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Abstract: Whenever a protein fails to fold into its native structure, a profound detrimental effect
is likely to occur, and a disease is often developed. Protein conformational disorders arise when
proteins adopt abnormal conformations due to a pathological gene variant that turns into gain/loss
of function or improper localization/degradation. Pharmacological chaperones are small molecules
restoring the correct folding of a protein suitable for treating conformational diseases. Small molecules
like these bind poorly folded proteins similarly to physiological chaperones, bridging non-covalent
interactions (hydrogen bonds, electrostatic interactions, and van der Waals contacts) loosened or lost
due to mutations. Pharmacological chaperone development involves, among other things, structural
biology investigation of the target protein and its misfolding and refolding. Such research can take
advantage of computational methods at many stages. Here, we present an up-to-date review of
the computational structural biology tools and approaches regarding protein stability evaluation,
binding pocket discovery and druggability, drug repurposing, and virtual ligand screening. The tools
are presented as organized in an ideal workflow oriented at pharmacological chaperones’ rational
design, also with the treatment of rare diseases in mind.

Keywords: pharmacological chaperones; protein conformational diseases; computational structural
biology; protein stability; transient pockets; pocket druggability; drug repurposing; virtual screening;
molecular docking

1. Protein Conformational Diseases

Several biological mechanisms for the function of our organism rely on proteins, and
a protein’s biological function is determined by its three-dimensional structure. Therefore,
these molecules must be folded into a native state to function correctly. Still, the process
of achieving native conformation is complex, which makes identifying the mechanism
responsible for protein assembly central to structural biochemistry investigation. Indeed,
an error in such a process could result in a misfolded protein or a missed quaternary
assembly, leading to pathological effects. Known to cause cellular malfunctioning or death,
altered proteins lose their function and lead to deleterious forms or aggregates [1,2]. Many
factors contribute to the loss of the proper three-dimensional structure. Still, the amino acid
composition remains the primary factor since mutations may destabilize the correct fold of
a protein or stabilize a misfolded state [3–5].

Among protein-altering mutations, missense mutations are the most common [6]. A
missense mutation occurs when one nucleotide base is substituted for another in a DNA
sequence, resulting in a different codon and amino acid. The prevalence of missense
mutations in any given gene is estimated at 2% [7]. Recent studies have focused on protein
misfolding caused by missense mutations, which has led to the association with several
serious diseases [4].

When proteins cannot fold into a native structure, a profound detrimental effect is
expected, often resulting in disease. Known as protein conformational diseases, such
disorders arise when proteins adopt abnormal conformations. Many people suffer from
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conformational diseases, significantly challenging human health [8]. The present review
focuses on examples of rare types of conformational diseases, such as (with involved
protein in parenthesis): Phenylketonuria (phenylalanine hydroxylase, PAH) [9,10], Alkap-
tonuria (1,2 homogentisate dioxygenase, HGD) [11,12], Transthyretin-related hereditary
amyloidosis (transthyretin, TTR) [13], and the group of lysosomal storage diseases [14]
including GM1-gangliosidosis (β-galactosidase), Tay-Sachs disease (β-hexosaminidase A),
Sandhoff disease (β-hexosaminidases A and B), AB variant of GM2-gangliosidosis (GM2 ac-
tivator protein), Fabry disease (α-galactosidase A), Gaucher disease (β-glucocerebrosidase),
Pompe disease (α-glucosidase), mucopolysaccharidosis IIIC (heparan-α-glucosaminide
N-acetyltransferase), and Batten disease (battenin).

Molecular mechanisms that underlie many protein conformational diseases are very
complex and multifactorial. Several phenomena are associated with conformational dis-
eases, including loss of function, toxic gain of function, improper degradation, and im-
proper localization. A loss-of-function mutation results in an impairment of the biological
function, either complete (amorphic), which is analogous to protein null mutations, or
partial (hypomorphic). Often, loss-of-function results from premature stop codons due to
nonsense or frameshift mutations. The deleterious mRNA obtained usually produces no
protein rather than a truncated polypeptide [15]. Hence, such mutations are usually of poor
interest to the structural biologist, who is keener on missense mutations that change the
amino acid sequence and result in protein products, although misfolded or non-functional.
In structural terms, such mutations lead to (local) misfolding, active site disruption, or
quaternary structure disruption. On the opposite side, the strengthening of protein–protein
interactions induced by amino acidic mutation is a gain-of-function often resulting in a
toxic effect. Mutations may increase protein activity (hypermorphic) or introduce a new
function (neomorphic). Improper degradation relates to cellular degradation systems,
such as autophagy; despite being essential for preventing the accumulation of misfolded
proteins, it can sometimes lead to disease by over-actively degrading proteins that, despite
their mutations, retain some functionality. The mislocalization of proteins arises from mu-
tation destabilizing the correct fold and preventing the trafficking to the native subcellular
compartment [16].

From a structural biology point of view, conformational diseases arise from a protein
impairment to reach its native three-dimensional structure or stability. In turn, restoring
the correct protein structure would rescue the biological activity and mitigate the disease; if
molecules can mediate such a process, therapy development can be envisaged, but can pro-
tein rescue be mediated by molecular species? It happens in physiological conditions, where
the acquisition of native conformation is made possible by specialized macromolecules
called chaperones, which help proteins find their native functional conformation.

The chaperones to which we usually refer are proteins that assist the folding of other
macromolecular structures and prevent the unwanted associations of unfolded polypeptide
chains, both in physiological conditions and stress conditions. Since the tendency of
a protein to aggregate increases in stress conditions, some chaperones are heat shock
proteins (HSP), expressed in response to high temperatures or cellular stress. Physiological
chaperons are essential in most cellular compartments, especially where proteins are
subjected to potential stress, for example, mitochondrion, because of the low pH and the
presence of degradation enzymes.

Based on such mechanisms, a new class of drugs is being exploited for protein rescue
in conformational diseases: the pharmacological chaperones (PC).

2. Pharmacological Chaperones

Pharmacological chaperones (PC) are small molecule drugs designed to facilitate the
correct folding of a protein and to re-establish its functionality [17,18] (see Figure 1).
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Figure 1. Native state protein has high activity and stability (green sphere). Misfolded proteins
have lower stability, activity (orange spheres), or both (red). Pharmacological chaperones, binding
with misfolded protein, increase its stability and activity. After binding with chaperones, proteins
with high residual activity (upper left square) assume stability and activity similar to the wild-type.
Proteins with lower residual activity (lower left square) assume high stability after binding with
pharmacological chaperones, increasing the availability of protein in the cell.

Similarly to physiological chaperones, these small molecules bind to poorly folded
proteins, bridging non-covalent interactions (hydrogen bonds, electrostatic, and van der
Waals) that were lost or loosened due to, e.g., missense mutations, thus strengthening the
protein structure [19]. In addition, the low molecular weight of the PC gives the same
advantages as other classes of drugs, such as molecular trafficking through membranes,
reaching a variety of tissues [20], and oral availability [21].

Pharmacological chaperones should not be confused with chemical chaperones, such
as trehalose and glycerol. The chemical chaperones are non-specific molecules; therefore,
they bind to and stabilize all proteins. The unspecific binding and the required high
concentration levels cause them to be unsuitable for therapeutic use.

Based on their molecular interaction with their target protein, PCs are classified into
different types, namely, competitive inhibitors, enzyme cofactors, allosteric ligands, and
alternative binders, described as follows.

2.1. Competitive Inhibitors

Many of the PCs described so far have been competitive inhibitors of lysosomal storage
disorders (LSDs) [22]. They create noncovalent hydrogen-bonding networks and van der
Waals interactions in the same pocket as the enzyme substrate, stabilizing the protein
structure. Consequently, when treating patients, a balance must be found between folding
enhancement and enzyme inhibition by using subinhibitory concentrations. Moreover,
PCs show a pH-dependent affinity to their target protein. The PC binds reversibly to its
target protein in the endoplasmic reticulum (ER) at neutral pH, stabilizing and facilitating
its transportation. An acidic pH in the lysosome allows dissociation between PC and its
target protein, enabling metabolization. Dissociation at acidic pH is, therefore, crucial to
broaden the narrow therapeutic index between enzymatic recovery and inhibition. Such
behavior has been exploited to develop a PC for Fabry disease. Fabry disease is caused by
variants in the GLA gene, coding for α-galactosidase A. Such enzyme, active in lysosomes,
breaks down the fatty substance globotriaosylceramide, a glycosphingolipid. As a result
of loss-of-function variants in the GLA gene, globotriaosylceramide builds up in cells
throughout the body, particularly cells lining blood vessels in the skin and cells in the
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kidneys, heart, and nervous system. Fabry disease is characterized by the progressive
accumulation of this substance in cells that results in various signs and symptoms. A
low molecular weight iminosugar analog of the terminal galactose residue of GL-3, called
migalastat, binds selectively and reversibly to the active site of various variants of α-
galactosidase A enzyme [23–25]. Through this binding mechanism, and at levels below
the inhibitory concentration, migalastat acts as a pharmacological chaperone, stabilizing
variants of α-galactosidase A in the ER and facilitating proper trafficking to lysosomes [26].
Once in lysosomes, migalastat dissociates from α-galactosidase A due to the lower pH,
allowing the enzyme to break down GL-3 [24–26]. Upon dissociation from the enzyme,
migalastat is rapidly excreted from the body. Another example of a competitive inhibitor is
iminosugar isofagomine, targeting and stabilizing mutants of β-glucosidase [27] and acting
as PC in Gaucher disease [28].

2.2. Enzyme Cofactors

Enzyme cofactors are another type of PC. It may be beneficial for stabilizing misfolded
proteins to increase the amount of the natural cofactor of an enzyme. The most common
example of IEM is tetrahydrobiopterin (BH4), the cofactor for phenylalanine hydroxylase,
which is defective in patients with phenylketonuria (PKU) [29–31]. About half of PKU
patients respond well to this treatment [18], and BH4 has received FDA approval and is
marketed under the commercial name Kuvan (see Table 1).

2.3. Allosteric Ligands

PCs can also take the form of allosteric ligands. These PCs stabilize their targeted
proteins by interacting in pockets other than the active site without impairing the function of
the proteins, a clear advantage over competitive inhibitor PCs. A renowned example is the
allosteric ligand Tafamidis (see [32–35] and Figure 2), already approved for transthyretin-
related hereditary amyloidosis (ATTR) [36] treatment.
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Figure 2. Three-dimensional structure of tafamidis-bound transthyretin (TTR). (A) The TTR homote-
tramer, arranged as a dimer of dimers (colored in yellow/orange and cyan/blue), is represented as
ribbons; subunits assemble around a central channel that accommodates two drug molecules at the
weak interacting surface of the dimers. (B) Close view of a tafamidis molecule filling the gap between
surfaces of two dimers. Representations are made with PyMol using a structure from Protein Data
Bank (PDB ID 3TCT, accessed on 10 January 2023).
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ATTR is an autosomal neurodegenerative disease characterized by neuropathy and
cardiomyopathy caused by variants in the transthyretin (TTR) gene. TTR carries vitamin
A (retinol) and the hormone thyroxine (T4) throughout the body. It has a homotetrameric
structure arranged as a dimer of dimers. In the presence of conformational variants,
however, the equilibrium is tipped toward misfolded monomers, which are the origins of
pathogenic aggregates and cell death. Patients carrying the most common variants of TTR,
p.Val30Met, accounting for 85% of cases worldwide, were demonstrated to be protected by
Tafamidis [37]. A successive study demonstrated that Tafamidis is also effective on eight
variants [38] other than p.Val30Met: p.Asp38Ala, p.Gly47Ala, p.Leu58His, p.Thr60Ala,
p.Phe64Leu, p.Ser77Phe, p.Ser77Tyr, and p.Ile107Val. The PC selectively binds to the two
largely unoccupied thyroxine-binding sites of the tetramer located at the weak dimer–dimer
interface (Figure 2), incrementing the number of interactions between protomers. Thus, in
tafamidis-bound TTR, the weaker dimer–dimer interface is stabilized against dissociation,
which is the rate-limiting step in forming amyloids [35]. Consequently, Tafamidis slows
the progression of the disease. Many other conformational variants of the TTR protein
have been treated with Tafamidis [39–42]. Tafamidis received approval from FDA and is
marketed as Vyndamax (see Table 1).

Table 1. Pharmacological chaperones as therapeutics.

Name of Disease Pharmacological Chaperones Clinical Status

Transthyretin-related hereditary amyloidosis Vyndamax (Tafamidis) Market approved
Phenylketonuria Kuvan (tetrahydrobiopterin or BH4) Market approved

Fabry disease Migalistat (1-deoxygalactonojirimycin
or Galafold) Market approved

Gaucher disease, Type 1 Afegostat tartrate
(Isofagomine or AT2101)

Phase 2
NCT00446550

Gaucher disease, Type 1 Ambroxol Phase 2
NCT03950050

Gaucher disease, Type 1 NCGC607 Preclinical cell-based study [43]

Pompe disease Duvoglustat Phase 2
NCT00688597

Pompe disease (late-onset) Miglustat (AT2221)
(with alglucosidase alfa, ATB200)

Phase 3
NCT03729362

Gangliosidoses, GM1 N-octyl 4-epi-β-valienamine Preclinical in vivo study [44]
Gangliosidoses, GM1 1,5-dideoxy-1,5-iminoribitol C-glycoside Preclinical cell-based study [45]
Gangliosidoses, GM2

Sandhoff disease
Tay-Sachs disease

Pyrimethamine Phase 1
2

NCT01102686

Mucopolysaccharidosis IIIC Glucosamine Preclinical in vivo study [46]
Batten disease CS38 Preclinical cell-based study [47]

2.4. Alternative Binders

Research is becoming increasingly focused on finding binding sites other than the
active ones to avoid interfering with the same biological function subject of the rescue
strategy. In recent years, computational methods have been used for discovering and
examining new hotspots that are not necessarily associated with active spots. Modulating
the protein–protein interface by pharmacological chaperones is also becoming increasingly
important in drug discovery, especially for diseases related to quaternary protein instabil-
ity [48]. Such points will be addressed in the “Pocket prediction tools” and “Exploiting
transient pockets” sections.

Several other diseases are treated with pharmacological chaperones, with molecules
already marketed and others under clinical trials of various phases. Conformational dis-
eases and the PC targeted against are reported in Table 1. As for drug development in
medicinal chemistry, a broad-spectrum screening of chemical libraries (high throughput
screening, HTS) [49] is the faster and more efficient way to identify new-generation chap-
erones. However, PC development is often targeted at rare and neglected diseases, for
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which the development of new drugs is too long and expensive, with a risk of failure. For
this reason, in the last years, the evolution of the drug repositioning approach has been
proposed as a more suitable and less expensive way to identify lead compounds in rare
and neglected disease drug development.4

3. Drug Repositioning

Drug repositioning (DR), also known as drug repurposing or retasking, is finding new
indications for known drugs outside the scope of the original use [50]. The origin of drug
repositioning derives from the capacity of some compounds to perturb multiple biological
targets, allowing some drugs to be exploited for more than one disease [51,52].

DR usually focuses on molecules that have cleared phase I safety trials but have yet to
show efficacy for the intended indication. Therefore, DR can probably skip the preclinical
and phase I study [53], which can reduce the cost throughout drug development. The cost
of repurposed drugs is typically reduced (50–60%), and their approval generally is quicker
(3–5 years) [54,55]. Moreover, repurposed drugs achieve market approval at a higher
rate than new drugs, giving companies an incentive to repurpose existing assets [54,56].
Nowadays, repositioning previously approved drugs is a common practice because of
the increasing number of computational methods that reduce the number of potential
compounds to be screened with high precision and sensitivity [51]. Therefore, this new
method offers more significant advantages than de novo drug discovery, which is costly
and time-consuming, sometimes with a scarce chance of success.

Drug repositioning finds a convenient use in silico. Computational methods provide
a valuable way for potential drug candidates to be identified and their interactions with
proteins to be predicted. Such a method is called molecular structured-based virtual
screening. It is commonly used in drug discovery by testing a large number of compounds
and calculating the affinity with a target site. Further, it is known that many molecules
have an affinity with more than one protein; thus, by screening known drugs, molecules
active on targets of other diseases can possibly be found [51]. From a DR perspective, such
virtual screening can be exploited for the out-licensing of drugs active on targets other than
the original. The union of virtual screening and drug repositioning has been a significant
step forward in drug discovery, especially for rare diseases [57].

The molecules that could be used for drug repositioning are [52]: (i) drugs in clinical
trials that have a common mechanism of action with another disease; therefore, clinical
trials for the new indication could be conducted in parallel with those for the original
indication; (ii) drugs failed in a particular indication in clinical development without safety
problems; (iii) drugs taken off the market for commercial reasons; (iv) drugs with patent
near to expire; and (v) discovered drugs not launched in markets of developed areas.

Ambroxol, a well-known molecule marketed as expectorant, is a case study of a
drug repositioned as PC. In 2009 Maegawa et al. [58] carried out a library screening of
FDA-approved drugs in search of stabilizers of variants of glucocerebrosidase (GCase),
the deficient enzyme at the base of Gaucher disease (GD), the most prevalent lysosomal
storage disease. Ambroxol was found to be a pH-dependent, mixed-type inhibitor of GCase
and a stabilizer of the p.Asn370Ser and p.Phe213Ile variants. A few years later, the drug
was proven effective against Gaucher variants [59]. Ambroxol improved or arrested the
progression of neurological symptoms, such as dystonia and gait disturbances, in a clinical
trial of Gaucher disease type 3 patients [60]. Ambroxol has been tested in Phase 2 clinical
trial (see Table 1), and a recent observational study [61] has encouraged its off-label usage.

In summary, drug repositioning aims to extend a drug’s patent life and administer it
to more than one pathology, increasing revenue. Indeed, drug repositioning contributes to
improving pharma companies’ attention toward rare or neglected diseases. The FDA’s Of-
fice of Orphan Products Development aims to create strategies for treating and diagnosing
rare diseases; also, it maintains the Rare Disease Repurposing Database [62].
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4. Predicting the Pathogenicity of Variants and the Effect on Protein Stability

The first step in a bioinformatic workflow for developing a PC for protein rescue in a
conformational disease framework is assessing the misfolding resulting from pathological
variants and their extent. Many tools are available to accomplish this task, usually web
tools (see Table 2) suitable for beginners. They should not be used as black-box anyway,
and the results should be checked against experimental evidence and from more advanced
simulation tools like molecular dynamics simulation (as illustrated later); also, comparing
tool results using different approaches is valuable (see “Method” column in Table 2).
For example, SIFT [63] is a multistep algorithm that uses sequence conservation and
amino acid properties to predict whether an amino acid substitution is deleterious or
neutral. Panther [64] is a valuable software system for predicting genes’ functions based
on their evolutionary relationships. SNAP2 [65] is based on a neural network machine-
learning algorithm, which distinguishes between neutral and non-neutral SNPs by taking
evolutionary information derived from an automatically generated multiple sequence
alignment. SNPs&GO [66] is a method that uses a protein sequence to predict whether
single-point mutations can lead to diseases in humans. PolyPhen-2 [67] is a trained Naïve
Bayes classifier that uses eight sequence-based and three structure-based predictive features
automatically selected by its algorithm. FatHMM [68] predicts the functional effects of
protein missense mutations by combining sequence conservation within hidden Markov
models. VarMod [69] uses structural modeling of proteins, their ligand binding sites, and
protein–protein interface sites to analyze non-synonymous single nucleotide variants to
identify those that may play a role in diseases. MutPred2 [70] is a machine-learning-based
method that integrates genetic and molecular data to predict the pathogenicity of amino
acid substitutions and their molecular mechanisms. SNPdryad [71] builds a multiple
sequence alignment using only protein orthologs and employs a random forest classifier to
derive a deleterious prediction score. ENTPRISE [72] predicts human disease-associated
amino acid mutation using a boosted tree regression machine-learning approach from
sequence entropy. MutationAssessor [73] predicts the functional impact of amino acid
substitutions in proteins, which is assessed based on the evolutionary conservation of
the affected amino acid in protein homologs. Mupro [74] uses support vector machine
approach combined with a local window centered around the mutated residue as input.
CUPSAT [75] uses amino acid atom potentials and torsion angle distribution to assess the
amino acid environment of the mutation site and the effect on stability. INPS [76,77] is
based on physicochemical descriptors extracted from the protein sequence or structure
to evaluate the impact of non-synonymous SNP on protein stability. SuSPect [78] uses
77 sequence-, structure-, and systems biology-based features to train a support vector
machine to discriminate between disease-causing and neutral variants. SDM [79] is a
computational method that analyzes the variation of amino acid replacements occurring at
a specific structural environment for predicting protein stability upon mutation.

Table 2. Protein stability online prediction tools are listed along with the web address and method
implemented.

Name URL Method

SIFT https://sift.bii.a-star.edu.sg/ (accessed on 10 January 2023) Sequence conservation and
amino acids properties

Panther http://pantherdb.org/tools/csnpScoreForm.jsp (accessed on
10 January 2023) Evolutionary preservation

SNAP2 https://rostlab.org/services/snap/ (accessed on 10 January 2023) Neural networks

SNPs&GO https://snps-and-go.biocomp.unibo.it/snps-and-go/ (accessed on
10 January 2023) Support vector machines

PolyPhen-2 http://genetics.bwh.harvard.edu/pph2/ (accessed on 10 January 2023) Naïve Bayes classifier
FatHMM http://fathmm.biocompute.org.uk/ (accessed on 10 January 2023) Hidden Markov models
VarMod http://www.wasslab.org/varmod/ (accessed on 10 January 2023) Support vector machines
MutPred2 http://mutpred.mutdb.org/ (accessed on 10 January 2023) Neural networks

https://sift.bii.a-star.edu.sg/
http://pantherdb.org/tools/csnpScoreForm.jsp
https://rostlab.org/services/snap/
https://snps-and-go.biocomp.unibo.it/snps-and-go/
http://genetics.bwh.harvard.edu/pph2/
http://fathmm.biocompute.org.uk/
http://www.wasslab.org/varmod/
http://mutpred.mutdb.org/
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Table 2. Cont.

Name URL Method

SNPdryad https://maayanlab.cloud/datasets2tools/landing/tool/SNPdryad
(accessed on 10 January 2023)

Sequence alignment using
protein orthologs

ENTPRISE http://cssb2.biology.gatech.edu/ENTPRISE/ (accessed on
10 January 2023)

Sequence entropy and
predicted protein
structures

MutationAssessor http://mutationassessor.org/r3/ (accessed on 10 January 2023) Evolutionary preservation
MUpro https://mupro.proteomics.ics.uci.edu/ (accessed on 10 January 2023) Support vector machines

CUPSAT http://cupsat.tu-bs.de/ (accessed on 10 January 2023)
Amino acid–atom
potentials and torsion
angle distribution

INPS https://inpsmd.biocomp.unibo.it/inpsSuite (accessed on
10 January 2023) Support vector machines

SuSPect http://www.sbg.bio.ic.ac.uk/~suspect/ (accessed on 10 January 2023) Support vector machines

SDM http://marid.bioc.cam.ac.uk/sdm2/prediction (accessed on
10 January 2023) Graph-based signatures

mCSM-ppi2 https://biosig.lab.uq.edu.au/mcsm_ppi2/ (accessed on
10 January 2023) Graph-based signatures

DUET http://biosig.unimelb.edu.au/duet/ (accessed on 10 January 2023) Support vector machines

mCSM-Membrane https://biosig.lab.uq.edu.au/mcsm_membrane/ (accessed on 10
January 2023) Graph-based signatures

mCSM-AB https://biosig.lab.uq.edu.au/mcsm_ab/ (accessed on 10 January 2023) Graph-based signatures

DynaMut2 https://biosig.lab.uq.edu.au/dynamut2/ (accessed on
10 January 2023)

Graph-based signatures and
normal mode
dynamics

Similarly, mCSM-PPI2 [80] uses an optimized graph-based signature approach to
evaluate the molecular mechanism of the mutation by modeling the effects of variations
on the inter-residue non-covalent interaction network. The main difference with SDM
is the presence, within mCSM-PPI2, of an interface analysis. DUET [81] combines two
complementary approaches (mCSM and SDM) in an optimized predictor using support
vector machines (SVM). mCSM-Membrane [82] is a machine-learning approach that uses
graph-based structural signatures to test predictive models and analyze the impacts of
mutations on the stability of membrane proteins and their possible association with diseases.
mCSM-AB [83] is a machine-learning approach based on graph-based structural signatures
that predict the change in antibody–antigen affinity upon introducing a single mutation.
Finally, DynaMut2 [84] combines graph-based signatures with normal mode dynamics to
predict the impact of actions on protein dynamics and stability resulting from vibrational
entropy changes.

The described prediction tools are routinely used for pathogenicity prediction or ratio-
nalization of clinical evidence, and examples of specific applications to the field of PC are
also reported. The web server for predictions of protein stability changes upon mutations
(MUpro) has been employed to develop an index of responsiveness to pharmacological
chaperones of variants of α-galactosidase in Fabry disease, scoring an 81% accuracy [85]
for the PC Migalistat (now marketed as Galafold) vs. variants of α-galactosidase. Again
for Fabry disease, PolyPhen-2 and SIFT have been used to support experimental data in
the clinical evaluation of p.Asp313Tyr variant. The pathogenicity of such mutation has
been debated since its first description in 1994 [86]. Recent studies converge to propose
such a variant conducive to FD but with a milder phenotype and with later onset of symp-
toms [87–90]; predictions converge as well, reporting the variant as probably damaging
(PolyPhen-2) or damaging (SIFT) [90].

5. Protein Instability Prediction by MD Simulation

The previously described methods are trained on datasets of protein sequences and
structures and return scalar values, making them very effective in summarizing the effect

https://maayanlab.cloud/datasets2tools/landing/tool/SNPdryad
http://cssb2.biology.gatech.edu/ENTPRISE/
http://mutationassessor.org/r3/
https://mupro.proteomics.ics.uci.edu/
http://cupsat.tu-bs.de/
https://inpsmd.biocomp.unibo.it/inpsSuite
http://www.sbg.bio.ic.ac.uk/~suspect/
http://marid.bioc.cam.ac.uk/sdm2/prediction
https://biosig.lab.uq.edu.au/mcsm_ppi2/
http://biosig.unimelb.edu.au/duet/
https://biosig.lab.uq.edu.au/mcsm_membrane/
https://biosig.lab.uq.edu.au/mcsm_ab/
https://biosig.lab.uq.edu.au/dynamut2/
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of mutations and processing large amounts of proteins/mutations. However, biological
activity relies not only on chemical factors but also on dynamics, regulating, e.g., ac-
tive site adaptability, loop flexibility, domain swapping, and more, to investigate which
time-dependent representation of wild-type/mutant proteins is required. Although exper-
imental techniques may investigate protein dynamics (e.g., nuclear magnetic resonance
relaxation), it is much more common and less expensive to adopt a computational biology
approach to simulate molecular dynamics. In particular, molecular dynamics (MD) simula-
tions based on the integration of Newtonian equations of motion, boosted by modern GPU
platforms, can simulate the dynamics of a protein at an atomic resolution for a time range
of up to milliseconds. Different timescale dynamics can be explored, from aromatic ring
flipping to domain swap. The most used suites for MD simulations are GROMACS [91,92],
Amber [93], NAMD [94], Desmond [95], and Tinker [96].

MD simulations start from a three-dimensional structure but in the case of ab initio
folding. Experimental structures from the Protein Data Bank [97] are the ideal starting
point, provided that the resolution is fair. Unlike the prediction methods already illustrated,
prosthetic groups or post-translational modifications in MD simulation cannot be easily
neglected. Their inclusion is a non-trivial task and must be evaluated. Similarly, missing
ligands can be omitted or added by, i.e., docking (see “Virtual screening” section). MD
simulations are used either to investigate local perturbation or overall folding instability
introduced by mutations. The perturbation analysis is the most common: time evolution of
the structure (the so-called trajectory) of the native protein and its mutants are compared
either visually or by plot analysis of parameters like root mean square fluctuations, H-bond
pattern, secondary structure conservation/disruption, etc. The comparison allows for
identifying and quantifying structural deviances anywhere in the structure, including sec-
ondary structure, active sites, interfaces, etc. It must be noted that since the MD simulation
of the mutant protein starts from a 3D structure, the simulation makes sense only if there
is evidence that the mutant reaches a folded state, which is, as discussed before in the
text, not straightforward, even for a missense mutation. Strong evidence is, of course, the
presence of the mutant as PDB experimental structure, but also residual biological activity
(e.g., enzymatic) can be evaluated, as well as the convergence of stability prediction by the
methods mentioned above (see section “Predicting the pathogenicity of variants and the
effect on protein stability”). When the mutant protein is unavailable as a PDB structure, the
same can be modeled in silico starting from the native structure. Missense mutations are
easily modeled with PyMol [98] molecular viewer. Its mutagenesis tool provides a point-
and-click interface to substitute amino acids in the 3D view of the molecule. The mutated
sidechain is modeled in situ according to a library of energetically favorite conformers; the
conformer with the best score in terms of fewer clashes/favorable interactions is proposed;
the user can also explore other solutions, e.g., by modifying the χ angles of sidechains.

Mutation-induced perturbation can be quantified more accurately by free energy
calculation in alchemical transformation [99,100]. Here, the comparison of two MD trajecto-
ries (native/mutated) is replaced by a single trajectory where the interested amino acid
sidechain structure is morphed into the new one along the MD run (hence the name al-
chemical). Energy evaluation of the resulting transformation trajectory with the Bennett ac-
ceptance ratio method (BAR) [101,102] or accelerated weighted histogram (AWH) [100,103]
allows for free energy perturbation to be evaluated.

When a mutation leads to misfolding, MD techniques may still help investigate the
deleterious effects of the unfolding simulations. Indeed, experiments have demonstrated
that unfolding MD simulations also shed light on folding, following the principle of
microscopic reversibility, which states that folding and unfolding events are the same
under the same conditions [104]. Thermal unfolding MD simulations obey the rules of
Arrhenius. An increase in temperature does not modify the unfolding pathway but only its
rate: the unfolding timescale is shortened as temperature increases. At the same time, the
overall behavior and order of events are conserved [105]. In practice, the native and mutant
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proteins undergo multiple simulations at increasing temperatures, e.g., 300 K, 500 K, 700 K,
and more, to achieve different unfolding rates and extents (see Figure 3).
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Figure 3. Example of unfolding MDs for wild-type HGD protomer from H. sapiens (Bernini A.,
unpublished data). The protein hydrated in a water box has been simulated at room temperature
(300 K) and in increasing unfolding conditions (500 K and 700 K) for 1 ms with GROMACS and the
amber force field. For each trajectory, the secondary structure content along the protein sequence
(ordinate) has been evaluated as a function of time (abscissa) and plotted in different colors (see
legend). A different rate of unfolding for the β-sheets is apparent by comparing the pictures.

The trajectories are then compared pairwise (native/mutant) with the analysis tools
already described to highlight the structural moieties that unfold early/late. The influence
of mutation can be evaluated. Although high-temperature unfolding MD simulation
conditions appear unnatural, they benchmark well with NMR experimental data obtained
at 298 K over the millisecond timescale [106].

Unfolding simulations have also performed well by replacing high temperatures with
a denaturing environment like urea solution [107].

6. Pocket Prediction Tools

The topography of a protein structure is sculpted with many surface pockets and
crevices, internal cavities, and channels. For example, ligands can bind to enzymes, and
gas molecules can be routed through such microenvironments. Such microenvironments
are best mapped by direct observation of a protein structure complexed with natural or
engineered ligands (e.g., substrates, inhibitors), as found in PDB. Considering the reasons
outlined in the introductory paragraphs, the trend over the past few years has been to
identify PCs that bind to alternative sites of proteins rather than competing with the known
ligand [20]. This can be experimentally achieved by, e.g., the use of molecular probes like
in the multiple solvent crystal structure (MSCS) X-ray diffraction technique [108–110] or
fragment-based NMR [111,112]. Alternative binding sites can also be discovered using
bioinformatics tools mapping the surface/volume of a protein structure, allowing the
search to be expanded to modeled proteins. This means virtually all the Uniprot (https:
//www.uniprot.org/ (accessed on 10 January 2023)) [113] entries missing 3D experimental
structure, now provided with the AlphaFold [114] structure prediction (536,000 reviewed
entries counted on 4 January 2022, limited to the Swiss-prot section and excluding those

https://www.uniprot.org/
https://www.uniprot.org/
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reporting experimental 3D structure). The tools for pocket/cavities discovery may rely on
geometrical analysis, machine learning, or template-based approaches and are offered as
web-based services (see Table 3). CASTp [115] is a metadatabase of topographies of PDB
structures computed by grid-based geometry, but user PDB files can also be uploaded for
computation. Results are displayed in a clean graphical viewer with pockets as bobble
objects. 3DLigandSite [116] is a prediction tool using a template library of known binding
sites; if the user cannot provide the 3D structure of the protein, the service retrieves it
from AlphaFold [114] database or eventually models it with Phyre2 [117]. Prediction
of protein-ligand binding residues is provided as a part of the intFOLD [118] modeling
server, which uses the FunFOLD template-based algorithm; the online service starts from a
protein sequence, and no custom PDB files are allowed. DeepSite [119] is a neural network-
based predictor that works with PDB codes and user-supplied structures; results can be
conveniently downloaded as comma-separated values (.csv) files and cavities as Gaussian
format (.cube), suitable for more detailed analysis in, e.g., PyMol by representation as
isomesh surface. COACH-D [120] is a ligand binding site predictor based on a support
vector machine and refined by docking. The user can optionally upload a ligand structure
that will be docked to the predicted pockets with Autodock Vina (discussed later), giving
more targeted results. For modeling, proteins can be uploaded as PDB structure files or
sequences in FASTA format.

Table 3. Web tools for predicting protein pockets/cavities with the corresponding website and
method.

Name URL Method

CASTp http://sts.bioe.uic.edu/castp (accessed on 10 January 2023) grid-based geometry

3DLigandSite https://www.wass-michaelislab.org/3dligandsite (accessed on
10 January 2023) template-based

IntFOLD https://www.reading.ac.uk/bioinf/IntFOLD (accessed on
10 January 2023) template-based

DeepSite https://playmolecule.com/deepsite (accessed on 10 January 2023) template-based, neural networks
COACH-D https://yanglab.nankai.edu.cn/COACH-D (accessed on 10 January 2023) consensus, SVM
PrankWeb http://prankweb.cz (accessed on 10 January 2023) template-free, random forest

Unlike the previous methods, Prankweb [121] (a web frontend to P2Rank) offers
a template-free machine-learning method based on the prediction of surface ligandabil-
ity, i.e., the convergence of favorable chemical interaction points on a solvent-accessible
protein surface.

The prediction of novel binding pockets on mutated proteins causing conformational
diseases offers a valuable solution also when PC is already available but belongs to the
competitive inhibitors class (see Section 2). The effectiveness of this kind of PC relies
upon a delicate equilibrium with the substrate, which can be avoided by substituting
the competitive PC with a stabilizer binding an alternative site, e.g., allosteric (see the
Tafamidis/TTR example) or, even better, devoid of biological function. Thus, pocket
prediction offers a solution for the development of PC of the second generation. For
example, in Fabry disease research, such an approach allowed the discovery of a different
druggable pocket located at the opposite side of the active site in α-galactosidase [122]. Such
pocket is capable of binding 2,6-dithiopurine, and the binding stabilizes the enzyme in vitro
and, noticeably, rescues the p.Ala230Thr variant that is not responsive to monotherapy
with Migalistat (the competitive inhibitor PC for α-galactosidase, see Table 1). A similar
effort has been carried out to overcome the drawbacks of inhibitory chaperones in Gaucher
disease: a series of pyrrozolopyrazines [123] have been demonstrated to bind to a new
pocket at a dimer interface and induce dimerization.

http://sts.bioe.uic.edu/castp
https://www.wass-michaelislab.org/3dligandsite
https://www.reading.ac.uk/bioinf/IntFOLD
https://playmolecule.com/deepsite
https://yanglab.nankai.edu.cn/COACH-D
http://prankweb.cz
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7. Exploiting Transient Pockets for PC Binding

The methods illustrated in the previous paragraph allow for alternative pockets to be
identified on a protein surface, but, despite the different approaches, they all share the limit
of computing on a single structure, usually a conformation of minimum energy. As a result,
the protein’s dynamics are neglected, a limit already highlighted for stability prediction
methods. While molecular dynamics trajectories are usually explored focusing on binding
sites and secondary structures, protein surfaces deserve more attention in the search for
alternative binding sites, as they may “hide” transient pockets.

The term ”transient pocket” refers to a crevice opening at the protein surface due
to side chains or backbone dynamics which is not detectable in the energy-minimized
or averaged structure. When discussed in conjunction with drug binding, such pockets
are also referred to as “cryptic” in literature [124]. Transient or cryptic pockets are valu-
able and provide a promising alternative to classical binding sites for drug development
or repositioning.

The concept of protein transient pocket was first exploited as a target for disruptor
of protein–protein interaction (PPI) since such interfaces are usually flat and strategies for
drug design aiming at “classical” targets, e.g., G-protein-coupled receptors and enzymes,
do not apply [125]. PPI investigations have shown that usually, in the center of the contact
interface, a small subset of the residues complex contributes most of the free energy of
binding. These hotspots have been exploited as receptor sites. Furthermore, once the
PPI disruptor binds to the hotspot, the flat surface forms a groove, as has been observed
in different protein–protein interaction systems, such as IL-2, Bcl-Xl, and HDM2 [125].
Moreover, molecular dynamics (MD) has shown that in the absence of PPI disruptors,
proteins’ transient pockets open in less than one nanosecond [126].

The nature of the transient pockets has been studied with many alternative MD
methods (NMA, CONCOORD, and tCONCOORD) [127] and different solvents (water and
methanol) [128]. The result was that the number of transient pockets grew with methanol
compared to those found in water, suggesting a lipophilic nature of the cavities. Moreover,
it has been suggested that side chain movements are insufficient for a transient pocket to
open; backbone dynamics are also necessary.

In the last decade, transient pockets have been evaluated for the re-gain of activity
of mutated proteins, as for the Y220C mutant of p53 tumor-suppression protein [129]. A
first MD simulation and docking study identified a transient pocket opening transiently
at Loop 1/β-strand 3 [130]. In successive research [129], several molecules were found
binding at a transient pocket site. Such crevice has its maximum depth at the mutation site
(Y220C) (Figure 4). A similar study has been carried out on the small chemokine CXCL12
(responsible for tumor progression and proliferation), where a transient pocket exploitable
for binding small molecules has been observed both in MD simulation and in vitro by NMR
experiment [131].
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Figure 4. (A–D) Snapshots from an MD simulation showing the gradual opening/closing of a tran-
sient pocket on the surface region (blue) surrounding the Y220C mutation of the protein p53 (white).
The red circle spots the transient pocket in the maximum depth conformation. (E) The transient
pocket identified in the MD superposed to that occupied by the pyrrolic moiety of PhiKan7099 small
molecule ligand (in pink) [132] in the experimental structure from PDB ID 5AOK (accessed on 10
January 2023).

Furthermore, molecular dynamics simulation of the HIV-1 protease has shown a
transient pocket with a lifetime longer than 1 µs that was used as the target for docking
studies aiming to discover a new anti-AIDS drug [133].

The search for transient pockets available for small molecules is increasingly important
indeed. For this reason, it requires effective programs to identify the latter. Programs for
transient pocket prediction are usually MD trajectory-based, such as EPOS [126] and
Mdpocket [134]. EPOS searches for transient pockets by analyzing a sequence of MD
snapshots using the PASS pocket detection algorithm [135]. Similarly, MDpocket analyzes a
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set of structural snapshots sampled along the molecular dynamics trajectory by exploiting
the fpocket program based on the Voronoi tessellation [134,136].

8. Druggability of Pockets

The approaches to pocket discovery described above open the way to a fundamental
question: what causes a binding site to be a binding site? Indeed, in a drug-repositioning
approach, finding alternative pockets is not enough; they must also be suitable for drug
binding, i.e., “druggable”. Indeed, by looking at a binding pocket, the shape is the most
evident trait, but the chemical properties cause it to be “binding”. The ability to efficiently
bind a ligand is estimated from the possible number and types of non-covalent interactions
that can be established, the so-called ligandability or druggability in medicinal chemistry
research. A druggable pocket should reflect the typical features of a drug molecule, which
are usually coded by Lipinski’s “Rule of Five” (Ro5) [137]. Ro5 describes the physicochemi-
cal characteristic required to be orally active for small molecules. According to the Ro5, a
compound should possess the following properties to be active: (i) a molecular mass less
than 500 Da; (ii) high lipophilicity: the octanol–water partition coefficient (LogP) should
be less than 5; (iii) at most, five hydrogen bond donors; and iv) less than 10 hydrogen
bond acceptors. All indicators are multiples of five indeed. A critical discussion on the
effectiveness of the Ro5 covering two decades of research is reported in [138].

Predicting a protein pocket’s druggability is one of the most critical steps in drug
discovery and development, now supported by many computational tools (Table 4). Pock-
Drug [139] is a server relying on multiple pocket estimation methods allowing the predic-
tion of pocket druggability of both apo and holo proteins with good accuracy. PockDrug
combines four pocket estimation methods to evaluate the best pocket set from the ‘NonRe-
dundant dataset of Druggable and Less Druggable binding sites’ (NRDLD) [140]. After
model validation, PockDrug outputs druggability probability corresponding to the average
of the seven best models and its standard deviation. Fpocket [136] is based on the geometric
α-sphere theory; the Fpocket server consists of three software packages: (1) pocket identifi-
cation using the concept of α-spheres (fpocket package); (2) pocket tracking along molecular
dynamics trajectory(mdpocket package); and (3) collection of homologous structures using
the pocket tracking (hpocket package). Through these three steps, the program allows the
identification of both allosteric sites and transient pockets. DoGSiteScorer [141] is another
server to analyze pockets’ geometric and physicochemical properties and predict their
druggability; identifying possible pockets is performed using the protein’s heavy atom
coordinates and calculating a density threshold. Based on a supporting vector machine
(SVM), the algorithm proceeds for subpockets identification that are then blended into
pockets. Protein–ligand interaction clusters (PLIC) [142] are a metadatabase that provides
binding sites from the Protein Data Bank clustered by similarity using Markov clustering
(MCL) [143] algorithm; by using computational tools, such as SPACE [144], fPocket [136],
and Autodock [145], it also calculates various attributes of the binding sites, such as binding
energy, shape, polarity, hydrophobicity, etc. CavityPlus [146] is a web server for pocket
detection and functional analysis. The Cavity subroutine identifies cavities on protein
surfaces using the NRDLD [140] dataset to train and validate the model. For each of them,
CavityPlus provides pharmacophore modeling, allosteric site identification, and covalent
ligandability prediction though the subroutines CavPharmer, CorrSite, and CovCys, re-
spectively. PharmMapper Server [147,148] is a web server that, contrary to the others,
starts from a small molecule probe and identifies potential targets using a pharmacophore
mapping approach. PharmMapper relies on an in-house pharmacophore database obtained
from the combination of other small molecule databases. In PharmMapper, target pro-
teins with the highest fit scores between corresponding pharmacophore models and query
compounds are reported as potential targets.



Int. J. Mol. Sci. 2023, 24, 5819 15 of 26

Table 4. Freely available online tools for the prediction of protein pockets’ druggability and their web
addresses. Methods applied are described in the text, along with references.

Name URL

PockDrug http://pockdrug.rpbs.univ-paris-diderot.fr/ (accessed on 10 January 2023)
Fpocket https://fpocket.sourceforge.net/ (accessed on 10 January 2023)
DoGSiteScorer https://proteins.plus/ (accessed on 10 January 2023)
CavityPlus http://www.pkumdl.cn:8000/cavityplus/ (accessed on 10 January 2023)
PharmMapper http://www.lilab-ecust.cn/pharmmapper/ (accessed on 10 January 2023)
PLIC http://proline.biochem.iisc.ernet.in/PLIC/ (accessed on 10 January 2023)

9. Virtual Screening of Compound Libraries in Search of PCs

Once a protein mutation and alternative binding site have been positively evaluated
as a target for PC-mediated rescue, the hit discovery phase starts. Again, computational
methods can be exploited to reduce time and cost in a workflow targeted to rare diseases;
the list of compounds to be evaluated by experimental assay is slimmed down through
simulated molecular docking of large compound databases [149]

A critical analysis of more than 400 studies involving virtual screening of small
molecule libraries showed an overall hit rate ranging from 1% to 40% [150], comparable and
somewhat superior to high throughput screening [151] both in terms of hit and screened
compounds. A significant contribution to virtual screening comes from freely available
databases of small molecule ligands (Table 5). Among the most popular, reporting drug-like,
bioactive, and synthesizable compounds are ZINC [152], PubChem [153], DrugBank [154],
ChEMBL [155], e-Drug3D [156], SuperDRUG2 [157], BindingDB [158], HMDB [159], and
LIGAND [160]. The size of such molecular datasets, counting millions of compounds, has
been expanded to billions of entries by enumerating synthetically feasible molecules (REAL:
REadily Available for synthesis Library [161], 5.5B compounds at the time of writing) or by
enumerating molecules in virtual chemical space (as in the Chemical Universe Database
GDB-17 [162], reporting 166B compounds).

Table 5. Free accessible databases of small molecule ligands and their corresponding web address.

Name URL

ZINC20 https://zinc20.docking.org/ (accessed on 10 January 2023)
PubChem https://pubchem.ncbi.nlm.nih.gov/ (accessed on 10 January 2023)
DrugBank https://go.drugbank.com/ (accessed on 10 January 2023)
ChEMBL https://www.ebi.ac.uk/chembl/ (accessed on 10 January 2023)
e-Drug3D https://chemoinfo.ipmc.cnrs.fr/MOLDB/index.php (accessed on 10 January 2023)
SuperDRUG2 http://bioinf.charite.de/superdrug (accessed on 10 January 2023)
BindingDB https://www.bindingdb.org/bind/index.jsp (accessed on 10 January 2023)
HMDB https://hmdb.ca/ (accessed on 10 January 2023)
Ligand https://www.genome.jp/kegg/compound/ (accessed on 10 January 2023)
REAL https://enamine.net/compound-collections/real-compounds (accessed on 10 January 2023)
GDB17 https://gdb.unibe.ch/downloads/ (accessed on 10 January 2023)

Molecular structures are usually available as 3D-coordinate file formats, such as sdf,
mol2, and pdbqt (an extended format for pdb, including extra columns for atom charge
and solvation energy). Other formats are becoming popular, such as the SMILES [163],
which encodes the molecule topology into a lightweight ASCII string at the cost of losing
conformation; on the contrary db2 format contains not one but multiple pre-calculated
conformations [152] at the expense of larger file size. The protein molecule is the “target”
of the screening and is usually provided in pdb format; the experimental or modeled
structure or a snapshot from an MD simulation trajectory can be employed. Screening
can be replicated over multiple trajectory snapshots to expand the target’s conformational
sampling [164,165]. Usually, only the volume of the target containing the candidate pocket
is screened, called the “docking box,” because of its simple shape. A box shape is used

http://pockdrug.rpbs.univ-paris-diderot.fr/
https://fpocket.sourceforge.net/
https://proteins.plus/
http://www.pkumdl.cn:8000/cavityplus/
http://www.lilab-ecust.cn/pharmmapper/
http://proline.biochem.iisc.ernet.in/PLIC/
https://zinc20.docking.org/
https://pubchem.ncbi.nlm.nih.gov/
https://go.drugbank.com/
https://www.ebi.ac.uk/chembl/
https://chemoinfo.ipmc.cnrs.fr/MOLDB/index.php
http://bioinf.charite.de/superdrug
https://www.bindingdb.org/bind/index.jsp
https://hmdb.ca/
https://www.genome.jp/kegg/compound/
https://enamine.net/compound-collections/real-compounds
https://gdb.unibe.ch/downloads/
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because of the easiness of mathematical representation in the pdb format, with three
coordinates for the origin and three for the side lengths.

Virtual screening can be performed with molecular docking simulation software that
evaluates the ligand–target interaction energy according to a scoring function based on
atom partial charge, desolvation energy, and others. The docking is flexible both on the
ligand and target sides. Ligands are assigned rotatable bonds at system set-up, the same
for protein but limited to amino acidic sidechains in the docking box. Among the freely
available docking software, many belong to the Autodock family: Autodock 4 [166,167],
Autodock Vina [168,169], AutoDockFR [170], FRED [171], EnzyDock [172], ICM [173],
FlexX [174], Glide [175], GOLD [176], Mdock [177], and MOE [178]. Most of the mentioned
software programs have also been optimized for parallel execution [179] and are readily
available on high-performance computers with high scalability, allowing larger datasets to
be screened.

The choice of docking software is connected mainly with the speed and accuracy of the
scoring function, and performance comparison is largely covered in the literature [180–183].
Ease of usage is nowadays a standard, thanks to many graphical interfaces such as
AutoDockTools [166], Raccoon v1.0 (AutoDock4) [184], and Raccoon v2.0 (AutoDock
Vina) [184]. The typical output of a virtual screening with docking software is a list
of compounds ranked by the score. The top-scorer is not necessarily the best hit [185]; it
is then a good practice to take a top group of compounds and re-rank according to other
scoring functions, molecular dynamics simulation-derived free energy of binding (e.g.,
MM/PBSA and MM/GBSA [186]), and, of course, experimental validation.

Molecular docking and MD simulation studies in the search for PC against conforma-
tional diseases have become more and more relevant in the recent literature. As an example,
many can be found about the discovery of PC for β-glucocerebrosidase, the target protein
in Gaucher disease [187–191]. Similar examples are reported for PC development rescuing
β-hexosaminidase A (associated with Tay-Sachs disease) [192] and N-acetylgalactosamine-
6-sulfate sulfatase (responsible for mucopolysaccharidosis IV A) [193].

Recently, machine learning [194–197] and deep learning by artificial intelli-
gence [198–200] approaches have succeeded in molecular docking, enabling the virtual
screening of libraries of up to billions of compounds. The first experimental validations of
deep docking are also encouraging [201]. A breakthrough of AI in virtual screening similar
to AlphaPhold [114] on structural biology is then envisaged and covered in Section 10.

10. The Impact of Artificial Intelligence

The re-emergence of artificial intelligence (AI) is having an impact on the drug-
discovery process, e.g., by expanding the chemical space of virtual screening but also
on de novo design of active compounds. Similar to drug-repositioning intent but with op-
posite approach, the advantage of such AI application in PC development for rare diseases
is that they allow for scaffold hopping [202], which may help establish a competitive patent
position [203], and are here described in their latest implementations in virtual docking
and de novo design.

Despite its benefits, virtual docking ultimately lags behind the rapid expansion of
chemical databases which already exceed billions of records when going to virtual chemical
space (e.g., the Chemical Universe Database GDB-17 [162] enumerates 166 billion organic
small molecules).

In order to address this challenge, AI is being introduced in the process and many
platforms are already available. An example is the deep-learning platform Deep Docking
(DD) [204]: small portions of ultra-large databases are used to train quantitative structure-
activity relationship models that predict remaining entries’ scores, accelerating virtual
screening 50 times. DD can now also take advantage of a convenient graphical user
interface (DD-GUI) [205] for quick setups and outcome analyses of large-scale virtual
screens. A similar approach of chemical space reduction, based on Bayesian optimization
techniques, has been proposed to speed up the exploration of large molecular libraries by
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developing a surrogate model architecture [206]: in order to exclude the least promising
compounds from evaluation, a surrogate structure–property relationship model can be
created using the predicted affinities of a subset of the library. Inspired by natural processes,
the ant colony optimization algorithm (ACO) is at the base of an artificial intelligence driven
docking algorithm recently implemented in VirtualFlow [207], the VirtualFlow Ants [208].
The software showed almost linear scalability to 128,000 CPUs on a test library of a total
of 1.44 billion compounds using KEAP1 protein as target. As an added value, it allows
multiple re-scoring and on-the-fly conversion of structure formats.

PyRMD [198] is a fully automated AI-powered ligand-based virtual screening tool
that implements in Python the random matrix discriminant (RMD) method, capable of
predicting whether a given small molecule could bind to a certain target. It requires only a
set of active ligands on a specific target to train the algorithm, making it entirely ligand-
based. A synthon-based approach, working in tight conjunction with REAL libraries [161],
has been proposed in V-SYNTHES [209]. As the name suggests, the method is based on
synthons; the synthons are those simple, charged chemical species that are formed during
retrosynthetic analysis after imaginatively breaking down the target molecule.

While the goal of AI in the methods described above is to allow structure-based virtual
screening to exploit compound libraries that are growing larger and larger, a different ap-
proach of “de novo” design is resurging thanks to machine intelligence development [210].
As the name implies, de novo design is the process of designing from scratch new chemical
entities with desired (pharmacological) properties. Ideally, machine intelligence may jointly
perform the three steps involved in the de novo design of molecules: generation, scoring,
and optimization.

In this view, the generative artificial intelligence approach [211] offers an AI model for
the design of drug-like molecules. Such a deep-learning method is capable of “capturing”
chemical determinants from a training set of drugs already known as active against a
target protein and designing new chemical entities; it has been successfully applied to
synthesizing novel active agonists of peroxisome proliferator-activated receptors. Similarly,
generative adversarial networks have been proposed [212] for the de novo design of
molecules from chEMBL [155] database. Reinforcement learning (RL) is at the base of
ReLeaSE (Reinforcement Learning for Structural Evolution) strategy [213], targeted at
generating chemical libraries of novel compounds optimized for either a single desired
property or multiple properties. An up-to-date review of such a growing area of research
can be found in [214].

11. Conclusions and Future Directions

Conformational diseases result from misfolding of proteins, often due to missense
pathological variants causing the loosening (or sometimes the strengthening) of the three-
dimensional structure or quaternary assembly of the macromolecule. It has been shown
that drug-like molecules may bind and stabilize the structure of poorly folded proteins,
leading to the rescue of structure and activity, hence the name pharmacological chaperones.
Furthermore, protein conformational diseases often superpose with rare genetic disorders,
requiring strategies for lower drug development costs. The present review shows how the
computational structural biology approach finds a convenient application in pharmaco-
logical chaperone development. We described a general workflow (Figure 5) that lines up
several in silico tools for protein target discovery and pathogenicity prediction of variants
(protein stability predictors and MD simulations) with those already used in rational drug
design (pocket discovery, pocket druggability and virtual screening).

The next challenge for such a strategy will be replacing knowledge-based
predictions with deep learning, which has already overperformed classical methods in
structural biology.
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208. Gorgulla, C.; Çınaroğlu, S.S.; Fischer, P.D.; Fackeldey, K.; Wagner, G.; Arthanari, H. VirtualFlow Ants—Ultra-Large Virtual
Screenings with Artificial Intelligence Driven Docking Algorithm Based on Ant Colony Optimization. Int. J. Mol. Sci. 2021,
22, 5807. [CrossRef] [PubMed]

209. Sadybekov, A.A.; Sadybekov, A.V.; Liu, Y.; Iliopoulos-Tsoutsouvas, C.; Huang, X.P.; Pickett, J.; Houser, B.; Patel, N.; Tran, N.K.;
Tong, F.; et al. Synthon-Based Ligand Discovery in Virtual Libraries of over 11 Billion Compounds. Nature 2022, 601, 452–459.
[CrossRef]

210. Schneider, G.; Clark, D.E. Automated De Novo Drug Design: Are We Nearly There Yet? Angew. Chem. Int. Ed. 2019, 58,
10792–10803. [CrossRef] [PubMed]

211. Merk, D.; Friedrich, L.; Grisoni, F.; Schneider, G. De Novo Design of Bioactive Small Molecules by Artificial Intelligence. Mol.
Inform. 2018, 37, 1700153. [CrossRef]

212. Lee, Y.J.; Kahng, H.; Kim, S.B. Generative Adversarial Networks for De Novo Molecular Design. Mol. Inform. 2021, 40, 2100045.
[CrossRef] [PubMed]

213. Popova, M.; Isayev, O.; Tropsha, A. Deep Reinforcement Learning for de Novo Drug Design. Sci. Adv. 2018, 4, eaap7885.
[CrossRef]

214. Palazzesi, F.; Pozzan, A. Deep Learning Applied to Ligand-Based De Novo Drug Design. Methods Mol. Biol. 2022, 2390, 273–299.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1021/acs.jcim.1c00653
http://doi.org/10.1186/s13321-022-00630-7
http://doi.org/10.1007/s11030-021-10256-w
http://www.ncbi.nlm.nih.gov/pubmed/34159484
http://doi.org/10.1016/j.drudis.2022.05.013
http://doi.org/10.1016/j.ddtec.2004.10.009
http://doi.org/10.4155/fmc-2017-0043
http://www.ncbi.nlm.nih.gov/pubmed/28485634
http://doi.org/10.1021/acscentsci.0c00229
http://doi.org/10.1093/bioinformatics/btab771
http://doi.org/10.1039/D0SC06805E
http://www.ncbi.nlm.nih.gov/pubmed/34168840
http://doi.org/10.1038/s41586-020-2117-z
http://doi.org/10.3390/ijms22115807
http://www.ncbi.nlm.nih.gov/pubmed/34071676
http://doi.org/10.1038/s41586-021-04220-9
http://doi.org/10.1002/anie.201814681
http://www.ncbi.nlm.nih.gov/pubmed/30730601
http://doi.org/10.1002/minf.201700153
http://doi.org/10.1002/minf.202100045
http://www.ncbi.nlm.nih.gov/pubmed/34622551
http://doi.org/10.1126/sciadv.aap7885
http://doi.org/10.1007/978-1-0716-1787-8_12

	Protein Conformational Diseases 
	Pharmacological Chaperones 
	Competitive Inhibitors 
	Enzyme Cofactors 
	Allosteric Ligands 
	Alternative Binders 

	Drug Repositioning 
	Predicting the Pathogenicity of Variants and the Effect on Protein Stability 
	Protein Instability Prediction by MD Simulation 
	Pocket Prediction Tools 
	Exploiting Transient Pockets for PC Binding 
	Druggability of Pockets 
	Virtual Screening of Compound Libraries in Search of PCs 
	The Impact of Artificial Intelligence 
	Conclusions and Future Directions 
	References

