatus against vaginal pathogens and with its persistence in the gut environment [5, 6]. Furthermore, the production of 
bacteriocins, ribosomally synthesized peptides with antibiotic properties, may enhance bacterial fitness [7, 8]. Despite a large 
number of L. crispatus genomic sequences being available in public databases, to date only 23 are complete genomes. Furthermore, 
the L. crispatus mobilome, defined as the entire set of mobile genetic elements (MGEs), remains poorly annotated and character-
ized. Genomic variability among L. crispatus strains correlates with the site of isolation and is due to allelic variation in the EPS 
biosynthesis locus, in metabolic genes or to the presence of MGEs, including prophages and clustered regularly interspaced short 
palindromic repeats (CRISPRs) [9–11]. Lysogeny has been frequently observed in L. crispatus strains isolated from the vagina 
of healthy women [12], and some of these bacteriophages could be induced and had a lytic activity [13], but their nucleotide 
sequence has not been characterized. A more recent comparative genomic study identified prophage sequences in 90 out of 105 
L. crispatus strains isolated from various sources, with complete prophage more likely in human strains [10]. In this work, we 
determined the complete genome sequence of L. crispatus strain M247, a newborn faecal isolate largely studied for its probiotic 
activity and characterized by a strong aggregation phenotype and adherence to intestinal mucus [14–19]. It has been reported that 
M247 has beneficial effects on intestinal inflammatory disorders [20–22], helps to counteract vaginal dysbiosis [23] and probably 
contributes to papilloma virus clearance [24]. The M247 genome sequence was obtained combining long Nanopore reads and 
Illumina reads and mobilome analysis revealed the presence of two novel MGEs: the integrative and mobilizable element (IME) 
Tn7088 coding for a putative bacteriocin and the siphovirus prophage ΦM247.

mETHoDS
Bacterial strains and growth conditions
L. crispatus strain M247 was isolated from faeces of human newborns [15]. Bacteria were grown in DeMan- Rogosa- Sharpe (MRS) 
broth (Oxoid) or in MRS supplemented with 1.5 % agar (BD Difco) in the presence of 5 % CO2 at 37 °C.

Genomic DnA purification and quantification
Bacterial cells were grown at 37 °C in 250 ml of MRS broth until reaching middle exponential phase (OD590 of 1.9), and then 
harvested by centrifugation at 5 000 g for 30 min at 4 °C. High- molecular- weight genomic DNA was purified using a raffinose- based 
method [25, 26]. Briefly, a cell pellet was dry vortex- mixed for 2–3 min and incubated for 1 h at 37 °C in Protoplasting Buffer [20 % 
raffinose, 50 mM Tris/HCl (pH 8.0), 5 mM EDTA] containing 4 mg ml−1 lysozyme. Protoplasts were centrifuged at 5000 g for 5 min, 
resuspended in 15 ml of deionized H2O containing 100 µg ml−1 proteinase K (Merck) and 0.5 % SDS, and incubated for 30 min 
at 37 °C to obtain osmotic lysis. Then, 0.55 M NaCl was added and the mixture was incubated for 10 min at room temperature. 
High- molecular- weight DNA was purified three times with 1 volume of chloroform- isoamyl alcohol (24 : 1, v/v), precipitated in 0.6 
volumes of ice- cold isopropanol and spooled on a glass rod. DNA was resuspended in 10- fold diluted saline- sodium citrate (SSC) 
1× buffer, then adjusted to 1× SSC and maintained at 4 °C. The DNA solution was homogenized using a rotator mixer. DNA was 
quantified with a Qubit 2.0 Fluorometer (Invitrogen, Life Technologies) by using the Qubit dsDNA BR Assay Kit (Thermo Fisher 
Scientific) and results were confirmed via a spectrophotometer (Implen). DNA integrity and size were assayed by horizontal gel 
electrophoresis using 0.6 % Seakem LE (Lonza) agarose in 0.5× Tris borate EDTA running buffer.

Impact Statement

Despite a huge number of bacterial genomic sequences being available in public databases, only a few are complete genomes. 
Furthermore, the bacterial mobilome, which can constitute up to 25 % of the whole genome, remains poorly annotated and char-
acterized. In this work, we determined the complete genome sequence of the probiotic strain Lactobacillus crispatus M247 and 
analysed its mobilome, revealing the presence of two novel genetic elements: the integrative and mobilizable element Tn7088 
carrying an adaptation module homologous to the listeriolysin S locus of Listeria monocytogenes, and the siphovirus prophage 
ΦM247. We also demonstrated that both elements are able to produce excised forms and reconstitute the target sites in  
L. crispatus chromosomes. These findings suggest that both elements have the potential to horizontally transfer among different 
L. crispatus strains and possibly to other bacterial species of the vaginal and gastrointestinal human microbiota. These data will 
contribute to the understanding of the evolution of this important microorganism.



3

Colombini et al., Microbial Genomics 2023;9:001150

Illumina sequencing
Illumina sequencing was performed at MicrobesNG (University of Birmingham, UK) using a Nextera library preparation kit 
(Illumina) followed by sequencing on a NovaSeq 6000 device (Illumina) (2×250 bp paired- end sequencing). Illumina reads were 
trimmed using Trimmomatic v0.30 (https://github.com/usadellab/Trimmomatic) and analysed with FastQC v0.11.5 (https://
www.bioinformatics.babraham.ac.uk/projects/fastqc/). Illumina read properties are reported in Table S1, available in the online 
version of this article.

nanopore sequencing
Nanopore sequencing was carried out essentially as already described [27, 28]. Briefly, sequencing reactions were carried out in 
1.5 ml LoBind tubes (Sarstedt) using wide bore (∅1.2 mm) tips for DNA manipulation to reduce physical shearing. Genomic 
DNA was size selected with 0.5 volumes of AMPure XP beads (Beckman Coulter) according to the manufacturer’s instructions. 
Two micrograms of size- selected DNA was employed for library construction using the SQK- LSK 108 kit (Oxford Nanopore 
Technologies). Library preparation was performed following the manufacturer’s protocol with modifications: (i) incubation on 
rotator mix for 15 min; and (ii) the Library Loading Beads were not added. Finally, 1 µg of DNA library was loaded onto a R9.4 
flow cell (FLO- MIN106) (Oxford Nanopore Technologies). A 21 h sequencing run was performed on a GridION device (Oxford 
Nanopore Technologies). Real- time base calling was performed with Guppy v3.2.6 (Oxford Nanopore Technologies), filtering 
out reads with a quality cut- off <Q7. Base called reads were analysed with NanoPlot v1.18.2 (https://github.com/wdecoster/ 
NanoPlot). Nanopore read properties are reported in Table S1.

Genome assembly and annotation
The M247 Nanopore reads were filtered to obtain 95× coverage taking 2.3 Mb as the genome size estimate using Filtlong v0.2.0 
software (https://github.com/rrwick/Filtlong) with parameter --target_bases and assembled using Flye v2.7.1 (https://github.com/ 
fenderglass/Flye). The resulting circular contig was polished with Medaka v0.7.1 (https://github.com/Nanoporetech/medaka) 
using all the Nanopore reads, followed by two polishing rounds with Pilon v1.22 (https://github.com/broadinstitute/pilon) using 
the Illumina reads. Assembly completeness was assessed with Bandage v0.8.1 (https://github.com/rrwick/Bandage), whereas 
assembly quality was evaluated with both Ideel (https://github.com/mw55309/ideel) and CheckM v1.1.3 (https://github.com/ 
Ecogenomics/CheckM). Bwa v0.7.17 (https://github.com/lh3/bwa) and minimap2 v2.13 (https://github.com/lh3/minimap2) were 
used to align Illumina and Nanopore reads to the assembled genome, respectively. Aligned reads were visually inspected with 
Tablet v1.17.08.17 (https://github.com/cropgeeks/tablet) and used to further verify the assembled structure. The M247 genome 
was automatically annotated with the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) v5.1 [29]. Default parameters 
were used for all software unless otherwise specified.

mobilome analysis
Mobilome analysis was performed as already described [30]: ICEfinder (https://bioinfo-mml.sjtu.edu.cn/ICEfinder/ICEfinder. 
html) was used to investigate the presence of bacterial integrative and conjugative elements (ICEs) and IMEs in the M247 genome, 
ISsaga (http://issaga.biotoul.fr/issaga_index.php) for insertion sequences (ISs), and PHASTER (http://phaster.ca), Virfam (http:// 
biodev.cea.fr/virfam/) and Viridic (http://rhea.icbm.uni-oldenburg.de/VIRIDIC/) for prophages. The presence of CRISPRs was 
evaluated with CRISPRCasFinder (https://crisprcas.i2bc.paris-saclay.fr/CrisprCasFinder/Index). Analysis of antibiotic resistance 
genes analysis was performed using RGI (Resistance Gene Identifier) (v3.2.1) (https://card.mcmaster.ca/analyze/rgi), based 
on CARD (Comprehensive Antibiotic Resistance Database), with parameter ‘-loose_criteria=no’. DNA sequence analysis was 
performed with Artemis/ACT v17.0.1 (http://sanger-pathogens.github.io/Artemis/). Manual annotation of MGEs was carried out 
by blast homology searches of the databases available at the National Center for Biotechnology Information (NCBI) (https:// 
blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins), and the Pfam protein family database (available under the InterPro consortium, 
https://www.ebi.ac.uk/interpro/search/sequence/). A transposon name was assigned by the Tn Registry website curators (https:// 
transposon.lstmed.ac.uk/tn-registry). The L. crispatus complete genomes were downloaded from NCBI (https://www.ncbi.nlm. 
nih.gov/genome/browse/#!/ prokaryotes/ 1815/) and the GenBank accession numbers are reported in Table S2.

mitomycin C induction and phage preparation
Mitomycin C induction and phage preparation were obtained essentially as previously reported [31]. Briefly, bacterial cells were 
grown in 600 ml of MRS broth until early exponential phase, and the culture was then split into three aliquots of which two were 
treated with 200 and 400 ng ml−1 of mitomycin C. After 21 h of incubation at 37 °C, EDTA was added at a final concentration of 
10 mM and the samples were centrifuged twice at 5 000 g for 40 min at 4 °C in 50 ml tubes to eliminate bacterial cells and cellular 
debris. The recovered supernatants were transferred into six- polyallomer centrifuge tubes and ultracentrifuged at 20 000 g for 2 h 
at 10 °C in an Optima L- 90K ultracentrifuge with the SW 32 Ti rotor (Beckman Coulter). The phage pellets were resuspended in 
350 µl of TM buffer (50 mM Tris/HCl, 10 mM MgSO4) and the phage preparations were stored at 4 °C.

https://github.com/usadellab/Trimmomatic
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/wdecoster/NanoPlot
https://github.com/wdecoster/NanoPlot
https://github.com/rrwick/Filtlong
https://github.com/fenderglass/Flye
https://github.com/fenderglass/Flye
https://github.com/Nanoporetech/medaka
https://github.com/broadinstitute/pilon
https://github.com/rrwick/Bandage
https://github.com/mw55309/ideel
https://github.com/Ecogenomics/CheckM
https://github.com/Ecogenomics/CheckM
https://github.com/lh3/bwa
https://github.com/lh3/minimap2
https://github.com/cropgeeks/tablet
https://bioinfo-mml.sjtu.edu.cn/ICEfinder/ICEfinder.html
https://bioinfo-mml.sjtu.edu.cn/ICEfinder/ICEfinder.html
http://issaga.biotoul.fr/issaga_index.php
http://phaster.ca
http://biodev.cea.fr/virfam/
http://biodev.cea.fr/virfam/
http://rhea.icbm.uni-oldenburg.de/VIRIDIC/
https://crisprcas.i2bc.paris-saclay.fr/CrisprCasFinder/Index
https://card.mcmaster.ca/analyze/rgi
http://sanger-pathogens.github.io/Artemis/
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins
https://www.ebi.ac.uk/interpro/search/sequence/
https://transposon.lstmed.ac.uk/tn-registry
https://transposon.lstmed.ac.uk/tn-registry
https://www.ncbi.nlm.nih.gov/genome/browse/
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Fig. 1. Circular representation of the L. crispatus M247 genome. Circle 1 (outer) and circle 2 show the predicted coding regions located on the plus and 
minus strands, respectively. S- layer, aggregation promoting factor (apf) and EPS biosynthesis (eps) loci are reported as black blocks. The third circle 
represents the mobilome including the 14 105 bp Tn7088 IME (red block), the 42 510 bp ΦM247 prophage (orange block), the CRISPR- Cas locus (blue 
block) and the 226 ISs (green ticks). The fourth and the fifth circles show GC content and GC skew, respectively. The innermost circle indicates RNA 
genes. The image was created using Artemis DNA- Plotter (v17.0.1).

PCR and sequencing
PCR and direct PCR sequencing were carried out as previously described [32–35]. Oligonucleotide primers and their properties 
are reported in Table S3. The circular forms of Tn7088 and ΦM247 were detected using divergent primers directed at the ends of 
the elements, while reconstitution of the target sites using primers directed at the chromosomal junction fragments as reported 
[36, 37]. The following templates were used: (i) the purified high- molecular- weight DNA and (ii) the phage preparations from 
mitomycin C- treated and untreated M247 cultures. Briefly, quantitative PCR (qPCR) was carried out with the KAPA SYBR FAST 
qPCR kit Master Mix Universal (2×) (Merck) on a LightCycler 1.5 apparatus (Roche Diagnostics). The real- time PCR mixture 
contained, in a final volume of 20 µl, 1× KAPA SYBR FAST qPCR mix, 5 pmol of each primer, and 20 ng of bacterial genomic 
DNA or 2 µl of phage preparation as starting template. The thermal profile was an initial 3 min denaturation step at 95 °C followed 
by 40 cycles of repeated denaturation (0 s at 95 °C), annealing (20 s at 62 °C) and polymerization (30 s at 72 °C). The temperature 
transition rate was 20 °C s–1 in the denaturation and annealing steps and 5 °C s–1 in the polymerization step. Primer pair IF1487/
IF1488 amplifying a 350 bp fragment, and primer pair IF1513/IF1514 amplifying a 426 bp fragment were used for quantification 
of circular forms of Tn7088 and ΦM247, respectively; while IF1349/IF1350 amplifying a 227 bp fragment and IF1511/IF1512 
amplifying a 133 bp fragment were used for free locus quantification of Tn7088 and ΦM247, respectively; a 292 bp fragment of 
the chromosomal gyrB gene, obtained with primers IF1352/IF1353, was used to standardize results. A standard curve for the gyrB 
gene of L. crispatus M247 was built by plotting the threshold cycle against the number of chromosome copies using serial dilutions 
of chromosomal DNA with known concentration. Melting curve analysis was performed to differentiate the amplified products 
from primer dimers. A t- test was used to assess the statistical significance of differences in quantification values of excised forms.

RESuLTS
The m247 genome
Sequence analysis showed that the M247 genome is organized in one circular chromosome 2 336 109 bp in length, with an 
average GC content of 37.04 % (Fig. 1). The genome contains 2303 ORFs which are equally distributed on both strands (1161 
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Fig. 2. Integration sites of MGEs in the L. crispatus chromosome. Analysis of the 23 L. crispatus complete genomes available in the NCBI database 
(last accessed July 2023) revealed that MGEs integrate at 10 chromosomal sites. The L. crispatus mobilome consists of one ICE, two IMEs, 13 different 
prophages, and a composite element constituted by a prophage inserted in an ICE. Bacterial chromosome is represented by a circle, and the origin of 
replication (oriC) is indicated; nucleotides reported on the map refer to the M247 strain used as a reference. Triangles, diamonds and hexagons on the 
circle indicate the insertion sites of ICEs, IMEs and prophages, respectively. Homologous elements are depicted with symbols of the same colour. IME 
Tn7088 and prophage ΦM247 found in strain M247 are indicated with their names, while non- annotated elements are indicated with the names of the 
strain harbouring them. GenBank accession numbers of the genome sequences are reported in Table S2.

on sense and 1142 on antisense). An annotation with prediction of a biological function was possible for 1962 ORFs. rRNA 
genes are grouped into four rRNA operons, 28 out of the 65 tRNA genes are not adjacent to rRNA operons, and three structural 
RNAs are also present: (i) tRNA- like/mRNA- like RNA, (ii) signal recognition particle RNA and (iii) ribonuclease P RNA. The 
M247 genome contains a single copy of the apf gene [18], spanning nucleotides 1 837 153–1 837 824, while the already described 
S- layer locus (GenBank no. AY941197) spans nucleotides 197 946–209 531, and includes the paralogous genes slpA and slpB 
transcribed in opposite directions and spaced by a 4 624 bp fragment. A 79 695 bp EPS biosynthesis gene cluster, at nucleotides 
1 956 291–2 035 986, contains 57 ORFs, 52 of which have the same direction of transcription and are potentially involved in EPS 
biosynthesis. Five conserved genes predicted to encode a transcriptional regulator, a polymerization and chain length determina-
tion protein, a tyrosine- protein kinase, a protein- tyrosine phosphatase, and the priming glycosyltransferase are present at the 
5′ end of the locus as reported in other L. crispatus strains [9]. Downstream of this conserved region, nine genes encoding (i) 
five glycosyltransferases, (ii) a UDP- N- acetylglucosamine, (iii) an acyltransferase, (iv) a polysaccharide polymerase and (v) a 
flippase are probably involved in the synthesis of EPS repeating units, polymerization and export. The remaining genes, as in 
other lactobacilli, probably contribute to EPS biosynthesis, for example through the generation of activated sugar precursors 
and the chemical decoration of the EPS [38]. A search carried out on the 23 publicly available L. crispatus complete genomes 
showed that the L. crispatus mobilome includes, in addition to plasmids, ISs and CRISPRs, prophages, ICEs and IMEs which are 
currently not annotated (Fig. 2). Analysis indicates the presence of 10 chromosomal sites for the integration of these elements. 
The M247 mobilome accounts for 14 % (328 388 bp) of the whole genome and includes two novel genetic elements, IME Tn7088 
(Fig. 3), and the siphovirus prophage ΦM247 (Fig. 4), three CRISPRs and 226 ISs belonging to 14 different families (Table S4). 
No plasmids were detected. Three CRISPR loci were found in the M247 mobilome: (i) locus 1 contains five 23 bp direct repeats 
(DRs) interspersed by four spacers; (ii) locus 2 contains six 36 bp DRs interspersed by five spacers, and is paired to the CRISPR- 
associated (Cas) cas9, cas1, cas2 and csn2 genes constituting a type II- A CRISPR- Cas system [39] (Fig. 1); and (iii) locus 3 contains 
two 25 bp DRs interspersed by one spacer. Despite the M247 genome being rich in ISs, which make up 11.16 % (260 880 bp) of 
its length, only 10 ORFs are disrupted by ISs, of which two are located on Tn7088 and one on ΦM247. The transposase gene of 
26 ISs is truncated or presents a frameshift mutation (Table S4).

https://www.ncbi.nlm.nih.gov/nuccore/AY941197
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Fig. 3. (a) Structure of L. crispatus IME Tn7088 and (b) schematic comparison of Tn7088 with other L. crispatus Tn7088- like elements. (a) Tn7088 is a 
14 105 bp long IME, and contains 16 ORFs and two ISs. ORFs and their direction of transcription are represented by arrows, and annotated ORFs are 
indicated. The element shows a modular organization characterized by three modules: mobilization, integration/excision and adaptation (indicated by 
solid bars). ISs are reported as thinner, black, boxed arrows. ISLhe5 disrupts orf14, while IS1201 disrupts orf16. Chromosomal genes flanking Tn7088 
are represented by white arrows. The scale is in kilobases. (b) IME Tn7088 is compared with 12 L. crispatus Tn7088- like elements present in complete 
genomes available in public databases. Disrupted ORFs are reported as pattern filled arrows. Non- annotated elements are indicated with the names 
of the strains harbouring them. Size varies from 11 678 bp for the 2029 element to 22 175 bp for the CO3MRSI1 element. Genome sequence GenBank 
accession numbers are reported in Table S2.

The integrative and mobilizable element Tn7088
Tn7088 is 14 105 bp long, spans nucleotides 21 914–36 018 of the M247 genome and has an average GC content of 30.97 %. 
Tn7088 contains 16 ORFs, of which 15 have the same direction of transcription, two have a GTG alternative start codon and two 
are disrupted by different ISs (Fig. 3). Manual homology- based annotation attributed a putative function to 14 out of 16 ORFs 
(Table 1). Tn7088 has a typical IME modular organization [40] composed of (i) a mobilization module where orf3 and orf4 code 
for FtsK homologous proteins and orf5 for a relaxase; (ii) an integration/excision module constituted by orf7 and orf8, coding for 
a putative excisionase and an integrase, respectively; and (iii) an adaptation module (orf9 to orf16) homologous to the listeriolysin 
S (lls) locus of Listeria monocytogenes [41, 42] (Fig. 3a, Table 1). The 44 aa Orf9 is homologous to LlsA, the pro- peptide listeri-
olysin S family of thiazole/oxazole- modified microcins (TOMM) class I bacteriocin, and contains a 13 aa long serine/threonine/
cysteine- rich motif. Orf10–Orf11 are homologous to LlsG–LlsH that constitute an ATP- binding cassette transporter, whereas 
Orf12 is homologous to the hypothetical protein LlsX. Orf13 is homologous to the LlsB dehydrogenase, while Orf14 and Orf15 
are homologous to the LlsY and LlsD cyclodehydratases, respectively. Finally, Orf16 is homologous to the metalloprotease LlsP. 
The NCBI database of 95 347 complete microbial genomes (accessed in July 2023) was interrogated using Tn7088 DNA sequence 
as a query. In 12 out of 23 L. crispatus complete genomes, Tn7088- like elements, ranging in length from 11 678 bp for strain 2029 
to 22 175 bp for strain CO3MRSI1, were present. Sequence comparison showed that the mobilization and integration/excision 
modules are essentially conserved, while variability in the adaptation module is introduced by the integration of distinct ISs 
disrupting different ORFs (Fig. 3b). It is of note that only the Tn7088- like elements carried by strains 2029 and VSI24 contain 
an intact adaptation module. In the CO3MRSI1 element a copy of ISLdl3 disrupts orf3 in the mobilization module, whereas the 
adaptation module carries a DNA inversion spanning the 3′ end of orf12 to orf16.

Prophage Φm247
The 42 510 bp ΦM247 prophage spans nucleotides 1 001 143–1 043 652 of the M247 genome, carries 52 ORFs, has a GC content 
of 35.18 % and was classified as a siphovirus phage. Manual homology- based annotation with functional prediction of the 
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Fig. 4. (a) Structure of L. crispatus prophage ΦM247 and (b)  schematic comparison of ΦM247 with other ΦM247- like prophages. (a) ΦM247 is a 
42 510 bp long prophage, and contains 52 ORFs and two copies of the IS1201 one of which disrupts orf48 (pattern filled arrow). ORFs and their direction 
of transcription are represented by arrows, while annotated ORFs are indicated only by their numbers. ISs are reported as thinner, black, boxed arrows. 
Chromosomal genes flanking the ΦM247 insertion site are represented by white arrows. The scale is in kilobases. (b) The 42 510 bp ΦM247 prophage is 
compared with the siphovirus prophage Ct06w1 (GenBank BK036340) and seven L. crispatus ΦM247- like prophages present in complete genomes. For 
a better alignment of the sequences, the elements were devoid of additional integrated IS elements indicated by solid triangles, while the deletions are 
represented by lines. Size varies from 37 638 bp for the CO3MRSI1 element to 44 067 bp for the Lc1700 element. Non- annotated elements are indicated 
with the names of the strains harbouring them. The element of strain VSI08 contains a 3 391 bp inversion at the 5′ end depicted as a grey box. Genome 
sequence GenBank accession numbers are reported in Table S2.

hypothetical gene product was possible only for 27 out of 52 ORFs, including genes for phage structural proteins (orf35 to orf48), 
DNA replication (orf7, orf11, orf15, orf20, orf21, orf28) and packaging (orf29 to orf34), lysogeny (orf1, orf2, orf6) and lytic cycle- 
related proteins (orf51, orf52) (Table 2, Fig. 4a). Furthermore, ΦM247 contains a methionyl- tRNA gene which might contribute 
to modulate the tRNA pools of the bacterium, improving the translation efficiency of viral genes [43, 44]. Two copies of IS1201 
are also present, one of which disrupts orf48, predicted to encode the tail protein. Homology searches of the NCBI databases using 
nucleotide blast (accessed in July 2023) showed that ΦM247 is highly homologous (99.98 % identity) to the ct06w1 siphovirus 
prophage characterized during the metagenomic sequencing of a human vaginal fornix sample [45]. In addition, ΦM247- like 
prophages are present only in seven L. crispatus complete genomes, namely Lc1226, PRL2021, Lc1700, CO3MRSI1, VSI08, 
VSI17 and Lcr- MH175, out of the 95 347 complete microbial genomes of the NCBI database (accessed in July 2023). Variability 
in ΦM247- like prophage sequences is due to the integration of distinct ISs in different positions except for strains CO3MRSI1, 
PRL2021 and Lcr- MH175 where a 3′ end deletion of 3.4, 4.6 and 22.14 kb, respectively, was also present (Fig. 4b).

Quantification of Tn7088 and Φm247 excised forms and reconstituted attB sites
PCR and sequencing analysis carried out on M247 genomic DNA showed that the Tn7088 IME is able to excise from the bacterial 
chromosome producing a circular form where the left and right ends are joined by a 90 bp sequence (attTn). Excision of the 
element reconstitutes the chromosomal 79 bp attachment site (attB). Upon integration into the M247 chromosome, Tn7088 is 
flanked by attL and attR, identical to attTn and attB, respectively. attL- attTn contain 11 nt insertions and 12 nt changes compared 
to attR- attB (Fig. S1). attR- attB contain the last 11 nt of the threonine- tRNA gene (LQF73_00105). In liquid culture of M247, 
the circular form of Tn7088 was present at a concentration of 4.32×10−5±2.17×10−7 copies per chromosome, whereas the recon-
stituted attB site was at 6.65×10−4±1.32×10−6 copies per chromosome. Also, prophage ΦM247 produces an excised form, where 
the left and right ends are joined by attP, restoring the attB insertion site. attP is 138 bp long and is identical to attR, while attB 
is 139 bp long and is identical to attL. attR- attP differ from attL- attB by 15 nt changes and 1 nt nucleotide deletion. attL- attB of 

https://www.ncbi.nlm.nih.gov/nuccore/BK036340
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Table 1. Annotated ORFs of IME Tn7088

ORF (aa)* Annotation and comments (reference) Homologous protein Pfam domain
(aa)‡ [E value]

Protein ID/origin [E value]† No. of amino acids 
identical/total

No. of amino acids 
similar/total

orf1 (254) Transcriptional regulator, putative [63] HTH_3 (6–66)
[1.0e −12]

orf3 (183) Cell division protein FtsK, putative [64]

orf4 (264) Cell division protein FtsK [64] FtsK_SpoIIIE
(2–109) [1.1e- 05]

orf5 (273) Relaxase [65] Rep_trans
(133–273) [1.1e- 19]

orf7 (59) Excisionase, putative

orf8 (409) Tyrosine- type DNA integrase [66] Phage_integrase
(183–397) [9.8e- 14]

orf9 (44) Listeriolysin S family TOMM class I bacteriocin 
[54]

WP_071661762.1/L. monocytogenes [3e- 04] 12/26 (46 %) 14/26 (53 %)

orf10 (284) ABC transporter: ATP- binding protein [54], similar 
to L. monocytogenes LlsG

WP_003724649.1/L. monocytogenes [5e- 69] 111/284 (39 %) 182/284 (64 %) ABC_tran
(21–150) [7.6e- 22]

orf11 (251) ABC transporter: permease [54], similar to L. 
monocytogenes LlsH

WP_003730942.1/L. monocytogenes [2e- 70] 96/238 (40 %) 160/238 (67 %) ABC2_membrane
(5–212) [3.2e- 12]

orf13 (292) SagB dehydrogenase family [54], similar to L. 
monocytogenes LlsB

WP_003730944.1/L. monocytogenes [6e- 95] 135/291 (46 %) 192/291 (65 %) Nitroreductase
(105–285) [5.8e- 13]

orf14’ (314) Listeriolysin S biosynthesis cyclodehydratase [42], 
similar to L. monocytogenes LlsY, disrupted by 

ISLhe5

WP_010958846.1/L. monocytogenes [3e- 72] 128/306 (42 %) 192/306 (62 %)

tnp (285) ISLhe5 transposase [67] WP_012211839/
L. helveticus [0.0]

240/285 (84 %) 259/285 (90 %)

orf15 (438) YcaO- like cyclodehydratase family [54], similar to L. 
monocytogenes LlsD

WP_003740559.1/L. monocytogenes [3e- 172] 240/440 (55 %) 312/440 (70 %) YcaO
(70–407) [1.5e- 28]

orf16’ (195) CPBP intramembrane metalloprotease family 
[42], similar to L. monocytogenes, LlsP disrupted 

by IS1201

WP_226989712.1/L. monocytogenes [7e- 31] 56/147 (38 %) 92/147 (62 %) CPBP
(5–170) [0.045]

tnp (408) IS1201 transposase [68] P35880/L. helveticus [0.0] 333/368 (90 %) 352/368 (95 %)

*The number of amino acids of the predicted protein is shown in parentheses, and disrupted ORFs are indicated with an apostrophe.
†Determined by compositional matrix adjustment.
‡Numbers in parentheses indicate the part of the predicted protein with homology to the Pfam domain.

ΦM247 includes 96 nt at the 5′ end of the peptide- methionine (S)- S- oxide reductase encoding gene msrA (LQF73_05265). The 
excised form of the phage genome was present at a concentration of 3.90×10−5±9.43×10−6 copies per chromosome, whereas the 
reconstituted attB site was at 2.48×10−5±7.18×10−7 copies per chromosome.

Φm247 excised forms are not enriched upon mitomycin C exposure
Liquid cultures of M247 were treated with mitomycin C at a final concentration of 200 and 400 ng ml−1, and culture supernatants 
were recovered and concentrated by sequential centrifugation and ultracentrifugation steps without filtering to minimize particle 
breakage. ΦM247 excised forms were detected and quantified with qPCR on concentrated supernatants. The number of excised 
forms per millilitre was essentially the same (P=0.09) in phage preparations obtained from the mitomycin C- treated cultures 
(mean value 2.14×102±1.07×102) and the untreated control culture (7.66×102±6.17×102), suggesting that, under our experimental 
conditions, mitomycin C does not induce excision of ΦM247.

DISCuSSIon
In this study, complete genome sequence analysis allowed us to define the M247 mobilome which includes: (i) the novel IME 
Tn7088, (ii) the novel ΦM247 prophage, (iii) three CRISPRs and (iv) 226 ISs. More than 10 % of the M247 genome length is 
constituted by ISs, which only interrupt 10 predicted coding sequences, suggesting that there is a selective pressure against gene 
disruption. Interestingly, three out of 10 interrupted genes belong to ΦM247 and Tn7088, which are probably less subject to 
selective constraints. The presence of many ISs in the M247 genome possibly confers genome plasticity, favouring chromosomal 
rearrangements and duplications mediated by sequence homology [46]. ΦM247 was capable of excision from the bacterial 
chromosome, but could not be induced by mitomycin C. Some active prophages are not responsive to genotoxic drugs such as 



9

Colombini et al., Microbial Genomics 2023;9:001150

Table 2. Annotated ORFs of ΦM247

ORF (aa)* Annotation and comments (reference) Virfam homologous protein 
(identity) [E value or 

HHsearch probability]†

Homologous protein ID/origin
No. of amino acids identical/total [E value]‡

Pfam domain
(aa)§ [E value]

orf1 (407) Tyrosine- type DNA integrase [66] DAW29718.1/Siphoviridae sp. isolate ct06w1
407/407 (100 %) [0.0]

Phage_integrase
(180–373) [1.8e- 25] Phage_int_SAM_5

(32–164) [1.8e- 05]

orf2 (334) Abortive infection protein [69] DAW29696.1/Siphoviridae sp. isolate ct06w1
334/334 (100 %) [0.0]

Abi_2 (31–239) [1.5e- 36]

orf6 (208) Repressor protein CI [70] DAW29717.1/Siphoviridae sp. isolate ct06w
208/208 (100 %) [9e- 27]

Peptidase_S24
(86–202) [3.1e- 26]

orf7 (71) Helix- turn- helix XRE- family- like protein [63] DAW29695.1/Siphoviridae sp. isolate ct06w
74/74 (100 %) [9e- 56]

orf11 (285) DNA polymerase B DAW29710.1/Siphoviridae sp. isolate ct06w1
285/285 (100 %) [1e- 158]

HTH_36 (24–74) [4.4e- 05]

orf15 (145) HNH endonuclease [71] DAW29694.1/Siphoviridae sp. isolate ct06w1
145/145 (100 %) [3e- 111]

HNH_3
(66–112) [7.5e- 10]

orf20 (248) Phage antirepressor KilAC domain- containing protein [72] DAW29715.1/Siphoviridae sp. isolate ct06w1
247/248 (99 %) [0.0]

AntA (17–85) [5.7e- 19] ANT (124–236) 
[8.9e- 32]

orf21 (74) Restriction alleviation protein, putative DAW29742.1/Siphoviridae sp. isolate ct06w1
73/73 (100 %) [2e- 55]

orf27 tRNA- Met

orf28 (176) HNH endonuclease [73] DAW29714.1/Siphoviridae sp. isolate ct06w1
176/176 (100 %) [2e- 138]

HNH (88–131) [8.1e- 08]

orf29 (156) Phage terminase, small subunit [74] WP_060463559.1/L.crispatus
154/156 (99 %) [1e- 55]

Terminase_4
(29–140) [4.3e- 16]

tnp (392) IS1201 transposase [68] P35880/L. helveticus
333/368 (90 %) [0.0]

orf31 (624) Phage terminase, large subunit [74] Phi adh phage TermL (60%) [0] DAW29733.1/Siphoviridae sp. isolate ct06w1
624/624 (100 %) [0.0]

Terminase_1
(100–587) [1.5e- 50]

orf33 (392) Phage portal protein [75] Phi adh phage Portal (54%) 
[100%]

WP_060464314.1/L.crispatus
 

392/392 (100 %) [3e- 66]

Phage_portal
(47–354) [4.9e- 39]

orf34 (228) ATP- dependent Clp protease [76] DAW29711.1/Siphoviridae sp. isolate ct06w1
228/228 (100 %) [7e- 174]

CLP_protease
(32–175) [2.0e- 33]

orf35 (452) Phage major capsid protein DT1 phage MCP (36%) [100%] DAW29706.1/Siphoviridae sp. isolate ct06w1
452/452 (100 %) [0.0]

Phage_capsid
(132–421) [2.8e- 17]

orf36 (129) Phage head- tail adaptor Phi adh phage Ad1 (42%) 
[100%]

DAW29705.1/Siphoviridae sp. isolate ct06w1
129/129 (100 %) [2e- 98]

orf37 (121) Phage head closure knob Phi adh phage Hc1 (34%) 
[100%]

DAW29704.1/Siphoviridae sp. isolate ct06w1
121/121 (100 %) [8e- 94]

Phage_H_join
(12–110) [0.00065]

orf38 (132) Phage type I neck protein DT1 phage Ne1 (36%) [100%] DAW29703.1/Siphoviridae sp. isolate ct06w1
132/132 (100 %) [4e- 101]

HK97- gp10_like
(6–98) [0.00044]

orf39 (124) Phage tail completion protein Phi adh phage Tc1 (24%) 
[100%]

DAW29702.1/Siphoviridae sp. isolate ct06w1
124/124 (100 %) [4e- 94]

orf40 (258) Phage major tail protein [77] DT1 phage MTP (30%) [3e- 20] DAW29701.1/Siphoviridae sp. isolate ct06w1
258/258 (100 %) [0.0]

Phage_TTP_1
(8–211) [1.7e- 42]

orf41 (137) Phage tail assembly chaperone [77] DAW29701.1/Siphoviridae sp. isolate ct06w1
137/137 (100 %) [4e- 103]

Phage_TAC_3
(7–122) [1.5e- 11]

orf43 (2339) Phage tail tape measure protein [77] DAW29700.1/Siphoviridae sp. isolate ct06w1
2338/2339 (99 %) [0.0]

PhageMin_Tail
(315- 532) [1.1e- 38]

orf44 (253) Phage distal tail protein [77] DAW29699.1/Siphoviridae sp. isolate ct06w1
252/253 (99 %) [0.0]

orf45 (1135) Phage tail protein [77] DAW29698.1/Siphoviridae sp. isolate ct06w1
1135/1135 (100 %) [0.0]

Prophage_tail (73–441) (744–824) 
[7.2e- 13]

orf47 (127) BppU family phage baseplate upper protein WP_005719141.1/Lactobacillus crispatus
127/127 (100 %)

BppU_N (1–120) [5.6e- 09]

orf48’ (795) Phage tail protein [78], disrupted by IS1201 DAW29725.1/Siphoviridae sp. isolate ct06w1
795/795 (100 %) [0.0]

Bppu_N (3–164) [3.7e- 08]
Lipase_GDSL

(575–776) [8.4e- 12]

Continued
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ORF (aa)* Annotation and comments (reference) Virfam homologous protein 
(identity) [E value or 

HHsearch probability]†

Homologous protein ID/origin
No. of amino acids identical/total [E value]‡

Pfam domain
(aa)§ [E value]

tnp (392) IS1201 transposase [68] P35880/L. helveticus
333/368 (90 %) [0.0]

orf51 (142) Phage holin LLH family [79] DAW29722.1/Siphoviridae sp. isolate ct06w1
142/142 (100 %) [8e- 107]

Phage_holin_6_1
(3–110) [1.3e- 05]

orf52 (294) Cpl1 lysin [80] DAW29716.1/Siphoviridae sp. isolate ct06w1
294/294 (100 %) [0.0]

Glyco_hydro_25
(9–196) [1.8e- 21]

*The number of amino acids of the predicted protein is shown in parentheses, and disrupted ORFs are indicated with an apostrophe.
†Virfam performs PSI- blast on the ACLAME database, and the HHsearch probability is provided when PSI- blast search does not detect homology.
‡Determined by compositional matrix adjustment.
§Numbers in parentheses indicate the part of the predicted protein with homology to the Pfam domain.

Table 2. Continued
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