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Plastic and microplastic pollution is a complex, muti-faceted challenge that has en-
gaged a broad alliance of stakeholder groups who are concerned with environmental, biotic
and human health [1]. The urgency surrounding this topic is evidenced by the ongoing
negotiations regarding a global Plastics Treaty agreement [2,3]. The research area is rapidly
expanding, with more questions being posed as we increase our knowledge on the environ-
mental presence, fate and effect of plastics, microplastics (<5 mm) and now nanoplastics
(defined as <1000 or 100 nm, depending on the definition used [4]). The issue of MNPs
(micro(nano)plastics) is no longer confined to the marine environment, with their presence
long having been established within freshwaters [5] and terrestrial habitats [6]. Exposure
to MNPs remains subject to much investigation, but the effects of long-term exposure
on environmental and human health are not well established [7,8]. The recent UNEP
technical report “Chemicals in Plastics” [9] now notes “that more than 13,000 chemicals
have been identified as associated with plastics and plastic production”, of which, 3200 are
known to be toxic. Once released, MNPs may sorb many other chemical groups (metals,
pharmaceuticals and organic pollutants) and facilitate their transfer to biota [10–12], but
knowledge gaps persist regarding the role of MNPs as chemical carriers, particularly when
considering the vast array of polymer types, chemicals, environmental transformations,
organisms and species-specific physiological parameters that interact with each other [11].
Adverse outcomes from plastic exposure are shared cross-species, indicating common
mechanisms of toxicity. Marine species with individuals ingesting naturally disparate
levels of plastic present valuable opportunities for researchers to understand the real-world
impacts of plastic [13]. A recent study in sea birds coined the term ‘plasticosis’ to indicate
the first recorded instance of plastic-induced fibrosis in wild animals [14]. The discovery of
microplastics in our foods [15] and our bodies [16] has added to feeling that we are in the
midst of a ‘plastics crisis’. Within this atmosphere of heightened awareness and activity,
our Special Issue invited contributions covering all aspects of MNP research encompassing
(i) environmental presence; (ii) the effects of exposure to biota, alone and in combination
with co-contaminants; and (iii) human health impacts.

Although it is more commonly established as a freshwater contaminant, MNP re-
search within freshwaters remains limited compared to that in the marine environment,
according to the review presented by Badea et al., 2022 [17]. The authors detail the main
physical (density, size, color, shape and crystallinity) and chemical (chemical composition
and surface modifications) properties of MPs, the mechanism of biodegradation and the
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consequences for autotrophic organisms and fauna exposed within the freshwater environ-
ment. The toxicity mechanisms triggered by MPs are related to the critical parameters of
particles, namely size, concentration, type and form, but they are also dependent on species
exposed to MPs and the exposure route. Thus, the review highlights the importance of
recognizing both the physical particle and species-specific physiology as essential elements
in an exposure scenario.

Such considerations can be further complicated when accounting for additional
pollutants in the environment. Krais et al., 2022 [18] exposed freshwater chironomid
larvae (Chironomus riparius) to polystyrene microplastic particles (<50 µm; 150,000 and
1,000,000 particles/L) alone or in combination with the hydrophilic pesticide thiacloprid
(TH, 1 µg/L) for 96 h. Observing burrowing behavior and mortality as endpoints, the
results showed that TH elevated the mortality rate, but exposure to PS alone did not affect
the survival of the larvae. In the co-exposure of TH and PS, a concentration of 150,000 par-
ticles/L significantly reduced the toxicity of 1 µg/L TH after 96 h, but this effect that was
not observed at 1,000,000 particles/L. The authors hypothesize that this modulation of the
TH toxicity may have resulted from a combination of a ‘protective MP layer’ in the gut
and a higher retention time of particles in larvae exposed at the lower MP concentration
compared to those larvae exposed at the higher concentration where MPs’ passage through
the gut was faster owing to the greater opportunity to feed continuously.

The digestive tract, and specifically the small intestine, was the focus of two studies
by Mbugani and colleagues, who investigated the long-term impact of MP ingestion. In
the first study (Mbugani et al., 2022 [19]), juvenile Wami Tilapia (Oreochromis urolepis) were
exposed to MPs (0 (control), 1, 10 and 100 PE MPs/mL) for 65 d and then allowed to
recover in clean water for an additional 60 days. During exposure, MPs’ ingestion and
retention was proportional to the exposure dose, as were degenerative changes, determined
histomorphologically, in the small intestine. Villi height and width and epithelial cell height
were significantly affected and differed between treatment groups, as did the derived
indices of damage to the small intestine wall. Importantly, the study found that whilst
MPs were no longer observed in the small intestine following depuration, some of the
degeneration of the wall of the small intestine remained even after 60 days. This study
highlights that the damage caused by MP ingestion does not dissipate after the removal of
the particle stressor. The study advocates for the assessment of long-lasting damage.

This leads to the second study by Mbugani et al. (2022) [20], in which juvenile Wami
Tilapia were again exposed to MPs for 65 days to translate the adverse effects previously
reported into impacts on growth. The small intestine histomorphological lesion index scores
correlated significantly with growth pattern, condition factors, final weight, weight gain and
total length across the different treatment groups (0, 1, 10 and 100 PE MPs/mL). Together,
these studies describe the long-term damage afflicted to the structure of the small intestine
which is slow to recover from. Moreover, the damage disrupted growth parameters, which
could have been a result of impaired digestion and nutrient absorption functions.

Seafood is a purported pathway for MNPs to pass into humans [21], but MPs have been
found in numerous foodstuffs [15], including honey [22]. A new review by Katsara et al.,
2022 [23] takes a ‘deep-dive’ into the factors that can lead to the presence of MNPs in honey,
and particularly the migration of plastics from packaging, which is particularly relevant for
long-lasting consumer products. Different types of honey and their properties (viscosity, pH
value and moisture content) or their storing conditions (temperature, humidity, light and
time) can affect the degradation of the packaging and the migration of MPs from packaging
to product. Moreover, whilst spectroscopic and analytical techniques like Raman, FTIR,
HPLC and GC-MS are in the spotlight with regard to MNP detection and identification,
a universal method of isolation, detection, characterization, and quantification remains
elusive. Thus, more research is needed to understand the movement of MNPs from
packaging into the food we eat.

The impacts of MNPs on human health are not yet fully understood, and there is
heightened concern as nanoplastics, unlike larger microplastics, are in a size range that
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allows for cellular internalization [24]. To assess the effects of internalized micro- and
nanoplastics on human gene transcription, Pellegrino et al. (2023) [25] used an in vitro
assay to quantify CREB (cAMP response element-binding protein)-mediated transcription.
The authors demonstrated that a strong CREB-mediated stimulation of transcription was
diminished by micro- and nanoplastics in any chosen setting, thus indicating a threat to
human health via the deregulation of transcription induced by internalized micro- and
nanoplastics. The test system could be further utilized to screen for toxic substances and
non-toxic alternatives.

In summary, this collection of articles provides a valuable addition to the global mosaic
of plastic and MNP research. The combination of environmental, biotic and human health
investigations points toward the need for greater integration between these disciplines
to fully understand the many facets of plastic pollution. Such an integration is central
to the One Health Approach [26], which certainly warrants further consideration. The
studies presented in this Special Issue add to the weight of evidence that recognizes MNPs
as a significant environmental and public health problem that requires, and is receiving,
immediate attention.
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