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Abstract  

In the last years, artificial intelligence (AI) methods are extensively applied in several fields, 

including healthcare, with several applications to support diagnostic approaches or treatments. The 

research activities carried on during my PhD work have been devoted to the development of AI 

methods to support neonatologists and paediatric neurologists in the detection, characterization, and 

monitoring of brain disorders in paediatric subjects. Specifically, the PhD work was focused on the 

development of multimodal systems for: neonatal and absence seizure detection; quantitative 

characterization of the speech phenotype for some genetic syndromes; prediction of the 

neurodevelopmental scales in newborns with sepsis. 

In the first part of this PhD work, absence seizure detectors have been developed both for online and 

offline applications based on Electroencephalographic (EEG) signals and sonification algorithms. 

Following the encouraging results obtained for absence seizures, first attempts were made to validate 

EEG-based Neonatal Seizure Detectors (NSDs), a still tricky and time-consuming issue in the clinical 

practice. Moreover, Heart rate variability (HRV) analysis was proposed as an alternative approach 

for the detection of neonatal seizures. Experimental results confirmed the involvement of the 

Autonomic Nervous System during or close to neonatal seizures. The comparison between EEG-

based NSDs and HRV ones confirmed that the best approach to detect neonatal seizures is still the 

EEG. However, when EEG techniques are not available, the use of HRV-based NSDs could be a 

promising alternative.  

In the second part of this PhD work, quantitative acoustical analysis has been applied to the definition 

of the speech phenotype for four genetic syndromes: Down, Noonan, Costello and Smith-Magenis. 

Preliminary results confirm that acoustical measures could add helpful information for several 

syndromes with well-known language/voice impairments. Being completely non-invasive, acoustical 

analysis and AI methods might significantly contribute to the clinical assessment of such pathologies, 

also after surgical, pharmacological or logopaedic treatments and for long-term monitoring of the 

acoustical characteristics of the voice of these subjects. 

The last part of this PhD thesis exploits the possibility of forecasting neurodevelopmental scores in 

preterm newborns with and without sepsis. Using AI regression models, reliable results at different 

time steps of the follow-up were obtained, both with EEG and HRV features. The BAYLEY-III test 

was used to compute the scores in three different domains: cognitive, language and motor. Results 

suggest that both EEG and HRV quantitative analysis could be helpful for the clinical staff, 

identifying the newborns at risk of neurodevelopmental delays. 

Summing up, this PhD thesis shows how AI methods could be a valid support to clinicians in 

neurological paediatrics. Several experimental results are presented, showing possible applications 

and factual integration between AI techniques and clinical knowledge and needs, providing novel 

solutions and tools to support the clinical staff in the detection and characterization of brain diseases 

in infants and children.  
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Introduction 

In the last years, artificial intelligence (AI) and machine-learning (ML) models are extensively 

applied in several fields, including healthcare, where AI methods have found several applications to 

support diagnostic approaches or treatments. Most applications of AI and ML techniques concern 

adults and children, as a support to the clinical staff and patients in their daily activities. In the recent 

challenging era, due to COVID-19 outbreak, the use of telemedicine and AI approaches has provided 

a noteworthy breakthrough for healthcare, for a timely monitoring and feedback between the clinical 

staff and patients.  

In this context, the research activities of this PhD work have been devoted in the development of AI 

methods to support neonatologists and paediatric neurologists in the detection, characterization, and 

monitoring of brain disorders in paediatric subjects. Indeed, AI applications for paediatric subjects 

are less investigated in literature than for adults, therefore several AI and ML solutions have still to 

be discovered or demonstrated as helpful for paediatrics subjects.  

In the first part of this PhD thesis, the possibility to develop seizure detectors for paediatric subjects 

has been discussed and presented. Firstly, absence seizure detectors have been developed both for 

online and offline applications based on Electroencephalographic (EEG) signals. Such methods were 

validated on a private dataset collected at the A. Meyer Hospital, (Firenze, Italy), made up of 24 

children with absence seizures. Using EEG entropy, wavelet and coherence features, Support Vector 

Machine (SVM) models gave an average F1score of 78% for offline mode on long-term recordings. 

Moreover, combined with a sonification algorithm, in online mode the same models gave an average 

F1score of 69%. Results confirmed that sonification algorithms and AI models could be used to support 

the clinical staff in the automatic detection of ictal events for absence seizures, as well as for 

monitoring their time evolution.  

Following the encouraging results obtained for absence seizures, AI and ML models have been 

considered to develop reliable Neonatal Seizure Detectors (NSDs). Neonatal seizures are one of the 

most common neurological emergencies in Neonatal Intensive Care Units (NICUs). If not treated 

promptly they could have a negative impact on the neurodevelopment of the newborn. However, their 

detection is still tricky and time-consuming. The state-of-the-art of NSD has been analysed in this 

part of the PhD work, showing that the neonatal seizure detection is still an open issue. To address 

this problem, a Deep-Learning EEG-based NSD has been developed applying a combination of 

Stationary Wavelet Transform (SWT) and Fully Convolutional Neural Network (FCN). Methods 

were validated on 79 EEG signals (39 with seizure events) from a public dataset collected at the NICU 

of the Helsinki University Hospital (Helsinki, Finland). With the Leave-One-Subject-Out (LOSO) 

validation the SWT+FCN model gave a F1score of 48% and an Area Under ROC Curve (AUC) of 

80%, showing that the neonatal seizure detection task is more complex than the absence seizure 

detection one. Moreover, the review of the literature suggested that the physiological mechanisms 

behind neonatal seizures are still unclear for some aetiologies, especially as far as the Central Nervous 

System (CNS) and its interactions with the Autonomic Nervous System (ANS) are concerned.  

For these reasons, during this PhD project a more specific analysis of the brain network dynamics of 

neonatal seizures was performed, based on the recent evidence in the literature, that seizures and 

epilepsy could be a brain network disease. Circular Omega Complexity (COC) index and the 

Synchronizability (S) index were applied to the EEG signals from the Helsinki Dataset. COC and S 

describe the phase synchrony of the EEG signals and the degree of stability of the EEG system’s 

globally synchronized state, respectively. Pre- post- and ictal periods were characterized by the two 
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indexes and they were compared to seizure-free signals. COC showed significant differences between 

seizure and seizure-free events (Mann-Whitney test, p-value <0.001 and Cohen’s d 0.86). The 

combination of S and COC in standardized temporal instants provided a reliable description of the 

physiological behaviour of the brain network during and close to neonatal seizures. Findings confirm 

the usefulness of the evaluation of brain network dynamics over time for a better understanding and 

interpretation of the complex mechanisms behind neonatal seizures. The proposed methods could 

also support existing seizure detectors as a post-processing step in doubtful cases. 

Finally, other source of information than EEG has been investigated to detect and characterize 

neonatal seizures. In fact, in the literature, it has been argued that also the ANS may be 

directly/indirectly involved during or close to a neonatal seizure. Thus, variations on the ANS 

dynamics might be measured to detect or characterize ictal events in newborns. Firstly, it has been 

evaluated if multiscale heart rate variability (HRV) entropy features could be used to discriminate 

between newborns with seizures and seizure-free ones. A cohort of 52 patients (33 with seizures) 

from the Helsinki dataset has been considered. Multiscale sample and fuzzy entropy showed 

significant differences between the two groups (Mann-Whitney Test p-values 0.02 and 0.008, 

respectively). Moreover, interictal activity showed significant differences between seizure events and 

seizure-free ones (Kruskal-Wallis Test, Bonferroni multiple-comparison post hoc correction, p-value 

0.04 for multiscale sample entropy). These results suggested that such features could be used as inputs 

to NSDs. To this aim, several HRV-based NSDs have been developed during the PhD studies, using 

both multiscale entropy features and classical time- and frequency-domain HRV features. Models 

were validated on two datasets: the Helsinki Dataset and the Careggi dataset, collected at the Careggi 

University Hospital, Firenze, Italy, made of 51 patients, 22 with seizures. Among the ML models 

developed, a Patient Discriminant (PD) approach was proposed. PD assigns an index of seizure risk, 

identifying newborns with high risk of seizures. Encouraging results are achieved using a linear SVM, 

obtaining about 87% AUC and 89% for F1score. Furthermore, using HRV-based NSD, AUC of 69% 

and 62% were obtained on the Helsinki and the Careggi datasets, respectively. These results were 

achieved applying a generalized linear model (GLM) for the Helsinki dataset, and a Gaussian SVM 

for the Careggi dataset. These findings confirm that neonatal seizures can alter the ANS of the 

newborn, and these changes could be detected through such novel approaches based on analysis 

techniques that make use of HRV measures, thus providing an aid to clinicians when EEG is not 

available. Finally, a first evaluation regarding the Brain-Heart Interactions (BHIs) analysis on 

neonatal seizures is presented. The BHIs were quantified by the Convergent Cross Mapping (CCM) 

approach, considering EEG and HRV signals from the Helsinki dataset. Preliminary results show that 

newborns with seizures have a lower degree of interaction between the CNS and the ANS than 

seizure-free ones (Mann Whitney test: p-value 0.02). 

In the second part of this PhD thesis, two more topics regarding AI applications for paediatric subjects 

are discussed. The former is the quantitative acoustical analysis as a support for the characterization 

of the speech phenotype for some genetic syndromes. The latter is the prediction of 

neurodevelopmental scores in newborns with sepsis using AI methods.  

Regarding the quantitative acoustical analysis on genetic syndromes, the analysis of audio and voice 

signals of subjects with genetic syndromes has been addressed. This evaluation was performed 

towards the definition of speech phenotype for four genetic syndromes: Down, Noonan, Costello and 

Smith-Magenis. Several acoustical features and multiscale entropy indexes were estimated using the 

BioVoice software tool and MATLAB routines. Differences between pathological and control cases 

and possible inter-syndromes differences have been evaluated with a non-invasive procedure based 

on the analysis of voice recorded with smartphones or microphones, both in hospital setting and at 
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home. This research was carried on taking into account two main aims: defining quantitative methods 

for the characterization of speech phenotype in genetic syndromes and providing methodologies 

available for the monitoring over time of the voice characteristics of the subject. Statistical results 

suggest that overall differences might exist between controls and subjects with genetic syndromes. 

Preliminary results confirmed the usefulness of both acoustical analysis and entropy techniques for 

the analyzed syndromes: indeed for some syndromes, a specific speech phenotype exists that might 

support the clinician, highlighting syndrome’s characteristics not yet exploited. 

AI regression models were evaluated for the analysis on newborns with sepsis, to predict the 

neurodevelopmental scores of preterm newborns with and without sepsis. The BAYLEY-III test was 

used to compute the scores in three different domains: cognitive, language and motor. The 

quantitative analysis was performed on EEG and ECG recordings acquired when the preterm infants 

reached the term age. The ECG cohort was made up of 48 preterm newborns, 27 of which with sepsis, 

while the EEG cohort was made up of 64 preterm newborns (38 with sepsis). Results are encouraging, 

giving a Mean Absolute Error (MAE) lower than 5 points for the BAYLEY-III cognitive and 

language scales at 6- and 12-months for ECG cohort. For the EEG cohort, a MAE lower than 5 points 

was obtained for the language scores at 6-months. Results suggest that an EEG or ECG exam could 

be a support to clinical staff, identifying the newborns at risk of neurodevelopmental delays. 

In conclusion, this PhD thesis shows how AI methods could be a valid support in neurological 

paediatric applications. Several experimental results are presented related to childhood and neonatal 

seizures, quantitative language characteristics of genetic syndromes, neurodevelopmental delays, and 

neonatal sepsis. These results show only some of the possible applications and factual integration 

between AI techniques and clinical knowledge and needs, providing novel solutions and tools to 

support the clinical staff in the detection and characterization of brain diseases in infants and children.  
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ECP     electroclinical seizures 

EEG     electroencephalography, electroencephalogram 

EGP     electrographic-only seizures 

EMG     electromyography 
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EOS     Early Onset Sepsis 

FCN     Fully Convolutional Neural Network 

FDH, FD/h    False Detection per Hour 

FDR     False Discovery Rate 

FE     Fuzzy Entropy 

FPR     False Positive Rate 

GA    gestational age 

GDR     Good Detection Rate 

GSE     Generalized Sample Entropy 

HD     Helsinki Dataset 

HF     High Frequency 

HIE     Hypoxic-Ischemic Encephalopathy 

HR     heart rate 

HRV     Heart Rate Variability 

HTS     Hyper-Torus Synchrony 

IBI     inter-beat-interval 

ILAE     International League Against Epilepsy 

kNN, KNN    k-nearest neighbours  

KW     Kruskal-Wallis test 

LF     Low Frequency 

LOS     Late Onset Sepsis 

LOSO     Leave-One-Subject-Out 

MAE     Mean Absolute Error 

MCC     Matthews Correlation Coefficient 

MDE     Multiscale Distribution Entropy 

MFDD     Mean False Detection Duration 

MFE     Multiscale Fuzzy Entropy 

ML     Machine-Learning 

mRMR    Minimal-Redundancy-Maximal-Relevance 

MSE     Mean Squared Error 

MSE     Multiscale Sample Entropy 

MW     Mann-Whitney test 

NICU     Neonatal Intensive Care Unit 
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NPV     Negative Predictive Value 

NS     Noonan Syndrome 

NSD     Neonatal Seizure Detector 

PA     Paediatric Age 

PE     Permutation Entropy 

PPV     Positive Predictive Value 

PUVS     percentage of unvoiced segments  

RMSSD   root mean square of successive RR interval differences 

ROC     Receiver Operator Characteristic 

S     Synchronizability 

SE, SampEn   Sample Entropy 

SEN     Sensitivity 

SMS     Smith-Magenis Syndrome 

SPE     Specificity 

sTBN     standard deviation time between each number 

SVM     Support Vector Machine 

SVR     Support Vector Regression 

SWT     Stationary Wavelet Transform 

TRI     Triangular Index 

VLF     Very Low Frequency  

VSL     voice segment length 
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1. Automatic seizure detection in paediatric subjects: from absence 

seizures to neonatal seizures. 

Some contents in this chapter are based on the following publications: 

• Frassineti, L., Barba, C., Melani, F., Piras, F., Guerrini, R., Manfredi, C., 2019. Automatic 

detection and sonification of nonmotor generalized onset epileptic seizures: Preliminary 

results. Brain Research, Vol. 1721, p. 146341. 

https://doi.org/10.1016/j.brainres.2019.146341. 

• Frassineti, L., Guerrini, R., Barba, C., Melani, F., Piras, F., & Manfredi, C., 2019. 

Sonification techniques applied to EEG signals of nonmotor generalized onset epileptic 

seizures. 11th International Workshop, Models and Analysis of Vocal Emissions for 

Biomedical Applications, December, 17-19, 2019, Firenze, Italy, ISSN 2704-5846, pp. 257-

260. doi: 10.36253/978-88-6453-961-4. 

 

In this chapter an introduction to the automatic seizure detection in paediatric subjects is provided. 

The main concepts related to childhood epilepsy, seizure detectors and the best practice for the 

performance evaluation of the detectors will be presented. The main findings, along with validation 

of the results, are described concerning a cohort of 24 young subjects affected by the so called 

“absence seizures” [Frassineti et al., 2019]. Several concepts introduced in this chapter will be used 

in the following sections of this thesis, for a better understanding of the main challenges and issues 

on the seizure detection field. Specifically, the automatic detection of absence seizures, the methods 

and terms used will introduce to a more complex problem in the seizure field: the recognition and 

characterization of neonatal seizures that will be discussed from Chapter 2 to Chapter 5. 

This chapter is organized as follows: in Section 1.1 a brief introduction of what absence seizures are 

and the main results obtained in literature regarding their automatic detection will be discussed. In 

Section 1.2 the cohort considered will be presented. Section 1.3 and 1.4 will be devoted to present 

the methods and the main results. Discussion and conclusions are drawn in Section 1.5, showing how 

these findings may be helpful in the field on neonatal seizure detection.  

 

1.1. Absence seizures and their automatic detection 

The 1% of worldwide population suffers from epilepsy and these subjects are mainly present in 

childhood and in elderly age. Moreover, this incidence place epilepsy as one most common disorder 

in paediatric subjects [Zeng et al., 2016], while for adults only cerebrovascular diseases have a higher 

incidence. In the last years, epilepsy and epileptic seizures were classified in several ways and 

currently International League Against Epilepsy (ILAE) is updating such definitions in order to cover 

all the possible aspects of such disorders. Indeed nowadays, the pathophysiological mechanisms 

behind several kind of epilepsy and seizures are well understood, although for some of them it is still 

not clear the aetiology behind them. Thus, ILAE in 2017 provided an updated classification of 

seizures and epilepsy as shown in Figure 1.1 [Fisher et al., 2017]. 

As shown in Figure 1.1, among possible seizures there are the non-motor seizures, also known as 

absence seizures (or “petit-mal”). They are a typical disorder of the childhood, usually in children 

from 4 to 18 years old. Absence seizures represent the 10-17% of all the epileptic cases for such age 

range [Zeng et al., 2016]. They are characterized by seizure events of short duration (few seconds), 
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low motor component and high frequency of ictal events per day. The ictal event consists in a sudden 

interruption of awareness, unresponsiveness and blank stare. Sometimes it is possible to observe fine 

movements of the eyes and of the hands. If frequent, absences seizures could alter the learning skills, 

language development and socio-psychological attitude of the child [Verrotti et al., 2015]. Therefore, 

an early diagnosis of the disease is of utmost importance. Usually, absence seizures are benign 

disorders and often they tend to decrease in quantity and frequency at the end of the childhood. 

Moreover, anti-epileptic drugs (AEDs) can manage and mitigate the seizure burden in the child. That 

is true for the typical absences, while for other variants such as atypical or myoclonic it is not so. 

Moreover, the occurrence of absence seizure does not exclude the presence of other kind of epileptic 

seizures. As an example, the Lennox-Gastaut syndrome can be associated to the presence of atypical 

seizures [Ropper et al., 2005]. Therefore, not only the detection of seizures has to be done timely to 

improve the prognosis, but also the discrimination and identification of possible variants is crucial in 

order to find the best treatment for the child. 

 
Figure 1.1. ILAE 2017 Classification of Seizure Types. [Fisher et al., 2017]. 

 

To diagnose epilepsy and the kind of seizures the gold-standard is electroencephalography (EEG) 

[Fisher et al., 2017]. Especially in children long-term video-EEG monitoring has improved diagnosis 

and treatment of epilepsy. As an example, in typical absences, EEG shows generalized spike-wave 

discharges at a frequency higher than 2.5 Hz. Conversely, atypical absences are characterized by a 

more gradual onset or termination or significant changes in tone supported by atypical, usually slow, 

generalized spike and wave discharges, at less than 2.5 Hz, in the EEG [Fisher et al., 2017]. 

However, for the neurologist, the analysis of long EEG recordings is time-consuming and it is usually 

performed in off-line mode. Thus, in the last years there has been a growing interest in methods 

concerning automatic early seizure detection, as well as technologies able to provide alert or detection 

of the occurrence of seizure events in on-line mode or quasi-real time (i.e. very low latency detection 

time after the seizure’s onset). Concerning the automatic detection of absence seizures several works 

have been proposed, showing, however, a poor balance in terms of accuracy and latency time when 

applied in online mode [Alotaiby et al., 2014]. 
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This short premise introduces the aims of the work presented in this chapter were Artificial 

Intelligence (AI) methods have been developed in order to run both in offline and online mode as 

support to the clinical staff for an ease detection and characterization of absence seizures.  

 

1.2 The dataset of Absence Seizures  

It is noteworthy that in the field of seizure detection only few public datasets are available online 

[Olmi et al., 2021]. This is a well-known limit in this field of research, because it may not be easy to 

assess the reproducibility nor the comparison of AI methods proposed in the literature. Specifically, 

for neonatal seizures only a single public dataset is available [Stevenson et al., 2019]. For this reason, 

in this work we had to build a private dataset to develop and validate the seizure detectors made of 

data from subjects with absence seizures. 

Data were collected retrospectively and consisted of 30 EEG recordings from a set of 24 children (16 

females, mean age 8.7 ± 3.8 years). Subjects were evaluated at the Paediatric Neurology Unit, 

Children’s Hospital A. Meyer, Firenze, Italy. All the clinical information is summarized in Table 1.1 

[Frassineti et al., 2019]. 

Table 1.1. Information on the 24 patients included in the study. [Frassineti et al., 2019]. 

 
 

For a first assessment of the proposed AI methods, for each subject the EEG recordings were cut in 

segments with mean length 53 ± 18 seconds (hereinafter short-term recordings). EEG was recorded 

using 19 channels in a longitudinal bipolar montage, placed according to the international standard 

10 –20 system, with a sample frequency of 256Hz, and pre-filtered in the band 1.6-32 Hz for visual 

analysis. Then the same AI methods were tested considering the whole duration of the EEG: 47 ± 10 

minutes (hereinafter long-term recordings). EEG recordings were labelled by an expert neurologist 
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of the Hospital A. Meyer. For each channel the neurologist marked the onset and the offset of each 

seizure event.  

1.3 Methods 

All the proposed methods are implemented under the MATLAB software tool [MATLAB and 

Statistics and Machine Learning Toolbox, release 2017b] installed on a Hp Pavillion 15 notebook 

(OS Windows 10, 64 bit) Intel Core i7-5500U processor, CPU 2.40 GHz, RAM 16 Gb. In Figure 1.2 

the workflow adopted for the development of the Absence Seizure Detectors is shown. For the 

Permutation Entropy (PE) the toolbox developed by Jesús Monge-Álvarez was used [Jesús Monge-

Álvarez, 2023]. 

 
Figure 1.2. Workflow for the development of Absence Seizure Detectors. 

 

1.3.1 Pre-Processing and SWT filtering 

It is well known that one of the biggest issue on scalp EEG is the presence of artifacts that may mask 

the presence of electrophysiological features of interest. Several methods were proposed in literature 

to mitigate or detect artifacts [Islam et al., 2016a]. In this study one of the aims was the development 

of both on-line and off-line analysis methods. Therefore, the following requirements [Patel et al., 

2014], for artifact pre-processing had to be taken into account: 

• Low computational time 

• Only EEG signals available, no other physiological signals available such as 

electrocardiogram (ECG), or Electromyogram (EMG).  

• Methods optimized for a specific clinical case: absence seizures. 

Considering such premises for the pre-processing, we adapted the original method proposed by Md 

Kafiul Islam et al. [Islam et al., 2016b]. It applies the Stationary Wavelet Transform (SWT) [Nason 

and Silverman, 1997] to the original EEG time series. In our study EEG signals were divided into 

windows with length of 2 seconds, with overlap of 1 second. This operation is also called sub-
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windowing procedure [Olmi et al., 2021]. An illustrative example of SWT decomposition on an EEG 

channel (C4-P4) is shown in Figure 1.3. 

 
(a) 

 
(b) 

Figure 1.3. (a) The SWT decomposition of the first 2s epoch, the red square in (b), of the original raw EEG signal, 

channel C4-P4. [Frassineti et al., 2019]. 

 

After the selection of a fixed number of decomposition levels – 6 in our case – the method applied 

the following garrote shrinkage function g(i,j) [Gao, 1998] as shown in Equation 1.1.  

𝑔(𝑖, 𝑗) = {

𝑑𝑖,𝑗  |𝑑𝑖,𝑗|  ≤  𝑡𝑖,𝑗

𝑡𝑖,𝑗

𝑑𝑖,𝑗
 |𝑑𝑖,𝑗| > 𝑡𝑖,𝑗

  (1.1) 

Where 𝑑𝑖,𝑗 are the coefficients of the detail level, where i is the i-th EEG channel and j is the 

corresponding level of detail, that are filtered if larger than a given threshold 𝑡𝑖,𝑗 that is also known 

as the modified universal threshold [Islam et al., 2016b], and is defined as follows: 

𝑡𝑖,𝑗 = 𝐾𝛼𝑖,𝑗√2 ln 𝑁 (1.2) 

Where 𝛼𝑖,𝑗 is defined as: 

𝛼𝑖,𝑗 =
𝑚𝑒𝑑𝑖𝑎𝑛(|𝑑𝑖,𝑗|)

0.6745
 (1.3) 

The value of K in (1.2) varies according to the correlation index Cs. Cs is the absolute Pearson’s 

correlation coefficient between the current signal analysed and a reference EEG signal of absence 



29 

 

seizure defined a priori for each given SWT decomposition level. An example of reference signal 

used in this work is shown in Figure 1.4. 

 
Figure 1.4. Example of EEG reference signal. [Frassineti et al., 2019]. 

 

Thus, as in [Islam et al., 2016b], K varies according to the following decision process: 

• If 𝐶𝑠 ≥  𝑇ℎ𝑖𝑔ℎ → 𝑛𝑜 𝑑𝑒𝑛𝑜𝑖𝑠𝑖𝑛𝑔 

• If 𝑇𝑙𝑜𝑤 ≤ 𝐶𝑠 <  𝑇ℎ𝑖𝑔ℎ → 𝐾 = 1.5 

• Otherwise K=1 

The thresholds 𝑇ℎ𝑖𝑔ℎ = 0.7 and 𝑇𝑙𝑜𝑤 = 0.5 were chosen according to [Islam et al., 2016b]. Instead, 

the number of 6 levels for the SWT decomposition was chosen because the detail coefficients d6 

represent well the frequency range between 2Hz and 4Hz where the frequencies typical for absence 

are included [Frassineti et al., 2019]. Instead, the detail coefficients d1 and d2 as well as the 

approximation coefficients a6 were set to 0 as they do not carry useful information in the presented 

application. After the SWT filtering the EEG time series is reconstructed by the inverse operation 

ISWT. The filtering procedure was applied to all EEG channels. Regarding the mother-wavelet 

function used for SWT the following were evaluated: Biorthogonal 3.3 (Bior 3.3) [Upadhyay et al., 

2016] and Haar [Islam et al., 2016b]. They were compared to the case when no filtering was applied. 

The results of this comparison are shown in section 1.4. Examples of the filtering procedure are 

reported in Figure 1.5. 

 
Figure 1.5. Example of the proposed SWT-based filtering. Left original EEG signals; right: filtered signals. 

[Frassineti et al., 2019]. 
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1.3.2 EEG feature extraction 

Providing an exhaustive list of quantitative EEG features developed in literature is out of the aim of 

this PhD thesis and for further details please see the dedicated reviews [Olmi et al., 2021, 

Baumgartner et al., 2018, Paul 2018, Acharya et al., 2013]. We point out that several EEG features 

proposed in literature were specific for the context analysed, and this is true also for the case of 

absence seizures. In this work both single channel metrics and multichannel metrics were evaluated 

[Frassineti et al., 2019]. 

Among the possible single-channel features available a specific domain has grown in interest in the 

field of seizure detection: the entropy-domain features. Entropy features for physiological time series 

provide a sort of measure of complexity and unpredictability, and in the last years it was proved that 

they are well suited for the detection and characterization of epileptic seizures [Upadhyay et al. 2016]. 

Among the entropy indexes one of them was evaluated in this work: the Permutation Entropy (PE) 

[Bandt and Pompe, 2002], as it has already shown promising results when applied to time series 

concerning absence seizures [Li et al., 2014]. 

Following the original definition of PE given by Bandt et al. [Bandt and Pompe, 2002], let N be the 

length in samples of the times series, from which the (N-m-1) delay vectors 𝑋𝑡 = [𝑥𝑡, … , 𝑥𝑡+(𝑚−1)] are 

built, where m is the embedding dimension. Then each vector 𝑋𝑡 is rearranged in ascending order, let 

j the positional shift of each original element. Thus, for each delay vector there will be m! re-ordered 

patterns also called motifs 𝜋𝑖, i=1…m!. The possible occurrences of the 𝜋 i-th motif in the time series 

are indicated with 𝑓(𝜋𝑖), and the relative frequency is given by: 

𝑝(𝜋𝑖) =  
𝑓(𝜋𝑖)

𝑁 − 𝑚 + 1
(1.4) 

Thus, it is possible to define the PE through the following equation: 

𝑃𝐸 ∶=  − ∑ 𝑝(𝜋𝑖) log2 𝑝(𝜋𝑖) 

𝑚!

𝜋𝑖

(1.5) 

According to [Bandt and Pompe, 2002] in this work m=3 and N=512. PE was computed for each EEG 

channel considered and for each window of 2 seconds. 

Besides PE as single channel features the following measures were included in the analysis: the 

kurtosis of the SWT detail coefficients d3 and d4 [Upadhyay et al., 2016].  

Finally, as multi-channel feature, the index of coherence across all EEG channels in the frequency 

range typical for absence seizures (i.e. between 2Hz and 4Hz) was added. The index of coherence 

provides a measure of phase synchronization between EEG signals [Aarabi et al., 2008]. In this work 

the Mean Magnitude squared coherence 𝐶𝑥𝑦(𝑓) [Frassineti et al., 2019], described in Equation 1.6, 

was used: 

𝐶𝑥𝑦(𝑓) =
|𝑃𝑥𝑦|2

𝑃𝑥𝑥(𝑓)𝑃𝑦𝑦(𝑓)
 (1.6) 

Where Pxy(f) is the cross power spectral density between each pair of derivations (x and y), calculated 

for frequencies between 2Hz and 4Hz, while Pxx(f) and Pyy(f) are the power spectral densities of the 

signals x and y in the same frequency range. 
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All the EEG derivations for Cxy were considered because absence seizures are considered as 

generalized seizure [Fisher et al., 2017], thus it is often possible to evaluate changes in 

synchronization across all the scalp of the subject. It is important to remark that for focal seizures, 

Cxy could not work without a previous selection of EEG channels that contain the seizure event. 

In summary the following features from the EEG filtered time series were considered: 

• PE (m=3) for all the 19 EEG derivations 

• Kurtosis of detail coefficients d3 and d4 for all the 19 EEG derivations 

• Mean Magnitude-squared coherence between 2Hz and 4Hz considering all the 19 EEG 

derivations. 

Finally, all the features were normalized across subjects (between 0 and 1) and the outliers were 

detected and removed from the observations. In this work an observation was defined as outlier if one 

of its features is three times larger than the absolute deviation of the median MAD [Sachs and 

Berkovits, 1984]. 

 

1.3.3 Performance assessment of a seizure detector and choice of the supervised classifiers 

Before starting to talk about the procedure adopted for the selection of the supervised classifiers as 

absence seizure detectors, it is important to introduce which metrics are often used to validate and 

assess the performance of a seizure detector. 

Usually, a binary supervised classifier is evaluated by the Accuracy metric (ACC) (Equation 1.7), 

that provides a good synthesis regarding the classifier’s performance for both the two classes 

considered. ACC can be defined by Equation (1.7): 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1.7) 

Often in a seizure detection problem the True Positive (TP) are the epochs (i.e. the EEG sub-windows) 

correctly classified as seizure epochs and the True Negative (TN) are the epochs correctly classified 

as windows without any seizure events [Olmi et al., 2021]. False Positive (FP) and False Negative 

(FN) are the epochs wrongly classified by the classifier with respect to the label provided by the 

ground truth, in our case the neurologist’s labels. 

Often the well-known confusion matrix is used to have a complete overview of the performance of a 

classifier in terms of sensitivity and specificity [Olmi et al., 2021]. Sensitivity (SEN) is defined as 

follows: 𝑆𝐸𝑁 = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑁)⁄ , while Specificity (SPE) is: 𝑇𝑁 (𝑇𝑁 + 𝐹𝑃)⁄ . However, the seizure 

detection problem for long-term EEG recordings can be considered as an unbalanced classification 

problem. In other words, the epochs with seizure events are much less than the interictal periods, 

therefore the ACC metric could mask the real performance of the detectors as far as the detection of 

seizure epochs are concerned. For these reasons it is a good practice to use other epoch-based metrics 

for the seizure detection problem to take into account the unbalance between the two classes. In this 

work the following metrics [Frassineti et al., 2019] were added: 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝐵𝐴𝐶𝐶 ∶=

𝑇𝑃
𝑇𝑃 + 𝐹𝑁

+
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
2

 (1.8) 

𝐹1𝑠𝑐𝑜𝑟𝑒 ∶= 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (1.9) 
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𝑀𝑎𝑡𝑡ℎ𝑒𝑤𝑠 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡, 𝑀𝐶𝐶 ∶=
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝑇𝑁)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 (1.10) 

For F1score: Precision is defined as the percentage of correctly labelled seizure epochs, and Recall is 

the same as Sensitivity. Moreover, to evaluate the performance of the classifiers during online 

applications two more metrics were considered: one is the latency time given by the sum of the time 

to get new data (1s=overlap) plus the processing time of the method, according to Equation 1.11: 

𝑡𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑡𝑎𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛 + 𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 (1.11) 

The other one is the False Positive Rate (FPR), that evaluates the occurrence of misclassifications in 

the interictal phase for long-term recordings. FPR can be described as in Equation 1.12: 

𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (1.12) 

During the validation of the classifiers, the best between them was identified as the one with the 

highest F1score. As supervised models, both linear and non-linear Support Vector Machine (SVM), k-

NN, Boosted Tree and Logistic Regression models were investigated. All these models were 

considered as they were already found useful in the seizure detection problem [Olmi et al., 2021, 

Baumgartner et al., 2018, Upadhyay et al., 2016]. Moreover, to avoid both overestimation of the 

classifier’s performance and overfitting issues, all the classifiers were validated using a cross-

validation procedure [Hastie et al., 2001]. For internal cross-validation 6 subjects were considered in 

order to find the best hyperparameters. This subset was selected a priori by the clinical staff. Then 

the remaining 24 EEG recordings were used as test set, computing all the metrics previously 

introduced in this subsection. Subjects with atypical absences were included only in the test set. The 

average processing time on the 24 test cases was 0.25s for each iteration. Therefore, the average 

latency time was almost 1.25s, compatible with online application. Finally, we remark that all the 

metrics described in this subsection are epoch-based. Moreover, we remark that also event-based and 

patient-based metrics were provided in literature to have a complete overview of the seizure detector’s 

performance [Olmi et al., 2021]. In this work only epoch-based metrics were considered because they 

represent the first assessment for novel seizure detectors. We point out that EEG epochs from 2s to 

4s at least are required for the neurologist to detect an absence seizure [Keilson et al., 1987]. Event- 

and patient-based are commonly used during the clinical validation of such methods, thus the results 

shown in section 1.4 must be considered as preliminary. 

 

1.3.4 Post-processing and sonification 

The last part of the implemented procedure was the application of spatial and temporal thresholds to 

the detection obtained by the supervised classifiers [Frassineti et al., 2019]. In this work, an epoch 

was classified as a seizure epoch if at least half plus one of the EEG channels were classified as 

seizure epoch at the same time. As for the temporal threshold a part of the signal was defined an 

absence (or a part of it) if and only if it is classified as absence for at least two seconds and separated 

each other by at least one second [Keilson et al., 1987]. Regarding the methods in offline mode, 

spatial and temporal thresholds were applied before the computation of the performance metrics. 

Moreover, at the end of the EEG examination a summary report was produced for each patient where 

the following information was reported: 

• Number of absences found their duration and time occurrence. 
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• Average frequency, to discriminate between typical and atypical absence seizures. 

• Derivation involved and duration of the involvement. 

Instead for the online methods only the spatial threshold was considered. Moreover, to provide a sort 

of alert for the clinical staff of the occurrence of a seizure event in quasi-real time a sonification 

procedure was applied. The commonly accepted definition of sonification comes from G. Kramer et 

al. [Kramer et al., 1999]: 

“Sonification is the transformation of data relations into perceived relations in an acoustic signal 

for the purposes of facilitating communication or interpretation”. 

There are several reasons why it may be useful to turn graphical and/or numerical information into 

sounds: overload of visual information; providing a support to visual information; speeding up the 

interpretation of information processes for real-time or online applications [Loui et al., 2014, Temko 

et al., 2015a]. For a correct sonification procedure, it is essential to develop a method that allows 

discriminating between the relevant information and artefacts in almost real time. In this work the 

following procedure was applied: 

[ABS-ABS-ABS] → [𝑏𝑒𝑒𝑝1𝑏𝑒𝑒𝑝2 → 𝑠𝑜𝑢𝑛𝑑𝑎𝑏𝑠] 

In other words, if the automatic recognition detects three consecutive seconds as seizure epochs, the 

first two will produce 2 beeps, which allow a first discrimination between possible event of absence 

seizure and a false positive, while the third second and any following ones will produce a specific 

sound described in Equation 1.13.  

𝑠𝑜𝑢𝑛𝑑𝑎𝑏𝑠 = ∑ 𝐸𝑠𝑜𝑢𝑛𝑑𝑖  sin(2𝜋𝑓𝑜𝑠𝑐𝑡) 

𝑁

𝑖=1

 (1.13) 

Where 𝐸𝑠𝑜𝑢𝑛𝑑𝑖
 are the oversampled coefficients of d6 (up to 48kHz, the playback audio frequency), 

and 𝑓𝑜𝑠𝑐 is the sound oscillation frequency set to the note C at 256Hz. The choice of 2 seconds played 

as beeps was defined since absences less than two seconds cannot be considered as possible seizures 

but just a sort of interictal activities. 

 

1.4 Absence Seizure Detection: Results 

In this subsection the main results obtained during the development and validation of the absence 

seizure detectors are reported. In Table 1.2 the results related to the comparison between the two 

different mother-wavelet functions and no-filtering on the short-term recordings are shown. The mean 

time duration was 53s ±18s. The supervised model was a Fine Gaussian SVM (FGSVM) [Burges, 

1998]. 

Table 1.2. Results of the comparison on the short-time EEG recordings between different mother-wavelet functions 

(Bior 3.3 and Haar) and when no SWT filter was applied (No-Filter). Both mean and standard deviations are reported 

(μ±σ). [Frassineti et al., 2019]. 

 BACC  

% 

F1score  

% 
MCC 

Bior 3.3 93±5 89±6 0.86±0.07 

Haar 88±5 82±9 0.78±0.08 

No-Filter 65±11 43±16 0.40±0.11 
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In Table 1.3 results obtained for all the supervised models both on the short-term time series and 

during validation are reported (without any post-processing). Instead on Table 1.4 the results obtained 

on the long-term time series are shown, using the FGSVM classifiers and applying the online and 

offline post-processing. The average time duration for the long-term recordings was 47±10 minutes. 

Table 1.3. Results for the validation set on the short-time series, using different families of supervised classifiers. Both 

mean and the standard deviations are reported (μ±σ). [Frassineti et al., 2019]. 

 

F1score 

Validation 

% 

F1score 

% 
MCC 

BACC 

% 

FGSVM 93 89±6 0.86±0.07 93±5 

k-NN (k=1) 89 85±7 0.81±0.08 90±5 

Boosted tree 92 89±6 0.86±0.06 92±5 

Logistic Regression 90 87±6 0.83±0.08 91±5 
 

Table 1.4. Results obtained on the test set of 24 long-term recordings. Both the performance without any post-

processing and with online and offline methods are shown. Both mean and standard deviations are reported (μ±σ). 

[Frassineti et al., 2019]. 

 BACC  

% 

F1score  

% 
MCC 

FPR  

% 

FGSVM (Bior 3.3) 87±6 53±16 0.55±0.14 2.4±2.0 

ONLINE 89±6 69±15 0.70±0.14 1.1±1.0 

OFFLINE 91±5 78±15 0.78±0.14 0.8±1.0 

 

1.5 Discussion and Conclusions 

In this chapter a complete workflow for the development of an absence seizure detector both for 

online and offline mode was presented. From Table 1.2 it is possible to confirm that a pre-processing 

step is often required or at least recommended before starting the analysis on EEG signals at least in 

the case of absence seizure detection. While in this work only EEG signals were considered, other 

works have already proved that adding other physiological signals such as ECG or EMG can improve 

the detection of artefacts [Olmi et al., 2021]. Results confirmed, as in [Li et al., 2014], that entropy 

features are able to characterize absence seizures, and these features could be successfully used as 

input of supervised classifiers. Moreover, the use of multi-channel features such as Cxy for generalized 

seizures could be helpful in their characterization and detection [Mormann et al., 2000].  

However, the features considered were extremely specific for absence seizures, therefore a 

fundamental step for each seizure detector that employs machine-learning methods will be the 

investigation and selection of specific features. This issue might be partially overcome by the use of 

deep-learning methods [Olmi et al., 2021]. In this work there is no mention to the possible methods 

available for the feature selection (e.g. mRMR [Ding and Peng, 2005], ReliefF [Robnik-Šikonja and 

Kononenko 2003]) or transformation (e.g. PCA, ICA [Hastie et al., 2001]). These aspects will be 

discussed in the next chapters of this PhD thesis. In this work the selection of the best set of features 

was made by a-priori clinical info and literature review. Regarding the performance assessment it is 

important to remark that epoch-based metrics should take into account the intrinsic imbalance 

between seizure events and interictal periods as already suggested by [Olmi et al. 2021, Temko et al., 

2015a].  
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The results obtained in Table 1.4 for the offline mode, confirmed that for several kind of seizures in 

adults and children the problem of seizure detection may be almost solved when robust EEG analysis 

techniques are available [Chisci et al., 2010]. In fact, for the adults, already some tools include an off-

line seizure detector among their utilities [Vidyaratne and Iftekharuddin, 2017]. The results showed 

in this chapter, though preliminary, suggest that also for children this solution could be adopted and 

integrated in clinical practice to support the clinical staff. 

As shown in Table 1.3 and 1.4, the BACC parameter does not vary much between short-term and 

long-term analysis, while the F1score decreases. The PRECISION parameter in the F1 score formula 

(Equation 1.9) drastically drops due to the heavy imbalance in the number of test samples between 

seizures and interictal activity, which inevitably raises the number of false positives (also in case of 

high values of specificity, 98% average in this study). On the contrary, with the BACC parameter the 

unbalance has less influence on the test result because false positives are related only to true negatives. 

Possible improvements could be obtained adding more reference signals and finding other features 

for discrimination. For the online methods a sonification approach was implemented in order to alert 

the clinical staff recognizing the audio pattern associated to the absence seizures (two consecutive 

beeps and then the d6 sonified). This approach could e.g. be applied to an earphone, and might allow 

the clinical staff to concentrate their attention on the clinical signs during the ictal events, evaluating, 

as an example, the degree of awareness of the subject and, at the same time, monitoring the 

progression of the ictal events towards their offset (the end of sounds). To better explain the 

usefulness of EEG sonification, an example of a sonified EEG is shown in Figure 1.6 (channel C4-

P4). The dashed rectangle represents the onset and offset of the seizure event labelled by the 

neurologist. The upper figure is the original EEG signals while the lower one shows the results of 

FGSVM detection and after the online post-processing, that is the sonified EEG (where Arbitrary 

Units AU are >0). From Figure 1.6 qualitatively shows that the sonified part significantly reduced the 

amount of signal to be analysed. Moreover, the adopted sonification scheme allows a discrimination 

between the seizure event and false positives (e.g. the continuous rectangles).  

 
Figure 1.6. Example of EEG sonification. Above the EEG channel; below the sonified signal after the detection by 

FGSVM and online postprocessing. The dashed lines represent the onset and offset of the seizure event labelled by 

the neurologist. AVU= Arbitrary Voltage Units, AU= Arbitrary Units. [Frassineti et al., 2019] 
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The performance obtained applying the online and offline post-processing confirmed that the correct 

detection of the seizures is a crucial step in order to improve the accuracy of the AI systems, reducing 

the number of false positives (Table 1.4).  

This work had some limits: no control cases were considered. Indeed, for a clinical validation of the 

methods a set of them should be defined. Although we obtained promising results even on subjects 

with atypical absences, our results cannot confirm in general the reliability of AI methods for this 

clinical condition due to small number of subjects with atypical absences considered in our study (2 

cases). Moreover, sonified signals could be subjective, thus a validation by double-blind test should 

be evaluated in order to confirm the reliability of the discrimination of seizures events from false 

positives made by sonification [Bonebright, 2011]. Finally, the proposed sonification algorithm did 

not allow a recognition of false negative; another limit can be represented by the definition of only 

one possible reference signal (Section 1.3). All these aspects could be addressed in future 

developments of the methods in order to improve the performance of the absence seizure detectors 

both in offline and online mode.  

In this work the possibility of finding a compromise between computational speed and accuracy for 

a fast and reliable identification of nonmotor generalized onset seizures was explored. To this aim, a 

specific filtering technique was proposed for the clinical problem under examination, compatible with 

its online implementation. In addition, an appropriate alert technique to inform the clinician about 

seizure onset was developed that requires low latency time. The results, though preliminary, suggest 

a possible optimization of existing methods applied to specific clinical settings. In this framework, 

absences may be considered as an ‘optimal model’ to test a seizure detection methodology, being 

aware that owing to their electroclinical characteristics, they are easily recognised and processed for 

sonification. However, the good results obtained, both in terms of balanced accuracy (about 96%) 

and latency times (1.25 s on average), offer the perspective for a real-time application of the 

methodology in the clinical setting of other types of seizures, which are more challenging for their 

automatic recognition and online sonification. The proposed methodology might also be helpful 

during video-EEG monitoring of candidates to epilepsy surgery, which requires a rapid intervention 

of the clinical staff at seizure onset and the real time evaluation of the related clinical signs, in order 

to better identify the seizure onset zone. In addition, our method might support clinicians in the 

interpretation of ictal video-EEG recordings through automatic event recognition techniques and the 

reduction from 19 simultaneous paths to a single sound information, that could be made through a 

predefined range of sounds combined with each characteristic event found in EEG data (e.g., seizure 

or interictal epileptiform discharges).  

Moreover, the last part of the discussion opens to a new question:  

Are there other frameworks where an online seizure detector could be a reliable and useful support 

to the clinical staff? 

Neonatal Intensive Care Units (NICUs) could be among them, where a timely intervention and fast 

recognition of cerebral disorders (e.g. neonatal seizures) are utmost importance for the health of the 

newborns. 

In conclusion, this chapter on absence seizure detection provides the motivations and methodological 

basis for the most substantial part of this doctoral thesis work: the development and evaluation of 

Neonatal Seizure Detectors for NICU that will be described in the next Chapters. 
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2. Automatic detection of seizures in Neonatal Intensive Care Units 

Some contents in this chapter are based on the following publications: 

• Olmi, B., Frassineti, L., Lanatà, A. and Manfredi, C., 2021. Automatic Detection of Epileptic 

Seizures in Neonatal Intensive Care Units Through EEG, ECG and Video Recordings: A 

Survey. IEEE Access, vol. 9, pp. 138174-138191, 2021, doi: 10.1109/ACCESS.2021.3118227. 

• Olmi, B., Manfredi, C., Frassineti, L., Dani, C., Lori, S., Bertini, G., Cossu, C., Bastianelli, 

M., Gabbanini, S., Lanatà, A., 2022. Heart Rate Variability Analysis for Seizure Detection in 

Neonatal Intensive Care Units. Bioengineering, Vol. 9, Issue 4, p. 165. 

https://doi.org/10.3390/bioengineering9040165 

• Frassineti, L., Ermini, D., Fabbri, R., and Manfredi, C., 2020. Neonatal Seizures Detection 

using Stationary Wavelet Transform and Deep Neural Networks: Preliminary Results. In 20th 

IEEE Mediterranean Electrotechnical Conference, June 16-18, 2020, Palermo. doi: 

10.1109/MELECON48756.2020.9140713. 

 

2.1 Introducing Neonatal Seizures 

As discussed in Chapter 1 seizures and epilepsy may have different clinical manifestations, 

electroclinical characteristics and aetiologies, as well as varying incidence according to age. 

However, in the seizure classification proposed in [Fisher et al., 2017] (Figure 1.1) there is a missing 

piece regarding a specific kind of seizures: the neonatal seizures. In fact, ILAE in 2021 proposed a 

revision of classification and definition for seizures in neonates, that deserve a dedicated 

categorization and clinical evaluation [Pressler et al., 2021]. 

Neonatal seizures are the most common neurological emergency in the first days of life. The incidence 

is almost 1-5 per 1000 live births and 8.6/1000 in Neonatal Intensive Care Units (NICUs). Due to the 

specific category of patients, they do not fully match the criteria for diagnosis of epilepsy proposed 

in [Fisher et al., 2017]. Although the majority of neonatal seizures occur in the context of an acute 

illness, in some cases they could be a first manifestation of early infantile epilepsies [Pressler et al., 

2021]. 

Since 1950, several works have proposed classification for neonatal seizures, according to clinical 

manifestations, autonomic nervous system changes [Volpe, 1989] or electroclinical characteristic 

[Mizrahi and Kellaway, 1987]. The American Clinical Neurophysiology Society defined an 

electrographic seizure as a “a sudden, abnormal EEG event, defined by a repetitive and evolving 

patter with a minimum 2μV peak-to-peak voltage and duration of at least 10 seconds” [Tsuchida et 

al., 2013]. This definition is partially in contrast with some electroclinical seizures in newborn that 

could have duration shorter than 10 seconds (e.g. myoclonic seizures), or the case of short rhythmic 

discharges (BIRDs), with duration always less than 10 seconds, which are suggest to be “very brief” 

electrographic seizures [Pressler et al., 2021]. 

Nowadays, as in [Pressler et al., 2021], such classifications are reconsidered, in order to uniform and 

standardize them, taking into account that neonatal seizures usually are characterized by a poor motor 

component (also known as subtle seizures or electrographic-only). In fact, at least the 50-80% of 

neonatal seizures are electrographic-only [Pressler and Lagae, 2020]. Moreover, there are several 

aetiologies behind neonatal seizures. As shown in Figure 2.1, the most common is the Hypoxic-

Ischemic Encephalopathy (HIE) [Pressler et al., 2021], but there are also genetic, metabolic, or 
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cardiovascular origins, and some with unknown origin. Another point that must be considered is that 

the newborn’s brain is constantly under development: immature neural connections, electroclinical 

characteristics as slower brain activities, degree of Autonomic Nervous System’s development, make 

the neonatal seizure semiology different as compared to children and adults. The immature brain is 

characterized by high hyper-excitability due to poor inhibitory mechanisms and a surplus of 

excitatory neurotransmitters [Shellhaas, 2019]. Also, the effect of the preterm birth in the process of 

neurodevelopment could add another variability factor. Moreover, neonatal seizures are mainly focal, 

while only rarely they show a bilaterally distributed network. 

 
Figure 2.1. Common aetiologies of neonatal seizures, figure from [Pressler et al., 2021]. 

 

Here only a subset of possible differences between neonatal seizures and seizure in the child and in 

the adult are presented, but they are however sufficient to justify a dedicated definition and 

classification. Considering all these aspects the ILAE in [Pressler et al., 2021] proposed a novel 

conceptual definition: 

“An electrographic event with a pattern characterized by sudden, repetitive, evolving stereotyped 

waveforms with a beginning and end. The duration is not defined but has to be sufficient to 

demonstrate evolution in frequency and morphology of the discharges and needs to be long enough 

to allow recognition of onset, evolution, and resolution of an abnormal discharge.” 

Another important indication given in [Pressler et al., 2021] is the recognition of video-EEG as the 

gold-standard for diagnosis and characterization of neonatal seizures. Alternatives to multichannel 

EEG are the use of amplitude EEG (aEEG) or Color Spectral Density Array (CDSA), although such 

techniques have shown poor performance in terms of sensitivity for neonatal seizure detection 

[Shellhaas et al., 2007]. Anyway, aEEG and CDSA perform better than the seizure detection given 

by just the inspection of the clinical manifestations (e.g. by qualitative video analysis) [Malone et al., 

2009]. Unfortunately, in several neonatal settings the EEG techniques and the expert staff for their 

interpretation are not available around the clock or not at all [Temko et al., 2017]. Moreover, even 

for expert staff the detection of neonatal seizures in video-EEG recordings is a non trivial and time-

consuming task, with a high false negative rate that produce an inaccurate estimation of the seizure 

burden in the infants [Pavel et al., 2020, Frassineti et al., 2021a]. 

Since neonatal seizures have several origins, this implies that treatment depends strictly on their 

origin. In this PhD thesis a comprehensive discussion about the possible treatments of neonatal 

seizures is not provided. However, the most common treatment consists of anti-epileptic drugs 

(AEDs) and hypothermia [van Rooij et al., 2013]. It is noteworthy that newborns with seizures show 
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a remarkable resistance to pharmacological treatments, making the selection of the best treatment still 

an open issue in neonatology and paediatric neurology [Ramantani et al., 2019]. Moreover, it is 

important to remark that a missing diagnosis and recognition of seizure and its aetiology could have 

a negative impact on the neurodevelopment of the infants [Thibeault-Eybalin et al., 2009]. Thus, a 

fast and reliable detection of seizure events, the estimation of the seizure burden and monitoring of 

treatment’s efficacy are utmost importance, especially in the context of NICUs, where timely decision 

is needed even when expert neurological staff is not available. 

For these reasons, in the last years, there has been a growing interest in the development of Neonatal 

Seizure Detectors (NSDs) [Olmi et al., 2021, Temko and Lightbody 2016]. NSD could be defined as 

AI systems able to detect the time occurrence of neonatal seizures in online or offline mode, providing 

a support to the clinical staff for a timely detection and characterization of the seizure events. This 

can be obtained with the analysis of EEG signals or using all the sources of information, mainly 

physiological, available in neonatal settings such as NICUs. 

This chapter aims at providing a survey of the current knowledge regarding NSDs as well as 

describing the development of an EEG-based NSD using data from a public dataset. 

The chapter is organized as follows: in section 2.2 the state-of-the-art for NSDs is provided; section 

2.3 shows an EEG-based NSD based on deep-learning algorithms, along with the description of the 

two neonatal seizure datasets used during this PhD study. In section 2.4 discussions on possible 

applications of NSDs in clinical practice and future perspectives are drawn, in order to introduce the 

next chapters of this PhD thesis.  

 

2.2 State-of-the-art of Neonatal Seizure Detection 

This section aims at providing a short overview about the state-of-the-art for NSDs, their limits and 

pitfalls, as well as their performance assessment. The search of suitable papers was performed in June 

2021 based on the Scopus database using the following keywords: ‘Neonatal seizure detection’, that 

provided 1196 works. Then the research was refined considering only paper published in the last ten 

years and using the following MeSH terms: ‘Automated systems / EEG monitoring / HRV / motion 

detection’ AND ‘Neonatal seizure’, ‘Seizure detection’ AND ‘NICU’, ‘image/video’ AND 

‘processing’ AND ‘Neonatal seizure / NICU’. Papers based on single channel EEG, aEEG or CDSA 

were excluded. Then, the search was focused on those papers that proposed expert systems for 

automatic analysis of multi-channel EEG, ECG and video signals. Finally, 22 works were worth for 

the present analysis and they will be summarized in the next section.  

 

2.2.1 Performance Assessment of NSDs 

From the survey it clearly came out that there is a non-unanimous consensus about which metrics 

should be used in order to assess the performance of NSD methods. In other words, a standardized 

performance assessment framework for NSD is missing [Temko et al., 2011a]. 

The main metrics used in literature can be divided into three different categories: epoch-based 

metrics, event-based metrics and patient-based metrics. 

Some of the epoch-based metrics were already introduced in Section 1.3.3. They are based on the 

segmentation of signals in time windows called “epochs”. For a binary supervised absence seizure 
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classifier, the prediction could be divided into a positive class (usually the seizure epochs) and a 

negative class (interictal or seizure-free epochs). Conventionally the seizure detection problem was 

considered as binary, but these concepts could be easily extended to multiclass problems that could 

e.g. address the discrimination of different periods in the recordings. For example, the pre-ictal, 

interictal, post-ictal and ictal epoch detection is a four classes classification problem.  

Thus, in this chapter only the binary formulation for the performance assessment is discussed. Metrics 

such as Accuracy (ACC), Sensitivity (SEN), False Positive Rate (FPR), F1score, Matthews Correlation 

Coefficient (MCC) and Specificity (SPE) were already introduced in Chapter 1. As for absence 

seizures, they were widely used for the performance assessment of NSD. Most papers also reported 

the Receiver Operator Characteristic (ROC) curves plotting SEN vs SPE or SEN vs 1-SPE, or 

Precision vs Recall. Usually, from the ROC curves the Area Under the ROC Curve (AUC) is 

computed to compare the performance of different systems. Furthermore, when control patients (i.e. 

subjects with no seizures) are included in the evaluation also the AUC concatenated (AUCcc) can be 

provided [Tapani et al., 2019], considering at the same time all the epochs from all the subjects to 

generate the ROC curve. 

Another important category of metrics are the event-based metrics [Temko et al., 2011] that take into 

account the onset and offset of each seizure event, evaluating how the epochs were classified by the 

NSD. In other words, the time interval between the starting and ending time instant of seizure is 

defined as the “event”. Although there is still no unanimous consensus regarding the exact definition 

of onset and offset for neonatal seizures [Frassineti et al., 2021a, Schindler et al., 2006] such metrics 

could be influenced by these definitions. Usually before computing such metrics post-processing 

methods were added, such as “collar techniques”, or spatial threshold if a multi-channel EEG was 

used [Temko et al. 2017]. 

The main event-based metrics are: 

• Good Detection Rate (GDR): the overall percentage of seizure events correctly identified by 

the NSD [Temko et al. 2011a]. 

• False Discovery Rate (FDR): the overall percentage of seizure events incorrectly identified 

by the NSD. 

• False Detection per Hour (FDH or FD/h): describes the number of false seizure events 

identified by the NSD that have no overlap with the previous event labelled by the expert 

[Temko et al. 2011a]. 

• Mean False Detection Duration (MFDD): the average duration of all false detections without 

any overlap among them [Temko et al. 2011a]. 

Regarding the patient-based metrics they strongly depend on the context and the framework, however 

most popular are: the sensitivity and specificity of NSD to detect newborn with seizures (a sort of 

index of seizure risk [Frassineti et al., 2021b, Pavel et al. , 2020]) and the estimation of the seizure 

burden (i.e. the number of seizure events detected by the NSD) [Pavel et al. , 2020]. 

Moreover, a crucial point during the development of an NSD is the method adopted for its validation. 

Popular validation methods such as k-fold-cross validation or hold-out validation can be used in the 

context of NSD, however since often the number of patients is low and machine-learning methods 

need a huge amount of data, these approaches tend to overestimate the performance of the NSD, thus 

living rise to a sort of patient-specific NSD [Temko et al. 2011a]. Instead, the goal of an ideal NSD 

is to be a reliable patient-independent detector [Temko et al. 2017]. In order to achieve this result for 

limited dataset, the Leave-One-Subject-Out (LOSO) validation should be preferred [Olmi et al. 2021, 
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Temko et al. 2011a, Gotman et al., 1997]. Basically, if a huge amount of data would be available, 

even k-fold-, hold-out- cross validation and other methods could be used. However, to date, the largest 

public dataset for neonatal seizures consists of 79 subjects [Stevenson et al., 2019], that is not 

comparable to other datasets used for AI research [Hastie et al., 2001]. This introduces one of the 

main current pitfalls for AI methods for NSD, that is the limited amount of available datasets. This 

aspect will be further discussed in Section 2.3. 

 

2.2.2 Heuristic algorithms for EEG-based NSD 

The first attempt in literature for the development of NSD was based on heuristic algorithms (HA). 

HA are based on the definition of rules, threshold values and specific parameters obtained testing the 

data and according to pathophysiological knowledge of neonatal seizures. Usually, HA combined the 

analysis of the morphology of EEG signals, searching for variations of the background activity on 

analogy to the perceptual evaluation made by the neurologist, such as looking for repetitive and 

specific waveforms. The main papers based on HA are shown in Table 2.1. All the reported papers 

used private datasets. 

Table 2.1. Main NSD systems based on EEG and HA. [Olmi et al., 2021]. 

Paper Method Dataset 

(newborns) 

Epoch 

length 

Performance 

Liu et al. 1992 Autocorrelation analysis 14 30s SEN=84% 

SPE=98% 

Gotman et al. 1997 Detection of three 

characteristics patterns 

55 10s, 75% 

overlap 

SEN=71% 

Deburchgraeve et 

al. 2008 

Detection of two/four major 

seizure patterns 

26 5s, 4s 

overlap 

SEN=88% 

FDH=0.66 h-1 

Navakatikyan et al. 

2006 

Detection of increased 

regularity in EEG wave 

sequences 

66 N.A. SEN= 83-

95% 

 

2.2.3 Data-driven algorithms for EEG-based NSD 

Data-driven algorithms for NSDs are the most investigated in literature [Olmi et al. 2021]. The 

absence seizure detector proposed in [Frassineti et al., 2019] can be considered part of the data-driven 

algorithms. These approaches use machine-learning (ML) techniques based on the extraction of 

features to characterize the data. As already explained in Section 1.3.3, supervised ML models are 

built by the process of training and validation using features and expert’s labels. Generally, features 

are extracted from EEG epochs, with or without overlap. Features can be grouped in the frequency, 

time and information theory domains.  

As shown in Table 2.2 the most popular AI model is the Support Vector Machine (SVM) one. 

However, these approaches have recently come under criticism: they require an extensive evaluation 

of which subset of hand-crafted features could be used, and they may not be optimal in some 

framework [O’Shea et al., 2020]. This limit led to the investigation of other methods such as deep-

learning algorithms that will be introduced in subsection 2.2.4. Nevertheless, data-driven algorithms 

are still widely used, also because most of them make explicit the process employed to discriminate 

between seizure epochs and non-seizure epochs [Olmi et al., 2021]. Indeed, the work by Pavel et al. 

[Pavel et al., 2020] is one of the first multi-centre clinical validation for an EEG-based NSD. 
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Moreover Pavel et al. proved that NSD given a more reliable estimation of the seizure burden in 

newborns, with shorter time for diagnosis and the evaluation of efficacy of the treatment adopted, 

confirming the potentiality of EEG-based NSD in clinical practice. Finally, several works used mainly 

single-channel EEG features, thus a possible improvement of such methods might be the use of multi-

channel EEG features that for seizure detection in adults have been proved to better characterize the 

dynamics during seizure events [Frassineti et al., 2021a]. The main works who used data-driven 

algorithms for EEG-based NSDs are reported in Table 2.2. 

Table 2.2. Main EEG-based NSDs using data-driven algorithms. [Olmi et al., 2021]. 

Paper Method Dataset 

(newborns) 

Validation Epoch 

length 

Performance 

Thomas 

et al. 

2010 

GMM 55 with 

HIE 

LOSO 8s, 

50% 

overlap 

GDR=79% 

FDH= 0.5 h-1 

MFDD= 2 min 

SPE=93% 

SEN=76% 

Temko 

et al. 

2011b 

SVM 55 with 

HIE 

LOSO 8s, 

50% 

overlap 

GDR=100% FDH= 4 h-1 

Pavel et 

al. 2020 

ANSeR 258 N.A. N.A. Patient-based metrics 

Non-algorithm group: 

SEN=89%, SPE=89%, 

FDR=22% 

Algorithm group: SEN=81%, 

SPE=84%, FDR=36% 

 

Recognition of seizure hours 

Non-algorithm group 

SEN=45%, Algorithm group 

SEN=66% 

Tapani 

et al. 

2019 

SVM & 

autocorrelation 

analysis 

79 LOSO 32s, 

28s 

overlap 

AUC=92% 

SEN=76% 

SPE=99% 

 

2.2.4 Deep-Learning algorithms for EEG-based NSD 

For data-driven algorithms the choice of the features is a critical point that determines the NSD’s 

performance [Olmi et al., 2021, O’Shea et al., 2020]. To overcome such pitfall several deep-learning 

(DL) algorithms were proposed as EEG-based NSD. DL methods do not require hand-crafted features 

as in data-driven algorithms. In the literature several DL architectures were analysed and tested, such 

as Convolutional Neural Network (CNN) and Fully Convolutional Neural Networks (FCN), using as 

input both the original EEG epochs or a time-frequency representation of them. Usually time-

frequency representations are obtained by the Short Time Fourier Transform (STFT), the Wavelet 

Transform (WT) or other source decomposition methods. The time-frequency transformation allows 

to treat the multichannel EEG signals as a sort of image as input for the DL methods. Also Transfer 

Learning methods were evaluated to develop DL EEG-based NSD [Caliskan and Rencuzogullari, 

2021]. Though preliminary, results obtained with DL methods are emerging as the most promising 

approach in the NSD field, and they are going to be proposed for clinical validation. Some DL 

methods showed high performance both on term and preterm newborns [O’Shea et al., 2021]. 
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However deep-learning algorithms are still considered as a sort of black-box models for NSD and 

further studies are needed in order to explain the decision rules that such algorithms apply for 

classification [Olmi et al., 2021]. Another remarkable limit for some of the DL methods, except for 

pre-trained deep-neural networks, is that they may require a computational time often not suitable for 

real time applications, allowing only off-line analysis. The main works that used deep-learning 

algorithms for EEG-based NSDs are reported in Table 2.3.  

Table 2.3. Main EEG-based NSDs using deep-learning algorithms. [Olmi et al., 2021]. 

Paper Method Dataset 

(newborns) 

Validation Epoch 

length 

Performance 

Ansari et 

al. 2019 

CNN + 

Random 

Forest 

48 with 

HIE 

Hold out 90s, 

60s 

overlap 

AUC=83%, SEN=83%, 

SPE=78%, GDR=77%, 

FDH=0.90 h-1 

O’ Shea et 

al. 2020 

2D FCN 55 with 

HIE 

+ 79 

LOSO 8s,  AUCcc=95.6% 

Tanveer et 

al. 2021 

2D CNN 39 10-fold cross 

validation 

1s, 

50% 

overlap 

ACC= 96%, AUC=99.3% 

Caliskan 

et al. 2021 

p-CNN 39 Hold-out 30s, 2s 

shift 

Patient specific AUC=99% 

O’ Shea et 

al. 2021 

FCN 16 preterms N.A. 8s, 

overlap 

4s and 

7s  

AUC=95% 

 

2.2.5 ECG-based and Video-based NSD 

All the methods described in subsections 2.2.2 - 2.2.4 have in common the use of EEG as source of 

information for NSD. However, as already noticed in sect. 2.1, such signal could not be available in 

some neonatal settings. Thus, in the literature there was a growing interest in NSDs that used or 

combined source of information different from EEG. Most of the works found in the present survey 

used Electrocardiography (ECG) signals, in particular Heart Rate Variability (HRV) and video 

signals. ECG and video are considered a more accessible source, simple, non-invasive and less 

expensive than EEG [Olmi et al., 2021]. How and why HRV analysis could be helpful to detect and 

characterize neonatal seizures will be discussed in detail in Chapter 4.  

By analogy to EEG-based methods, ECG- and HRV-based ones can be divided in heuristic, data-

driven and deep-learning algorithms. The main difference lies in the epoch length, as ECG epochs 

are generally longer than in EEG because the dynamics involved are quite slower than the EEG ones. 

This introduces one of the main limitations of ECG-based NSD: at present such methods cannot be 

used for on-line applications [Frassineti et al., 2021b, Frassineti et al., 2021c]. Based on the promising 

results obtained on ECG-based NSD, in the literature the combination of EEG and ECG features for 

data-driven algorithms was proposed. [Greene et al., 2007a, Mesbah et al., 2012], proved that the 

multimodal analysis gave higher performance than the use of only EEG or ECG/HRV features. The 

main works regarding ECG-based NSDs and NSDs that used combination of features from ECG and 

EEG are reported in Table 2.4.  
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Table 2.4. Main ECG-based NSDs and NSDs that used both EEG and ECG signals. [Olmi et al., 2021]. 

Paper Method Dataset 

(newborns) 

Validation Epoch 

length 

Performance 

Malarvili et 

al. 2009 

Heuristic TFD 5 LOSO 64s SEN=83% 

SPE=100% 

Greene et al. 

2007b 

LD 7 LOSO 60s ACC=61% 

SEN=78% 

SPE=51% 

Doyle et al. 

2010 

SVM 55 with 

HIE 

LOSO 60s AUC=60% 

SEN=60% 

Greene et al. 

2007a 

LD EEG+ECG features 10 LOSO 60s GDR=81% 

FDR=33% 

ACC=68% 

SEN=74% 

SPE=66% 

Mesbah et al. 

2012 

1-NN + linear classifiers 

(EEG+ECG features) 

8 LOSO 64s SEN=95% 

SPE=94% 

Temko et al. 

2015b 

SVM, EEG+ECG 

features 

38 LOSO 60s AUC=86% 

 

Regarding video analysis, it has been proven that even in subtle seizures little movements of face, 

arms and legs are present [Volpe, 1989, Mizrahi and Kellaway, 1987]. Indeed, it is well known that 

the clinical manifestations of seizures (e.g. abnormal movements in clonic seizures) can be easily 

detected by automatic video analysis [Malone et al., 2009]. Thus, a detailed analysis of AI algorithms 

applied on video recordings could show details that are hard to detect by visual inspection [Olmi et 

al., 2021]. In fact, as shown in Table 2.5, such video features were already used in several works, 

suggesting that video analysis could be considered as a valid NSD or in combination with other 

physiological signals such as EEG or ECG. The main papers that used video analysis for NSD are 

reported in Table 2.5.  

Table 2.5. Main video based NSDs. [Olmi et al., 2021]. 

Paper Method Dataset 

(newbo

rns) 

Validation Epoch 

length 

Performance Notes 

Pisani et al. 

2014 

Frame 

Differencing 

12 Binary 

Statistical 

Analysis 

10s, 

50% 

overlap 

AUC=79% 

SEN=71% 

SPE=69% 

Distinction 

between 

clonic 

seizures and 

random 

movements 

Cattani et 

al. 2017 

Frame 

Differencing (3 

cameras) 

1 N.A. 10s, 

50% 

overlap  

SEN=90% 

SPE=90% 

Detection of 

clonic 

seizures 

Karayiannis 

et al. 2005 

FFNN, optical 

flow analysis 

43 Hold-out N.A.  Test set 

SEN < 90% 

SPE > 90% 

Distiction 

between 

mycolonic 

and focal 

clonic 

seizures 
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The papers summarized in subsections 2.2.3 - 2.2.5 did not provide information about aetiologies of 

the detected seizures. However, some of them (e.g. [Deburchgraeve et al. 2008]) pointed out that the 

cause of seizure events could be identified by analyzing seizure events themselves. Therefore, NSD 

systems able to automatically characterize the aetiologies investigating the available 

electrophysiological and clinical signals could provide an additional support to clinicians. Indeed, 

identifying aetiologies is crucial to determine specific pharmacological treatments and subsequent 

prognoses [Pressler et al., 2021]. 

 

2.3 Neonatal Seizures Datasets: the lack of public data 

As already said in previous sections one of the main limits in the field of neonatal seizure detection 

is the availability of public datasets. Several papers presented in the survey used private datasets. This 

implies that the comparison of the existing systems is challenging, as well as the already mentioned 

non-uniformity regarding the metrics used for the performance assessment of NSDs.  

Until 2022 the only public dataset available containing neonatal EEG and ECG recordings is the 

Helsinki Dataset (hereinafter denoted as HD) [Stevenson et al., 2019]. It collects multi-channel EEG 

signals from 79 full-term newborns ad the NICU of the Helsinki University Hospital. The recordings 

have a mean duration of 1h, using 19 electrodes for EEG in the so-called double-banana montage. 

The sampling frequency was 256 Hz both for EEG and ECG. The main seizure’s aetiology was HIE 

that concerned at least 50% of the newborns with seizures. The dataset was labelled by three experts 

separately. As investigated by Tapani et al. [Tapani et al., 2019], the agreement across the experts 

was not perfect, confirming that the neonatal seizure detection is not a trivial task even for 

experienced clinical staff. In fact, among the 79 subjects 39 have seizure events with unanimous 

consensus of the three experts, 22 are seizure-free with unanimous consensus, while the remaining 

18 obtained different labels from the experts. Moreover, the experts identify different time occurrence 

of onset and offset for several seizure events. This opens another important field of research for NSD: 

evaluating how expert’s labels could vary the NSD’s performance. However, it is important to remark 

that the labelling process is highly time-consuming, thus in literature it is much more likely to found 

labels from a single expert. 

During the PhD period several of the methodologies presented in this thesis were initially 

implemented and evaluated using data from the HD [Frassineti et al. 2021a, Frassineti et al., 2021b, 

Frassineti et al., 2021c, Frassineti et al., 2021d, Frassineti et al., 2020]. To address the lack of data, 

during the PhD period a proper private data set was collected, that was used to test the reproducibility 

of the AI methods developed using the HD dataset.  

The new dataset of video-EEG and ECG recording was collected at the Neuro-physiopathology and 

Neonatology Clinical Units of AOU Careggi, Firenze, Italy. Data were retrospectively collected 

between March 2010 and October 2020. The dataset consists of 51 full-term newborns with 

gestational age between 38 and 41 weeks. Out of 51 subjects, 29 were control patients without any 

seizure events. The remaining 22 had seizure events in their recordings, labelled by an expert 

neurologist of the AOU Careggi clinical staff. Ten out of the 22 newborns with seizures showed 

electrographic-only seizures (EGP), the remaining 12 exhibited electroclinical seizures (ECP). As for 

HD, the main aetiology was the HIE (12/22 subjects). None of the considered newborns have heart 

disease. The study was conducted in accordance with the Declaration of Helsinki and approved by 

the Institutional Review Board of Careggi University Hospital, Firenze, Italy. The Local Ethical 

Committee approval code is 02/2013. EEG and ECG were synchronously recorded using Nemus ICU 
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Galileo NT Line system (EB Neuro S.p.A., Firenze, Italy). The sampling frequency was 128 Hz. For 

ECG signals, the one-lead ECG system was equipped with two electrodes: the active one was placed 

on the left axillary line at the level of the 7th rib, while the reference electrodes was placed on the 

right clavicle. The mean time duration of recordings for each patient was 53 minutes, the overall 

duration of the dataset was about 45 hours. The mean seizure duration per patient was 00:09:39 h. 

Other information regarding the newborns with seizures are summarized on Table 2.6 and in [Olmi 

et al., 2022a]. 

Video recordings were available only for 42 subjects, of which 22 with seizure events. The total 

length of video recordings was 39:59:08 h (mean duration per patient 00:57:07 h).  The videos were 

collected using the Panasonic's Super-Dynamic Colour Camera WV-CP450/G. Sampling rate: 25 

frame/s. Resolution: 640x480 pixels. As for HD, the Careggi Dataset (hereinafter named CD) was 

used to implement and validate various methods presented in this thesis [Olmi et al., 2022a, Olmi et 

al., 2022b] and they will be discussed in Chapter 4 and 5. 

Table 2.6. Description of recordings of patients with electrographic (EGP) and electroclinical (ECP) seizures. [Olmi 

et al., 2021]. 
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2.4. Development of a DL EEG-based NSD: proof of concept and preliminary 

results 

2.4.1 Introduction 

Some contents in this section are based on the following publication: 

• Frassineti, L., Ermini, D., Fabbri, R., Manfredi, C., 2020. Neonatal Seizures Detection using 

Stationary Wavelet Transform and Deep Neural Networks: Preliminary Results. 2020 IEEE 

20th Mediterranean Electrotechnical Conference (MELECON). 

https://doi.org/10.1109/melecon48756.2020.9140713 

In this section a Deep-Learning (DL) EEG-based NSD is provided that takes into account the main 

drawbacks of data-driven algorithms for NSD, the use of hand-crafted features and their possible non 

optimal behaviour in some cases. To overcome such problems, an hybrid techniques was developed 

that combines SWT applied to raw EEG as input to Convolutional Neural Networks (CNN) and Fully 

Convolutional Neural Network (FCN). The method was developed on analogy to the hybrid 

techniques proposed by Ansari et al. [Ansari et al., 2019] that applies CNN and Random Forest. The 

use of FCN has already proven useful for NSD by O’Shea et al. [O’Shea et al., 2021, O’Shea et al., 

2020]. 

The SWT was added to remove unnecessary frequency information for the NSD problem and perform 

a sort of data-augmentation on the EEG signals [Shorten and Khoshgoftaar, 2019] representing each 

derivation though the details and approximation levels, on analogy to EEG time-frequency 

representation already used as input images to neural networks [Roy et al., 2019]. All the methods 

were trained and tested on the Helsinki dataset (HD) introduced in Section 2.3. Only the newborns 

who received unanimous consensus among experts were considered. Thus, the analysis was 

performed on 39 newborns with seizures and 22 seizure-free. The AND operator was used to merge 

the expert labels [Frassineti et al., 2020]. Until 2020 this was the first attempt to use SWT+CNN/FCN 

both in training and validation with the HD. O’Shea et al. used the HD but only as test set [O’Shea et 

al., 2020]. 

The proposed methods are implemented under MATLAB computing environment (Deep Learning 

Toolbox, version 2019b), OS Windows 10, 64 bit. Processor: AMD Ryzen 5 2600 Six-Core, CPU 

3.40 GHz, RAM 16 Gb, GPU NVIDIA GeForce GT 1030. We remark that in this work only the HD 

dataset was considered, while analysis and evaluations on CD dataset will be discussed in Chapter 4 

and 5. 

 

2.4.2 Material and Methods 

In this work the same montage proposed in [O’Shea et al., 2020] was used: F4-C4, C4-O2, F3-C3, 

C3-O1, T4-C4, C4-Cz, Cz-C3, C3-T3. Three different epoch lengths were investigated: 4s, 8s and 

16s with 50% overlap. Different lengths were considered as there is still no unanimous consensus 

about which could be the best time windows for neonatal seizure detection [Olmi et al, 2021]. Each 

window was filtered with a band-pass filter (0.5-32 Hz) and Notch filter (50Hz). For SWT the 

Daubechies 5 (db5) mother wavelet function was used [Ekim et al., 2017]. Figure 2.2 shows an 

example of SWT decomposition for a 8s epoch (only one EEG channel is displayed). Using six levels 

of decomposition, each EEG epoch of size 1xN, where N is number of samples in the epoch, was 

expanded into a 7xN matrix, where each row represents the corresponding level of details and 
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approximation. According to [Baboukani et al., 2019], for each derivation the details level d6, d5, d4 

and the approximation level a6 were taken into account. This choice was made as they approximately 

correspond to the conventional EEG rhythms for a sampling frequency of 256Hz. Thus, the other 

decomposition levels were removed, obtaining a 4xN matrix. Therefore, for an 8s window with 

sampling frequency 256 Hz, a 4x2048 matrix is obtained for each derivation. Then the eight EEG 

derivations in SWT representations were concatenated, generating a 32x2048 matrix. Finally, a down-

sampling step was added to have windows with 256 samples for each row. This 32x256 matrix was 

used as input for the proposed neural networks. Considering only the consensus seizures, they were 

39259 seizures labels and 363566 non-seizures labels, where a label represents the corresponding 

time instant (in seconds) of the EEG exam (at 256 Hz sampling frequency). Thus, for example 

considering the 8-seconds windows and the 50% overlap, we obtained 10239 seizures windows and 

90342 non-seizures windows with an imbalance ratio of 8.82. 

 
(a) 

 
(b) 

Figure 2.2 (a) Example of single channel EEG showing a seizure. (b) Its corresponding 6-levels SWT. Epoch length: 

8s. [Frassineti et al. 2020] 

 

In Table 2.7 the CNN and FCN architecture properties are shown. For all the cases studied (epochs 

4s, 8s and 16s) both CCN and FCN were evaluated. A detailed description of the layers employed for 

the networks can be found in [Goodfellow et al., 2016]. The final parameters used in the training 

phase of network are the following: Solver stochastic gradient descent with momentum [Qian, 1999] 

with learning rate 0.001 and momentum 0.9, Mini-Batch Size 128, Validation Patience 8. Regarding 

the activation functions also other functions were preliminary investigated such as Rectified Linear 
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Unit (ReLu) and LeakyReLu [Mass et al., 2013], but in our case the hyperbolic tangent layer (Tanh) 

gave a better performance. The architectures and the parameters used in the training phase were 

obtained by a try-and-error process, thus they might not represent the optimal configuration. During 

the training of the networks, to address the imbalance between seizure epochs and seizure-free 

epochs, a random down-sampling for each patient was applied to obtain a ratio around 1:1. To avoid 

over-fitting of the networks, during the training phase an internal k-fold cross-validation was applied, 

using 5 patients randomly selected from the original training set. Then, the LOSO validation was used 

to quantify the performance of the DL methods. For each patient in the validation step all the epochs 

were used without any down-sampling as in the training step.  

The following epoch-based metrics are applied [Temko et al., 2011a]: ACC, SEN, SPE, F1score, MCC, 

AUC and AUCcc. Moreover, the following event-based metrics are evaluated: GDR, FD/h and the 

latency time [Temko et al., 2017]. To choose the best DL methods in validation the parameter AUCcc 

was considered. Results related to these validations will be presented in subsection 2.4.3.  

Table 2.7. Architecture properties. [Frassineti et al., 2020]. 

 
 

Finally, to assess if SWT operation could be helpful or redundant, two different tests (hereinafter 

Test1 and Test2) were performed. First another EEG matrix 8x256 was built for each epoch without 

using the SWT operation, thus keeping the original time series. The second test consisted in using an 

EEG matrix 32x256 but in this case each derivation was replicated for each detail and approximation 

level considered. This test aimed to establish if any increase in performance could be due to the 

application of SWT or only to the concatenation step.  

 

2.4.3 Results 

In table 2.8 and 2.9 the results of CNN and FCN using different epoch lengths are shown. Only the 

epoch-based metrics are shown. The 8s windows with FCN gave the best performance in terms of 
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AUCcc. To assess redundancy of the SWT decomposition, Table 2.10 reports the comparison between 

the best case (FCN 8s) and the corresponding Test1 and Test2. For this case also the event-based 

metrics are reported. The ROC curves related to the parameters AUCcc are shown in Figure 2.3. The 

results shown in Tables 2.8, 2.9 and 2.10 are related to the average values for all the metrics 

considered during LOSO validation. Because of the random selection of the patients in the internal 

cross-validation, it has been investigated if this approach could significantly alter the performance. 

To this aim, all the described procedures were repeated three times with the five patients used, without 

finding significant differences in the performances (less than 1-2% in Accuracy).  

Table 2.8. Results LOSO validation using CNN (average values). [Frassineti et al., 2020]. 

Epoch 

Length 

AUC 

(%) 

AUCcc 

(%) 

ACC 

(%) 

SEN 

(%) 

SPE 

(%) 

F1score 

(%) 
MCC 

4s 77 76 83 39 92 40 0.28 

8s 77 79 79 51 81 41 0.27 

16s 75 77 85 37 94 49 0.30 

 

Table 2.9. Results LOSO validation using FCN (average values). [Frassineti et al., 2020]. 

Epoch 

Length 

AUC 

(%) 

AUCcc 

(%) 

ACC 

(%) 

SEN 

(%) 

SPE 

(%) 

F1score 

(%) 
MCC 

4s 79 83 84 47 89 42 0.29 

8s 81 87 82 63 83 48 0.35 

16s 79 84 80 57 82 45 0.31 

 

Table 2.10. Comparison between SWT-FCN (8s epoch length), Test1 and Test2. [Frassineti et al., 2020]. 

Test 

Epoch-based metrics Event-based metrics 

AUC 

(%) 

AUCcc 

(%) 

ACC 

(%) 

SEN 

(%) 

SPE 

(%) 

F1score 

(%) 
MCC 

GDR 

(%) 

FD/h 

(h-1) 

Latency 

Time (s) 

8s FCN 81 87 82 63 83 48 0.35 78 1.6 32 

Test1 76 81 78 55 80 41 0.26 75 1.9 40 

Test2 75 81 81 50 84 40 0.27 77 2 32 

 

 
Figure 2.3 ROC curves of AUCcc values reported in Table 2.10. [Frassineti et al., 2020]. 
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2.4.4 Discussion and Conclusions 

In this work a proof of concept about the combination of SWT and neural networks as NSD was 

provided. Though preliminary, the results confirm that the use of SWT could be helpful in increasing 

the performance of the seizure detectors. For DL EEG-based, SWT could be considered as sort of 

data-augmentation techniques. In fact, as shown in Table 2.10 AUCcc for SWT+FCN was larger than 

for Test1 and Test2. Moreover, as shown in Table 2.8 and 2.9, FCN gave a higher performance with 

respect to CNN, confirming what already suggested by O’Shea et al. [O’Shea et al., 2020]. 

Furthermore, considering the results obtained using different epoch lengths, it was confirmed that the 

choice of the time duration of windows is a crucial and critical point in the development of any NSD. 

In our case the best epoch length was 8 seconds, as in [O’Shea et al., 2020]. The reason could be that, 

increasing the scale of observation, the useful details for a correct discrimination between seizure and 

not seizure become a negligible part of the available information. As shown in Table 2.10, the latency 

times obtained suggest that the systems can provide a reply to the user almost two times per minute 

(32, 40 seconds). This timing could provide an almost constant feedback about the brain condition of 

the newborn in NICU, and thus could be a valid support for an early detection of possible seizures 

events and timely application of the most suitable therapy for each patient. 

The performance obtained for the 8s window are close to those presented in [O’Shea et al., 2020], 

both for epoch-based metrics (AUC 83%) and event-based metrics (GDR 77% and FD/h 0.90). 

However, they are still lower than those obtained by O’Shea et al. in [O’Shea et al., 2020]. One reason 

could be that the training dataset used here was smaller than the one in [O’Shea et al., 2020]. Indeed, 

the authors used recordings with an overall duration of 834h with 1389 seizure events. Instead, the 

overall duration of the recordings in the dataset used here amounts to 112h and there are only 342 

seizure events. It is well-known that the deep-learning performance strictly depends on the available 

training data set; therefore, the possibility to have a large data set may represent one of the basic 

requirements for the reliability of the methods proposed in this field. 

Future work will be devoted to the neural network architectures used and to the choice of the mother-

wavelet function for the SWT. Furthermore, to enlarge the case studies and address the unbalancing 

problem between classes, the use of the Generative Adversarial Networks (GAN) may be explored 

[Goodfellow et al., 2020]. 

In conclusion, the work presented here is one of the first approaches to the application and testing of 

deep-learning methods on a public dataset of neonatal seizures. It provides first indications about the 

use of the Stationary Wavelet Transform in combination with deep-learning algorithms to solve the 

NSD problem, using a public dataset with multi-expert labels. The encouraging results show the 

possibility of successfully using these hybrid techniques. Moreover, they pave the way for a novel 

approach to perform data-augmentation for EEG time series. 
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3. Multiparametric characterization of neonatal seizures by EEG 

multichannel features 

Some contents in this chapter are based on the following publication: 

• Frassineti, L., Parente, A., Manfredi, C., 2021. Multiparametric EEG analysis of brain 

network dynamics during neonatal seizures. Journal of Neuroscience Methods, Vol. 348, p. 

109003. https://doi.org/10.1016/j.jneumeth.2020.109003 

 

In Chapter 2 the lack of information in the literature about multichannel EEG features applied to NSD 

has been highlighted. Most of the existing NSDs used single-channel EEG features, because in NICUs 

usually the EEG montages consist of a limited number of electrodes. However, it was proven that 

multichannel EEG techniques are able to detect more helpful information for neonatal seizures than 

montages with a limited number of electrodes, such as aEEG [Baboukani et al., 2019, Shellhaas et 

al., 2007]. Thus, although promising, the use of multi-channel EEG features for neonatal seizure 

detection was still not fully addressed in literature. Indeed, in adults and children such approaches 

have already shown their usefulness in seizure detection and characterization. Moreover, several EEG 

features used in NSDs did not provide information about the brain time-varying dynamics of the 

seizure, being based on static information of the analysed EEG signal to discriminate seizure periods 

from non-seizure periods [Frassineti et al., 2021a].  

Therefore, in this chapter the use of multichannel EEG features in newborns will be discussed. 

Moreover, results of two different measures: Synchronizability [Schindler et al., 2008] and Circular 

Omega Complexity [Baboukani et al., 2019], for the characterization of pre-ictal, ictal and post-ictal 

periods will be described and discussed. The chapter is organized as follows: in section 3.1 a short 

background about multiparametric EEG analysis for seizure detection and characterization is 

provided; section 3.2 introduces the methods applied to the Helsinki Dataset [Stevenson et al., 2019] 

in order to characterize pre- post- and ictal periods in newborns. Results are shown in section 3.3., 

while discussion of the results and conclusions are drawn in section 3.4. 

 

3.1 Background 

In the last years, the study of brain network dynamics by EEG has been proposed in several clinical 

applications, such as: evaluating co-mordibities with the mechanisms of cognitive decline, predicting 

the risk of developing seizures [van Diessen et al., 2013]; finding biomarkers for brain tumours 

[Douw et al., 2010]; characterizing aetiologies in epilepsy [Kuchenbuch et al., 2019]; evaluating the 

brain state after surgical intervention [Goodfellow et al., 2016]. Moreover, several studies related to 

connectomics [Fornito et al., 2016] suggested that epilepsy could be a brain network disease 

[Lehnertz et al., 2017]. Indeed, the epileptic seizure focus, i.e. the area of the brain where the seizure 

starts, could be only a part of the complex dynamics of this syndrome. This allows overcoming the 

concept that seizures are not just hyper-synchronous brain states [Jiruska et al., 2013], but only one 

part of the complex mosaic behind ictal events, meaning that seizures are dynamical brain processes. 

Therefore, functional and structural analysis of brain networks may identify specific patterns inside 

the cerebral network related to specific epileptic syndromes.  
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A traditional approach for characterizing the dynamics of brain complex dynamics in the adults is the 

phase synchrony analysis (PSA) [Smith et al., 2019]. However, it has been proven that PSA methods 

such as the Phase Locking Value, may not be able to outline the global dynamics in multivariate 

dynamics. [Smith et al., 2019, Baboukani et al., 2019]. To overcome such limitation several 

multivariate and multiparametric approaches have been proposed, such as general field 

synchronization and generalized phase synchrony analysis [Omidvarnia et al., 2013], empirical mode 

decomposition [Mutlu et al., 2010], phase lag index [Stam et al., 2007], hyper-dimensional geometry 

[Al-Khassaweneh et al., 2016] and S-estimator measures [Oshima et al., 2006]. However, most of the 

findings in literature are mainly related to EEG analysis in adults or in children. For the reasons 

introduced on Chapter 2, a direct transposition of them in newborns cannot be done, or at least must 

be considered with caution. It is important to remark that electro-clinical characteristics of neonatal 

EEG are different from those in adults. Therefore, it is necessary to define and validate novel 

combinations of multivariate analysis to assess findings related to the neonatal seizure dynamics. In 

fact, only few studies investigated multivariate dynamics during neonatal seizures and in general in 

neonatal brain network dynamics. Preliminary analysis performed by Baboukani et al. [Baboukani et 

al., 2019] showed that neonatal seizures could be described by multivariate features and as input of 

NSD. The analysis of functional connectivity carried on by Tóth et al. [Tóth et al., 2017] suggested 

that individual differences in network topology are related to cortical maturation during the prenatal 

period. Tokariev et al. [Tokariev et al., 2018] found that phase synchrony in frontally connected 

networks was correlated with newborn’s neurological performance. Kuchenbuch et al. [Kuchenbuch 

et al., 2019] proposed EEG multivariate indexes as biomarkers for the detection of specific aetiologies 

behind neonatal seizures.  

This short background introduces the aims of the present work: evaluating different multivariate EEG 

parameters as indices for the characterization of neonatal seizures during the various stages of the 

seizure event. Moreover, this work aims at evaluating if the same indexes could allow discriminating 

between newborns with seizures and seizure-free ones. An evaluation of the trends of the seizure 

dynamics with respect to seizure-free EEG background is proposed, combining synchronicity phase 

indices and measure of stability of the global synchronized system (i.e. all the EEG channels). As 

suggest by Jiruska et al. [Jiruska et al., 2013], seizure are considered as a dynamic disorder whose 

properties constantly evolve over time.  

 

3.2 Methods 

All the proposed methods were implemented on the Helsinki Dataset, already introduced in Section 

2.3 of this PhD thesis. Only the newborns who received unanimous consensus among the three experts 

were considered. Thus, the 33 newborns with consensus seizure events and the 22 seizure-free ones 

with unanimous consensus were taken into account. The AND combination was used to merge the 

experts’ labels. For each EEG recording the following EEG montage was considered: Fp2-F4, F4-

C4, C4-P4, P4-O2, Fp1-F3, F3-C3, C3-P3, P3-O1, Fp2-F8, F8-T4, T4-T6, T6-O2, Fp1-F7, F7-T3, 

T3-T5, T5-O1, Fz-Cz, Cz-Pz. Therefore, multichannel EEG signals are considered of size n×N, where 

n=18 are the derivations and N are the samples in each derivation. The sampling frequency was 256 

Hz. In order to perform network analysis, each one of the 18 EEG derivations was considered as a 

“node” of the brain network and any pair of EEG derivations (i.e. the “edges” of the networks) as a 

functional link. In network theory, nodes and edges are the essential building blocks of networks 

[Fornito et al., 2016]. To evaluate the properties of the brain networks the following parameters were 

considered: 
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• Stability of the global synchronized system [Schindler et al., 2008]. The Synchronizability (S) 

is described in the subsection 3.2.1. 

• Measure of the degree of phase synchrony using the Circular Omega Complexity index (COC) 

[Baboukani et al., 2019] described in the subsection 3.2.2. 

Both S and COC were calculated for the whole length of the EEG recordings on 2 seconds epochs 

with overlap of 1 second (50%) [Schindler et al., 2008]. A total of about 39’000 seizure windows and 

363’000 seizure-free windows was analysed. Thus, EEG sub-windows of size 18 × 512 were created. 

A band-pass FIR filter between 0.5 Hz and 30 Hz was applied to each sub-window. Windows were 

then normalized (zero mean and unit variance). The proposed methods were implemented under 

MATLAB computing environment version 2019b (MATLAB and Statistics and Machine Learning 

Toolbox Release, 2019b). 

 

3.2.1 Synchronizability index S 

Although the synchronization of multivariate systems has been deeply investigated in neuroscience, 

due to the different approaches proposed a unique and rigorous definition of synchronization does 

not exist. In this study, Synchronization was defined as: “a process whereby two (or many) dynamical 

subsystems adjust some of their time-varying properties to a common behaviour due to coupling or 

common external forcing” Carmeli et al. [Carmeli et al., 2005]. Moreover, in network analysis, 

Synchronizability (S index) describes the degree of stability of the system’s globally synchronized 

state [Comellas and Gago, 2007, Lehnertz et al., 2017]. This information could be used to characterize 

the time-varying brain dynamics using EEG recordings [Lehnertz et al., 2017]. In order to compute 

the S index, the approach proposed by Schindler et al. [Schindler et al., 2008] was applied here. First 

the cross-correlation Rxy (Equation 3.1) was applied to quantify the degree of connectivity between 

EEG derivations [Quiroga et al., 2002]:  

𝑅𝑥𝑦 = {
∑ 𝑥𝑛+𝑚𝑦𝑛

∗

𝑁−𝑚−1

𝑛=0

  𝑚 ≥ 0

𝑅𝑥𝑦
∗ (−𝑚)            𝑚 < 0

 (3.1) 

Rxy provides a measure of similarity between two signals x and y shifted by a delay factor m. For each 

couple of bipolar derivations, the value 𝜌𝑥𝑦
𝑚𝑎𝑥 was calculated, defined as the maximum of the 

normalized cross-correlation in absolute value (Equation 3.2). 

𝜌𝑥𝑦
𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑛 {

|𝑅𝑥𝑦(𝑚)|

√𝑅𝑥𝑦(0)𝑅𝑦𝑥(0)
} (3.2) 

Thus using 18 derivations a connectivity matrix Cij of size 18x18 is obtained, whose values vary 

between 0 and 1. Since the main diagonal contains the autocorrelation values, these self-connections 

were excluded, setting the values to 0. Cij provides a synthetic description of the functional 

connectivity between all the EEG signals considered. Each element of Cij provides information about 

the similarity between each couple of derivations. Thus, the analysis of the properties of the whole 

matrix gives information about the synchronization among all the oscillators considered (i.e. the EEG 

derivations). The evaluation of possible effects of volume conduction on the cross-correlation values 

is provided in [Frassineti et al., 2021a, Supplementary Materials]. Then, from Cij the adjacency matrix 

Aij was computed to detect the main connectivity relationships between the derivations [Fornito et al., 
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2016]. To remove spurious links and enhance the relevant topological properties of the network, a 

threshold must be applied to Cij. The selection of the proper threshold is a critical point in network 

analysis [Fornito et al., 2016]. To overcome this limit, before binarization we applied to Cij the 

disparity filter proposed by Serrano et al. [Serrano et al., 2009]. The filter gives a higher weight to 

the connections with higher statistical relevance. A significance level α is defined, that represents the 

degree of statistical confidence. The filter tests the following null hypothesis, for each element of Cij: 

“the normalized weights (𝜌𝑥𝑦
𝑚𝑎𝑥) that correspond to the connections of a certain node of degree k are 

produced by a random assignment from a uniform distribution” [Serrano et al., 2009]. The degree k 

of a node is defined as the number of adjacencies connected to the node.  

The disparity filter finds all the relevant edges whose weights satisfy the relation: 

𝛼𝑖𝑗 = 1 − (𝑘 − 1) ∫ (1 − 𝑥)𝑘−2𝑑𝑥 < 𝛼
𝑝𝑖𝑗

0

(3.3) 

Where k is the degree of the node, 𝑝𝑖𝑗 =
𝑤𝑖𝑗

𝑠𝑖
, 𝑤𝑖𝑗 is the weight of the i-th connection to its j-th 

adjacency, and 𝑠𝑖 is the strength of the node i-th [Fornito et al., 2016]. 𝛼𝑖𝑗 is the probability that an 

edge of a given node satisfies the null hypothesis. To select the optimal value of α for each Cij the 

following metrics were considered: 

• the normalized clustering coefficient 𝐶 𝐶𝑟⁄  [Fornito et al., 2016]. Where C is the clustering 

coefficient, that is a measure of local connectedness for Cij. 𝐶𝑟 is the clustering coefficient for 

a corresponding random network “with a preserved degree distribution and an identical 

average number of edges per node” [Schindler et al., 2008]. The degree distribution is the 

probability that a randomly selected node in the network has exactly k adjacency. 

• the normalized average shortest path length 𝐿 𝐿𝑟⁄  [Schindler et al., 2008]. Where L is the 

average shortest path length that provides a global measure of brain network’s capacity to 

integrate information using the shortest path routing [Ponten et al., 2007]. As for 𝐶𝑟, 𝐿𝑟 is the 

average shortest path length for a corresponding random network. 

• the number of networks without any significant connection after the application of the 

disparity filter (hereinafter NetEmpty), i.e. an Aij with all the elements equal to 0. 

Values of 𝐶 𝐶𝑟⁄  and 𝐿 𝐿𝑟⁄  close to 1 correspond to networks with a random behaviour. High values 

of NetEmpty represent heavy pruning performed by the disparity filter on the networks. Table 3.1 

shows the tests performed to obtain the parameter α, based on the considered metrics.  

Table 3.1. Values obtained for 𝐶 𝐶𝑟⁄ , 𝐿 𝐿𝑟⁄  and NetEmpty with varying α for the 39 patients with consensus seizures. 

[Frassineti et al., 2021a]. 
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The average values of 𝐶 𝐶𝑟⁄ , 𝐿 𝐿𝑟⁄  and NetEmpty and their standard deviation obtained for the 39 

patients with seizures are reported, during the seizure events and the non-seizure periods. According 

to [Serrano et al., 2009] an optimal range for α can be identified as 0.3< α < 0.4. For our methods we 

consider α = 0.35 as the best value to binarize Cij obtaining Aij. Indeed, this value preserves almost 

all the seizures in the dataset for the subsequent analysis. 

In Figure 3.1 a non-seizure example is reported. The Cij matrix is shown in Figure 3.1b, where each 

element represents the 𝜌𝑥𝑦
𝑚𝑎𝑥 value for each couple of bipolar derivations. The corresponding 2 s 

window of the normalized EEG signal is shown in Figure 3.1a. From Cij the adjacency matrix Aij 

was computed to detect the main connectivity relationships between the derivations. 

 
Figure 3.1. (b) Example of Connectivity Matrix Cij derived from the normalized EEG window (a). The matrix Aij 

after the binarization process is shown in (c). [Frassineti et al., 2021a]. 

 

Finally, from Aij its Laplacian matrix 𝛬𝑖𝑗 = 𝑘𝑖𝛿𝑖𝑗 − 𝐴𝑖𝑗  was computed, where 𝛿𝑖𝑗 is the Kronecker 

delta and 𝑘𝑖 is the degree of the node i-th [Fornito et al., 2016]. Thus, as in [Schindler et al., 2008], 

the index of Synchronizability (S) can be defined as in Equation 3.4: 

𝑆 =
𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛
 (3.4) 

Where 𝜆𝑚𝑖𝑛 and 𝜆𝑚𝑎𝑥 are the smallest non-zero eigenvalue and the maximum eigenvalue of 𝛬𝑖𝑗 

respectively. S describes the stability of the globally synchronized state. It provides a quantitative 

measure of the degree of stability for different systems: the system with high values of S tends to 

instability, thus losing its properties of synchronization, while the system with low values S tends to 

be synchronizable [Schindler et al., 2008]. Therefore, S may be useful to compare the trend of a 

seizure with that of other events or different seizures. For these reasons, S was considered in this 
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work as the first parameter to discriminate between neonatal seizure events and non-seizure periods 

or seizure-free patients. The quantitative and qualitative results of this analysis will be presented in 

Section 3.3. 

 

3.2.2 Circular Omega Complexity (COC) as measure of phase synchrony  

Recently, Baboukani et al. [Baboukani et al., 2019] proposed Circular Omega Complexity (COC) to 

measure the phase synchrony in EEG recordings of newborns. They used COC to detect neonatal 

seizures as well as to distinguish between burst and interburst periods. Given such promising results 

in this work it has been evaluated if COC might be used to characterize the seizure’s network 

dynamics in the newborn. According to [Baboukani et al., 2019], the Stationary Wavelet Transform 

(SWT) with 6 level of decompositions was applied to each 2 seconds EEG epochs and to all the D=18 

derivations. The mother wavelet function was the Symlet2 (sym2) [Baboukani et al., 2019]. The size 

of each EEG derivation was 1xn, where n is the number of samples of each epoch. Thus, the SWT 

decomposition gave a matrix 7xn. As in [Frassineti et al., 2020], the detail levels from d1 to d3 were 

removed, being relative to high frequencies not useful for this analysis [Rankine et al., 2006], 

obtaining a matrix 4xn. The SWT decomposition allows separating the frequency components, from 

the highest frequencies for d4 (approximately between 8 and 16 Hz), to the lowest frequency in the 

approximation level a6 (0-2 Hz). To compute the COC index, for each EEG derivation and for each 

decomposition level of SWT, let x(n) the detail or approximation level obtained by SWT. The Hilbert 

Transform was applied to x(n), representing it into its analytical form z(n) as described in Equation 

3.5: 

𝑧(𝑛) = 𝑥(𝑛) + 𝑖�̂�(𝑛) = 𝐴(𝑛)𝑒𝑖𝜑(𝑛) (3.5) 

Where �̂�(𝑛) is the Hilbert Transform of 𝑥(𝑛), A(n) is the instantaneous amplitude and 𝜑(𝑛) the 

instantaneous phase as shown in Equation 3.6: 

𝜑(𝑛) = arctan (
�̂�(𝑛)

𝑥(𝑛)
) (3.6) 

For all the D derivations and SWT levels, a matrix X (𝐷 × 𝑛) is built: X={𝑥1(𝑛), … , 𝑥𝐷(𝑛)}, along 

with the corresponding 𝜑(𝑛). Then the circular correlation 𝒄𝑘,𝑙
𝑿  is computed between two 

instantaneous phases 𝜑𝑘(𝑛) and 𝜑𝑙(𝑛), where k and l represent any pair of signals with fixed level 

of decomposition or approximation. 𝒄𝑘,𝑙
𝑿  can be defined as in Equation 3.7: 

𝒄𝑘,𝑙
𝑿  ∶=  

∑ sin(𝜑𝑘(𝑛) − 𝜑𝑘̅̅ ̅̅ )𝑁−1
𝑛=0 sin(𝜑𝑙(𝑛) − 𝜑𝑙̅̅ ̅)

√∑ sin2(𝜑𝑘(𝑛) − 𝜑𝑘̅̅ ̅̅ )sin2(𝜑𝑙(𝑛) − 𝜑𝑙̅̅ ̅)𝑁−1
𝑛=0

        (3.7)
 

Where 𝜑𝑘̅̅̅̅  is the circular mean of 𝜑𝑘(𝑛): 

𝜑𝑘̅̅ ̅̅ = arg (∑ 𝑒𝑖𝜑𝑘(𝑛)

𝑁−1

𝑛=0

)   (3.8) 

Then the circular correlation matrix CCM for X is defined as 𝐶𝐶𝑀𝑿 ≔ [𝒄𝑘,𝑙
𝑿 ]𝐷×𝐷 , and 𝜆𝑚 are its 

eigenvalues with m=1…D. 𝐶𝐶𝑀𝑿 provides information about the synchronization level among the 

elements in X. Finally, it is possible to derive the COC index from 𝐶𝐶𝑀𝑿 as described in Equation 

3.9: 
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𝐶𝑂𝐶 ∶= 1 +  
∑ λ𝑚

̅̅ ̅̅  log λ𝑚
̅̅ ̅̅𝐾

𝑚=1

log 𝐷
       (3.9) 

Where λ𝑚
̅̅ ̅̅ =  

λ𝑚

∑ λ𝑚
𝐷
𝑚=1

. COC is a parameter with values between 0 and 1, where 0 corresponds to no 

phase synchrony between the considered elements in X. To get a single index describing the whole 

system, the mean value of all the COC values obtained for all the SWT levels was calculated. 

Therefore, the COC parameter obtained by Hilbert Transform and SWT was the second parameter 

used in this work for the characterization of neonatal seizures. The results obtained are presented in 

Section 3.3. To better understand how S and COC could characterize seizure’s network dynamics, 

Figure 2a shows an example of a single seizure of 20 s of duration. Fig. 2b shows the trend of S during 

the seizure. High values of S mean high instability. They are at the onset of the seizure (between 

windows 1 and 3) and at the end (between windows 15–16). In its central part the seizure presents 

low values of S that means higher stability of the globally synchronized state as compared to the 

seizure’s onset. Fig. 2c shows an example of the COC trend for the seizure shown in the upper plot. 

Notice the increasing value of COC in the initial phase, followed by a sort of plateau and decreasing 

values towards the seizure’s end. 

 
Figure 3.2. (a) EEG of a seizure lasting 20 s (y-axis μV). For the y-axis two different scales are used, shown at the 

bottom of (a): Solid bar: from Fp2-F4 to T5-O1; Dashed bar: for Fz-Cz and Cz-Pz. (b): Synchronizability values 

during the seizure. (c): COC trend during the seizure. [Frassineti et al., 2021a]. 
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3.2.3 Statistical evaluation for S and COC trends 

In this work the dynamics of seizure events was provided by COC and S measures, however it could 

be challenging to compare events with different time duration, as well as the number of seizure events 

that could vary among subjects. Therefore, the approach proposed by Schindler et al. [Schindler et 

al., 2008] was followed: both S and COC values of each seizure event were subdivided and re-

sampled into a predefined number of bins, 10 in our case, and then compared to their pre- and post-

seizure time instants. In this work pre- and post- seizure instants were defined as the 2s epochs 

immediately before and after the ictal event [Schindler et al., 2008]. A moving average filter was 

applied to obtain 12 fixed instants for each seizure events: 1 for the pre-seizure, 10 for the seizure, 

and 1 for the post-seizure. Each seizure trend was normalized between 0 and 1 to compare events 

with different amplitudes, preserving only their dynamics and allowing a uniform evaluation of all 

the seizure events of the Helsinki Dataset. Then a statistical analysis was performed to assess if the 

normalized and standardized seizure trends were different from the trends of seizure-free patients. On 

analogy to surrogate analysis performed in [Lancaster et al., 2018], three different tests were defined. 

To this aim, M random EEG segments were extracted from each of the 22 seizure-free patients. Then 

the following tests were performed on the EEG recordings: 

• Test T1: M EEG random segments of length V=24s each, with random and non-consecutive 

samples. 

• Test T2: M EEG random segments of length V=24 each, with random starting points and 

consecutive samples. As for T1, V=24s was selected in order to compare the results with the 

standardized bins defined for the patients with seizures, thus mimicking the 12 epochs of 2 

seconds as in the patients with seizures. 

• Test T3: M EEG random segments with different duration V=[Vmin … Vmax], random starting 

points and consecutive samples. Where Vmin=30s and Vmax=300s. They were chosen 

according to seizure duration in the Helsinki Dataset.  

Several values for M were considered: M=10,50,100 and 500, obtaining a first plateau for the metrics 

with M=100, mitigating effects due to random fluctuations of amplitude values for S and COC. Thus, 

in section 3.3 only the results obtained with M=100 will be reported.  

 

3.3 Results 

In Table 3.2 the results of S and COC obtained from the 2s epochs of the 39 patients with consensus 

seizures are shown. Mean and standard values (μ ± σ) of S and COC for both seizure epochs and non-

seizure epochs are reported. A Mann-Whitney test was applied in order to evaluate differences 

between seizure epochs and non-seizure epochs (significance level 0.05). Both the p-value and the 

Cohen’s d are reported. As shown in Table 3.2 the COC parameter allowed a good discrimination 

between seizure epochs and non-seizure epochs (p-value<0.001 and high Cohen’s d=0.86), instead S 

did not provide a good differentiation among epochs (p-value <0.001 but low Cohen’s d= 0.1). 

Table 3.2. Statistical Results of S and COC for the 39 patients with unanimous consensus for seizure events. Two-sided 

Mann-Whitney test was applied, considering all the 39000 seizure epochs and the 360000 non-seizure epochs. 

Metrics 

Seizure epochs Non-Seizure Epochs Test Mann-Whitney 

μ ± σ μ ± σ p-value Cohen’s d 

S (α=0.35) 19.43 ± 15.97 17.82 ± 14.55 p<0.001 0.1 

COC 0.29 ± 0.07 0.25 ± 0.04 p<0.001 0.86 
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Furthermore, a supplementary statistical analysis was performed, considering each patient as a single 

test and comparing its seizure epochs with non-seizure epochs. Using the Benjamini-Hochberg 

correction for multiple comparisons, significant differences were found for S metrics in 24 patients 

(61%) and for COC metrics in 32 patients (82%). These findings confirmed what is shown in Table 

3.2: COC metric is more reliable than S metric for the seizure detection and characterization problem. 

Figure 3.3 shows the normalized and standardized trends obtained for the metrics S and COC, 

generating them as proposed in [Schindler et al., 2008]. The plots show the average values and their 

standard error (normalized for all the 343 seizure events) obtained for the seizure’s bins and the 

corresponding pre-seizure and post-seizure instants.  

 
(a) (b) 

Figure 3.3. Normalized and standardized trends of S (a) and COC (b) applied to all seizures. [Frassineti et al., 2021a] 

 

Table 3.3 shows the results obtained for S and COC on the 22 seizure-free patients. As in Table 3.2, 

the average values and their standard deviation (μ ± σ) for both the metrics are reported for all the 

three tests described in section 3.2.3 (Test T1, T2 and T3 with M=100).  

Table 3.3. Average and standard deviation values of S and COC for the 22 seizure-free patients for the three tests T1, 

T2 and T3 defined in section 3.2.3 using M = 100. [Frassineti et al., 2021a]. 

Metrics 

T1 T2 T3 

μ ± σ μ ± σ μ ± σ 

S (α=0.35) 12.65 ± 8.47 14.72 ± 9.90 14.79 ± 10.17 

COC 0.19 ± 0.02 0.25 ± 0.04 0.26 ± 0.04 

 

Table 3.3 points out that seizure-free patients show values close to the non-seizure epochs of the 

patient with seizure events, especially for the COC metric, where COC average values are equal to 

0.25 for non-seizure windows and to 0.26 for test T3 with M=100, respectively.  

Finally Figure 3.4 shows the trends obtained for the seizure-free subjects for the tests T1, T2 and T3 

(M=100, solid lines). For a direct comparison the S and COC trends obtained for the seizure events 

are shown in the same figures (dashed lines). To facilitate the comparison, the first and the last bin of 

the seizure-free trends are called pre- and post-seizure bins. Obviously, they do not correspond to real 

pre- or post-seizure events, but just to the windows immediately before and after the seizure-free 

trends. Odd drops in Figure 3.4 for the seizure-free case may be due to the standardization and 

normalization step. Indeed, in this case such pre-processing might enhance very small differences, 

resulting in such drops. A comprehensive evaluation of this behaviour is reported in [Frassineti et al. 

2021a]. 
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Figure 3.4 (a,b) Normalized and standardized trends of S and COC for test T1; (c,d) the same for test T2; (e,f) the 

same for test T3 (M = 100). The seizure-free trends (solid lines) are compared to the normalized seizure trends 

(dashed lines) shown in Figure 3.3. [Frassineti et al., 2021a]. 

 

However, the representation by standardized trends, as in Figures 3.3 and 3.4, might hide specific 

details for some seizures, especially for those of long duration. In future developments, a multiple 

level representation could be evaluated.  

Another important point is evaluating the transition from the pre-ictal periods to ictal periods and 

from ictal to post-ictal periods. Thus, in this work, it has been evaluated if S and COC metrics could 

be able to detect transitions from pre and post-ictal periods. Figure 3.5a shows the average evolution 

of COC metrics starting from 10 epochs before the first 5 epochs of all the seizure events (index from 

-10 to -1). The “0” window is the first seizure epoch, i.e. its onset, and is denoted by arrows. Figure 

3.5b shows the last five epochs of all the seizures (index from -4 to 0). The “0” window represents 
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the offset of the seizures and is indicated by arrows. The same illustrative analysis was proposed for 

S metrics, and it is shown on Figure 3.5c and 3.5d. Stars denote significant changes (p < 0.05; one-

sided Wilcoxon signed-rank test). 

 
(a) (b) 

 
(c) (d) 

Figure 3.5. (a) The COC trend from the 10th window before the onset of the seizure (windows 0) to the 4th window 

after the onset. Stars denote significant changes between fist ictal window 0 and the specific pre-ictal window (p < 

0.05; one-sided Wilcoxon signed-rank test). (b) The COC trend from the 4th window before the offset of the seizure 

(windows 0) to the 10th window after the end of the seizure. Stars denote significant changes between last ictal 

window 0 and the specific post-ictal window (p < 0.05; one-sided Wilcoxon signed-rank test). (c) The S trend from 

the 10th window before the onset of the seizure (window 0) to the 4th window after the onset. (d) The S trend from 

the 4th window before the offset of the seizure (window 0) to the 10th window after the end of the seizure. The 

figure shows the average values obtained from all the seizures (330 seizures lasting at least 10 s) and their standard 

errors obtained after normalization of all the seizure events considered. [Frassineti et al., 2021a]. 

 

To evaluate differences between a single window and the whole trend, for both metrics a one-sided 

Wilcoxon signed rank-test (significance level 0.05) was performed between the fist ictal window and 

each pre-ictal window. The same analysis was performed on post-ictal transitions. Results of this 

analysis are reported in Table 3.4. For COC values, during the pre-ictal transition there are significant 

differences between the first ictal window and pre-ictal windows around windows -6 and -3. Instead 

for the post-ictal transition, with COC metrics, differences on windows 1 and 3 and from windows 8-

10 are found. Instead, S metrics did not show any significant differences both for pre- and post-ictal 

transitions.  
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Table 3.4. Results of one-sided Wilcoxon test (signifiance level 0.05) between the fist seizure windows and pre-ictal 

windows (Pre-Ictal Transition) and between the last seizure windows and the post-ictal windows (Post-Ictal 

Transition). Both COC and S metrics are reported. A total of 330 consensus seizures were considered. [Frassineti et 

al., 2021a] 

 
 

3.4 Discussion and Conclusions 

The work presented here evaluated if two different properties of brain’s network, i.e. the stability and 

the phase synchronicity of brain’s network dynamics, derived from EEG recordings, could be helpful 

to characterize neonatal seizures. The results in Table 3.3 and Figure 3.3 showed that the proposed 

index of stability, i.e. the S metrics, exhibited a rapid growth at the initial bins of the seizure trends, 

corresponding to higher instability of the brain network. At the same time the networks showed 

increasing values of COC, remaining almost constant during the central part of the seizure trend 

(Figure 3.3b, from bins 2 to 8). S trend seems to be more stable during the central part of the seizures 

(Figure 3.3a, bins from 3 to 6). Instead, at the end of the seizures the networks seem more unstable 

(high values of S), at the same time losing their high phase synchronization (decreasing values of 

COC, Figure 3.3b, bins from 7 to 9). 

These results suggested an interpretation of what might happen on the brain’s network during a 

neonatal seizure: close to the seizure’s onset there is a first phase of high instability, during the central 

part the networks exhibit a high synchronicity and stability, then close to the offset the brain’s 

networks shows an instability configuration, losing their synchronization properties. These 

physiological considerations are partially in accordance with the literature related to the seizure’s 

dynamics in the adult [Jiruska et al., 2013; Breakspear et al., 2006; Gray and Robinson, 2009].  

As proposed in [Gray and Robinson, 2009], stability reflects the structure of the brain’s networks in 

terms of number of connections and their average connection gains. Any small variation in gains can 

decrease the network’s stability and such variations could be found during the transition from and to 

an ictal phase [Jiruska et al., 2013]. As reported in [Baboukani et al., 2019] and as shown in Table 

3.3, the high values of COC might reflect the very high firing of neurons during a seizure and thus 

the higher degree of connections between different areas of the brain network. This activity tends to 

saturate the capacity of neurons to fire and some brain areas may become silent close to the offset 

[Schindler et al., 2008]. Thus, it implies a fragmentation of the brain network and a decrease of global 

synchronizability (i.e. the S metrics) and consequently a progressive loss of synchronization. 

However, as discussed by Breakspear et al. [Breakspear et al., 2006], these considerations must take 

into account that during a seizure other physiological parameters may vary, thus other mechanisms 

could control the evolution or the end of the seizure, especially in the case of neonatal seizures. 

Results in Table 3.3 and 3.4 confirmed that COC metrics could be used as multichannel features of 

NSD, as already suggested by Baboukani et al. [Baboukani et al., 2019]. Instead, S metrics did not 

give reliable enough results to propose it as possible multichannel feature for NSD. The results of 
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Test 1, 2 and 3 reported in Table 3.3, confirmed the differences between patients with seizure and 

seizure-free ones. This means that the seizure’s trend is related to specific brain’s network dynamics 

and not due to random behaviours.  

As shown in Table 3.4, the analysis of COC metrics values might suggest the presence of some 

significant changes in the trend related to a possible anticipation of the seizure event. However, as 

only the consensus annotations were taken into account, this could reduce the duration of the seizures. 

On the other hand, defining the true seizure onset is a difficult task, especially in the case of newborns. 

Thus, in order to confirm these findings further investigations are needed. For example, the approach 

proposed in [Schindler et al., 2006] could be investigated for the definition of the seizure onset/offset, 

while another approach could consider different combinations of the experts’ annotations. 

In conclusion, results show that during the seizures the metrics reflect the evolution of the network 

dynamics: the seizure’s network dynamics significantly alter the metrics more than the non-seizure 

periods. However, the proposed metrics cannot be considered as a direct or exclusive representation 

of the seizure dynamics, because artefacts coming from extra-cerebral sources, or non-seizure sources 

may occur at the same time. Indeed, a neonatal seizure can often be a focal one. Therefore, further 

analyses are required to discriminate between the seizure dynamics, the extra-cerebral sources and 

the non-seizure sources, to extract the specific seizure dynamics that might occur during the ictal 

event. Moreover, the results were tested on one public dataset only. To confirm the findings and the 

repeatability of the proposed procedure further testing on different dataset must be performed. 

Another point of investigation would be the use of the source space instead of the sensor space for 

the functional connectivity analysis. However, as stated in [Christodoulakis et al., 2013], accessing 

the source reconstruction and its quality depends on the number of available electrodes that usually 

are quite few in NICU. Therefore, the sensor space might be the only one that can be used in practice. 

Moreover, in this work 18 EEG derivations were considered, thus further investigation regarding the 

minimum number of derivations (and which one) required for reliable multichannel EEG features as 

S and COC could be performed in future developments. 

Given the promising results, the methods might be extended and tested on other neurological 

applications where fast and reliable automatic analysis of EEG is required. For example, they might 

be helpful to characterize burst and interburst over time in preterm newborns [O’Toole et al., 2017], 

or to evaluate the network dynamics of pre-seizure trends [Liu et al., 2018]. The proposed methods 

could also support already existing seizure detectors as a post-processing procedure on alleged 

seizures detected by the systems, the interpretation of standardized trends of S and COC being useful 

for further evaluation and validation. 
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4. The role of Autonomic Nervous System and Heart Rate Variability 

in neonatal seizure detection and characterization.  

Some contents in this chapter are based on the following publications: 

• Frassineti, L., Lanatà, A., Olmi, B., Manfredi, C., 2021. Multiscale Entropy Analysis of Heart 

Rate Variability in Neonatal Patients with and without Seizures. Bioengineering, Vol. 8, Issue 

9, p. 122. https://doi.org/10.3390/bioengineering8090122 

• Frassineti, L., Manfredi, C., Ermini, D., Fabbri, R., Olmi, B., Lanatà, A., 2022. Analysis of 

Brain-Heart Interactions in newborns with and without seizures using the Convergent Cross 

Mapping approach. In 2022 44th Annual International Conference of the IEEE Engineering 

in Medicine & Biology Society (EMBC), pp. 36-39, doi: 10.1109/EMBC48229.2022.9871141. 

 

As already stated in Chapter 2, the involvement of the Autonomic Nervous System (ANS) during or 

close to neonatal seizures is well known in literature. However, the complex dynamics and 

interactions between ANS and the Central Nervous System (CNS) during ictal events remain still 

unclear in the newborn. If such behaviours will be explained or characterized, they may be used to 

develop NSD even without the use of EEG techniques, allowing the monitoring of newborn with 

seizure events even in neonatal settings different from Neonatal Intensive Care Units (NICUs). As an 

example, the activity of ANS can be described by Heart Rate Variability analysis, obtainable by 

techniques simpler and more affordable than EEG, such as Electrocardiography (ECG) or 

Photoplethysmography (PPG). However, in literature there is still a lack of information about which 

HRV features could be helpful for the characterization and detection of neonatal seizures. To this 

aim, in this work a first evaluation about the use of multiscale HRV entropy features to discriminate 

between newborn with seizures and seizure-free ones is provided.  

The chapter is organized as follows: in Section 1 a short introduction about the evidence in literature 

regarding the involvement of ANS during or close to neonatal seizures is given; Section 2 describes 

which entropy features were used in this work. Results of multiscale HRV entropy analysis are shown 

in Section 3, and the discussion about them is provided in Section 4. Moreover, considering the 

promising results obtained, in Section 5 a first analysis about the Brain-Heart Interactions (BHI) 

during neonatal seizures is provided, estimated by the Convergent Cross Mapping (CCM) approach. 

This further evaluation was performed to verify and quantify the possible interactions between CNS 

and ANS, evaluating differences of BHIs between newborns with seizure events and seizure-free 

ones. The findings obtained with multiscale HRV entropy features might be related to such different 

interactions during ictal events.  

 

4.1. Introduction: Autonomic Nervous System, HRV and neonatal seizures 

The detection of neonatal seizures is still tricky and time-consuming, even in highly specialized 

settings such as neonatal intensive care units (NICUs). Due to different manifestations, ictal patterns 

and aetiologies, their identification based only on the observation of the clinical signs is challenging 

[Pressler et al., 2021, Malone et al., 2009]. Currently, electroencephalography (EEG) is the accepted 

gold standard often combined with synchronized video recordings (video-EEG) [Pressler et al., 2021]. 

However, as already discussed in Chapter 2 and 3, the use of EEG or video-EEG requires expert staff 

available 24/24 h for proper detection and interpretation of ictal events, a condition often not 
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practicable for several neonatal settings [Dilena et al., 2021]. Indeed, a recent Italian survey showed 

that only 47% of neonatology centers have access to NICU services, and at least 20% of them cannot 

activate a 24h EEG monitoring [Mosca et al., 2019]. In a recent survey proposed by Wang et al. 

[Wang et al., 2021], 64% out of 251 hospitals provide EEG in NICUs. Moreover, about 10% of 

NICUs have no access to any EEG-based monitoring (EEG nor amplitude-EEG (aEEG)), and almost 

the 21% of NICUs have only aEEG [Boylan et al., 2010]. 

To overcome this issue, several EEG-based neonatal seizure detectors (NSDs), including artificial 

intelligence techniques, have been introduced to support the physician’s decision [Olmi et al., 2021]. 

At the same time, there has been increasing interest on investigating other signals besides EEG for 

neonatal seizure detection and characterization [Olmi et al., 2021]. In particular, electrocardiography 

(ECG) might be a valid support to this task thanks to its ease of use, less invasiveness and lower costs 

than EEG. Therefore, ECG-based methods could be useful alternatives when EEG-related techniques 

are not readily achievable. 

The latest research findings showed that newborns' autonomic nervous system (ANS) response is 

directly or indirectly involved during seizure events [Statello et al., 2021]. In particular, the Central 

Autonomic Nervous System (CANS) or Central Autonomic Network (CAN) may have a relevant 

role in seizure onset. Similarly to the “epileptic heart” in the adult and the child [Akyüz et al., 2021], 

CAN controls information from and to the heart involving also cortical, subcortical and brain stem 

regions. Thus, a disorganized electrical discharge, such as a seizure, might cause an autonomic 

dysfunction [Statello et al., 2018].  

From ECG, the heart rate variability (HRV) analysis could provide helpful information about neonatal 

seizures, considering that HRV analysis could reflect the ANS activity [Shaffer and Ginsberg, 2017]. 

In particular, using HRV frequency measures, in [Statello et al., 2018] it was shown that seizures 

might impact the autonomic cardiovascular regulation in newborns. It has been proved that Hypoxic 

Ischemic Encephalopathy (HIE), the most common aetiology behind neonatal seizures [Pressler et 

al., 2021], is related to altered HRV signals [Bersani et al., 2020]. These results suggest that nonlinear 

HRV measures could help to untangle the complex mechanisms between neonatal seizures and the 

autonomic system. Information theory (IT) and nonlinear analysis methods might provide reliable 

information about neonatal seizure dynamics and characteristics.  

In particular, entropy features used for HRV analysis in the adult were promising for detecting 

autonomic systems variations [Humeau-Heurtier, 2020]. Multiscale entropy analysis could increase 

the information obtained with single scale analysis about the underlying physiological process [Costa 

et al., 2005]. Thus, taking into account the differences between ictal events in adults and infants both 

for aetiology and the electro-clinical characteristics [Pressler et al., 2021], the application of these 

findings to newborns could be usefully exploited. 

This study aims at evaluating whether HRV multiscale entropy features might provide helpful 

information for characterizing autonomic system dysregulation during neonatal seizures. Moreover, 

we investigated if this information could be helpful in neonatal seizure detection. In particular, the 

effectiveness of entropy features in the discrimination between newborns with seizure events and 

seizure-free ones have been explored, determining at which scale these differences become evident.  
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4.2. Multiscale HRV entropy methods 

All the proposed methods were implemented on the Helsinki Dataset, already introduced in Section 

2.3 of this PhD thesis. Only the newborns who received unanimous consensus among the three experts 

were considered. Thus, the 39 newborns with seizure events and the 22 seizure-free ones with 

unanimous consensus were taken into account. However, 9 patients (6 with seizures and 3 seizure-

free) were excluded because the ECG signal was not present in their recordings or was highly 

corrupted by noise. Thus, the analysis has been performed on 33 patients with seizure events and 19 

seizure-free patients. As for the EEG channels, the ECG signals were recorded using the NicoletOne 

vEEG System, Natus Medical [Frassineti et al., 2021d]. Two leads were placed on the newborn’s 

chest, and the ECG was acquired with a sampling rate of 256 Hz. For each ECG recording, the inter-

beat-interval (IBI) time series has been obtained using the Kubios software (Version 3, Kubios Oy, 

Kuopio, Finland) [Tarvainen et al., 2014], a widely used tool for the HRV analysis and the Pan-

Tompkins’ method for IBI time series extraction [Pan and Tompkins, 1985]. In figure 4.1 an example 

is shown of two RR trends (whole recordings). Figure 4.1a represents a trend from a seizure-free 

newborn, while Figure 4.1b a newborn with seizure events. 

 
 

(a) (b) 

Figure 4.1. (a) Newborn with seizure events. (b) Seizure-free subject. Above: inter-beat (RR) time series extracted by 

Kubios. Below: the corresponding time-frequency representation using Continuous Wavelet Transform. The 

frequency range is 0.04–1.3 Hz [Frassineti et al., 2021d, Statello et al., 2018]. 

 

Since Kubios software includes a limited number of nonlinear HRV measures, the IBI time series 

were exported and all the multiscale entropy HRV analysis and relative statistical analysis were 

performed under MATLAB 2020b environment. 

The HRV entropy features were calculated on the segmented IBI time series applying a sub-

windowing procedure, with non-overlapping windows lasting 4 min [Lucchini et al., 2016]. These 

procedures were repeated for each patient for the entire recording and discarding the windows that 

included recording pauses [Stevenson et al., 2019]. 

Furthermore, each window was labelled according to the information provided by the experts. Three 

classes have been selected: class “1” identifies a window with seizure events lasting at least 1s; class 

“int” (i.e., interictal) identifies a window without seizure events, but belonging to a patient with 

seizures; class “0” identifies a window without any seizure event and belonging to a seizure-free 

patient. The AND combination was used to merge the experts’ labels. In other words, we defined as 
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“seizure window” only that for which the three experts simultaneously labelled that window as a 

seizure. A total of 441 interictal windows, 284 windows with seizure events, and 342 seizure-free 

windows have been achieved. Thus, a total of 1067 windows from the 52 patients were obtained. 

For each window, the following HRV entropy measures were computed: Approximate Entropy (AE) 

[Pincus, 1991]; Sample Entropy (SE) [Richman and Moorman, 2000]; Generalized Sample Entropy 

(GSE) [Costa and Goldberger, 2015] and Fuzzy Entropy (FE) [Chen et al., 2007]; Permutation 

Entropy (PE) [Bandt and Pompe, 2002] and Distribution Entropy (DE) [Li et al., 2014]. All the 

indexes were evaluated at different scales, defining a coarse-grained time series for each of them. 

 

4.2.1 Multiscale entropy analysis and the coarse-grained procedure 

Research findings showed that multiscale scale entropy indexes in HRV analysis are helpful both for 

the characterization or detection of several pathologies and the description of different dynamics of 

the autonomic system [Costa and Goldberger, 2015]. Recently, the multiscale entropy analysis was 

successfully applied to ECG signals to detect and characterize seizures in adults [Humeau-Heurtier, 

2020]. 

These results open the possibility of assessing the reliability of these techniques also in newborns. 

This work implements the multiscale analysis for all the entropy indexes (except for GSE) using the 

mean operator’s coarse-grained procedure to generate the time series at each scale. The coarse-

grained procedure is reported in Equation 4.1:  

𝑦𝑠(𝑗) =
1

𝑠
∑ 𝑥(𝑖)

𝑗𝑠

𝑖=(𝑗−1)𝑠

  , 1 ≤ 𝑗 ≤ ⌊ 𝑁 𝑠⁄ ⌋ (4.1) 

Where y is the coarse-grained time series, s is the scale factor, and x(i) is the i-th sample of the original 

time series of length N samples. The symbol ⌊.⌋ indicates the integer part of its argument. 

Figure 4.2 shows the coarse-grained procedure from scale 2 to scale K. Note that, at scale 1 (s=1), the 

coarse-grained series is equivalent to the original time series. The second moment operator (i.e. the 

variance) has been used to generate the coarse-grained time series for GSE computation [Costa and 

Goldberger, 2015]. Thus, at scale 1, the only difference between GSE and SE is the threshold 

parameter (for more details, see section 4.2.2). Following [Costa et al., 2005] and considering the 

length of the used windows (4 minutes), we computed the coarse-grained series up to scale 6. 

 
 

Figure 4.2. Example of the coarse-grained procedure from scale 2 to scale K. [Frassineti et al., 2021d]. 
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For HRV analysis, a 5-minute window should be preferred [Camm et al., 1996]. However, as stated 

in [Statello et al., 2018, Lucchini et al., 2016, Doyle et al., 2010], a standardized time duration is 

missing for newborns. Due to the higher newborn heart rate with respect to that of adults, shorter 

windows are suitable. In this work, a 4-minute window is used as a compromise between a consistent 

estimation of multiscale HRV entropy indexes [Statello et al., 2018] and the capability to detect 

seizure events [Doyle et al., 2010]. Thus, considering the average newborn heart rate at rest (100-200 

bpm [Doyle et al., 2010]) and the defined window length, we performed computations up to scale 6 

to have at least 10^m points at each scale and for all the entropy indexes considered [Richman and 

Moorman, 2000, Costa et al., 2005], where m is the embedding dimension. In this work, we use m=2 

for all the entropy indexes. This choice could avoid an inaccurate estimation of entropy values due to 

a coarse-grained scale at higher scales where the number of points becomes too low [Costa et al., 

2005]. Subsections 4.2.2 to 4.2.4 describe the following entropy indexes: AE, SE, GSE, FE and DE. 

PE has been already introduced in Section 1.3.2. For all the PE scales, also the embedding dimensions 

m=3 was initially considered [Frassineti et al. 2019]. The multiscale version of PE (MPE) was already 

evaluated in previous ECG studies [Liu et al., 2017], showing its better capability to enhance 

differences between groups (pathological vs controls) than the single scale case. 

 

4.2.2 Approximate Entropy, Sample Entropy and Generalized Sample Entropy 

Approximate Entropy (AE) [Pincus, 1991] represents the conditional probability that time series that 

are similar to each other for m consecutive samples (i.e. the embedding dimension) will be similar to 

each other when one or more samples are known. To introduce the definition of AE, let {Xi}={x1…xN} 

be a time series where N is the number of samples. Moreover, um(i) and um(j) are vectors of length m 

(e.g. um(i)={xi,…,xi+m-1} for any i and j). Let ni
m(r) be the number of vectors um(i) and um(j) that satisfy 

d[um(i),um(j)]≤ r, where d is the ∞-norm and r a threshold parameter. Therefore Ci
m(r)=

ni
m(𝑟)

N-m+1
 

represents the probability that a vector um(i) is close to vector um(j). The average of the Ci
m

 is the 

probability that any two vectors are within the threshold parameter r. Thus, AE can be defined as in 

Equation 4.2: 

𝐴𝐸(𝑚, 𝑟, 𝑁) =  
1

𝑁 − 𝑚 + 1
∑ ln 𝐶𝑖

𝑚(𝑟)

𝑁−𝑚+1

𝑖=1

− 
1

𝑁 − 𝑚
∑ ln 𝐶𝑖

𝑚+1(𝑟)

𝑁−𝑚

𝑖=1

(4.2) 

In general, low AE values are related to more predictable and regular time series, thus providing a 

degree of complexity and irregularity [Pincus, 1991]. Richman et al. [Richman and Moorman, 2000] 

proposed the Sample Entropy (SE) as a modification of AE. The main difference is that SE excludes 

the self-matches (i.e. i≠j), thus reducing the bias of AE. Moreover, SE was proved to be less 

dependent on time series length, with a higher consistency in different contexts. To date, it is one of 

the entropy measures most applied to physiological signals analysis [Humeau-Heurtier, 2020].  

Recently, Costa et al. [Costa and Goldberger, 2015] defined the Generalized Sample Entropy (GSE) 

for multiscale experiments. The main difference between GSE and MSE concerns the definition of 

the coarse-grained time series: instead of using the mean operator, in [Costa and Goldberger, 2015], 

they used the variance (VAR). GSE can quantify the dynamical time series volatility properties at 

different scales. Concerning HRV analysis, intermittency in energy and information flows caused by 

abnormal GSE trends may be related to some pathophysiological processes during both cardiac cycles 

of activation and recovery (e.g. during depolarization and re-polarization) [Costa and Goldberger, 

2015]. 
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For all these entropy measures, and for all the scales, we used as embedding dimension m=2 as in 

[Richman and Moorman, 2000, Costa et al., 2005], and r=0.2 as threshold parameter of the time series 

standard deviation for multiscale AE (MAE) and MSE, while for GSE we used r=0.05. This choice 

allows taking into account the different values in the amplitude of the VAR [Costa and Goldberger, 

2015]. The results are reported in Section 4.3. 

 

4.2.3 Fuzzy Entropy 

Fuzzy Entropy (FE) can be considered as an extension of SE [Chen et al., 2007]: for a time series 

{Xi} let um(i) and um(j) be vectors of length m, where m is the embedding dimension. Let u̅m(i) and 

u̅m(j) be the mean values of vectors um(i) and um(j). The vectors distance di,j
m

= max{|(um(i+k)-

u̅m(i))-(um(j+k)-u̅m(j))|, 0≤k≤m-1} gives the similarity degree between um(j) to um(i) that was added 

through the fuzzy function Di,j
m (n,r)=μ(di,j

m
,n,r)=exp(- (di,j

m
)
n

r⁄ ). Here r is the threshold parameter and 

n the exponent parameter. Thus, the FE can be defined by Equation 4.3: 

𝐹𝐸(𝑚, 𝑛, 𝑟, 𝑁) = ln (
1

𝑁 − 𝑚
∑ (

1

𝑁 − 𝑚 − 1
∑ 𝐷𝑖,𝑗

𝑚(𝑛, 𝑟)))

𝑁−𝑚

𝑗=1,𝑗≠𝑖

 

𝑁−𝑚

𝑖=1

−  ln (
1

𝑁 − 𝑚
∑ (

1

𝑁 − 𝑚 − 1
∑ 𝐷𝑖,𝑗

𝑚+1(𝑛, 𝑟)))

𝑁−𝑚

𝑗=1,𝑗≠𝑖 

𝑁−𝑚

𝑖=1

 (4.3) 

FE introduces a sort of intermediate state proper of the fuzzy theory, assuming a "membership degree" 

for each point of the time series rather than a conventional two-state classifier as AE and SE [Chen 

et al., 2007]. Fuzzy Entropy and its multiscale version (MFE) found application in several studies 

concerning the HRV analysis of pathological subjects [Borin et al., 2021, Humeau-Heurtier, 2020]. 

As in [Chen et al., 2007], for all the scales an embedding dimension m=2, r=0.2 (of the time series 

standard deviation) and n=2 were considered. 

 

4.2.4 Distribution Entropy 

Distribution Entropy (DE) was proposed by Li et al. [Li et al., 2014]. One of the main advantages of 

DE with respect to AE and SE, is its higher consistency in the complexity evaluation even for short-

term RR signals. Similarly to SE, m is the embedding dimension and {Xi}={x1…xN} the original time 

series, where N is the number of samples. The distance di,j
m

= max{|u(i+k)-u(j+k)|, 0≤k≤m-1} among 

vectors ui and uj was computed.  

The di,j
m

 are the entries of the distance matrix D={d
i,j

m
}. To calculate the distribution entropy, the 

empirical probability density function (ePDF) of D was estimated by the histogram approach, 

defining a priori the number of bins B and excluding the self-matches (i.e. i=j). Thus, the definition 

of normalized Distribution Entropy using the formula of the Shannon Entropy [Li et al., 2014] is 

shown in Equation 4.4:  

𝐷𝐸(𝐵) =  − 
1

log2 𝐵
∑ 𝑝𝑡 log2 𝑝𝑡

𝐵

𝑡=1

 (4.4) 

Where pt, t =1…B, is the probability of each bin (in this case B=512 [Li et al., 2014]). The multiscale 

version (MDE) of DE was evaluated in previous studies on ECG [Lee et al., 2018], showing less 

dependence on the time series length than MSE and MPE. 
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4.2.5 Statistical analysis 

This study aims at evaluating if HRV-entropy indexes allow discriminating between windows with 

seizure events and seizure-free ones. Specifically, it aims at discriminating between a newborn with 

seizures and a seizure-free one. To evaluate general differences between the two populations, two 

statistical analyses were implemented. 

The first analysis evaluated if a newborn with seizures might have different characteristics from a 

seizure-free patient, both for its ictal and interictal activities. Then, it has been evaluated if some 

differences could be found between seizure windows and interictal ones, that might be helpful in the 

process of seizure detection [Greene et al., 2007b]. 

The second analysis was performed to evaluate if a patient with seizures might have different 

characteristics from a seizure-free patient without distinguishing between seizure windows and 

interictal windows. In other words, it has been assessed whether the differences in HRV analysis are 

also found in the interictal activity and not only during seizures. This would support the hypothesis 

that neonatal seizures alter the cardio-regulatory system of the newborn not only during the ictal 

events, thus allowing the a priori discrimination between the two groups [Statello et al., 2018]. These 

two different statistical analyses have been performed for all the multiscale entropy indexes described 

above. In the following paragraphs, we describe the analyses, the tests used and the assumptions made 

for each of them. 

The hypothesis of normality distribution has been checked through the Shapiro-Wilk test (SW, level 

of significance α = 0.05). As the normality hypothesis was not confirmed for some indexes (MPE, 

MDE) and some scales for the other indexes, nonparametric tests were applied. All tests have been 

performed between the 33 median observations of patients with seizure events (here we refer to class 

“1” for the windows with seizures and to class “int” for the interictal windows) and the 19 median 

observations of the seizure-free patients (here we refer to the seizure-free windows as class “0”). The 

first analysis evaluated if differences among various combinations of the three classes (“0”—“1”—

“int”) exist. To this aim, a multiple comparison test (MCT) was defined, applying a Bonferroni 

multiple comparison post hoc correction.  

We used MCT information obtained by the Kruskal-Wallis test (significance level α = 0.05) between 

the median of the windows of all the patients, considering the test for the three classes “0”, “1” and 

“int” and related pairwise comparisons. We performed this test to evaluate if differences could be 

found simultaneously between windows with seizure events, seizure-free windows and interictal 

windows. In particular, the comparison between class “1” and class “0” evaluated the capability of 

entropy indexes to catch differences between a window with seizure events, i.e., a window from a 

pathological patient and a window of seizure-free patients. In Section 4.3, the results of the pairwise 

comparisons referring to each test are reported. Specifically: “0 vs. 1” KW-Test, “int vs. 1” KW-Test, 

“0 vs. int” KW-Test.  

For the second analysis, a Mann-Whitney test was performed (significance level α = 0.05) to evaluate 

if entropy indexes could discriminate between patients with seizure events and seizure-free ones. Here 

the median of all windows (labelled as “1” and “int”) of the newborns with seizures against the 

median of windows of seizure-free newborns was considered. The statistical results of all the entropy 

indexes considered for each scale (from 1 to 6) are shown in Section 4.3. We referred to this test as 

MW-Test. 
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4.3 Results  

In this section, all the statistical results obtained for each multiscale entropy index considered are 

reported. For each index, a figure shows the multiscale entropy trends for the three classes considered, 

representing: the seizure-free trend (class “0”), the seizure trend (class “1”) and the interictal trend 

(class “int”). All tests were performed on 33 patients with seizures vs. 19 seizure-free patients. We 

did not find any statistically significant differences in the comparison “0 vs. int” with the Kruskal 

Wallis Test for all the entropy indexes; therefore, we did not report them in the related tables. Instead, 

differences were found for the remaining comparisons: “0 vs. 1” and “int vs. 1” for some multiscale 

entropy indexes, thus the results are reported. All the KW-Test’s p-values were adjusted applying the 

Bonferroni correction. Table 4.1 reports all the statistical analyses performed using MAE with 

embedding dimension m=2 and a scale factor from 1 to 6 for multiscale analysis. Moreover, the 

statistics (median and IQR) for the three groups considered (0, 1, int) are included. In Figure 4.3a the 

MAE's trends as a function of the scale factor are shown. 

Table 4.1. Multiscale Approximate Entropy - Results of the test described in section 2.6. The median and IQR values 
are reported for the three groups considered (0, 1 and int). Star (*) denotes statistically significant results. [Frassineti et 

al., 2021d]. 

MAE  

Scale  

factor 

0 vs 1  

KW-Test  

p-value 

int vs 1 

KW-Test 

p-value 

MW-Test  

p-value 

STATS 0  

MEDIAN (IQR) 

STATS 1  

MEDIAN (IQR) 

STATS INT  

MEDIAN (IQR) 

 

1 0.4756 0.1252 0.8048 1.01 (0.82-1.07) 0.92 (0.66-1.04) 1.01 (0.77-1.16)  

2 0.0809 0.2318 0.2312 0.88 (0.83-0.97) 0.83 (0.72-0.90) 0.89 (0.77-0.95)  

3 0.0129* 0.2160 0.0549 0.83 (0.77-0.88) 0.73 (0.67-0.81) 0.80 (0.73-0.84)  

4 0.0937 0.7387 0.2872 0.74 (0.69-0.78) 0.68 (0.65-0.74) 0.71 (0.66-0.77)  

5 0.7395 1 0.5686 0.67 (0.64-0.71) 0.66 (0.58-0.69) 0.64 (0.62-0.71)  

6 1 1 0.6620 0.61 (0.56-0.64) 0.59 (0.56-0.65) 0.59 (0.56-0.64)  

 

Table 4.2 reports the statistical analysis performed using MSE with embedding dimension m=2 and 

a scale factor from 1 to 6 for multiscale analysis. The statistics (median and IQR) for the three classes 

considered are shown. In Figure 4.3b, the MSE trends as a function of the scale factor are shown. As 

a significant p-value was obtained in the “int vs. 1” KW-Test, Figure 4.4 shows the boxplot of the 

three classes at scale 5. 

Table 4.2 Multiscale Sample Entropy - Results of the test described in section 2.6. Median and IQR values are reported 
for the three groups considered (0, 1 and int). Star (*) denotes statistically significant results. [Frassineti et al., 2021d]. 

MSE  

Scale  

factor 

0 vs 1  

KW-Test  

p-value 

int vs 1 

KW-Test 

p-value 

MW-Test  

p-value 

STATS 0  

MEDIAN (IQR) 

STATS 1  

MEDIAN (IQR) 

STATS INT  

MEDIAN (IQR) 

 

1 1 0.1742 0.6213 0.96 (0.62 - 1.11) 0.85 (0.52 - 1.15) 1.05 (0.74 - 1.24)  

2 0.1642 0.1733 0.3420 1.04 (0.80 - 1.23) 0.87 (0.63 - 1.06) 1.01 (0.79 - 1.25)  

3 0.0054* 0.0786 0.0503 1.16 (0.94 - 1.40) 0.88 (0.67 - 1.11) 1.02 (0.90 - 1.24)  

4 0.0022* 0.0990 0.0275* 1.25 (1.11 - 1.49) 0.94 (0.76 - 1.24) 1.13 (0.98 - 1.34)  

5 0.0022* 0.0455* 0.0318* 1.38 (1.16 - 1.63) 0.97 (0.86 - 1.20) 1.23 (1.06 - 1.42)  

6 0.0064* 0.2387 0.0440* 1.52 (1.21 - 1.62) 1.15 (0.94 - 1.32) 1.28 (1.07 - 1.46)  

 

Table 4.3 reports the statistical analysis performed using GSE with embedding dimension m=2 and a 

scale factor from 1 to 6 for multiscale analysis. At scale 1, the values are different from the MSE ones 

because the threshold factor r was set equal to 0.05 [Costa and Goldberger, 2015]. The statistics 

(median and IQR) for the three classes considered are included. In Figure 4.3c, the GSE trends as a 

function of the scale factor are shown. 
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Table 4.3. Generalized Sample Entropy - Statistical results of the test described in section 2.6. The descriptive statistics 
(median and IQR) related to the three groups considered (0, 1 and int) are reported. Star (*) denotes statistically 

significant results. [Frassineti et al., 2021d]. 

GSE  

Scale  

factor 

0 vs 1  

KW-Test  

p-value 

int vs 1 

KW-Test 

p-value 

MW-Test  

p-value 

STATS 0  

MEDIAN (IQR) 

STATS 1  

MEDIAN (IQR) 

STATS INT  

MEDIAN (IQR) 

 

1 1 0.4084 0.9092 2.08 (1.58 - 2.32) 1.87 (1.47 - 2.31) 2.09 (1.66 - 2.41)  

2 0.5154 1.0000 0.0574 0.80 (0.66 - 1.44) 1.44 (0.72 - 1.69) 1.33 (0.86 - 1.83)  

3 0.2617 1.0000 0.0166* 1.14 (0.77 - 1.49) 1.61 (0.86 - 2.17) 1.66 (0.85 - 2.08)  

4 0.9657 1.0000 0.0681 1.16 (0.97 - 1.70) 1.56 (0.72 - 2.45) 1.55 (0.92 - 2.15)  

5 1 1.0000 0.0908 1.41 (1.04 - 1.66) 1.50 (0.93 - 2.00) 1.33 (0.84 - 2.04)  

6 1 1.0000 0.1434 1.52 (1.03 - 1.69) 1.62 (0.82 - 1.93) 1.51 (0.97 - 1.85)  

 

 
Figure 4.3. Comparison of the proposed approaches results for scales 1 to 6. (a) Approximate Multiscale Entropy.(b) 

Multiscale Sample Entropy. (c) Generalized Multiscale Sample Entropy. (d) Multiscale Fuzzy Entropy. (e) 

Multiscale Permutation Entropy. (f) Multiscale Distribution Entropy. The trends related to the seizure-free windows ( 

◊ marker), seizure windows ( □ marker) and interictal windows ( ✩ marker) are shown. The values at each scale 

represent the median and iqrs among patients. [Frassineti et al., 2021d]. 
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Figure 4.4. SE boxplots of the groups (0-1-int) with scale factor 5, where * and ** respectively denote statistically 

significant and highly statistically significant results obtained with the MCT test. [Frassineti et al., 2021d]. 

 

In Table 4.4 the statistical analysis performed using FE is reported, with embedding dimension m=2 

and a scale factor from 1 to 6 for multiscale analysis. As for MSE, the statistics (median and IQR) for 

the three classes considered are reported. In Figure 4.3d, the MFE trends as a function of the scale 

factor are shown. As a significant p-value in the “int vs. 1” KW-Test was obtained, Figure 4.5 shows 

the boxplot of the three classes at scale 5 and the corresponding multi-comparison analysis. 

Table 4.4. Multiscale Fuzzy Entropy - Statistical results of the test described in section 2.6. The descriptive statistics 

(median and IQR) related to the three groups considered (0, 1 and int) are reported. Star (*) denotes statistically 

significant results. [Frassineti et al., 2021d]. 

MFE  

Scale  

factor 

0 vs 1  

KW-Test  

p-value 

int vs 1 

KW-Test 

p-value 

MW-Test  

p-value 

STATS 0  

MEDIAN (IQR) 

STATS 1  

MEDIAN (IQR) 

STATS INT  

MEDIAN (IQR) 

 

1 0.9564 0.2411 0.8344 0.40 (0.32 - 0.59) 0.35 (0.19 - 0.52) 0.41 (0.25 - 0.64)  

2 0.0316* 0.3318 0.0526 0.51 (0.35 - 0.68) 0.36 (0.25 - 0.46) 0.43 (0.32 - 0.57)  

3 0.0052* 0.2207 0.0150* 0.63 (0.43 - 0.76) 0.42 (0.31 - 0.50) 0.47 (0.41 - 0.58)  

4 0.0031* 0.1444 0.0204* 0.71 (0.53 - 0.83) 0.47 (0.41 - 0.59) 0.57 (0.47 - 0.68)  

5 0.0013* 0.0469* 0.0194* 0.80 (0.62 - 0.90) 0.53 (0.46 - 0.65) 0.64 (0.56 - 0.75)  

6 0.0011* 0.0864 0.0083* 0.87 (0.67 - 0.96) 0.59 (0.52 - 0.73) 0.70 (0.59 - 0.80)  

 

 
Figure 4.5. FE boxplots of the groups (0-1-int) with scale factor 5, where * and ** respectively denote statistically 

significant and highly statistically significant results obtained with the MCT test. [Frassineti et al., 2021d]. 



78 

 

Table 4.5 reports the statistical analysis performed using PE with embedding dimension m=2 and a 

scale factor from 1 to 6 for multiscale analysis. Moreover, the statistics (median and IQR) for the 

three classes considered are reported. In Figure 4.3e, the MPE trends as a function of the scale factor 

are shown. 

Table 4.5. Multiscale Permutation Entropy - Statistical results of the test described in section 2.6. All tests were 
performed on 33 patients with seizures vs. 19 seizure-free patients. The descriptive statistics (median and IQR) related 
to the three groups considered (0, 1 and int) are reported. Star (*) denotes statistically significant results. [Frassineti et 

al., 2021d]. 

MPE  

Scale  

factor 

0 vs 1  

KW-Test  

p-value 

int vs 1 

KW-Test 

p-value 

MW-Test  

p-value 

STATS 0  

MEDIAN (IQR) 

STATS 1  

MEDIAN (IQR) 

STATS INT  

MEDIAN (IQR) 

 

1 1 1 0.7323 0.6912 (0.6895 - 0.6921) 0.6913 (0.6882 - 0.6925) 0.6913 (0.6869 - 0.6925)  
2 0.5050 0.9519 0.3769 0.6913 (0.6898 - 0.6918) 0.6919 (0.6899 - 0.6924) 0.6911 (0.6889 - 0.6923)  
3 1 0.3827 0.7467 0.6915 (0.6896 - 0.6922) 0.6917 (0.6890 - 0.6925) 0.6902 (0.6890 - 0.6916)  
4 1 1 0.8792 0.6914 (0.6893 - 0.6918) 0.6911 (0.6889 - 0.6916) 0.6909 (0.6896 - 0.6921)  
5 1 1 0.4529 0.6911 (0.6903 - 0.6918) 0.6908 (0.6870 - 0.6914) 0.6911 (0.6888 - 0.6918)  
6 1 1 0.4359 0.6909 (0.6897 - 0.6920) 0.6905 (0.6880 - 0.6917) 0.6901 (0.6888 - 0.6917)  

 

Table 4.6 reports the statistical analysis performed using DE with embedding dimension m=2, number 

of bins 512 and a scale factor from 1 to 6 for multiscale analysis. As for MPE, the statistics (median 

and IQR) for the three classes considered are reported. In Figure 4.3f, the MDE trends as a function 

of the scale factor are shown. 

Table 4.6. Multiscale Distribution Entropy - Statistical results of the test described in section 2.6. The descriptive 
statistics (median and IQR) related to the three groups considered (0, 1 and int) are reported. Star (*) denotes 

statistically significant results. [Frassineti et al., 2021d]. 

MDE  

Scale  

factor 

0 vs 1  

KW-Test  

p-value 

int vs 1 

KW-Test 

p-value 

MW-Test  

p-value 

STATS 0  

MEDIAN (IQR) 

STATS 1  

MEDIAN (IQR) 

STATS INT  

MEDIAN (IQR) 

 

1 0.3664 0.2952 0.2312 0.8931 (0.8681 - 0.9062) 0.9057 (0.8859 - 0.9167) 0.8932 (0.8706 - 0.9083)  

2 0.8091 0.5365 0.7323 0.9064 (0.9019 - 0.9168) 0.9176 (0.8998 - 0.9269) 0.9075 (0.8919 - 0.9211)  

3 1 0.6727 1.0000 0.9178 (0.9128 - 0.9253) 0.9228 (0.9026 - 0.9328) 0.9169 (0.9094 - 0.9261)  

4 1 0.2114 0.7756 0.9200 (0.9149 - 0.9283) 0.9269 (0.9125 - 0.9351) 0.9183 (0.9114 - 0.9250)  

5 1 0.7985 0.8942 0.9177 (0.9104 - 0.9300) 0.9272 (0.9134 - 0.9347) 0.9198 (0.9100 - 0.9263)  

6 1 0.3935 0.9697 0.9205 (0.9154 - 0.9233) 0.9240 (0.9100 - 0.9336) 0.9164 (0.9069 - 0.9249)  

 

In Table 4.7 we show the descriptive statistics (median and IQR) concerning the complexity index 

(CI) and the relative slope [Costa et al., 2005] of all the multiscale entropy indexes and the classes 

considered. 

Table 4.7. Descriptive statistics (median and IQR) for all the entropy indexes and the classes considered (“0-1-int”) 
concerning the complexity index (CI) with the corresponding slope (+1 if positive -1 if negative). Stars (*) denote 

significant differences between class “0” and “1” (Mann-Whitney Test p-value < 0.05, after Bonferroni correction). 
[Frassineti et al., 2021d]. 

Multiscale  

Entropy Index  

CI - median (iqr) 

class “0” 

CI - median (iqr) 

class “1” 

CI - median (iqr) 

class “INT” 

MAE -3.9 (-4.2 : -3.7) -3.6 (-3.9 : -3.1) -3.8 (-4.0 : -3.4) 

MSE* 6.3 (5.1 : 7.2) 4.2 (2.6 : 5.6) 5.0 (3.3 : 6.2) 

MFE* 3.1 (2.3 : 3.7) 2.3 (1.7 : 2.7) 2.6 (1.6 : 3.1) 

GSE -5.9 (-8.1 : -3.1) -2.1 (-7.0 : 9.4) -5.7 (-8.2 : -1.3) 

MPE -3.4 (-3.5 : 3.5) -3.4 (-3.5 : 3.4) -3.4 (-3.5 : 3.4) 

MDE 4.6 (4.5 : 4.6) 4.6 (4.0 : 4.6) 4.6 (4.5 : 4.6) 
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4.4 Discussion 

This work applies multiscale entropy analysis to HRV dynamics with the aim of providing useful 

information about possible autonomic nervous system dysregulation occurring during seizures in 

newborns.  

Table 4.1 gives some significant differences between groups with MAE. However, the multiscale 

analysis shows the well-known limits of this metric in the analysis of short time series [Richman and 

Moorman, 2000]: at higher scales, it was no longer possible to resolve differences (from scale 4 in 

Table 1, “0 vs. 1” KW-Test). Moreover, the MW-Test for all the scales considered shows that MAE 

might be not suitable to discriminate between a patient with seizures and a seizure-free one. The 

results reported in Tables 4.2 and 4.4 show that SE and FE are capable of discriminating between a 

patient with seizure events from a seizure-free one (“0 vs. 1” KW-Test and MW-Test). The multiscale 

analysis proved to be crucial to detect these differences. In fact, without any scale factor (i.e., s = 1, 

Equation (4.1)), no differences were found among subjects. Instead, Tables 4.2 and 4.4 show that 

windows with seizure events have lower values of SE and FE than those obtained for the interictal 

and seizure-free windows. This is partially in line with what was already found for childhood seizures 

using entropy indexes in EEG analysis [Frassineti et al., 2019]. Furthermore, the results shown in 

Table 4.7 summarize what was found with the statistical analysis. As an example, the CI for MSE 

and MFE on windows with seizure events are on average lower than those in seizure-free windows 

(Mann-Whitney test, p-values < 0.05 with Bonferroni correction). Instead, for MPE or MAE the CI 

values are very similar among the classes (Mann-Whitney test, p-values > 0.05 with Bonferroni 

correction). 

Thus, considering the results obtained in the “0 vs. 1” KW-Test and MW-Test for MSE and MFE 

(Tables 4.2 and 4.4), it seems that differences between a newborn with seizures and a seizure-free 

one do not exist only during the ictal events but also during the whole interictal activity. These results 

seem to confirm that neonatal seizure events may produce a direct or indirect continuous alteration at 

the level of the cardio-regulatory system. Multiscale entropy indexes may detect these abnormal heart 

rate dynamics, probably connected to a reduced variability or transient decelerations in heart rate 

dynamics [Lake et al., 2002]. 

Moreover, a slight difference between the results obtained with FE and SE could indicate a higher 

accuracy of FE. Results shown in Tables 4.2 and 4.4 highlighted that the MFE index was able to catch 

the differences on more scales than MSE, showing more consistency and intrinsic robustness against 

noise in the time series [Borin et al., 2021]. The MSE and MFE entropies showed promising results, 

thus suggesting that higher scale levels should be exploited using variants of MSE, such as Modified 

multiscale entropy or others [Humeau-Heurtier, 2015]. 

GSE (Table 4.3) deserves a different discussion from MAE. The significant differences in volatility 

found by the MW-Test at scale factor 3 suggest a different behaviour between groups about 

instantaneous variability of HRV properties. As suggested by Costa et al. [Costa and Goldberger, 

2015], this behaviour might be related to possible abnormal heart dynamics during the cardiac cycle 

of activation and recovery (e.g., during depolarization and repolarization). However, the relationship 

between these findings and physiological dynamics is still an open issue, and further analysis is 

required. The obtained results suggest that a coarse-grained procedure based on the mean value should 

be preferred over variance-based methods. However, as stated by Costa et al. [Costa and Goldberger, 

2015], further analysis about GSE should be made by increasing the window size or using different 

entropy variants.  
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Concerning these findings, in Figure 6 the multiscale trends obtained for MW-Test (from Tables 4.2–

4.4) are reported. The Figure shows that MFE, MSE and GSE were able to catch differences between 

seizures and seizure-free patients. Specifically, Figure 4.6 shows the cumulative trends related to 

patients with seizures for all the windows extracted, both those with seizure events (class “1”) and 

the interictal ones (class “int”), showing that differences still exist between the two groups. All the 

trends, starting from scale 2 for MFE and scale 3 for MSE, show that differences between a newborn 

with seizure and a seizure-free one can be found during or close to seizure events and during the 

interictal periods. 

 
Figure 4.6. MFE (a), MSE (b), and GSE (c) trends considering all the windows for the patients with seizures (□ 

markers) compared to the seizure-free patients (◊ markers). The values at each scale represent the median and IQR 

among patients. [Frassineti et al., 2021d]. 

 

Instead, as shown in Tables 4.1, 4.5, and 4.6 for MAE, MPE, and MDE, we did not find any significant 

differences among groups. This suggests that, according to the used embedding dimension and 

threshold parameter, these indexes might not be helpful for HRV multiscale entropy analysis in 

newborns with seizures. As shown in the Results Section, differences between the methods 

considered here exist. Although an exhaustive answer about the possible reasons for all the entropies 

is challenging, it could be argued that the difference lies in the basic properties and limits of each 

method previously described. Limits of MAE and MSE have been discussed in [Humeau-Heurtier, 

2015] and [Humeau-Heurtier, 2020]. Moreover, limits of MPE were found when applied to short time 

series, or with a low signal-to-noise ratio [Porta et al, 2015]. The present work focuses on a limited 
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set of parameters and indexes and cannot be generalized, anyway it shows that the choice of the 

proper entropy index is crucial and requires a deeper analysis for a consistent and robust investigation. 

Finally, although “0 vs. 1” KW-Test and MW-Test confirmed the differences between patients with 

seizures and seizure-free patients, we found that only MSE and MFE at scale factor 5 could 

discriminate between interictal windows and windows with seizure events (Tables 4.2 and 4.4, “int 

vs. 1” KW-Test: p-value < 0.05). The result suggests that multiscale entropy indexes might not be 

suitable for an intra-patient analysis, an essential prerequisite for their implementation in a patient-

independent ECG-based NSD [Frassineti et al., 2021c, Greene et al., 2007b]. However, this goal was 

out of the aims of this work and will be the subject of future studies. 

In summary, our results confirm that HRV multiscale entropy analysis may provide helpful 

information for the characterization of neonatal seizures. As shown in [Bersani et al, 2021], HRV 

analysis can provide a reliable marker for HIE, one of the most common neonatal seizures aetiologies.  

Nevertheless, our analysis has some limitations: in general, the Helsinki Dataset includes a large 

number of newborns with episodes of asphyxia/HIE, that may have partly biased the implemented 

methods in differentiating between the groups. Moreover, our analysis did not cover extreme events 

such as sudden infant death syndrome (SIDS) that could be associated with an abnormal cardiac 

activity [Buchanan, 2019]. Thus, further studies are required to extend our findings to all the possible 

aetiologies behind neonatal seizures. To the best of our knowledge, the Helsinki Dataset is the most 

extensive public dataset for neonatal seizures in terms of the number of patients [Olmi et al., 2021], 

but we tested our methods on this dataset only. Thus, our findings may be considered preliminary and 

they need to be confirmed after their application to other datasets. This work does not consider all the 

entropy metrics proposed in the literature, thus the optimal entropy measures for this task will be the 

subject of further research. About MSE analysis, several variants were recently proposed [Humeau-

Heurtier, 2015] and will be considered as future developments of the methods, especially for the 

analysis of short time series. Promising methods, even for short time series, such as AvgApEn, 

AvgSampEn proposed by C. Karmakar et al. [Karmakar et al., 2020], ipApEn and ipSampEn 

introduced by G. Valenza et al. [Valenza et al, 2015] may be valid alternatives to be evaluated. 

Another issue concerns the choice of the most suitable window length. In this work, we used windows 

of 4 min of duration to detect autonomic variations in newborns [Statello et al., 2018]. This choice 

allowed a consistent multiscale analysis and the discrimination between windows with seizure events 

and interictal windows. It is worthwhile noting that the choice of 4-min windows may not be the best 

and it might depend on the specific dataset. Thus, further studies would be focused on different 

datasets to confirm this finding. However, to detect the onset and the offset of an ictal event by HRV 

analysis, e.g., for a real-time evaluation, windows with shorter duration should be considered in future 

studies. Our results concern a single embedding dimension and a single threshold parameter. 

Although our settings are confirmed in the literature [Humeau-Heurtier, 2020], an exhaustive research 

involving all the possible combinations of parameters, indexes and scales could be exploited. 

Moreover, a deeper analysis about parameters for multiscale entropy indexes could be taken into 

account in the future, in particular for indexes like PE and DE that were not able to detect the 

differences between newborns. 

HRV entropy indexes seem to be appropriate to describe neonatal seizures with a specific aetiology 

such as the hypoxic-ischemic encephalopathies or, in general, with asphyxia episodes [Michniewicz 

et al., 2020, Locatelli et al, 2020]. Moreover, cardio-regulatory system differences between a newborn 

with seizures and a seizure-free one might also be present during interictal activity rather than only 

during or close to an ictal event. 
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4.5. BHIs in newborns 

In this chapter a first analysis regarding the use of multiscale HRV entropy indexes as a support for 

neonatal seizure detection and characterization was provided. Considering the promising results, they 

suggest that an interaction between ANS and Central Autonomic Nervous System (CNS) during 

neonatal seizures might exist. It is well known that a mutual exchange of information exists between 

the cortical activity of the CNS and the ANS. For example, cardiac activity can be altered by inputs 

from baroreceptors, chemoreceptors, and other sources [Silvani et al., 2016]. Thus, the analysis and 

the characterization of the brain-heart interactions (BHIs) during physiological and pathological 

events is of great clinical interest [Silvani et al., 2016]. The ANS-to-CNS system interaction was 

investigated and modelled using physiological signals such as the electroencephalogram (EEG) and 

the heart rate variability (HRV) [Schiecke et al., 2019]. Moreover, several methods were proposed to 

measure or model these interactions, such as Granger causality, Transfer entropy and the convergent 

cross mapping (CCM) [Schiecke et al., 2019]. These methods have been applied in various 

neuroscience fields such as polysomnography [Faes et al., 2015], stress assessment, mood disorders, 

emotion recognition [Valenza et al., 2016] and epilepsy [Schiecke et al., 2016]. 

In particular, the study of BHI in epilepsy could have relevant diagnostic and therapeutical 

applications in epilepsy to detect signs or symptoms related to a sudden unexpected death in epilepsy 

(SUDEP) [Costagliola et al., 2021]. The analysis of interactions between physiological systems has 

already been performed for newborns, mainly to assess neurovascular coupling [Hendrikx et al., 

2019]. However, to the best of our knowledge, a specific investigation of BHIs in newborns with 

seizure events using EEG and HRV signals is still scarce [Hendrikx et al., 2019]. If confirmed this 

information could be used as support to ECG/HRV-based as well as the already explained multiscale 

HRV entropy measures. For these reasons, in this final part of the Chapter 4 a first investigation about 

BHIs in newborns with and without seizures using EEG and HRV signals is presented. The aim is to 

assess if different behaviors may exist between the CNS and ANS for the two populations considered. 

We used the CCM method [Sugihara et al., 2012], already applied to the analysis of BHI in specific 

childhood epilepsy [Schiecke et al., 2016]. To the best of our knowledge, the study presented here is 

one of the first studies applying CCM methods to characterize BHIs during neonatal seizures. 

 

4.5.1 CCM methods 

To obtain a uniform comparison with multiscale HRV entropy results, all the proposed methods were 

implemented using the same cohort: 33 newborns with seizure events and 19 seizure-free from the 

Helsinki Dataset [Stevenson et al., 2019]. Regarding the EEG derivations, as in [Frassineti et al., 

2020], the same bipolar configuration was used: F4-C4, C4-O2, F3-C3, C3-O1, T4-C4, C4-Cz, Cz-

C3 and C3-T3. All the EEG signals were band-pass FIR filtered in the bandwidth 0.25-16 Hz. ECG 

signals were analyzed to extract HRV time series. Both ECG and EEG underwent a sub-windowing 

procedure of 30s of duration [Schiecke et al., 2016].  

To increase the signal-to-noise ratio (SNR), ECGs were first pass-band filtered in the 0.05-45 Hz 

bandwidth. Then inter-beat-interval (IBI) time series were obtained using the Pan-Tompkins’ 

algorithm [Pan and Tompkins, 1985]. The HRV signals were eventually interpolated to have the same 

number of samples of the EEG signals. The following interpolation methods were checked: linear, 

nearest neighbour and French-Holden algorithm [Schiecke et al., 2019]. Both EEG and the 

interpolated HRV were downsampled to 16 Hz, obtaining 480 samples in each window. For each 

EEG derivation and each 30s window, we evaluated the CCM correlation coefficients between the 
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EEG and the HRV signals. The CCM approach is a nonlinear method to assess causality between two 

time series X and Y, observing the correspondence between the so-called “Shadow Manifolds” MX 

and MY, built using lagged coordinates from the original time series X and Y [Sugihara et al., 2012]. 

The lagged versions depend on: the embedding dimension D, the time lag τ and the library length L 

[Sugihara et al., 2012]. In our case, L=480 i.e. the number of window’s samples, 2 ≤ D ≤ 8 and 1 ≤ τ 

≤ 5 [Schiecke et al., 2016].  

The interactions between the two systems were quantified by the CCM correlation, defined as the 

absolute value of the Pearson correlation coefficient (ρ) between the original time series and an 

estimation using the CCM with the other time series. Thus, we obtained two CCM indexes (55) and 

(56) for all the 8 derivations considered, defined as [Sugihara et al., 2012]: 

𝐶𝐶𝑀𝐸𝐸𝐺→𝐻𝑅𝑉 = |𝜌(𝐸𝐸𝐺, 𝐸𝐸𝐺 𝑀𝐻𝑅𝑉)|⁄  (4.5) 

𝐶𝐶𝑀𝐻𝑅𝑉→𝐸𝐸𝐺 = |𝜌(𝐻𝑅𝑉, 𝐻𝑅𝑉 𝑀𝐸𝐸𝐺)|⁄  (4.6)  

Moreover, we computed the Average Degree metrics [Hendrikx et al., 2018] as the mean of CCM 

values, both for (4.5) and (4.6), between all the derivations considered.  

The overall mean of CCM coefficients for each patient was computed, distinguishing between seizure 

and seizure-free subjects. First, we tested if CCM values (4.5) and (4.6) and the Average Degree’s 

CCM values were statistically different between the two groups. The hypothesis of normality 

distribution was checked applying the Shapiro-Wilk test (level of significance α=0.05). As this 

hypothesis was not confirmed, we applied the non-parametric Mann-Whitney test (Test MW, level 

of significance α=0.05).  

Moreover, a surrogate analysis was added to check if the CCM values were due to chance or random 

fluctuations within the time series or represent an interaction between the two systems. To this aim, 

for each window, a set of 100 surrogates was built from the HRV interpolated signal using the 

amplitude-adjusted Fourier transform (AAFT) method [Lancaster et al., 2018]. Then for the surrogate 

sets, the CCM correlation coefficients (1) and (2) and the Average Degree were computed. A CCM 

value was significant if it was larger than the significance threshold: Tsurr=μsurr+2σsurr; where μsurr and 

σsurr are respectively the mean and the standard deviation values of the metrics obtained from the 

surrogate sets [Perrella et al., 2018]. Statistical differences between surrogate CCM values and CCM 

values from the original time series were tested applying a non-parametric Mann-Whitney test (level 

of significance α=0.05). The null hypothesis was the lack of BHIs and that the surrogate pairs destroy 

the original CCM correlation. 

 

4.5.2 CCM Results 

In Table 4.8, the statistical results obtained on CCMEEG→HRV mean values between 33 patients with 

seizures and 19 seizure-free ones are shown. The same analysis for the Average Degree parameter is 

reported in the last row. The descriptive statistics are related to the following CCM’s parameters: 

D=3, τ=1, L=480. The interpolation method selected for this experiment was the linear one. The same 

statistical analysis related to CCMHRV→EEG is shown in Table 4.9. Table 4.10 concerns the descriptive 

statistics of CCM parameters related to surrogate analysis. The average significant thresholds and 

their standard deviations are shown for patients with seizures and seizure-free ones. Star (*) denotes 

a statistically significant difference with the CCM values computed to the original time series. A non-

parametric Mann-Whitney test (level of significance α=0.05) was applied. 
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Table 4.8. Results of statistical tests for the parameter CCMEEG → HRV performed between each derivation and HRV 

signal. The descriptive statistics (mean μ ± standard deviation σ) are shown. Star (*) denotes statistically significant 

results. [Frassineti et al., 2022a]. 

 CCM  

EEG → HRV 

Test  

MW 

Derivation 
Seizure-free patients 

μ±σ 

Patients with seizures 

μ±σ 
p-value 

F4-C4 0.23 ± 0.08 0.18 ± 0.05 0.010* 

C4-O2 0.24 ± 0.07 0.19 ± 0.06 0.001* 

F3-C3 0.22 ± 0.10 0.18 ± 0.07 0.106 

C3-O1 0.22 ± 0.07 0.19 ± 0.09 0.154 

T4-C4 0.24 ± 0.08 0.19 ± 0.06 0.020* 

C4-Cz 0.25 ± 0.07 0.19 ± 0.06 0.012* 

Cz-C3 0.23 ± 0.08 0.19 ± 0.08 0.018* 

C3-T3 0.21 ± 0.10 0.18 ± 0.09 0.223 

Average Degree 0.23 ± 0.08 0.20 ± 0.07 0.029* 

 

Table 4.9. Results of statistical tests for CCMHRV → EEG. The descriptive statistics (mean μ ±standard deviation σ) are 

shown. Star (*) denotes statistically significant results. [Frassineti et al., 2022a]. 

 CCM  

HRV → EEG 

Test  

MW 

Derivation 
Seizure-free patients 

μ ± σ 

Patients with seizures 

μ ± σ 
p-value 

F4-C4 0.11 ± 0.03 0.11 ± 0.04 0.530 

C4-O2 0.10 ± 0.03 0.10 ± 0.05 0.287 

F3-C3 0.12 ± 0.04 0.10 ± 0.04 0.493 

C3-O1 0.09 ± 0.03 0.10 ± 0.03 0.044* 

T4-C4 0.10 ± 0.02 0.11 ± 0.05 0.071 

C4-Cz 0.11 ± 0.02 0.11 ± 0.03 0.196 

Cz-C3 0.10 ± 0.03 0.11 ± 0.04 0.371 

C3-T3 0.09 ± 0.02 0.10 ± 0.03 0.019* 

Average Degree 0.10 ± 0.02 0.11 ± 0.04 0.183 

 

Table 4.10 Descriptive statistics (mean μ ± standard deviation σ) from Surrogate Analysis. Star (*) denotes significant 

differences between surrogates CCM values and their respective values shown in Table 4.8 and 4.9. [Frassineti et al., 

2022a]. 

 

Test Surrogates 

Tsurr=μsurr+2σsurr 

CCM  

EEG → HRV 

CCM  

HRV → EEG 

Derivation 

Seizure-free 

patients 

Tsurr (μ ± σ) 

Patients 

with seizures 

Tsurr (μ ± σ) 

Seizure-free 

patients 

Tsurr (μ ± σ) 

Patients 

with seizures 

Tsurr (μ ± σ) 

F4-C4 0.12± 0.02* 0.10± 0.02* 0.10 ± 0.01 0.10± 0.02 

C4-O2 0.13± 0.03* 0.11± 0.03* 0.09 ± 0.02 0.10± 0.02 

F3-C3 0.12± 0.03* 0.10± 0.02* 0.10 ± 0.02 0.10± 0.01 

C3-O1 0.12± 0.03* 0.11± 0.02* 0.09 ± 0.02 0.10± 0.02 

T4-C4 0.13± 0.03* 0.12± 0.03* 0.10 ± 0.02 0.10± 0.02 

C4-Cz 0.14± 0.03* 0.11± 0.02* 0.10± 0.01 0.10± 0.01* 

Cz-C3 0.13± 0.03* 0.11± 0.02* 0.10± 0.02 0.10± 0.02 

C3-T3 0.12± 0.03*  0.10± 0.02* 0.09± 0.02 0.10± 0.02 

Average Degree 0.12± 0.03* 0.10± 0.02* 0.09± 0.01* 0.10± 0.02 
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4.5.3 Discussion regarding CCM and BHIs in neonatal seizures 

This work aims at evaluating whether CCM analysis could provide helpful and significant 

information about BHIs in newborns with and without seizures. As shown in Table 4.8, significant 

results were obtained for CCMEEG→HRV values for several derivations (5 out of the 8 considered) and 

for the Average Degree parameter (p-values<0.05): the interaction between CNS and ANS may differ 

in patients with seizures and seizure-free ones. Moreover, the average values of CCMEEG→HRV were 

lower for patients with seizures than for seizure-free ones. 

This suggests that neonatal seizures might significantly alter the neuronal interplay between the two 

systems, making the ANS less “predictable” in response to variation of the CNS or cortical activity 

[Schiecke et al., 2019]. Low values of CCM mean a low causality relationship between two systems 

[Sugihara et al., 2012]. We did not obtain significant results for all the derivations considered, as 

neonatal seizures are mainly focal ones [Pressler et al., 2021], thus, some cerebral areas may not be 

involved during ictal events for most patients in our dataset. Since the surrogate thresholds for 

CCMEEG→HRV were lower than the original values (Table 4.10 and Table 4.8, respectively), these 

interactions might be due to specific relationships between CNS and ANS and not to random 

fluctuations of the time series.  

However, the same cannot be said for the CCMHRV→EEG values: although we obtained significant 

results for two derivations (C3-O1 and C3-T3 in Table 4.9), these results must be considered with 

caution because the surrogate values (Table 4.10) did not show significant differences between them 

(p-value > 0.05). Thus, these interactions might be due to chance and not to a true relationship 

between ANS and CNS. Figure 4.7a. and 4.7b show the Average Degree’s CCM trends of a single 

patient and their surrogate analysis. As shown in Figure 4.7a, the surrogate values remain below the 

CCMEEG→HRV, while CCMHRV→EEG values remain lower than surrogates in almost all windows. 

Results suggest that in patients with seizure events the heart dynamics could be altered by the CNS 

activity but not the opposite. This is in agreement with [Statello et al., 2021]: seizures may alter the 

ANS dynamics and not only the CNS one. The CCM approach seems to catch differences in BHIs 

between newborns with and without seizures. 

However, our analysis has some limits. First, the choice of EEG montage is a critical point that might 

alter the BHI results. Thus, further analysis is needed to find the best montage for neonatal BHI 

analysis. Anyway, as shown in Table 4.8, multichannel analysis can provide better information than 

a single derivation analysis because some derivations may not give significant interactions. Another 

critical issue concerns the choice of CCM parameters D, τ and L, which could not be the optimal ones 

if used on other datasets. As an example, varying the downsampling factor might better characterize 

interactions due to different brain waves. Thus, an exhaustive evaluation should be performed when 

CCM analysis is applied to other datasets [Schiecke et al., 2016]. This point is outside of the aims of 

the present research, but could be addressed in future studies. Moreover, in this work the CCM 

approach was chosen to characterize the BHIs in newborns, however in future studies alternative 

approaches, such as bivariate and multivariate methods, could be tested [Faes et al., 2016]. 

This work shows that BHIs might differ in newborns with seizures and seizure-free ones. Future 

studies could focus on BHI differences among patients with seizures, focusing on interictal and ictal 

periods [Frassineti et al., 2021d] or between pre-ictal and post-ictal periods [Frassineti et al., 2021a]. 

Other studies could investigate BHIs among different aetiologies [Olmi et al., 2021] or after 

pharmacological treatments [Costagliola et al., 2021]. 
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(a) 

 
(b) 

Figure 4.7. BHI analysis for a single patient with a single seizure event. (a) Average Degree’s CCMEEG→HRV trend 

(solid blue line) and the corresponding surrogate values for each window (dashed line). (b) Average Degree’s 

CCMHRV→EEG  trend (solid red line) and the corresponding surrogate values for each window (dashed line). The 

orange line between windows 35 and 65 represents the time occurrence of the seizure event (GT= ground truth). 

[Frassineti et al., 2022a]. 

 

4.6. Conclusions  

In this chapter two different analysis regarding the possible involvement of ANS during neonatal 

seizures and how to quantify it have been presented. 

The first analysis concerned the evaluation of multiscale HRV entropy indexes for the 

characterization of neonatal seizures. Specifically, the capability of entropy measures to detect 

abnormal heart rate dynamics during or close to ictal events was exploited. Entropy measures were 

analyzed to discriminate between newborns with seizures and seizure-free ones. We found that 

Multiscale Sample and Fuzzy Entropy, from the scale factors 3 and 2 respectively, show significant 

differences between the two groups. Thus, the multiscale approach allows characterizing the ictal 

events that could not be detected with a single scale approach. Moreover, interictal activity showed 

significant differences between patients with seizure and seizure-free ones. 

Though our results are promising, it is noteworthy that HRV analysis may not be specific enough for 

neonatal seizure detection. For example, motor activity during seizures could lead to changes in heart 

rate and its variability, although neonatal seizures are often without a clear motor activity and can 
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only be recognized from their electroclinical characteristics [Pressler et al., 2021]. Thus, more studies 

are required to better clarify the neuro-vascular mechanisms occurring in a newborn with seizures 

and their relationships with multiscale entropy indexes. 

Regarding the second analysis related to BHIs by CCM approach, our findings suggest that CNS and 

ANS are strictly related to ictal events in newborns. This result could help to better understand seizure 

events and support neonatal seizure detection methods [Olmi et al., 2021]. Preliminary results are 

promising, but further studies are required exploring other approaches and datasets to check the 

usefulness of BHI in neonatal seizure detection and characterization. In the next Chapter 5, the 

ECG/HRV-based NSD methods developed considering all these findings, will be presented. 
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5. HRV-based methods for neonatal seizure detection 

Some contents in this chapter are based on the following publications: 

• Olmi, B., Manfredi, C., Frassineti, L., Dani, C., Lori, S., Bertini, G., Cossu, C., Bastianelli, 

M., Gabbanini, S., Lanatà, A., 2022. Heart Rate Variability Analysis for Seizure Detection in 

Neonatal Intensive Care Units. Bioengineering, Vol. 9, Issue 4, p. 165. 

https://doi.org/10.3390/bioengineering9040165 

• Frassineti, L., Manfredi, C., Olmi, B., Lanatà, A., 2021. A Generalized Linear Model for an 

ECG-based Neonatal Seizure Detector. In 2021 43rd Annual International Conference of the 

IEEE Engineering in Medicine & Biology Society (EMBC), pp. 471-474, doi: 

10.1109/EMBC46164.2021.9630841. 

• Frassineti, L., Lanatà, A. Mandredi, C., 2021. HRV analysis: a non-invasive approach to 

discriminate between newborns with and without seizures. In 2021 43rd Annual International 

Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2021, pp. 52-

55, doi: 10.1109/EMBC46164.2021.9629741. 

 

In Chapter 2 and 4 the link between Heart Rate Variability (HRV) and neonatal seizures has been 

addressed, showing the potentialities, limits and pitfalls of HRV-based approaches in this field. In 

this chapter this subject will be further exploited, presenting three different approaches regarding the 

use of HRV as a support to the neonatal seizure detection and characterization.  

This chapter is organized as follows: 

• In Section 1 the use of HRV measures and Machine-Learning models is presented to quantify 

the seizure risk, as support to the clinical staff for an ease identification of newborns with 

seizures. 

• Section 2 is devoted to introducing the use of Generalized Linear Model (GLM) and HRV 

features as HRV-based NSD.  

• Section 3 reports the methodologies and the results related to the use of Support Vector 

Machine (SVM) models as HRV-based NSD. 

• Section 4 introduces the MATLAB interface developed during this PhD period, where some 

of the EEG and ECG techniques described from Chapter 2 to 5, are implemented. The 

interface was designed according to the clinical needs and physicians’ feedbacks collected 

during this PhD period, supporting the clinical staff in neonatal seizure detection and 

characterization.  

 

5.1 HRV analysis: a non-invasive approach to discriminate between newborns 

with and without seizures 

As stated in [Statello et al., 2021] and discussed in Chapter 2 and 4, changes in the autonomic nervous 

system could represent a seizure manifestation and thus a possible neonatal seizures detector. 

Furthermore, new evidence emerged about links between the autonomic nervous system and neonatal 

seizures [Olmi et al, 2021, Frassineti et al., 2021d], indicating that the HRV analysis could reveal 

hidden relevant information. Indeed, these findings suggest that the HRV analysis might be used to 

discriminate between newborns with seizures and seizure-free ones. Therefore, through the analysis 
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of EEG or ECG recordings, an index of seizure risk could be found defining a binary classification 

that highlights the newborns at high risk of seizure events. To better understand this concept, a 

graphical illustration is provided in figure 5.1.  

 
 

Figure 5.1. Conceptualization of seizure risk index for newborns by HRV analysis and Artificial Intelligence model. 

 

Such systems could be useful in the clinical practice as a pre-screening tool in Neonatal Intensive 

Care Units (NICUs) to quickly identify newborns that need a deeper neurological investigation by 

continuous EEG (cEEG) or amplitude EEG (aEEG). To this aim, in this work we investigated if HRV 

analysis could be effective to detect newborns with seizures. 

Preliminary results in seizure detection for adults and children were obtained using time, frequency, 

and nonlinear HRV features. Here we consider such features as the input dataset of supervised 

classifiers to recognize newborn with seizures. Proposed methods were trained and validated on the 

public dataset of neonatal EEG and ECG signals collected in NICU at the Helsinki University 

Hospital already introduced in Section 2.3 [Stevenson et al., 2019]. 

 

5.1.1 Material and Methods 

As for the approaches presented in Chapter 4, the methods were defined and tested on 33 patients 

with consensus seizures and 19 seizure-free subjects from the Helsinki dataset [Stevenson et al., 

2019]. To increase the Signal-to-Noise Ratio (SNR) ECGs were pre-processed and filtered with a 

band-pass FIR filter in the bandwidth 0,05Hz-45Hz. Then the HRV feature set was extracted with the 

Kubios software version 2.2 [Tarvainen et al., 2014]. Statistical analysis, training and validation of 

classifiers were implemented under the MATLAB 2019b computing environment. According to 

[Frassineti et al., 2021d, Statello et al., 2018, Lucchini et al., 2016], for further HRV analysis we 

defined sliding time windows of 4 minutes of duration, without overlap. 

For the HRV analysis, the following feature sets were considered (for a complete description see 

[Tarvainen et al., 2014, Shaffer and Ginsberg, 2017]): 

• Statistical Features: mean of RR intervals (mean_RR); standard deviation of RR intervals 

(std_RR); mean of HRV (mean_HRV); standard deviation of HRV (std_HRV); root mean 

square of successive RR interval differences (RMSSD); percentage of successive RR intervals 

that differ more than 50ms (pNN50); HRV triangular index (HRV_tri_ind); baseline width of 

the RR interval histogram (TINN). 

• Frequency Features: peak, absolute and relative powers of Very Low (VLF), Low (LF) and 

High Frequencies (HF) using AR models of order 16 for the spectrum estimation 
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(ARLF_peak) [Tarvainen et al., 2014]; the ratio between LF and HF (ARLF_HF_power), the 

total power (AR_tot_power) and electrocardiogram derived respiration (EDR). 

• Nonlinear Features: Poincarè plot standard deviations (Poincare_SD1 and Poincare_SD2); 

Approximate and Sample Entropy (ApEn, SampEn with embedding dimension two and 

tolerance 0.2 [Frassineti et al., 2021d]); Multiscale Entropy (from MSE1 to MSE6, embedding 

dimension 2 and tolerance 0.2 [Frassineti et al., 2021d]); Detrending short- and long-term 

Fluctuation Analysis (DFAα1 and DFAα2); Correlation Dimension (CorDimD2).  

• Recurrence Plot Analysis Features: Maximum line length (RPALmax); Mean line length 

(RPALmean); Divergence (RPADIV); Recurrence rate (RPAREC); Determinism (RPADET) 

and Shannon entropy (RPAShanEn). 

According to [Statello et al., 2018], the range of the LF and HF frequency bands was adapted to the 

neonatal case as follows: LF (0.04-0.3) Hz; HF (0.3-1.3) Hz. According to the time window length 

and for proper entropy features estimation, multiscale Entropy features were computed up to level 6 

(MSE6) [Costa et al., 2005]. Statistical significance of each HRV measure in discriminating between 

patients with seizures and seizure-free patients was performed as follows: 

• Test 1 (T1): Mann Whitney Test (significance level α=0.05) and Permutation Test (number 

of repetitions 1000, significance level α=0.05) between the medians of the seizure-free 

patients and the medians of the patients with seizures. 

• Test 2 (T2): Mann Whitney Test (significance level α=0.05) and Permutation Test (number 

of repetitions 1000, significance level α=0.05) between the medians of the seizure-free 

patients and the medians of the patients with seizures, but considering only the windows 

containing one or more seizure event (i.e. discarding the interictal time windows). 

The workflow for the training and validation of the classifiers was set as follows: only the features 

relevant to the Permutation Test from T2 were considered, using the features which may discriminate 

between a window with seizure events and a seizure-free window. Thus, a matrix 52x13 was obtained, 

where 52 were the patients and 13 the medians of the selected features.  

The classifiers were validated through the Leave-One-Subject-Out Validation (LOSO) to avoid 

overestimation of the performance for the neonatal seizure detection problem [Olmi et al., 2021, 

Temko et al., 2011a]. Before the validation, the features were normalized (zero mean and unit 

variances) using the training sets' statistics on the validation sets features. The following machine 

learning models were trained: linear Support Vector Machine (SVM); Linear Discriminant Analysis 

(LDA); Random Undersampling Boosting (RUSBoost); k-nearest neighbours (kNN) and Random 

Forest. Hyperparameter optimization was carried out through the GridSearch method, with the same 

parameters for each model during the validation procedure. The best model among the set of classifier 

performance estimates (i.e., accuracy (ACC), F1score, Area Under ROC Curve (AUC), Sensitivity 

(SEN), and specificity (SPE)) was selected, based on the highest average AUC score [Frassineti et 

al., 2020]. It should be noted that the use of only the significant features from Test T2 might not 

represent the best subset of features for the classifiers and may lead to overfitting, despite the use of 

LOSO validation.  

Thus, to increase the models' performance, the models were retrained and validated considering both 

all the features extracted by Kubios and more statistics descriptors besides the median (i.e., mean, 

standard deviation, maximum, minimum, kurtosis, and skewness) obtaining a matrix of size 52x294. 

Furthermore, to reduce dimensionality, a feature selection minimum-redundancy-maximum-
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relevance algorithm (mRMR) [Ding and Peng, 2005] was implemented, obtaining a final matrix of 

size 52x29. Afterwards, the same validation procedure was repeated to compare the two approaches. 

The results and the list of the features considered after the mRMR selection are reported in Section 

5.1.2. 

 

5.1.2 Results  

Table 5.1 shows the Statistical Tests performed on the 33 patients with seizures compared with the 

19 seizure-free subjects: only the features with a significant Permutation Test obtained from T2 are 

shown. Furthermore, we reported the descriptive statistics mean and standard deviation for all the 

considered patients. For the patients with seizures, we also reported the values considering only the 

windows with seizure events. Noteworthy, the significant features are almost the same for both T1 

and T2.  

Table 5.2 reports the performance of the classifiers, both for the case of features with significant 

Permutation Test (T2) and that of the mRMR selected features. The Linear SVM with mRMR feature 

selection showed the highest performance (i.e. 29 predictors). Finally, a list of features selected by 

the mRMR algorithm is shown in Table 5.3. The threshold for feature selection was empirically given 

by the highest AUC score.  

Table 5.1. Results of Statistical Tests performed on the 33 patients with seizures vs the 19 seizure-free subjects. Only 

the features with a significant Permutation Test from Test 2 (T2) are reported. The descriptive statistics mean (μ) and 

standard deviation (σ) are shown. Moreover, for the patients with seizures the statistics of the seizure windows are 

shown. [Frassineti et al., 2021b]. 

 
Mann Whitney  

(p-value) 

PermTest  

(p-value) 

Patients  

seizure-free (μ±σ) 

Patients with  

consensus seizures (μ±σ) 

Name Feat T1 T2 T1 T2 All the windows Windows with seizure All the windows 

std_RR (ms) 0.0109 0.0333 0.0110 0.0280 24 ± 15 15 ± 14 13 ± 12 

std_HRV (1/min) 0.0092 0.0333 0.0060 0.0490 7.28 ± 4.29 4.60 ± 4.13 4.01 ± 3.68 

HRV_tri_ind  0.0010 0.0046 0.0010 0.0090 6.23 ± 2.87 3.94 ± 2.72 3.59 ± 2.75 

TINN (ms) 0.0065 0.0255 0.0050 0.0280 130 ± 70 80 ± 70 70 ± 60 

ARLF_power_prc (%) 0.0175 0.0046 0.0190 0.0040 31.70 ± 14.48 20.47 ± 10.92 22.80 ± 10.84 

Poincare_SD2 (ms) 0.0087 0.0289 0.0050 0.0310 32 ± 20 20 ± 18 17 ± 16 

MSE2 N.S. 0.0383 N.S. 0.0360 0.97 ± 0.27 0.79 ± 0.29 N.S. 

MSE3 0.0318 0.0016 0.0390 0.0020 1.06 ± 0.28 0.80 ± 0.27 0.89 ± 0.25 

MSE4 0.0166 0.0015 0.0160 0.0020 1.15 ± 0.27 0.88 ± 0.29 0.96 ± 0.26 

MSE5 0.0226 0.0062 0.0290 0.0050 1.21 ± 0.28 0.96 ± 0.31 1.03 ± 0.26 

MSE6 0.0481 0.0062 0.0579 0.0110 1.26 ± 0.28 1.02 ± 0.32 1.10 ± 0.30 

CorDimD2 0.0045 0.0205 0.0220 0.0150 0.58 ± 0.60 0.23 ±0.41 0.23 ± 0.55 

RPALmean (beats) N.S. 0.0098 N.S. 0.0320 20.24 ± 9.21 28.78 ± 16.43 N.S. 
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Table 5.2. Performance of Leave-One-Subject-Out Validation on the 52 patients: 33 with consensus seizures and 19 

seizure-free subjects. On the left: 13 features with significant Permutation Test from T2. On the right: 29 features. 

[Frassineti et al., 2021b]. 

 Performances using the 13 significant features  

to Permutation Test (T2) 

Performances considering all the Kubios features,  

with more statistics descriptors and MRMR selection (29 features) 

MODEL ACC F1score AUC SEN SPE ACC F1score AUC SEN SPE 

Linear SVM 65.38% 68.97% 69.86% 60.61% 73.68% 86.54% 89.23% 87.66% 87.88% 84.21% 

LDA 63.46% 70.77% 67.30% 69.70% 52.63% 76.92% 81.82% 74.01% 81.82% 68.42% 

RUSBoost 65.38% 73.53% 27.27% 75.76% 47.37% 67.31% 72.13% 70.49% 66.67% 68.42% 

Random Forest 69.23% 77.14% 65.07% 81.82% 47.37% 63.46% 70.77% 65.07% 69.70% 52.63% 

kNN 75.00% 80.60% 60.85% 81.82% 63.16% 80.77% 84.85% 71.93% 84.85% 73.68% 

 

Table 5.3. List of the features selected by the mRMR algorithm. [Frassineti et al., 2021b]. 

Statistical  

Descriptor 

Feature Name 

Mean std_HRV, HRV_tri_ind, ARLF_power 

Standard  

Deviation 

HRV_tri_ind, CorDimD2 

Median RMSSD, pNN50, ARVLF_peak, ARLF_power 

Max std_RR, ARVLF_peak, ARVLF_power_prc, 

AR_tot_power, RPALmean 

Min std_HRV, HRV_tri_ind, ARVLF_peak, 

ARHF_peak, ARVLF_power, ARLF_power, 

ARLF_power_prc, ARHF_power, MSE6, 

CorDimD2 

Kurtosis RMSSD, MSE5 

Skewness ARLF_peak, ARLF_power, ARLF_HF_power 

 

5.1.3 Discussion 

Our findings suggest that HRV analysis may successfully catch differences between newborns with 

seizures and seizure-free newborns in the NICUs. In particular the Linear SVM performance in Table 

5.2 suggests that this model is suited to this task, reaching the highest score across the tested models. 

It is worth noting that the AUC value (about 87%) was obtained using all HRV measures with 

different statistical descriptors. Moreover, feature relationship analysis through mRMR improved the 

classification performance with respect to the Permutation Test only. Considering the multiscale 

entropy features (Table 5.1), lower complexity was found for seizure windows with respect to seizure-

free windows. This finding confirms the results already highlighted when entropy indexes were 

applied on EEG signals during seizure events [Frassineti et al., 2019]. Noteworthy, differences 

between patients with seizures and seizure-free newborns were evident from the second scale, 

especially between MSE3 and MSE5, confirming the previous results shown in Chapter 4.  

On the contrary, no difference was found without the multiscale analysis (i.e. ApEn, SampEn and 

MSE1). Furthermore, several analogies were found with [Statello et al., 2018] in the frequency 

domain features, although the datasets are slightly different (in [Statello et al., 2018] also pre-term 

newborns were considered). Analogies were found for the total power that was lower for the patients 

with seizures: mean values of AR_tot_power for the seizure-free subjects were 798 ms2 while for 

patients with seizures they were 314 ms2 (T1 Mann Whitney p-value 0.01). For the HF: the mean 
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values of ARHF_power for the seizure-free subjects were 73 ms2 and for patients with seizures they 

were 43 ms2 (T1 Mann Whitney p-value 0.03). About the feature selection: although mRMR already 

gave a consistent improvement of the performance, it did not provide information about the subset 

relevance. Thus, other methods such as Uncorrelated LDA, Genetic Algorithms; LASSO regression 

could be used to evaluate different feature subsets and their relevance.  

In conclusion, the present study shows the feasibility of HRV analysis as a possible screening tool 

between patients with and without seizures. Taking into account the lower cost, lower invasiveness, 

and easier usage of ECG sensors with respect to EEG ones, our findings suggest a possible integration 

of this approach in NICUs to allow an early detection of newborns at risk of seizures. 

 

5.2 A Generalized Linear Model for an HRV-based Neonatal Seizure Detector 

In section 5.1 the index of seizure risk has been introduced, that provides a first screening for clinical 

staff to detect a newborn with seizures. In this section the development of a HRV-based NSD by 

Generalized Linear Model (GLM) is presented. Differently from the methods presented in section 

5.1, this approach can highlight the time occurrence of the seizure events in the ECG recordings.  

As already discussed in Chapter 2, several EEG-based Neonatal Seizure Detectors (NSDs) were 

proposed in the literature [Olmi et al., 2021]. Moreover, results suggest that Artificial Intelligence 

techniques could provide a valid support to the clinical staff in the next future [Malak et al., 2019]. 

Recently, the possibility to develop NSDs without the use of EEG was evaluated [Olmi et al., 2021]. 

In particular, ECG-based NSDs were proposed in the literature [Olmi et al., 2021]. The idea behind 

ECG-based NSDs is the use of less invasive, simpler and easily available technologies rather than 

EEG-based NSDs. Indeed, neonatal seizures may induce direct and indirect alterations to the 

autonomic nervous systems, thus they could be better detected by ECG-based NSDs [Statello et al., 

2021]. Unfortunately, the performance of these detectors is still too low to represent a valid alternative 

to EEG for newborns [Statello et al., 2021, Olmi et al., 2021].  

In fact, most of the computer-based systems proposed in the literature are developed to automatically 

detect seizure activity in adults and children. De Coomant et al. proposed a patient-independent 

algorithm for online epileptic seizure detection based on the analysis of single-channel ECG data 

from eight patients (age: 29–51 years) with temporal lobe epilepsy [De Cooman et al, 2017]. They 

used Linear Support Vector Machine and Linear Discriminant Analysis (LDA) classifiers. The best 

performance was found for the LDA-based system, giving a Sensitivity (SEN) = 80% and Specificity 

(SPE) = 87%. Behbahani et al. proposed Multilayers Perceptron (MLP) neural networks with different 

numbers of hidden layers to detect seizures, performing the HRV analysis on ECG data from 15 

patients (9 patients with complex partial seizures, 6 with secondarily generalized seizures, mean age 

42.2 years) [Behbahani et al., 2014]. The MLP trained with the Levenberg–Marquardt algorithm gave 

SEN = 83.33%, SPE = 86.11 and Accuracy (ACC) = 84.72% for the patients with complex partial 

seizures, and for the patients with secondarily generalized seizures, SEN = 86.66%, SPE = 90% and 

ACC = 88.33%. 

Jeppesen et al. validated an HRV-based seizure detection algorithm analyzing ECG signals recorded 

using a wearable device [Jeppesen et al., 2019]. They performed an offline and patient-specific 

analysis based on recordings from 19 patients (age: 4–62 years). The overall SEN was 56.3%. They 

observed that the algorithm performed better on patients with marked autonomic changes, giving an 

SEN = 87%. 



95 

 

Although these methods show an appealing performance, they cannot be directly applied to newborns 

due to their quite different electrophysiological activity. However, some attempts to support seizure 

diagnosis through the ECG/HRV analysis have also been made for newborns. 

Greene et al. presented an ECG-based system using a Linear Discriminant (LD) classifier [Greene et 

al. 2007b]. They considered a dataset of ECG recordings from seven full-term newborns suffering 

from hypoxic ischemic encephalopathy (HIE) in the NICU of the Unified Maternity Hospitals in 

Cork, Ireland, and the Kings’ College Hospital, London. The HRV analysis was performed extracting 

properties of the R-R intervals in time, frequency and information theory domains. They developed 

a patient-specific and a patient-independent system. The first one provided Accuracy (ACC) = 

66.04%, Sensitivity (SEN) = 75.52% and Specificity (SPE) = 57.70%, while the patient-independent 

system gave ACC = 61.80%, SEN = 78% and SPE = 51.75%. Doyle et al. investigated the usefulness 

of the HRV analysis to detect neonatal seizures introducing a Support Vector Machine (SVM)-based 

system [Doyle et al., 2010]. They considered the ECG recordings of 14 full-term newborns admitted 

in the NICUs of the Unified Maternity Hospitals in Cork, Ireland. Concerning the HRV analysis, only 

a feature set defined in time and frequency domains was considered. The system results were: mean 

Area Under the ROC Curve (AUC) = 60% and mean SEN = 60% 

However, progresses in nonlinear HRV analysis in newborns and recent findings on neonatal seizures 

[Lucchini et al., 2016, Frassineti et al., 2021d] opened up new perspectives for the improvement of 

these methodologies. Therefore, further studies should be carried out to investigate the role of HRV 

in neonatal seizure detection and to check other methods that might be better suited for NSD than the 

already existing ones. To this aim, Generalized Linear Models (GLMs) could be a promising 

approach. GLMs were proposed to detect seizures in rats using features extracted from 

Electroencephalographic (EEG) signals [Fumeaux et al., 2020] or to classify normal and pre-ictal 

EEG signals [Redelico et al., 2017]. Indeed, these models are widely used in several biomedical fields 

thanks to their simplicity in describing the relationships between measured variables and outcomes 

[Redelico et al., 2017].  

The present work evaluates if GLM models may also be valuable as HRV-based NSDs. To this end, 

this study provides the first proof of concept about the development and use of GLMs to detect and 

characterize neonatal seizures through HRV measures. If successful, it might enable the application 

of such seizure detectors for newborns or infants also in-home monitoring environments or when 

EEG-based techniques are not readily available.  

 

5.2.1 Material and Methods 

As for the approaches presented in Chapter 4 and section 5.1, the methods presented here were 

developed and tested on 33 patients with consensus seizures and 19 seizure-free subjects from the 

Helsinki dataset [Stevenson et al., 2019]. Moreover, the same pre-processing as in Section 5.1 for 

ECG was applied. The same HRV feature set proposed in Section 5.1.1 was extracted with the Kubios 

software version 2.2 [Tarvainen et al., 2014]. Statistical analysis and the GLM model validation were 

implemented under the MATLAB 2020b computing environment. For the HRV analysis, for each 

recording non-overlapping sliding time windows lasting 4 minutes were defined [Statello et al., 2018, 

Lucchini et al., 2016]. Artifacts were removed using a first-order detrending step and a "medium 

correction". For more details, see [Tarvainen et al., 2014]. Then a Mann-Whitney Test (significance 

level α=0.05) between the medians of the windows of the seizure-free patients and those with one or 

more seizure event was performed. This test aimed at assessing the statistical significance of HRV 
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measures to discriminate windows with seizures events from seizure-free windows. The relevant 

features found after Mann-Whitney tests are shown in Table 5.4. Table 5.4 shows only the subset of 

significant HRV features from those already introduced in section 5.1.1. For a detailed description of 

them please see [Shaffer and Ginsberg, 2017, Frassineti et al., 2021b, Frassineti et al., 2021c]. 

To implement the GLM model for the NSD, a stepwise regression procedure was performed. Starting 

from a model with only the intercept term and considering the subset of significant features found 

with the Mann-Whitney test, we used a forward and backward stepwise regression to determine the 

final model. The criterion used to add or remove terms was the Deviance Criterion [Myers and 

Montgomery, 1997]. Moreover, the GLM model was trained using the Binomial Distribution for the 

response variable and with a Logit link function [Myers and Montgomery, 1997].  

 

Table 5.4. Significant HRV features after the Mann-Whitney test regarding differences between windows with seizures 

and seizure-free windows (level of significance 0.05). The overall list of HRV features is presented in Section 5.1.1. 

[Frassineti et al., 2021c]. 

Feature Name p-value Feature Name p-value 

std_RR 0.03 MSE3 0.001 

std_HRV 0.03 MSE4 0.001 

RMSSD 0.01 MSE5 0.006 

HRV_tri_ind 0.004 MSE6 0.006 

TINN 0.02 CorDimD2 0.02 

AR_LF_power 0.01 RPA Lmean 0.009 

AR_LF_power_prc 0.004 RPA REC 0.04 

AR_HF_power 0.02 RPA ShanEn 0.02 

MSE2 0.03   

 

The GLM model was built using all the considered time-windows, including the interictal time 

windows that were not used for the statistical test. In total, 1067 windows from the 52 patients were 

used, 284 of which with seizure events. As in the classical binary seizure classification problem, 

seizure-free epochs were labelled with “0” and epochs with seizure events with “1”.  

Before the stepwise procedure, the features were normalized by rescaling the data range in the interval 

[0,1], where 0 is the lowest value of the features across all windows and 1 is the highest value. 

Furthermore, missing values were replaced with the overall median values of the features. From the 

model, the concatenated Area Under the ROC curve was computed (AUCcc) [Frassineti et al., 2020] 

to assess the model's performances in detecting windows with seizure events. Furthermore, a Leave-

One-Subject-Out Validation (LOSO) was defined, iteratively removing each patient and retraining 

the GLM model using the same formula obtained by the stepwise regression procedure. LOSO 

validation was applied to avoid overestimation of the neonatal seizure detection task [Temko et al., 

2011a]. The following patient-independent performances were defined: Accuracy (ACC), Sensitivity 

(SEN), Specificity (SPE). Performances were obtained after the selection of the threshold parameter 

for the response variables. Results are presented in Section 5.2.2. 

 

5.2.2 Results  

The final model's formula obtained from the stepwise procedure is shown in a concise symbolic form 

in Equation 5.1 where only the interaction terms for RMSSD, MSE3 and MSE5 are displayed: 
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𝑙𝑎𝑏𝑒𝑙𝑠 ~ 1 + 𝐴𝑅𝐿𝐹𝑝𝑜𝑤𝑒𝑟 + 𝑅𝑀𝑆𝑆𝐷 × 𝑀𝑆𝐸3 + 𝑅𝑀𝑆𝑆𝐷 × 𝑀𝑆𝐸5 (5.1) 

 

Table 5.5 shows the statistical results related to the GLM model. Both the nonlinear entropy features 

MSE3 and MSE5, and their interaction with RMSSD show a statistically significant p-value 

(significance level α=0.05). Besides, we tested if the model significantly differs from a constant 

model using a Deviance Test. Constant model was defined as a model that considers only the intercept 

term without any independent variables, i.e. the HRV features considered. A χ2 statistic vs constant 

model: 96.6 and p-value 1.3e-18 was obtained.  

In Figure 5.2, the partial dependence plots of the predicted labels as a function of the predictor 

variables involved in the interaction terms (RMSSD, MSE3 and MSE5) are shown. Partial 

Dependence is defined as the relationships between predictor’s variables and predicted labels 

[Friedman, 2001]. Values in the colormap close to 1 represent windows with seizures, otherwise 

values close to 0 windows seizure-free. From Figure 5.2a and b it is possible to denote that there are 

two regions in the Partial Dependence Plots where the values are close to 1, corresponding to the 

extreme values of RMSSD, MSE3 and MSE5.  

Table 5.5 Estimated coefficients of the proposed GLM model. The model was built using 1067 windows from 33 

patients with seizure events and 19 seizure-free subjects. [Frassineti et al., 2021c]. 

 Estimate SE tStat p-value 

Intercept -0.33107 0.25393 -1.3038 0.19 

RMSSD -0.63561 1.6911 -0.37585 0.70 

ARLF_power -162.77 87.707 -1.8558 0.06 

MSE3 -6.116 1.1778 -5.1928 2.07e-07 

MSE5 6.7515 1.4574 4.6324 3.61e-06 

RMSSD:MSE3 25.728 6.5232 3.9441 8.01e-05 

RMSSD:MSE5 -42.402 9.9384 -4.2664 1.98e-05 

 

In Table 5.6, the results of the GLM model as an ECG-based NSD are shown. For patient-independent 

metrics ACC, SEN and SPE, the threshold (TH) used to obtain these performances and their mean 

values with standard deviations obtained after the LOSO validation on the 52 patients are reported. 

The chosen TH value allowed a good compromise between SEN and SPE. The ROC curve related to 

the parameter AUCcc is shown in Figure 5.3.  

Table 5.6 Performances of the proposed GLM model. [Frassineti et al., 2021c]. 

Method  AUCcc  

(%) 

TH ACC  

(%) 

SEN  

(%) 

SPE  

(%) 

GLM  

(LOSO) 

69.69 0.35 68±27 43±37 77±28 
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(a) (b) 

Figure 5.2 (a) Partial Dependence Plot of normalized RMSSD and MSE3 as a function of the predicted labels. (b) 

Partial Dependence Plot of normalized RMSSD and MSE5 as a function of the predicted labels. [Frassineti et al. 

2021c]. 

 

 

 
Figure 5.3 ROC curve of the AUCcc value reported in Table 5.6. [Frassineti et al., 2021c]. 

 

5.2.3 Discussion 

This work aims at evaluating if HRV analysis and GLM models could allow the development of an 

ECG-based NSD. The results reported in Table 5.5 show that the Multiscale Entropy contributes to 

characterize the seizure events with the model obtained. This possibility was not previously exploited 

in NSDs [Olmi et al., 2021]. The obtained performances confirm that EEG-based NSDs are still better 

than the ECG ones [Olmi et al., 2021]. However, the AUCcc obtained by the GLM model can be 

considered a relevant improvement for the development of ECG-based detectors [Greene et al., 

2007b, Doyle et al., 2010]. Furthermore, as reported in Section 5.2.1 and as in [Statello et al, 2018], 

significant differences were found for the HF features, where the Mann-Whitney tests gave p-values 

lower than 0.05. Significant differences were also found for the LF features. Considering the 

interactions shown in Figure 5.2, it is interesting to highlight the information provided by RMSSD 

values: extreme values of this measure (very close to 0 and 1) reflect an abnormal parasympathetic 
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activity inside the windows with seizure events. At the same time, at different scales, the MSE 

analysis (Figure 5.2) captures useful information about abnormal heart rate dynamics related to 

seizure events, e.g. reduced variability or transient decelerations [Frassineti et al., 2020d, Costa et al., 

2005]. Table 5.5 shows that the multiscale approach (from MSE2 to MSE6) allows finding statistical 

differences between the ictal and the seizure-free periods that could not be detected with a single scale 

approach (by ApEn or MSE1/SampEn). Furthermore, low values of the entropy indexes during ictal 

events are similar to the EEG case [Frassineti et al., 2019].  

The results confirm that neonatal seizures may alter the cardio-regulatory system and an ECG-based 

NSD may detect these changes. It was already demonstrated [Bersani et al, 2020] that HRV analysis 

can provide a reliable marker of brain damages in the case of Hypoxic-Ischaemic Encephalopathy 

(HIE), the most common aetiology behind neonatal seizures [Pressler et al, 2021]. However, this 

finding cannot be extended to all the newborns and seizures events considered. As shown in Table 

5.6, the high standard deviations obtained in LOSO validation mean that these alterations were not 

present for some patient, or the used HRV features cannot detect them. This is probably due to the 

possible different kind of seizures' aetiologies [Pressler et al., 2021]. Another possibility is that HRV 

analysis may be unspecific for the neonatal seizure detection problem. For example, motor activity 

during ictal events could lead to changes in heart rate and its variability, although often neonatal 

seizures are electrographic-only [Pressler et al., 2021]. Furthermore, it is well known that 

hypothermia or pharmacological treatment may alter both EEG and HRV analysis. However, for the 

HD dataset this information was not provided thus it was not possible to evaluate such factor. 

Moreover, the CD dataset was collected retrospectively, and for some patients it was not known when 

the treatment was applied (before, during or after the EEG/ECG analysis). Therefore, the analysis of 

possible alterations due to other factors than seizures in the HRV signals or the GLM predictions 

could not be included in the presented work. Therefore, further analysis is needed to confirm the use 

of only HRV measures in NSDs. This could be achieved setting up a specific dataset that collects and 

monitors the effects of treatments on the subjects. Also, taking into account different aetiologies for 

neonatal seizures rather than just HIE could provide useful information. Moreover, our NSD is based 

on windows lasting 4 minutes that cannot detect the exact temporal occurrence of seizures as their 

average duration is often lower than the window used [Stevenson et al., 2019], whose time duration 

is about 80-100 seconds on average for this dataset. In other words, the proposed NSD can detect the 

windows containing one or more seizure events but cannot establish their exact onset and offset. This 

is a trade-off due to the limitations of the HRV feature extraction method that makes use of short time 

windows [Shaffer and Ginsberg, 2017, Lucchini et al., 2016]. However, other ECG-based NSDs 

could be developed in the next future based on short-time windows (i.e. less than 30-60 seconds). 

The proposed approach represents a valid support for the clinical decision process to detect newborns' 

ictal periods, capable to highlight only the periods with seizures and thus reducing the number of 

recording hours to be inspected by the physician. In conclusion, considering the low invasiveness, 

low cost, and easier usability of ECG sensors with respect to EEG ones, our results suggest a possible 

integration of these systems in NICUs or any situation where EEG technologies are not easily and 

timely available. 

 

5.3 Heart Rate Variability Analysis and Support Vector Machine for Seizure 

Detection in Neonatal Intensive Care Units 

In this section the application of HRV and AI models as Neonatal Seizure Detectors is presented. 

Since Support Vector Machine (SVM) models were widely used in EEG-based NSD [Olmi et al., 
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2021], in this work it has been investigated if such supervised classifiers could be used also as ECG-

based NSD. In this work the CD dataset was used for all the methods implemented. This dataset was 

already described in section 2.3 but its features are reported here for ease of reading. From the Careggi 

dataset, 51 full-term newborn (22 with seizure events) were considered. More specifically, 10 out of 

the 22 pathological newborns showed electrographic-only seizures (EGP) characterized by abnormal 

changes in the EEG signal and poor clinical signs such as ocular, oral/buccal/lingual and progression 

movements [Volpe, 1989, Mizrahi and Kellaway, 1987]. The remaining 12 subjects exhibited 

electroclinical seizures (ECP), characterized by clinical signs coupled with EEG changes [Pressler et 

al., 2021]. None of the considered newborns have heart disease that could affect the study; thus, the 

proposed analysis was performed on the whole dataset. The mean length of recordings per patient 

was 53 minutes, the overall duration of the dataset was about 45 hours. The mean seizure duration 

per patient was 00:09:39 h. The sampling frequency of ECG was 128 Hz. The ECG signals were pre-

processed using a high-pass filter with a time constant of 0.1 s and a 50 Hz Notch filter.  

 

5.3.1 Methods 

This section describes the methods implemented to develop an SVM-based system. SVM makes use 

of both the Gaussian and the Linear kernel.  The ECG signals were segmented into non-overlapping 

time windows, called “epochs” [Olmi et al., 2021]. Both 60 s epochs [Doyle et al., 2010] and 180 s 

epochs [Statello et al., 2018] were considered. An experienced neurologist labelled the seizure events 

indicating both the beginning and the ending time instant of each seizure. Since an event labelled by 

the clinician did not precisely overlap with one or more epochs, we labelled an epoch as a “seizure 

epoch” if at least one sample of the signal falls inside a time interval previously classified by the 

experienced neurologist as a seizure event. One of the most crucial aspects of the ECG analysis was 

the identification of QRS complexes for the segmentation into single beats. This ECG pre-processing 

enabled HRV estimation and thus found out the possible seizure’s effects on the ANS [Statello et al., 

2021]. In particular, the localization of the R peaks was performed by implementing the Pan–

Tompkins’ algorithm [Pan and Tompkins, 1985], as it was previously used for R peaks detection from 

neonatal ECGs [Frassineti et al., 2021b, Frassineti et al., 2021c]. Given the time instants at which R 

peaks were detected, we computed the time distance between each pair of consecutive R peaks 

obtaining the RR time series. In order to develop a fully-automatic HRV-based NSD system, no 

correction procedures based on visual inspection were performed to remove false detections and 

ectopic beats. The HRV analysis was performed for each epoch, extracting a set of features defined 

in time, frequency and information theory domains. More specifically, we extracted 18 features for 

both 60 and 180 s epochs. These features were selected among the most widely used in the literature 

for HRV analysis [Shaffer and Ginsberg, 2017, Lucchini et al., 2016]. To increase the system 

performance, we introduced additional features concerning the multiscale entropy, as they could 

provide additional useful information to characterize alterations in cardiovascular activity during 

neonatal seizures [Frassineti et al., 2020d]. More specifically, we considered the Multiscale Sample 

Entropy (MSE) [Costa et al., 2005] and the Multiscale Distribution Entropy (MDE) [Lee et al., 2018], 

which were computed implementing the coarse-grained procedure [Costa et al., 2005]. The MSE was 

implemented defining the embedding dimension equal to 2 and the tolerance value equal to 0.2 

[Frassineti et al., 2020d]. The MDE was implemented defining the embedding dimension equal to 2 

and the number of bins equal to 512. Moreover, considering the average newborn heart rate at rest 

(100–200 bpm [Doyle et al., 2010]), we computed these features up to scale 4 for the 180 s epochs 

and considered only the scale 1 for the 60 s epochs. This allowed achieving at least 102 points on each 

scale. This choice was made to avoid an inaccurate estimation of entropy parameters due to a coarse-
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grained scale at higher scales where the number of points could be too low [Frassineti et al., 2020d]. 

All the considered features and a short description of each of them are reported in Table 5.7. 

Table 5.7. Features extracted for HRV analysis. Domain, unit of measure and a short description are provided for 

each feature. [Olmi et al., 2022a]. 

 
The feature sets extracted from each epoch were normalized (zero mean and unit variance). To 

manage the presence of missing feature values in the dataset, an imputation process was performed. 

It replaces missing values with the average values of the features set. Moreover, a feature selection 

algorithm was applied to identify the most informative subset of features. The feature selection 

process allows reducing the number of features that did not add significant information, making the 

classes separation difficult. The Minimal-Redundancy-Maximal-Relevance (mRMR) algorithm was 

implemented [Ding and Peng, 2005]. The mRMR algorithm maximized the mutual information 

between the features and the target class. It ensured that the mutual information between the new 

features and the already chosen ones was minimal. The features corresponding to the minimum 

redundancy and the maximum relevance were selected. The optimal features set selection step was 

performed by comparing the classification performances of a Support Vector Machine (SVM) 

classifier fed by the full features set and then the subsets of 2 to 20 features chosen according to the 

order of ranking determined with mRMR.  

The Linear SVM is a supervised learning technique that performs classification, finding the 

hyperplane that maximizes the margin between the two considered classes, thus separating data into 

two non-overlapping classes [Tong and Koller, 2002]. When data are not perfectly separable, SVM 

searches for the hyperplane that maximizes the margin and minimizes the misclassifications by 

introducing a regularization penalty term called λ. In general, the problem of maximizing the margin 

leads to minimizing the norm of the vector perpendicular to the hyperplane. This optimization 

problem can be solved using different routines called Solvers. When data are not linearly separable, 

kernel functions are applied to map the samples into a high-dimensional feature space in which linear 
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classification is possible. In that case, the Gaussian kernel approach was used. The main 

hyperparameters of the Linear and the Gaussian SVMs with a short description are reported in Table 

5.8. Seizure detection is an inevitably unbalanced problem because a short duration usually 

characterizes critical events as compared to non-critical activity [Olmi et al., 2021]. In the CD, the 

total duration of pathological patients’ recordings was 23:37:58 h, and the total duration of their 

seizure activity was only 03:32:11 h. Moreover, we also considered control patients, thus making the 

dataset more unbalanced. The unbalanced data distribution can affect the detection and classification 

performance leading to biased classifier results toward the majority class to which the non-seizure 

data belong. To deal with this problem, data in the non-seizure and the seizure class were managed 

asymmetrically by introducing the Costs C1 and C2, respectively, thus assigning different weights to 

the elements of the classes during the training step [Awad and Khanna, 2015]. 

Table 5.8. Main hyperparameters of the Linear and Gaussian SVM. [Olmi et al., 2022a]. 

Linear SVM 

Hyperparameters Short Description 

λ Regularization penalty term introduced to search for the hyperplane that 

maximizes the margin and minimizes the misclassifications. 

Costs Misclassification costs introduced to mitigate the class imbalance that 

occurs when one class has a smaller number of examples with respect to 

the other. 

Gaussian SVM 

Box Constraints Regularization term that controls the number of misclassifications. 

Kernel Scale Scaling parameter for the input data preventing some features that have 

a wider range than others from becoming dominant in the kernel 

calculation. 

Costs Same definition of Costs for Linear SVM 

 

To find the optimal hyperparameters values for each classifier, we performed the Grid Search 

optimization and the Leave One-Subject Out (LOSO) cross-validation. The Grid Search operation 

implemented an exhaustive search through a manually specified subset of the hyperparameter space 

of the learning algorithm. The LOSO method provided an almost unbiased estimation of the true 

generalization error. It is an iterative method: at each iteration, the training set is defined by excluding 

one patient, and the test set is composed of the data from that excluded patient. This process is 

repeated until each patient has been considered as a test subject. Thus, LOSO performs a good 

evaluation of the system’s ability to generalize the classification: once trained on all the available 

data, it achieves performances similar to those obtained by the system with an unknown dataset [Olmi 

et al., 2021, Temko et al., 2011a]. LOSO is very useful for small datasets as no subsampling of the 

original dataset is performed, thus reducing the risk of overfitting. The Grid Search operation was 

implemented through a model for every combination of specified hyperparameters. Then, the 

following metrics were calculated:  

• Epoch-based metrics: 

o Area Under the ROC Curve (AUC) 

o Sensitivity (SPE), Specificity (SPE) 

o F1score (F1) 

• Event-based metrics: 

o Good Detection Rate (GDR) 

o False Detection per hour (FDH) 



103 

 

o False Discovery Rate (FDR) 

o Time Delay 

A detailed description of such metrics is reported in sections 1.3.3 and 2.2.1. More specifically, Linear 

and Gaussian SVMs were trained using the full set of HRV features and the subsets selected through 

mRMR. The final models were selected as the ones with the best average AUC values for pathological 

patients. Performance and hyperparameters of these models, both using 60s and 180s epochs, will be 

presented in section 5.3.2. 

 

5.3.2 Results 

In table 5.9 the LOSO SVMs’ performance of the models with the best AUC obtained in the 

experiment based on ECG epochs of 60s are reported, while in Table 5.10 the LOSO SVMs’ 

performance of the experiment based on the ECG epochs of 180s are shown.  

Table 5.9. Models with the best average AUCs obtained in the experiment based on the segmentation of the ECG 

signal into 60 s implementing the LOSO cross-validation. [Olmi et al., 2022a]. 

 
 

Table 5.10. Models with the best AUCs obtained in the experiment based on the segmentation of the ECG signal into 

180 s implementing the LOSO cross-validation. [Olmi et al., 2022a]. 

 
 

The results reported in Tables 5.9 and 5.10 suggest that an epoch length of 180 s is appropriate to 

analyze and detect seizure events in the considered dataset, because with 180s the highest AUC values 

were obtained. Therefore, we focused on the experiment based on the signal segmented into 180 s 

epochs. Figure 5.4 shows the 26 features defined for this experiment and described in Table 5.10. It 

also displays their classification relevance based on the mRMR’s predictor importance score.  
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Figure 5.4. The features ranked with the mRMR algorithm for the experiment based. [Olmi et al., 2022a]. 

 

Moreover, we evaluated the Sensitivity values for each pathological patient. The following notation 

is considered: ECP = newborns with electroclinical seizures, EGP = newborns with electrographic 

seizures. More specifically, the model trained using the full set of features resulted in 10 out of 22 

pathological patients characterized by Sensitivity values >0. The model trained with the subset of 2 

features selected through the mRMR algorithm, gave worse results: only 7 out of 22 pathological 

patients were characterized by Sensitivity values >0. Similarly, the Gaussian model trained with the 

full set of features gave 15 patients with Sensitivity values >0, instead the Gaussian model trained 

with the subset of two features selected with the mRMR algorithm gave 17 patients with Sensitivity 

values >0. Considering the overall performance, the Gaussian SVM model trained using a subset of 

two features seems to provide a good tradeoff between a high AUC value (mean ± standard error: 62 

± 5%) and a large number of patients with Sensitivity >0. We also calculated the concatenated AUC 

(AUCcc), defined as the Area Under the ROC curve, across all the concatenated recordings [Tapani 

et al., 2019]. This ROC curve, shown in Figure 5.5, was built linking together all the recordings from 

control and pathological patients. The AUCcc was equal to 63%. 

 
Figure 5.5. The concatenated ROC evaluated on the SVM Gaussian kernel-based system with highest AUC. All the 

recordings are linked together into a single recording. [Olmi et al., 2022a]. 

 

5.3.3 Discussion and Conclusions  

This study aimed at developing an SVM-based system to automatically detect neonatal seizures in 

NICUs by investigating ECG recordings. In order to analyze the effects that seizures might have on 
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the Autonomic Nervous System (ANS), the HRV analysis was performed based on features defined 

in time, frequency and information theory domains. 

The results reported in Tables 5.9 and 5.10 suggest that, for CD, an epoch length of 180s achieved 

better ability in detecting and analyzing seizure events than 60 s epochs, although it leads to an 

increase in the seizure detection delay, which is assessed with the time delay metric. Indeed, this 

measure is heavily influenced by the time duration of the epochs in which the signal is segmented 

and the processing time required to run the algorithms. In the experiment based on the signal 

segmentation into 60 s epochs, the time delay ranged between 42 ± 0.6 and 116 ± 10 s (mean ± 

standard error). In the experiment based on the signal segmentation into 180 s epochs, the time delay 

ranged between 117 ± 13 and 141 ± 4 s (mean ± standard error). Thus, although as shown in Table 

5.10, it achieved a better overall performance, the system developed segmenting the ECG signals into 

180 s epochs does not seem suitable for real-time applications. However, the use of overlapping time 

windows, that could reduce the system’s response time, should be investigated. 

As mentioned above, we labelled an epoch as a seizure epoch if at least one sample of the signal falls 

inside a time interval previously classified by the experienced neurologist as a seizure event. 

However, finding a single clinical definition of neonatal seizure is still challenging, thus finding an 

operational definition for the NSD task is also very tricky. Some papers consider a seizure epoch 

when 50% of the time window contains a seizure [Olmi et al., 2021]. This choice is not feasible for 

our dataset segmented into 180 s epochs, because about 66% of seizures last less than 90 s, with the 

consequence of losing some of them. According to the American Clinical Neurophysiology Society 

(ACNS) [Tsuchida et al., 2013], that defined an electrographic neonatal seizure as “a sudden, 

abnormal EEG event, defined by a repetitive and evolving pattern with a minimum 2 µV peak-to-peak 

voltage and duration of at least 10 s”, we tested our methods re-labeling an epoch as a “seizure epoch” 

if it contains at least 10 s of seizure previously classified by the experienced neurologist as a seizure 

event. However, we achieved lower performance than those reported in Tables 5.9 and 5.10. Indeed, 

ACNS also remarks that the choice of 10 s is conventional and arbitrary; thus, other seizure durations 

should also be evaluated in NSD experiments. Based on this evidence, the choice of considering at 

least one signal sample could be cautionary, even if drastic.  

The AUC values reported in Table 5.10 show that the Linear and Gaussian SVM models trained using 

a subset of two features look promising. They gave AUC values equal to 58 ± 5 and 62 ± 5% (mean 

± standard error). These models were trained using the Triangular Index (TRI) and the average heart 

rate measurements, as shown in Figure 6. The TRI is a geometrical measure that estimates the overall 

HRV [Camm et al., 1996]. Its main advantage is its relative insensitivity to artefacts [Hämmerle et 

al., 2020]. To the best of our knowledge, no other studies analyzed the relationship between the TRI 

values and the seizure events in newborns. However, some works developed for adults [Yıldız et al., 

2011] and children [Kolsal et al., 2014] have observed that TRI values were lower in epileptic patients 

than in controls, reflecting reduced parasympathetic and increased sympathetic activities during 

seizures [Hämmerle et al., 2020]. This research evidence supports our results, suggesting that TRI is 

a robust and valuable measure for discriminating between seizure and non-seizure epochs. 

The average heart rate feature is important as well. Indeed, heart rate is one of the most common 

autonomic manifestations of seizures in the neonatal period [Pressler et al., 2021]. Several authors 

reported significant changes in heart rate during adult epileptic seizures [Akyüz et al., 2021]. These 

changes were also observed in neonatal seizures. Greene et al. considered five recordings from four 

epileptic neonates, and their study showed a significant increase in heart rate during clinical and 
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subclinical seizures [Greene et al., 2006]. Statello et al. found that HR values were significantly higher 

during seizure events than the interictal periods far from the seizure events [Statello et al., 2018]. 

The Gaussian SVM model trained using the two features (TRI and average HR) should be preferred 

to the Linear one, although it gave worse values of FDH (mean ± standard error: 3 ± 0.3 h−1) and FDR 

(mean ± standard error: 16 ± 1%). On the other hand, it provided a high AUC value (mean ± standard 

error: 62 ± 5%) and increased Sensitivity (mean ± standard error: 47 ± 8%) and F1 (mean ± standard 

error: 29 ± 5%) values. At the same time, it gave Sensitivity values >0 for 17 out of 22 pathological 

patients. Moreover, the Gaussian SVM model gave higher Sensitivity values for 64% of pathological 

patients than those given by the Linear SVM. 

Concerning Sensitivity and Specificity, our results are slightly worse than those reported by Greene 

et al. [Greene et al., 2007b] and Doyle et al. [Doyle et al., 2010]. However, a comparison is 

challenging because a standardized framework for performance assessment for the seizure detection 

task is currently missing and the metrics used to report NSD systems results vary in the literature 

[Olmi et al., 2021]. Moreover, our study was retrospective as we trained and validated our methods 

on ECGs collected by the medical staff in NICUs, with no artefact correction to improve the recording 

quality. Thus, raw signals could be affected by noisy artefacts such as those due to natural newborns’ 

motor activity and therapeutic manoeuvres performed by the clinicians. Furthermore, most NSD 

systems proposed in the literature are evaluated on private datasets only. Greene et al. [Greene et al., 

2007b] proposed a Linear SVM for automatic HR-based seizure detection based on a dataset of eight 

ECG recordings from seven full-term newborns admitted in NICU for HIE. This dataset contained 

101 h of recordings. Doyle et al. [Doyle et al., 2010] proposed a Linear SVM that was evaluated on 

a dataset of 208 h of recordings from 14 full-term newborns admitted in NICU for HIE. 

In this study, we considered a dataset of about 46 h of recordings from CD. Even though the dataset 

is made of fewer hours of recordings with respect to [Greene et al., 2007b] and [Doyle et al., 2010], 

it concerns a wider set of subjects which is made of 51 full-term babies, 22 of which have seizures, 

and 29 are control patients. To the best of our knowledge, our study is the first one that proposes an 

ECG-based NSD system focusing the analysis also on a set of control newborns, thus offering a more 

representative picture of the performance of the system in a real clinical environment. Indeed, 

considering also healthy newborns would provide an effective NSD system to support clinicians in 

distinguishing between pathological and healthy patients. 

Overall, the performances of the ECG-based systems are lower than those provided by the EEG-based 

systems [Olmi et al., 2021]; thus, they seem not suitable for clinical implementation. EEG is the basic 

technique for detecting neonatal seizures as it allows recording and analyzing the spontaneous 

electrical cerebral activity [Pressler et al., 2021]. The reasons behind this gap in performance between 

EEG-based NSD and ECG-based systems could be several and heterogeneous [Olmi et al., 2021, 

Statello et al., 2021, Doyle et al., 2010]. However, there is still room for improvement in HRV features 

for neonatal seizure detection. For example, searching for different and specific nonlinear features 

that can better describe the heart rate dynamics in neonatal patients could be advisable [Frassineti et 

al., 2021d, Lucchini et al., 2016]. Furthermore, there is still a lack of information about possible 

relationships between the Autonomic Nervous System and the Central Nervous System during 

neonatal seizures. Thus, understanding and characterizing the interactions between the two systems 

during or close to ictal events in the newborn might add helpful information in the seizure detection 

problem [Valenza et al., 2016, Frassineti et al., 2022a]. Moreover, to the best of our knowledge, for 

ECG/HRV analysis, no deep-learning method was proposed in the literature for neonatal seizure 
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detection. Considering the improvement obtained by DL techniques on EEG, these methods should 

also be evaluated on NSD experiments with ECG signals [Olmi et al., 2021]. 

In conclusion, the works concerning the possibility to develop HRV-based NSD are reported from 

section 5.1 to 5.3. Results are promising, although with a lower performance with respect to EEG-

based both for GLM methods (section 5.2) and SVM methods (section 5.3), while the Patient 

Discriminant approaches (section 5.1) are comparable to EEG-based methods [Frassineti et al., 

2021b]. Thus, the results suggested that HRV analysis and AI models could be included as support 

tool to clinical staff for neonatal seizure detection and characterization. 

 

5.4 A MATLAB tool for NSD 

In this section a short introduction of the MATLAB tool for NSD developed during this PhD is 

reported. The MATLAB tool implements some of the methods proposed from Chapter 2 to 5 in order 

to support the clinical staff in the neonatal seizure detection and characterization tasks. In figure 5.6 

a screenshot of a preliminary version of the developed interface is provided. The first alpha version 

will be released.  

In particular, the following approaches were implemented: 

• Patient Discriminant by HRV or EEG features (section 5.1) [Frassineti et al., 2021b] 

• EEG-based NSD, using multichannel EEG features (Chapter 4) [Frassineti et al., 2020, 

Frassineti et al., 2021a] 

• ECG-based NSD (sections 5.2 and 5.3) [Frassineti et al., 2021c, Olmi et al., 2022a] 

In addition to the methods discussed in this PhD thesis, the MATLAB tool implements other 

approaches: 

• Video analysis of the newborn’s face, extracting features for the seizure detection [Olmi et 

al., 2022b]. 

• Aetiology characterization (HIE vs. non-HIE) by EEG and ECG features [Frassineti et al., 

2022b]. 

Furthermore, the application allows to extract all the EEG/ECG features (Figure 5.6, button “Extract 

Features”) calculated during the implicit sub-windowing procedure. The tool is also capable to 

produce offline reports for the clinical staff [Frassineti et al., 2019], highlighting the part of the exam 

classified as ictal by the AI models and generating text reports that summarize all the essential 

information for the neurological assessment of the newborn: number of seizure events detected, time 

occurrence of the seizure events, EEG derivations involved, maximum and average seizure duration 

etc.. 

This MATLAB tool was developed in collaboration with the Neurophysiology Unit from the AOU 

Careggi University. Moreover, it is currently under development, thus both the interface and its 

functions may change in future developments. In the next future we are going to validate it in the 

clinical practice, following the approach proposed by Malak et al. [Malak et al., 2018]. Therefore, the 

proposed AI methods will be tested on other datasets than the Helsinki and the Careggi ones, 

evaluating the performance both on retrospective data and prospective data, in order to evaluate if the 

use of NSD could be helpful to the diagnosis and the treatment of neonatal seizures.  

 



108 

 

 
Figure 5.6. Screenshot of the developed interface. 
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6. Quantitative acoustical analysis in genetic syndromes: towards the 

definition of a speech phenotype 

Some contents in this chapter are based on the following publications: 

• Frassineti, L., Zucconi, A., Calà, F., Sforza, E., Onesimo, R., Leoni, C., Rigante, M., Manfredi, 

C., Zampino, G., 2021 . Analysis of vocal patterns as a diagnostic tool in patients with genetic 

syndromes. In Models and analysis of vocal emissions for biomedical applications: 12th 

international workshop: December 14-16, 2021: Firenze, Italy (pp. 83-86). doi: 

http://digital.casalini.it/9788855184496. 

• Frassineti, L., Calà, F., Sforza, E., Onesimo, R., Leoni, C., Lanatà, A., Zampino, G., Manfredi, 

C., (2022 under review). Quantitative acoustical analysis of genetic syndromes in the number 

listing task. Biomedical Signal Processing and Control.  

Moreover, some contents in this chapter are based on the following Master’s Degree Thesis: 

• Calà, Federico. Thesis title: AI techniques for the acoustic characterization of genetic 

syndromes. Università degli Studi di Firenze (Firenze, Italy), Scuola di Ingegneria, Curricula 

Biomedical Engineering, date of discussion: 04/11/2022. Supervisors: Prof. Claudia 

Manfredi, Prof. Antonio Lanatà. Co-Supervisor: Lorenzo Frassineti. [Calà, 2022]. 

In the previous chapters of this PhD thesis an extensive analysis regarding quantitative methods to 

detect and characterize seizures in children and newborns has been presented. It was shown how 

Artificial Intelligence (AI) methods and quantitative analysis of physiological signals can provide 

helpful tools, supporting the clinical staff in the diagnosis of several neurological disorders related to 

seizures. Thus, AI techniques may have several applications for paediatric subjects in the practice.  

In this chapter another application of AI methods and quantitative analysis of biosignals is presented. 

Specifically, the analysis of voice recordings of subjects with genetic syndrome is addressed. This 

evaluation was performed towards the definition of a speech phenotype for genetic syndromes 

through a completely non-invasive procedure. The analysis is based on voice recordings obtained by 

smartphones or microphones, both in hospital setting and at home. This research was carried on taking 

into account two main aims: defining quantitative methods for the characterization of a speech 

phenotype in genetic syndromes and providing methodologies for monitoring over time of the voice 

characteristics of the subject.  

This chapter is organized as follows: a statistical analysis is carried on regarding the main acoustical 

features of some genetic syndromes obtained during a specific speech task: the number listing task. 

Then, AI methods are applied to discriminate among genetic syndromes with different speech 

phenotypes.  

 

6.1 Introduction 

In recent years, acoustical analysis has been increasingly applied as a non-invasive tool to characterize 

genetic syndromes. Anomalies in voice quality have been detected in several genetic syndromes, 

providing evidence that a specific speech phenotype could exist for some of them [Stojanovik, 2021]. 

Therefore, acoustical analysis could provide additional information for the characterization of the 

diseases and in the follow-up of the vocal capabilities of the subject [Hidalgo-De la Guía et al., 2021a, 

Calà, 2022]. However, to the best of our knowledge, only a few works applied quantitative acoustical 
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analysis along with qualitative voice assessment in the study of genetic syndromes [Stojanovik, 2021, 

Hidalgo-De la Guía et al., 2021a, Lazzaro et al., 2020, Corrales-Astorgano et al., 2018]. Thus, 

quantitative voice analysis could improve the characterization of language phenotyping [Calà, 2022].  

Among genetic syndromes, Down syndrome (DS) is one of the most studied as far as its 

voice/acoustical properties are concerned [Moura et al., 2008]. In about 90% of cases, DS comes from 

an extra copy of chromosome 21 (Trisomy 21) and is characterized by a distinctive facial appearance, 

intellectual disability and muscular hypotonia [Antonarakis et al., 2020]. Common findings include 

alterations of the vocal tract structure including ogival palate, pharynx constriction, arytenoids 

cartilages thickening, laryngomalacia, and macroglossia. The reduced vocal tract volume results in 

speech impairments and limited articulation [Moura et al., 2008, Chin et al., 2014]. In adults, recent 

MRI studies underlined a smaller volume of frontal and temporal lobes, where Broca and Wernicke 

areas respectively placed [Hamner et al., 2018]. Several works proved the usefulness of the analysis 

of quantitative vocal features to better characterize the syndrome and as a support to monitor the voice 

characteristics of the DS subjects over time [Corrales-Astorgano et al., 2018, Moura et al., 2008], 

through acoustical analysis with applications in rehabilitation and logopaedics. Several research 

findings confirmed differences between DS and control subject regarding disfluency problems 

(stuttering or cluttering) and poor control over energy in stressed versus unstressed vowels [Lazzaro 

et al., 2020]. Moreover, several biomechanical studies confirmed the differences in vocal production 

for DS subjects, confirming that this information could be used to define a specific language 

phenotype for these subjects [Hidalgo-De la Guía et al., 2021b].  

Regarding voice disorders, increasing evidence was found for subjects affected by the Noonan 

Syndrome (NS; OMIM #163950) [Lazzaro et al., 2020]. NS is a genetically inherited disease due to 

gene mutations involving the RAAS/MAPK (mitogen-activated protein kinase) signalling pathway 

[Roberts, 2001]. Classified as a RASopathy, it is characterized, among other features, by remarkable 

facial features, including micrognathia, dental crowding, ogival palate. Growth delay, cardiac 

abnormalities, learning impairment, verbal and non verbal skills difficulties were also reported 

[Myers et al., 2014]. As stated by Lazzaro et al. [Lazzaro et al., 2020], most of the NS subjects may 

show specific voice characteristics. Thus, these findings suggest the use of quantitative acoustical 

analysis to better characterize NS subjects. 

Another remarkable example of quantitative acoustical analysis in genetic syndromes is the Smith-

Magenis Syndrome (SMS; OMIM #182290). SMS is a rare genetic syndrome frequently caused by a 

heterozygous deletion of or a heterozygous pathogenic variant in RAI1 on chromosome 17p11.2 

[Hidalgo-De la Guía et al., 2021a]. SMS subjects present mental retardation, behavioural 

abnormalities, sleep disorders, and early onset obesity [Gropman et al., 2006]. Common 

dysmorphisms include midface retrusion, short and broad nose, everted and tented upper lip 

vermilion, prognathism. Otolaryngological manifestations include velopharyngeal insufficiency, 

high tendency to nodules and polyps’ formation, vocal cords oedemas, and paralysis [Gropman et al., 

2006]. Moreover, as stated by Hidalgo-De la Guía et al. [Hidalgo-De la Guía et al., 2020], SMS 

subjects show several peculiar vocal and biomechanical characteristics, making the syndrome a 

promising candidate for language phenotyping. 

According to the existing literature, the acoustical analysis applied to genetic syndromes mainly 

focused on the evaluation of time-frequency properties of repeated and sustained vowels [Hidalgo-

De la Guía et al., 2021a, Corrales-Astorgano et al., 2018]. In particular for Italian speakers, the most 

studied vowels are /a/, /i/, and /u/ (that roughly correspond to “a”, “i”, “u” in the International 

Phonetic Alphabet [Deller et al., 2000]), that are quite stable against dialectal inflections. More 
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complex tasks, such as the list of the sequence of the months, were already evaluated for some 

neurodegenerative diseases [König et al., 2015, Englert et al., 2019, Bandini et al., 2015]: this was 

found helpful to better understand both the cognitive and the vocal skills of the subjects. 

However, to the best of our knowledge, only a few works concern the quantitative acoustical and 

speech properties in genetic syndromes using tasks different from sustained vowels [Stojanovik, 

2021, Corrales-Astorgano et al., 2018]. Indeed, the analysis of more complex tasks, such as the list 

of numbers or structured texts, has not been fully exploited yet. Furthermore, the analysis of multi-

domain features might provide complementary information about the language phenotype for a 

specific syndrome, such as features from vowels or more complex speech tasks. Acoustical features 

could also be used with machine-learning models for the characterization of genetic syndromes 

[Frassineti et al., 2021e].  

In this work, we evaluated if the acoustical analysis of a task more complex than the repetition of 

sustained vowels may provide helpful additional information to characterize three different genetic 

syndromes: DS, NS and SMS, as compared both to control subjects and among the syndromes, to 

highlight possible inter-syndrome differences. In particular, the task of listing numbers in ascending 

order from 1 to 10 in Italian is exploited here. To this aim, statistical analysis was applied to several 

acoustical features extracted with the BioVoice tool [Morelli et al., 2021]. Furthermore, a multiscale 

sample entropy-based approach was added to the acoustical features to assess if such method could 

discriminate between pathological and control voices, on analogy to [Arias-Londoño et al., 2010, 

Mekyska et al., 2015]. Both the whole number listing task and each single number were analysed to 

find possible differences among subjects.  

 

6.2 Material and methods for quantitative acoustical analysis 

All participants were recruited among those routinely monitored at the Rare Disease Unit of 

Paediatrics Department, Fondazione Policlinico Agostino Gemelli-IRCCS, Rome, Italy, over a two 

years period [Calà, 2022]. Signed informed consent was provided by parents/caregivers. All patients 

were clinically and genetically characterized. Specifically, the studied population included: 24 

subjects with Down syndrome (DS), 24 with Noonan syndrome (NS), 24 with Smith-Magenis 

syndrome (SMS), and 15 Control Subjects (CS). The age range was 4-18 years, with a mean of 10.8 

± 3.7 years. The Kruskal-Wallis test found no statistical differences concerning the age among the 

four groups (level of significance 0.05). In Table 6.1 details about age and gender are reported. The 

acronym PA (Paediatric Age) identifies the subjects less than 12 years old. 

The recordings were performed according to a study based on the SIFEL protocol [Ricci and 

Maccarini, 2002], the Italian version of the European Laryngological Society (ELS) protocol 

[Dejonckere et al., 2001] that aims at providing a functional assessment of voice pathology. The 

recorded audio files consist of the following tasks: 

1. Italian vowels /a/, /i/, /u/, /ɔ/ and /ɛ/ sustained for at least 4 seconds. 

2. The Italian word “aiuole” (/aˈjwɔle/, flower beds). 

3. the list of the Italian numbers from one to ten, in ascending order: “uno” (/’uno/); “due” 

(/’due/); “tre” (/’tre/); “quattro” (/’kwattro/); “cinque” (/’ʧinkwe/); “sei” (/’sɛj/); “sette” 

(/’sɛtte/); “otto” (/’ɔtto/); “nove” (/’nɔve/); “dieci” (/’djɛʧi/). Note that in Italian the numbers 

4,7 and 8 contain the “double t” sound: /tt/. 
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Only the list of numbers (task n.3) was considered in this work. In another study [Frassineti et al., 

2021e], the vowels (task n.1) were already analysed, showing differences among pathological 

subjects. Table 6.1 shows the dataset. The number of PA subjects is reported in round brackets, the 

acronym iqr, reported in brackets in the column “Age”, refers to the interquartile range. As shown in 

Table 6.1, despite the possible cognitive delay of the subjects, almost all of them correctly emitted 

the whole numerical sequence. Only a small subset of DS subjects (5 subjects) and 1 SMS did not 

complete the entire task. Recordings were obtained using a commercial smartphone in a controlled 

environment (environmental noise <40dB), with the smartphone set at 15 centimetres from the 

subject’s lips and with an angle of 45°. The sampling rate was 44100Hz. All the analyses were 

performed using the BioVoice tool [Morelli et al., 2021] and routines implemented in MATLAB 

2021b. BioVoice is a voice analysis tool freely downloadable at 

https://github.com/ClaudiaManfredi/BioVoice. 

Table 6.1 – Subjects involved in the study. PA subjects are reported in brackets in the first and last column. [Frassineti 

et al., 2022 under review]. 

Cases 
Number of 

subjects (PA) 
Age 

Median (iqr) 

Gender 
Male/Female 

Subjects unable 

to perform the 

whole task (PA) 

CS 15 (9) 11 (5) 7/8 0 

DS 24 (17) 10 (4.5) 16/8 5 (4) 

NS 24 (13) 12 (7.5) 11/13 0 

SMS 24 (13) 11 (6) 7/17 1 (0) 

 

6.2.1 Manual Annotation and Automatic Voiced/Unvoiced Detection 

Before starting the quantitative acoustical analysis, each recording was manually annotated, labelling 

the onset and offset of each number emitted by the subjects. In Figure 6.1, the temporal profile of two 

numbers “due” and “sette” (2 /’due/ and 7 /’sɛtte/) from the same control subject are shown. This 

example highlights differences between an almost “vocalic number” (Figure 6.1a “due” /’due/) and a 

number with the double /t/ inside (Figure 6.1b “sette”, /’sɛtte/). Indeed, numbers with /tt/ are 

characterized by two “voiced” parts and an unvoiced part in the middle corresponding to /tt/.  

  
(a)  (b) 

Figure 6.1. Temporal profile of two recorded numbers from a control subject. (a) = /’due/ (2); (b) = /’sɛtte/ (7). 

[Frassineti et al., 2022 under review]. 
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Based on the manual annotations, the following parameters were estimated: 

• average time between each number (aTBN), defined as the average time difference in 

seconds between the offset and the onset of two consecutive numbers [König et al., 2015]; 

• standard deviation time between each number (sTBN); 

• voice segment length (VSL), i.e. the temporal length in seconds of each number in the 

sequence (between its onset and offset) [König et al., 2015, Bandini et al., 2015]; 

• percentage of unvoiced segments (PUVS), defined as the percentage of the whole recording 

without voiced segments (starting from the offset of the first number to the onset of the last 

number) [Bandini et al., 2015]; 

• task length, defined as the time difference in seconds between the onset of the first number 

and the offset of the last number, including also unvoiced segments.  

These parameters were selected according to previous studies [König et al., 2015, Englert et al., 2019, 

Bandini et al., 2015], as they were found helpful for voice characterization in some diseases, such as 

Alzheimer's or Parkinson's [König et al., 2015, Bandini et al., 2015]. Furthermore, as in [Bandini et 

al., 2015], the recordings were analyzed with two different voiced/unvoiced detectors. One is 

implemented in BioVoice and was already used in a previous study to evaluate speech anomalies in 

subjects affected by Parkinson disease [Bandini et al., 2015]. The second one was the built-in speech 

detector available in the MATLAB tool (function detectSpeech version 2021b).  

Further details are reported in [Giannakopoulos, 2009]. In this work, the number of voiced segments 

found by the two detectors was compared to the manual labels, that make up the ground truth. In 

particular, the absolute error between the ground truth and the detected voiced segments was 

considered: the absolute error is equal to 0 if the number of detected segment match the manual 

annotations. Thus, for example, 10 voiced segments expected and 11 voiced segments detected 

correspond to an absolute error equal to 1. Results concerning this analysis are reported in Section 

6.3.  

 

6.2.2 BioVoice and Multiscale Entropy Acoustical Analysis 

With BioVoice, 30 acoustical features were extracted. The analysis was performed distinguishing 

between paediatric subjects (<12 years old) and adults [Deller et al., 2000] and, in the case of adults, 

between males and females. According to [Deller et al., 2000, Morelli et al., 2021], the cut-off of 12 

years of age was added to provide a more reliable evaluation of acoustical parameters with BioVoice. 

The 30 acoustical parameters estimated with BioVoice are: maximum, minimum, mean, median, and 

standard deviation for F0 and formants F1, F2, and F3; T0min and T0max for F0; jitter; Normalized 

Noise Energy (NNE); signal and voiced part duration; mean, min and max of voiced segments; mean 

of pause (unvoiced) duration.  

These features are in line with existing literature and were proven to be correlated with several 

physiological mechanisms linked to voice production [Deller et al., 2000]. Further details about such 

acoustical features are reported in [Morelli et al., 2021]. For all the cases considered, the estimated 

values of F0 and formants F1 and F2 are reported in Table 6.2, and 6.3, respectively. Figure 6.2 shows 

the frequency median trends for the three acoustical parameters (F0, F1, and F2) for the four groups 

considered and numbers 1-10. 
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(a) F0  

  
(b) F1  (c) F2  

Figure 6.2. Frequency median trends of numbers 1-10 for: (a) F0, (b) F1, (c) F2. CS: solid line( ◊); DS: dashed line (*) 

;NS: dotted line (□): SMS: dash-dotted line ( ○). [Frassineti et al., 2022 under review]. 

Table 6.2. Median and iqr values of F0 for each group and for all the numbers in the task. CS=Control Subjects (15 

cases), DS= Down Syndrome, NS=Noonan Syndrome and SMS= Smith-Magenis Syndrome (24 cases for each 

syndrome). [Frassineti et al., 2022 under review]. 

 F0 [Hz] 

Median (iqr) 

Number CS DS NS SMS 

1 248 (72) 212 (102) 238 (58) 216 (51) 

2 232 (68) 218 (66) 225 (55) 221 (55) 

3 226 (85) 214 (81) 223 (46) 219 (44) 

4 234 (93) 211 (82) 228 (65) 225 (45) 

5 224 (66) 220 (72) 218 (35) 207 (57) 

6 230 (83) 209 (100) 213 (56) 204 (54) 

7 229 (81) 194 (59) 222 (51) 207 (44) 

8 218 (79) 221 (108) 217 (71) 219 (65) 

9 218 (94) 218 (68) 251 (51) 228 (85) 

10 209 (77) 204 (109) 203 (55) 188 (56) 

 

Table 6.3. Median and iqr values of formants F1 and F2 for each group and for all the numbers in the task. CS=control 

subjects (15 cases), DS= Down Syndrome, NS=Noonan Syndrome and SMS= Smith-Magenis Syndrome (24 cases for 

each syndrome). [Frassineti et al., 2022 under review]. 

Number 

F1 [Hz] 

Median (iqr) 

F2 [Hz] 

Median (iqr) 

CS DS NS SMS CS DS NS SMS 

1 625 (226) 583 (206) 534 (304) 511 (259) 1408 (344) 1628 (522) 1516 (257) 1551 (353) 

2 595 (252) 578 (199) 564 (264) 528 (231) 1636 (220) 1680 (343) 1590 (287) 1600 (316) 

3 566 (110) 581 (167) 576 (306) 534 (232) 2361 (440) 2195 (470) 1964 (394) 1985 (447) 

4 721 (128) 715 (249) 606 (323) 618 (244) 1501 (325) 1703 (434) 1573 (279) 1524 (299) 

5 596 (173) 607 (211) 528 (236) 537 (241) 2075 (616) 2130 (603) 1914 (480) 1938 (515) 

6 652 (215) 606 (220) 579 (258) 560 (224) 2268 (761) 2189 (509) 1823 (507) 2031 (440) 

7 625 (146) 608 (188) 593 (305) 576 (205) 2238 (641) 2095 (469) 1834 (293) 1946 (300) 

8 687 (214) 699 (240) 608 (349) 642 (221) 1217 (313) 1560 (327) 1500 (237) 1511 (282) 

9 663 (196) 634 (176) 595 (296) 597 (254) 1665 (389) 1778 (477) 1606 (272) 1662 (289) 

10 607 (195) 599 (221) 526 (193) 564 (247) 2528 (768) 2316 (780) 2076 (572) 2239 (553) 



116 

 

Besides the acoustical features, a preliminary evaluation based on multiscale entropy analysis was 

performed. In acoustical analysis, entropy indexes were already used to discriminate between 

pathological and healthy voices [Arias-Londoño et al., 2010, Fontes et al., 2014, Sun et al., 2017]. 

The multiscale sample entropy index (MSE) was used in [Costa et al., 2005].  

Recently, the multi-scale approach applied to physiological signals was motivated by successful 

findings in detecting more helpful information rather than the single scale approach [Frassineti et al., 

2021d]. Sample Entropy (SE), already introduced in Chapter 4 of this PhD Thesis, is one of the most 

used entropy measures for the analysis of physiological signals [Richman and Moorman, 2000].  

Low SE values are generally related to more predictable and regular time series [Humeau-Heurtier, 

2015]. According to Costa et al. [Costa et al., 2005], the parameters for estimating MSE values are: 

embedding dimension m=3, threshold r=0.2, and number of scales =20. The coarse-grained 

procedure, described in Equation 4.1, was used to generate the scales [Costa et al., 2005, Frassineti 

et al., 2021d]. From the 20 values of MSE, the following measures were extracted: 

• the complexity index (CI MSE) [Costa et al., 2005, De Wel et al., 2017]. 

• the maximum entropy (Max MSE), defined as the maximum value of MSE among the 20 

scales considered. [Costa et al., 2005, De Wel et al., 2017]. 

These two measures were already used to describe complexity properties of physiological signals by 

multiscale entropy approaches [Frassineti et al., 2021d, Humeau-Heurtier, 2015, De Wel et al., 2017]. 

Values of CI MSE and Max MSE are reported in Table 6.4 and Table 6.5, respectively.  

In Figure 6.3 the median trends for the two multiscale entropy indexes (CI and Max MSE) are shown 

for the four groups considered and numbers 1-10. 

 

 

  
(a) CI MSE  (b) Max MSE  

Figure 6.3. Median trends of numbers 1-10 for multiscale entropy indexes: (a) CI MSE, (b) Max MSE. CS: solid line( 

◊); DS: dashed line ( *); NS: dotted line (□); SMS: dash-dotted line ( ○). [Frassineti et al., 2022 under review]. 
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Table 6.4. Values (median and iqr) of MSE Complexity Index (using 20 scales) for all the groups considered: 

CS=control subjects (15 cases), DS= Down Syndrome, NS=Noonan Syndrome and SMS= Smith-Magenis Syndrome 

(24 cases for each syndrome). [Frassineti et al., 2022 under review]. 

Number 

MSE Complexity Index (scales=20) 

All subjects 

Median (iqr) 

CS DS NS SMS 

1 4.0 (8.1) 11.6 (3.5) 12.7 (5.5) 12.9 (4.2) 

2 5.3 (2.7) 11.1 (4.2) 12.6 (3.1) 12.1 (4.6) 

3 0.9 (6.5) 8.3 (7.9) 11.8 (9.2) 9.9 (9.6) 

4 1.8 (1.9) 7.3 (5.1) 11.2 (6.9) 9.4 (6.8) 

5 -1.5 (5.7) 6.5 (7.4) 10.7 (7.6) 8.3 (7.2) 

6 -0.9 (4.5) 4.6 (12.9) 13.1 (23) 2.7 (24) 

7 -0.7 (3.3) 6.3 (5.1) 9.7 (8) 9.2 (5.8) 

8 0.6 (2.5) 7.0 (7.3) 10.3 (5.6) 8.7 (6.5) 

9 4.3 (4.9) 9.5 (3.7) 15.7 (9.2) 13.3 (7.8) 

10 -2.4 (3.5) 6.4 (11.4) 11.8 (6.2) 8.5 (20.9) 

 

Table 6.5. Values (median and iqr) of Max Entropy of MSE (using 20 scales) for all the groups considered: CS=control 

subjects (15 cases), DS= Down Syndrome, NS=Noonan Syndrome and SMS= Smith-Magenis Syndrome (24 cases for 

each syndrome). [Frassineti et al., 2022 under review]. 

Number 

Max Entropy MSE (scales=20) 

All subjects 

Median (iqr) 

CS DS NS SMS 

1 0.31 (0.23) 0.80 (0.38) 1.01 (0.45) 0.37 (0.11) 

2 0.34 (0.21) 0.77 (0.33) 0.89 (0.18) 0.90 (0.36) 

3 0.17 (0.16) 0.52 (0.43) 0.81 (0.70) 0.66 (0.54) 

4 0.12 (0.08) 0.55 (0.34) 0.80 (0.53) 0.62 (0.50) 

5 0.21 (0.12) 0.50 (0.45) 0.68 (0.47) 0.65 (0.48) 

6 0.19 (0.22) 0.44 (0.38) 0.94 (0.52) 0.90 (0.51) 

7 0.10 (0.08) 0.40 (0.25) 0.63 (0.53) 0.58 (0.46) 

8 0.08 (0.04) 0.51 (0.44) 0.79 (0.52) 0.63 (0.57) 

9 0.27 (0.27) 0.63 (0.30) 1.17 (0.70) 0.97 (0.66) 

10 0.20 (0.24) 0.52 (0.29) 0.76 (0.32) 0.79 (0.39) 

 

6.2.3. Statistical Analysis 

This study aims at evaluating if the measurements obtained from the manual annotations defined in 

section 6.2.1 (e.g. aTBN, absolute errors of voiced/unvoiced detectors etc…), the acoustical features 

extracted by BioVoice and the entropy indexes obtained with MATLAB® (version 2021b) routines 

allow discriminating between subjects with genetic syndromes and control subjects. Moreover, it was 

evaluated if the same features were able to discriminate among the syndromes, thus finding possible 

inter-syndrome differences.  

First, the hypothesis of normality distribution was checked with the Shapiro-Wilk test (level of 

significance p=0.05) for all the parameters considered, distinguishing among groups. If the normality 

hypothesis was rejected, the non-parametric Kruskal-Wallis test was applied, otherwise the ANOVA 

test was performed on the data. For both tests, a level of significance p=0.05 was considered. Then, 

a Dunn-Sidak multiple comparison post hoc correction [Dinno, 2015] was applied in order to evaluate 

pairwise differences (e.g. DS vs. CS or inter-syndrome such as DS vs. NS).  

Regarding the acoustical features, all the statistical tests were evaluated for each number of the task. 

Furthermore, a stratified statistical analysis was included, considering only the subjects less than 12 
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years old for all the groups. Indeed, with BioVoice the acoustical features are estimated distinguishing 

between children and adults. Therefore, this analysis was added to assess if the parameters obtained 

from adults might introduce confounding effects in the statistical results.  

 

6.3 Results 

In this section, the statistical results obtained for each acoustical parameter are reported. Table 6.6 

shows the descriptive statistics (median and iqr) concerning the parameters derived from the manual 

annotations described in Section 6.2.1. The statistically significant parameters between control 

subjects and those among genetic syndromes are reported in bold. Regarding inter-syndrome 

evaluations, “δ” denotes significant differences between DS than SMS and NS, and “α” denotes 

significant differences between DS and NS. In Table 6.7 the statistical results are reported concerning 

the absolute error between the manual annotations and the two automatic voiced/unvoiced detectors 

(BioVoice and SpeechDetect in MATLAB). The statistically significant parameters between 

syndromes and CS are reported in bold. For the SMS subjects a significant difference between the 

two tools in terms of absolute error was found.  

Table 6.6. Results of statistical analysis on qualitative acoustical features for controls subjects and syndromes. The 

statistically significant parameter for each syndrome with respect to control subjects are shown in “bold”. “δ” denotes 

parameters that show significant differences for DS with respect to the other two syndromes (SMS and NS). “α” 

denotes significant differences between DS and NS. [s]=seconds. [Frassineti et al., 2022 under review]. 

 

Syndrome 
Median (iqr) 

CS 

Median (iqr) 
Parameter SMS NS DS 

aTBN [s] 0.25 (0.33) 0.24 (0.16) 0.38 (0.27)
δ
 0.43 (0.30) 

sTBN [s] 0.09 (0.08) 0.10 (0.04) 0.17 (0.13)
δ
 0.11 (0.04) 

VSL [s] 0.52 (0.17) 0.46 (0.08) 0.60 (0.22)
δ
 0.70 (0.20) 

PUVS [%] 26 (18) 28 (12) 33 (11) 29 (15) 

task length [s] 7.50 (3.61) 6.36 (2.18) 9.09 (3.73)α 10.08 (4.45) 

 

Table 6.7. Results for “voiced” detection experiment using two different tools: BioVoice and SpeechDetect from 

MATLAB. The absolute errors (median and iqr) between the voiced segments detected by the tools and the ground truth 

are shown. Bold= statistical difference between control subjects and the subjects with genetic syndrome. “α” denotes 

significant differences between the errors obtained by the two tools on any group (control or pathological). [Frassineti et 

al., 2022 under review]. 

Absolute error 

Syndrome 

Median (iqr)  

Tool DS NS SMS
α
 CS 

BioVoice 4.5 (6.5) 6.5 (7) 9 (5) 3 (2.5) 

MATLAB – SpeechDetect 3 (4.5) 7.5 (6.25) 6 (8.25) 2 (2) 

 

In Table 6.8 the number of significant acoustical features found for each number are reported. Both 

the global number (Significant features vs. Controls), the pairwise differences and the inter-syndrome 

differences are reported. In Table 6.9 the number of significant features obtained considering only 

PA subjects are shown. Further results about which features were found significant for each syndrome 

and for both cases (all subjects and PA subjects only) are reported in Tables 6.10, 6.11 and 6.12.  
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Table 6.8. Number of significant acoustical features found for all the subjects considered. [Frassineti et al., 2022 under 

review]. 

 
All subjects 

Number of significant acoustic features 

Number 

 

Significant  

features  

vs. CS 

DS vs.  

CS 

NS vs.  

CS 

SMS vs.  

CS 

Inter-syndromes 

(DS vs. NS;  

DS vs. SMS;  

NS vs. SMS) 

1 9 8 5 5 2 

2 6 4 6 4 2 

3 6 2 4 4 3 

4 10 10 4 6 0 

5 7 4 5 5 0 

6 6 3 4 6 2 

7 11 10 10 9 3 

8 14 13 8 14 1 

9 6 4 4 4 4 

10 3 0 2 2 3 

 

Table 6.9. Number of significant acoustical features found for PA subjects. [Frassineti et al., 2022 under review]. 

 
PA subjects 

Number of significant acoustic features 

Number 

Repeated 

Significant  

features  

vs. CS 

DS vs.  

CS 

NS vs.  

CS 

SMS vs.  

CS 

Inter-syndromes 

(DS vs. NS;  

DS vs. SMS;  

NS vs. SMS) 

1 8 4 2 8 2 

2 9 4 6 7 0 

3 12 5 12 7 4 

4 12 11 3 8 1 

5 8 5 5 6 1 

6 9 4 5 7 0 

7 17 14 14 13 4 

8 15 15 5 12 8 

9 8 2 4 7 5 

10 5 1 4 5 1 
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Table 6.10. List of significant acoustical features for all the DS subjects and for the PA subjects subset for all the 

numbers analysed. In black and in grey the significant parameters are highlighted, after post-hoc correction, as 

compared to control subjects. “α” denotes an inter-syndrome difference DS vs. NS, “β” denotes an inter-syndrome 

difference DS vs. SMS. [Frassineti et al., 2022 under review]. 

Features 

Significant acoustic features  

Number Repeated 

All subjects 

Significant acoustic features  

Number Repeated 

PA subjects 

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 

F0mean                 α    

F0median                     

F0std                     

F0min           β   α       

T0F0min                     

F0max                     

T0F0max                     

Jitter               α,β   α   

NNE                     

F1mean                     

F1median                     

F1std                     

F1min             α        

F1max                     

F2mean   α    α      α    α    

F2median   α    α      α    α    

F2std        α          α   

F2min                     

F2max                  α   

F3mean                     

F3median                     

F3std                     

F3min                  α   

F3max                     

Signal 

duration 
                   β 

Voiced 

duration 
                    

Durationmean                  α   

Durationmin                  α   

Durationmax                  α   

Pause 

Durationmean 
                    

CI MSE α      α  α,β α         α  

Max MSE α α,β α   α,β   α,β α,β   β    α  α  
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Table 6.11. List of significant acoustical features for all the NS subjects and for PA NS subjects for all the numbers 

analysed. In black and in grey the significant parameters are highlighted as compared to control subjects. “α” denotes an 

inter-syndrome difference DS vs. NS, “γ” denotes an inter-syndrome difference NS vs. SMS. [Frassineti et al., 2022 

under review]. 

 Significant acoustic features  

Number Repeated 

All subjects 

Significant acoustic features  

Number Repeated 

PA subjects 

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 

F0mean                 α    

F0median                     

F0std                     

F0min              α     γ  

T0F0min                     

F0max                     

T0F0max                     

Jitter               α,γ   α   

NNE                  γ   

F1mean                     

F1median                     

F1std                     

F1min             α        

F1max                     

F2mean   α    α      α    α    

F2median   α    α      α    α    

F2std        α          α   

F2min                     

F2max                  α   

F3mean                   γ  

F3median                   γ  

F3std                     

F3min                  α   

F3max           γ          

Signal duration                     

Voiced duration                     

Durationmean                  α   

Durationmin                  α   

Durationmax                  α   

Pause Durationmean                     

CI MSE α      α  α α         α  

Max MSE α α α   α   α α  β     α  α  
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Table 6.12. List of significant acoustical features for all the SMS subjects and for PA SMS subjects for all the numbers 

analysed. In black and in grey the significant parameters after post-hoc correction are highlighted as compared to 

control subjects. “β” denotes an inter-syndrome difference DS vs. SMS, “γ” denotes an inter-syndrome difference NS 

vs. SMS. [Frassineti et al., 2022 under review]. 

 Significant acoustic features  

Number Repeated 

All subjects 

Significant acoustic features  

Number Repeated 

PA subjects 

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 

F0mean                     

F0median                     

F0std                   γ  

F0min           β          

T0F0min                     

F0max                     

T0F0max                     

Jitter               β,γ      

NNE                  γ   

F1mean                     

F1median                     

F1std                     

F1min                     

F1max                     

F2mean                     

F2median                     

F2std                     

F2min                     

F2max                     

F3mean                   γ  

F3median                   γ  

F3std                     

F3min                     

F3max           γ          

Signal duration                    β 

Voiced duration                     

Durationmean                     

Durationmin                     

Durationmax                     

Pause Durationmean                     

CI MSE         β            

Max MSE  β    β   β β  β         
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6.4 Discussion  

This work evaluates if acoustical and entropy features derived from a speech task in subjects with 

genetic syndromes may add helpful information for the characterization of possible different speech 

phenotypes. To our knowledge, this work is one of the first that concerns quantitative features 

extracted from a speech task rather than sustained vowels only in genetic syndromes.  

In this work, the following three genetic syndromes were considered: Down Syndrome (DS), Noonan 

Syndrome (NS), and Smith-Magenis Syndrome (SMS). They were considered because of the 

previous evidence in the literature regarding their speech properties [Hidalgo-De la Guía et al., 2021a, 

Lazzaro et al., 2020, Corrales-Astorgano et al., 2018] and because they are the most numerous groups 

among the cases collected in the original study [Frassineti et al., 2021e].  

Results shown in Table 6.6 suggest that overall differences might exist between control subjects (CS) 

and subjects affected by the considered genetic syndromes. Moreover, the three syndromes exhibit 

specific properties that differentiate them from CS.  

Specifically, the median value of aTBN parameter of NS (0.24s, iqr 0.16s) significantly differs from 

the CS group (0.43s, iqr 0.30s), as well as the median value of VSL parameter and task length, 

showing the tendency for NS to have a faster speech rate than CS. Moreover, DS subjects showed 

differences for the parameter sTBN as compared to CS: sTBN represents a sort of measure of 

irregularity of the speech during the number listing task, thus the result shows that the time required 

between the emission of two consecutive numbers is more variable in DS than in CS (median 0.17s 

for DS and 0.11s for CS).  

Concerning VSL and task length parameters, both SMS and NS subjects present significant 

differences when compared to CS (median 10.08s for CS, 7.50s for SMS, 6.36s for NS). Therefore, 

it reasonable to assume that the CS group is more able to optimize articulation and improve 

intelligibility, resulting in increased VSL and task length parameters. 

On the other hand, the DS group showed significant differences when compared to SMS and NS 

groups, as they show a higher median VSL (0.60s, iqr 0.22s for DS) and task length. In this case, 

results may primarily be due to neurobiological factor. Specifically, the underlying genetic condition 

characterized by different levels of cognitive impairment might not allow efficient motor planning of 

a timely articulation initiation. The scarce tone of the oral-facial muscle [Desai, 1997] and the 

relatively large tongue as compared to the size of the oral cavity, typically observed in this genetic 

condition [Guimaraes et al, 2008], could contribute to the higher values of the considered parameters. 

Moreover, it might be due to the attempt of the DS subjects to mitigate the disfluency during the task 

(e.g. cluttering and scuttering) [Kenta et al., 2013], or to the general hypotonia and motor-control 

difficulties in DS subjects [Corrales-Astorgano et al., 2018]. 

Table 6.1 highlights that only a small number of subjects, mostly PA, did not complete the task, 

although such syndromes often imply a significant cognitive delay. Thus, the relative ease of the task 

could encourage its useful application in the acoustical analysis of these syndromes. 

Regarding the possibility of automatically detecting the voiced segments by BioVoice or MATLAB 

SpeechDetect, Table 6.7 shows that the absolute errors were too high for all the syndromes to consider 

the automatic detection reliable. On the contrary, for CS, the performance was quite good: a median 

of less than 3 voiced segments was found for the absolute error detection with both tools. This anyway 

suggests that the absolute error may be a useful parameter to discriminate between pathological and 
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healthy voices during the number listing task. As shown in Table 6.7, with BioVoice all the errors 

obtained with genetic syndromes were statistically higher than those obtained with CS.  

In this work the quantitative acoustical analysis, both with BioVoice and MATLAB, was performed 

based on the manual annotations. However, we remark that the possibility to detect voiced segments 

for these genetic syndromes remains open, as an extensive evaluation of different speech detectors 

was not addressed in the present work. Moreover, an iterative adaptation of the algorithm used in 

SpeechDetect was not considered here but it could be addressed in future developments. 

The quantitative acoustical analysis reported in Tables 6.8 and 6.9 shows that differences exist 

between CS and subjects with syndromes for all the numbers 1-10. In fact, at least one acoustical 

parameter was found significant for each syndrome. Tables 6.10, 6.11 and 6.12 give a complete 

overview for each syndrome: the main differences were found for the Jitter and NNE parameters for 

all the syndromes. In the literature, alterations of Jitter and NNE were already proven to be correlated 

with malformations of the vocal tract, neurological disorders, and SNC abnormalities [Midi et al., 

2008, Texeira et al., 2013]. Moreover, several differences were found among features concerning the 

F1 formant, which is related to structural alterations of the pharynx. Also, significant differences were 

found among features related to the F2 formant, linked to motor deficits of tongue, lips, and/or jaw 

[Deller et al., 2000]. With our analysis, the numbers that exhibit higher differences between 

pathological and control subjects are the numbers 4, 7, and 8 (in Italian: /’kwattro/, /’sɛtte/ and /’ɔtto): 

as already pointed out, these numbers present a common characteristic, that is the double /t/. An 

example of the temporal profile for number 7 is shown in Figure 6.1 for a CS subject. Thus, it is 

possible to argue that the double /t/ may cause significant alterations in speech for subjects with the 

genetic syndromes considered here. Indeed, Pierpont et al. [Pierpont et al., 2010], found that NS 

subjects had difficulty in pronouncing consonant clusters. Tables 6.10, 6.11 and 6.12 show that 

differences were found for the features relative to “duration”: min max, mean and Pause Duration.  

In summary, the analysis of the significant acoustical parameters for each syndrome shows that 

specific differences exist with CS, thus allowing the identification of helpful characteristics for the 

definition of speech phenotypes. However, as shown in Tables 6.8, 6.9, 6.10, 6.11 and 6.12, only a 

few significant results were found regarding inter-syndrome differences. Thus, these features might 

not be significant enough to differentiate pathological subjects, and other features should be 

considered in future investigations. As shown in Table 6.9, it is noteworthy that differences in 

acoustical features still exist when only PA subjects were considered. Indeed the number of such 

features increases, showing more differences in F2 and F3 with respect to CS.  

Tables 6.2 and 6.3 also confirm that entropy indexes (CI MSE and Max MSE) could discriminate 

between CS and pathological voices. In CS, both CI MSE and Max MSE values were found to be 

lower than in pathological cases, as shown in Tables 6.2 and 6.3. Moreover, for some numbers, the 

entropy indexes give significant results even when the acoustical features obtained with BioVoice did 

not highlight differences. This suggests that the entropy measures may add useful information to the 

considered acoustical features. However, as opposed to acoustical features, the entropy features do 

not have a direct and clear correlation with physiological mechanisms.  

We remark that, to the best of our knowledge, the present work is one of the few concerning the use 

of quantitative acoustical analysis applied to genetic syndromes during a specific speech task. The 

analyses carried on are thus a first attempt to find acoustical differences among genetic syndromes 

other than the analysis of sustained vowels only. The results agree with the findings obtained with 

the analysis of sustained vowels [Hidalgo-De la Guía et al., 2021a, Moura et al., 2008, Deller et al., 

2000], confirming that acoustical analysis could provide helpful information for the characterization 
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of speech phenotype for the considered syndromes. Moreover, the significant acoustical features may 

be used as an input for machine-learning models to improve their performance in the characterization 

and assessment of genetic syndromes [Frassineti et al., 2021e]. 

Finally, we point out that another advantage of quantitative acoustical analysis could be the 

longitudinal monitoring of the same subject in order to evaluate or detect any change in his/her vocal 

features over time. Moreover, the characterization of language phenotype in genetic syndromes could 

be helpful for the identification of subjects that need dedicated logopaedic or rehabilitation 

intervention and in follow-up procedures. Though innovative, the work presented here has some 

limits. First, the number of subjects is quite low, because SMS and NS are rare syndromes [Hidalgo-

De la Guía, 2021a, Lazzaro et al., 2020, Hidalgo-De la Guía, 2021b]. The recruitment of a larger 

number of subjects could also allow intra-syndrome differences investigation to evaluate if acoustical 

differences could be highlighted according to the severity level of the syndrome. Furthermore, future 

work could be devoted to disentangle differences due to specific altered biomechanical properties of 

the vocal tract, cognitive delay, or both. To this aim, more clinical and psychological information 

might be added (e.g., skull dimension, anatomical properties of the vocal tracts, IQ scores, etc.) in a 

multidimensional analysis perspective. 

Moreover, the work presented here concerns Italian speakers only, and most likely the relevant 

parameters would be different for other languages. We limited the analysis to a single task: the list of 

numbers from 1 to 10, as it is included in the SIFEL protocol. Maybe other tasks could be more 

appropriate to find significant differences. Another possible task could be the repetition of words and 

un-words that have already shown differences between normal speakers and pathological ones 

[Tressoldi et al., 2001]. Another limitation of this work may be the use of commercial smartphones 

for audio recordings rather than a professional microphone [Penney et al., 2021, Lebacq et al., 2017]. 

However, even with smartphones, the acoustical analysis was able to detect differences, thus allowing 

their possible use also in a non-controlled environment such as home monitoring [Manfredi et al., 

2017]. 

6.4.1. Conclusions 

Though with the above mentioned limitations, this work proposes a first proof of concept for the 

analysis of a speech task to improve speech phenotyping in genetic syndromes. A first attempt is 

presented concerning the usefulness of quantitative acoustical analysis for the characterization of 

speech phenotypes in genetic syndromes. Preliminary encouraging results confirm that acoustical 

measures could add helpful information for Down, Noonan, and Smith-Magenis syndromes. Being 

completely non-invasive, acoustical analysis might significantly contribute to the clinical assessment 

of such subjects, also after surgical, pharmacological, psychological and logopaedic treatments as 

well as for long-term monitoring of the acoustical quality of the voice of these subjects. Several 

specific differences were found between pathological and control cases, showing a peculiar picture 

for each syndrome considered. Though non-optimal, the use of smartphones may allow the analysis 

both in a controlled environment, such as specialized clinics and hospitals, and/or in-home 

monitoring, after careful training of the parents or tutors of the subject. Therefore, this study brings 

innovative elements that combine acoustical analysis and sample entropy techniques in the study of 

genetic syndromes, showing their potentiality and possible usefulness in clinical practice. This 

analysis opens the way to the use of acoustical features as input for artificial intelligence models 

devoted as diagnostic tool for an automatic characterization of the speech phenotype in such genetic 

syndromes. A first attempt regarding this possibility, will be briefly presented in the next section 6.5. 
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6.5 Automatic classification of vocal patterns as a diagnostic tool in patients with 

genetic syndromes 

As already explained in Section 6.1, perceptual and acoustical analysis of voice could be helpful for 

the evaluation of specific voice characteristics as a non-invasive approach to the assessment of genetic 

syndromes. More than 240 genetic syndromes have distinctive abnormalities of voice quality, 

significant enough to be considered as diagnostic indicators [Hamosh et al., 2005]. For some genetic 

syndromes the existence of a specific language phenotype obtained by acoustical analysis was already 

discussed in Section 6.1, suggesting that acoustical analysis could be helpful for an early intervention 

in patients with speech impairments, to improve their communication skills and reduce speech deficits 

[Moura et al., 2008]. Based on the above mentioned evidences, some genetic abnormalities of a 

specific phenotype are expected to determine a specific vocal phenotype.  

Therefore, vocal characterization could represent a useful tool in the diagnostic process and in 

defining the severity of some clinical pictures. To this aim, machine-learning methods and supervised 

classifiers are applied here to acoustical parameters estimated with two analysis tools: Praat and 

BioVoice [Boersma and Weenink, 2018, Morelli et al., 2021]. Being based on a non-invasive and 

easily administered tests, this approach could be helpful for obtaining additional features useful for 

diagnosis and for the automatic classification of different syndromes. 

 

6.5.1 Material and Methods 

Data were collected at the Università Cattolica del Sacro Cuore, (Roma), Faculty of Medicine and 

Surgery [Calà, 2022]. Machine-learning methods are applied to several acoustical parameters 

estimated from the vocal emissions of a set of 72 subjects (36 male and 36 female, age range 4-33 

years, mean 14±7 years), affected by 5 different genetic syndromes. Specifically, the dataset consists 

of: 22 subjects with Down syndrome (DS); 17 with Noonan syndrome (NS); 19 with Costello 

Syndrome (CoS) [Myers et al., 2014]; 10 with Smith-Magenis syndrome (SMS) and 4 with Cornelia 

de Lange syndrome (CdLS) [Moore, 1970]. However, the CdLS syndrome was excluded from the 

analysis due to the small number of subjects in this class. The vocal samples come from a previous 

study based on the SIFEL protocol [Ricci and Maccarini, 2002]. After a training phase of the subject, 

the recorded audio files consist of the vowel /a/ sustained for at least 4 seconds. Recordings were 

obtained using a portable DAT (Digital Audio Tape) in a controlled environment (environmental 

noise < 40dB), with the microphone set at 15 centimetres from the subject’s lips and with an angle of 

45°. The sampling rate was 44100 Hz. Moreover, in the same sessions, the Italian word /aiuole/ 

(flower beds) as well as the vowels /i/, /u/ /o/ and /e/ were recorded. However, in this work the 

acoustical analysis with BioVoice was performed only on the vowel /a/, because for other vowels and 

words, some of the recordings were corrupted or no more available. For the other vowels and words, 

only the acoustical analysis previously performed by Praat [Boersma and Weenink, 2018] was 

available. The quasi-stationary central part of each sustained vowel (about 3s of duration) was 

manually extracted by an expert, disregarding onset and offset.  

For the acoustical analysis and classification we considered here both the previously collected dataset 

of parameters estimated with Praat and new estimates obtained with the BioVoice tool [Morelli et al., 

2021, Manfredi et al., 2015]. Only the sustained vowel /a/ was considered. With Praat, the following 

34 acoustical parameters were taken into account: mean, standard error, coefficient of variation, 

maximum and minimum of the fundamental frequency F0; Jitter (local, absolute, Relative Average 

Perturbation, DDP and PPQ5, where PPQ is Period Perturbation Quotient); Shimmer (%, dB, APQ3, 
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APQ5, APQ11, DDA, where APQ is the Amplitude Perturbation Quotient); mean Noise to Harmonic 

Ratio (NHR); mean Harmonic to Noise Ratio (HNR); the first four formants (F1, F2, F3 and F4); four 

clinical features: gender, age, weight and body mass index. 

With BioVoice we extracted 24 acoustical features. Analysis is performed distinguishing between 

infants (<12 years) and adults [Morelli et al., 2021] and in the case of adults between male and female. 

The 24 acoustical parameters from BioVoice are: maximum, minimum, mean, median and standard 

deviation for F0 and formants F1, F2 and F3; T0min and T0max for F0; jitter; Normalized Noise 

Energy (NNE). Four clinical features: gender, age, weight and body mass index (BMI) were also 

included. In a first step, we compared the acoustical parameters in common between BioVoice and 

Praat. Then, we used those parameters considering separately each syndrome subgroup. All features 

except gender (0=male, 1=female) were normalized to zero mean and unit variance and the 

corresponding feature matrix was applied as input to the following supervised classifiers: k-nearest 

neighbours (KNN), support vector machine (SVM) and ensemble methods (RUSBoost, AdaBoost 

and Random Forest) [Hastie et al., 2001]. These methods are implemented under MATLAB 2020b 

computing environment.  

K-fold cross validation (k=5) and Bayesian Optimization were applied for the selection of the hyper-

parameters of the models [Calà, 2022]. The optimization was performed considering the highest 

global Accuracy as validation metric (i.e. the average Accuracy between the four classes). To improve 

the classifier’s performance the ReliefF algorithm was used as feature selection method [Robnik-

Šikonja and Kononenko, 2003]. During the model selection process we also varied the number of 

input features for the classifiers. All the experiments were repeated 5 times, to take into account 

possible variations of the performance due to the random selection of the subjects during cross-

validation.  

We did not find significant differences in the performances (Accuracy <5%). Finally, we performed 

the same experiment on the Praat dataset, considering also features from the vowels /a/, /i/ and /u/. In 

this case the features given by the formant ratios between vowels were added (e.g., F1[a]/F1[u]) 

[Boersma and Weenink, 2018]. As said before, this analysis could not be performed with BioVoice 

due to missing data. 

 

6.5.2 Results  

Table 6.13 shows the comparison between Praat and BioVoice concerning the vowel /a/. We used a 

two-sample t-test with level of significance α=0.05. We checked the hypothesis of normality by 

Shapiro-Wilk Test (level of significance α=0.05). Table 6.14 shows the True Positive Rate (TPR) and 

the False Negative Rate (FNR) for the four genetic syndromes. With BioVoice the 10 features 

obtained for the best model were: T0maxF0 /a/, gender, age, median F3 /a/, BMI, min F1 /a/, T0minF0 

/a/, min F0, jitter and weight. The best model for BioVoice was a KNN with a Global Accuracy of 

53.1%. Instead with Praat the best model was made of 15 features: gender, mean F1 /a/, age, mean 

F2 /a/, BMI, max F0 /a/, min F0 /a/, weight, mean F0 /a/. median F0 /a/, Shimmer /a/ APQ11, 

Shimmer /a/ APQ5, Shimmer local /a/, mean F4 /a/, Shimmer /a/ DDA. The best model with Praat 

was a KNN with 52.9% of Global Accuracy. The features used after the selection process are listed 

in descending order according to their relevance. 
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Table 6.13. Vowel /a/ - Comparison between BioVoice and Praat on the 4 syndromes. Statistically significant 

differences are highlighted in bold. [Frassineti et al., 2021e]. 

 
Syndrome 

(p-value) 

Feature DS NS CoS SMS 

Median F0 /a/ 0.91 0.74 0.99 0.77 

Mean F0 /a/ 0.80 0.80 0.95 0.66 

Min F0 /a/ 0.01 0.05 p<0.01 0.13 

Max F0 /a/ p<0.01 0.44 0.02 0,16 

Mean F1 /a/ 0.55 0.43 0.92 0.56 

Mean F2 /a/ p<0.01 p<0.01 0.03 0.11 

Mean F3 /a/ p<0.01 0.12 0.23 p<0.01 

 

Table 6.14. Vowel /a/ - Comparison between BioVoice and Praat - Results of k-fold cross validation. [Frassineti et al., 

2021e]. 

Genetic  

Syndrome 

BioVoice Praat 

TPR FNR TPR FNR 

DS 61.9% 38.1% 63.6% 36.4% 

NS 26.7% 73.3% 17.6% 82.4% 

CoS 68.4% 31.6% 73.7% 26.3% 

SMS 55.6% 44.4% 40.0% 60.0% 

 

Table 6.15 shows the results obtained for the four genetic syndromes considering all the available 

Praat features for vowels /a/, /u/ and /i/. 

Table 6.15. Vowels /a/, /i/ and /u/ - KNN’s Multiclass confusion matrix with Praat parameters. Main diagonal: TPR for 

each class. Other values: FNR for a single class. [Frassineti et al., 2021e, Calà, 2022]. 

 Predicted Class 

True Class DS NS CoS SMS 

DS 68.2% 13.6% 18.2% 0% 

NS 17.6% 64.7% 17.6% 0% 

CoS 31.6% 5.3% 63.2% 0% 

SMS 20.0% 10.0% 10.0% 60.0% 

 

The best model was a KNN with Global accuracy 64.7% [Calà. 2022]. In this case, the following 15 

features were selected: mean F1 /a/, age, gender, formant ratio F1[a]/F1[u], max F0 /a/, mean F2 /a/, 

Shimmer APQ11 /a/, mean F0 /a/, median F0 /a/, min F0 /a/, Shimmer /a/ (dB), BMI, Shimmer APQ5 

/a/, weight, Shimmer /a/ (local). 

 

6.5.3 Discussion and Conclusions 

This work presents preliminary results concerning the discrimination among some genetic 

syndromes: Down Syndrome, Noonan Syndrome, Costello Syndrome and Smith-Magenis Syndrome. 

The analysis was performed with acoustical parameters estimated on the sustained vowel /a/ with 

BioVoice and Praat and applying machine-learning models. The aim of this work was the definition 

of a proper language phenotype able to distinguish the genetic syndromes considered. The results 
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shown in Table 6.14 and 6.15 confirm a possible relationship between genetic syndromes and their 

specific acoustical characteristics. The results obtained with BioVoice and Praat are comparable. 

Statistical analysis highlights some differences between the two tools as far as the estimation of 

formants F2 and F3 for some syndromes is concerned (Table 6.13, p-values <0.05). This might be 

related to different techniques for formants estimation implemented in the two tools, as discussed in 

[Morelli et al., 2021]. Moreover, differences between BioVoice and Praat exist concerning F0 max 

and min. This could be due to different ranges for F0 estimation defined by the two software tools. 

We remark that with BioVoice the selection of the frequency range for adults (male or female), infants 

and newborns is automatically made by BioVoice, while Praat requires some skill of the user to 

manually set the best frequency range. However, the results shown in Table 6.14 are preliminary, 

suggesting that the analysis of the vowel /a/ alone might not be enough for defining a vocal phenotype 

(TPRs<50%). This is confirmed in Table 6.15, where the acoustical analysis of vowels /i/ and /u/ 

performed with Praat was added for all the syndromes, giving Accuracy>50%. In particular, the 

formant ratio F1[a]/F1[u] was classified as one of the most relevant features by the ReliefF algorithm. 

This result suggests that a multi-vowel analysis might add more information than a single vowel 

analysis and should be preferred for the characterization of these genetic syndromes. Our results also 

confirm evidences previously found for some genetic syndromes. Indeed, for DS, NS and SMS 

acoustical analysis was already proved useful to find differences between pathological and control 

groups [Hidalgo-De la Guía et al., 2021a, Hidalgo-De la Guía et al., 2020, Lazzaro et al., 2020]. Table 

6.15 also shows that SMS has the lowest false negative rate (0%), confirming that acoustical analysis 

can provide characteristics strictly related to the pathology [Hidalgo-De la Guía, 2020]. Our results 

suggest that acoustical analysis could be useful also for CoS. Indeed, as shown in Table 6.15, the 

false negative rates between CoS and NS were 5.3% and 17.6% respectively, thus acoustical analysis 

might be useful to discriminate between these two syndromes [Myers et al., 2014]. 

Our results are preliminary and further study is required to confirm them. First, the number of subjects 

was poor, thus more cases must be recruited especially for SMS and CdLS. Moreover, we did not 

perform a comparison between pathological subjects and control cases. This will be done in future 

work, also taking into account previous studies that already presented such differences for some 

genetic syndromes [Hidalgo-De la Guía et al., 2021a, Hidalgo-De la Guía et al., 2020, Lazzaro et al., 

2020]. Considering the promising results obtained, further studies will be made to investigate if some 

of the acoustical features could be specific of a single genetic syndrome. The acoustical analysis of 

vowels /i/ and /u/ made with the Praat dataset was found useful, therefore we are planning to perform 

the same analysis with BioVoice on the same recordings, when available, and/or new ones. Another 

limit of the work presented here is the wide age range of the subjects, also due to the low number of 

cases in some syndromes (e.g. CdLS or SMS). If other subjects will be available, a more detailed 

analysis at different age ranges will be made. If successful, acoustical analysis may be included in the 

process of differential diagnosis as a completely non-invasive approach to detect specific acoustical 

characteristics related to speech or phonation impairment for several genetic syndromes, along with 

e.g. the analysis of facial characteristics and expressions [Bandini et al., 2016]. 

The work presented in this Section is a first step towards the analysis of the complex mosaics behind 

the detection of “voice” phenotypes related to some genetic syndromes. Preliminary results suggest 

that acoustical parameters and supervised classifiers might provide additional information about 

genetic syndromes through the characterization of voice. Future work will be devoted to the definition 

of a protocol for data recording and will concern a larger number of subjects and syndromes, as well 

as different supervised classifiers and feature selection approaches. 
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7. Neonatal Sepsis and Neurodevelopment: forecasting BAYLEY-III 

scores through EEG- and HRV-based regression analysis.  

Some contents in this chapter are based on the following Master’s Degree Thesis: 

• Parente, Angela. Thesis title: Machine learning techniques for studying the influence of sepsis 

on neurodevelopment in preterm infants: application to the Neonatal Intensive Care Unit 

AOU Careggi, Florence. Università degli Studi di Firenze (Firenze, Italy), Scuola di 

Ingegneria, Curricula Biomedical Engineering, date of discussion: 07/21/2022. Supervisors: 

Prof. Claudia Manfredi, Prof. Antonio Lanatà. Co-Supervisor: Lorenzo Frassineti. [Parente, 

2022]. 

In this chapter another application of Artificial Intelligence (AI) models on paediatric subjects is 

presented. The use of regression models is exploited to predict the neurodevelopmental scores of 

preterm newborns with sepsis and without sepsis. In adults, sepsis is defined as a life-threatening 

organ dysfunction caused by a dysregulated response to infection [Singer et al., 2016]. Although for 

newborns there is still no consensus definition of neonatal sepsis [Molloy et al., 2020], it can be 

defined as a diagnosis made in infants less than 28 days of life and consists of a clinical syndrome 

that may include systemic signs of infection, circulatory shock, and multisystem organ failure [Ershad 

et al., 2019]. The BAYLEY-III test was used to compute the scores in three different domains: 

cognitive, language and motor. The quantitative analysis was performed on EEG and ECG recordings 

acquired when the preterm infants reached the term age (i.e. > 37 weeks). This application is one of 

the first attempt to use regression models as a support tool for the neonatologists and the paediatric 

neurologists in the neurodevelopmental assessment of the preterm newborn with sepsis. 

The chapter is organized as follows: an overview on neonatal sepsis and methods to detect early the 

sepsis episode or predict its effect on neurodevelopment is provided. Then, the framework used to 

develop the regression models is presented. Finally, the results and discussion about the use of AI 

regression models as support for the neurodevelopment assessment on newborn with sepsis are 

reported. 

 

7.1. Introduction 

Each year, almost 15 million of infants born premature, that is before the 37th week of pregnancy. 

They are about the 10% of the worldwide neonatal population [González et al., 2011]. At least 33% 

of hospitalizations in Neonatal Intensive Care Units (NICUs) are related to preterm newborns. 

Moreover, the preterm birth rate, defined as the ratio between preterm births and number of newborns 

born alive, has increased from the 9.6% in 2005 [Beck et al. 2010], up to 11.1% in 2010 [Blencowe 

et al., 2012]. 

Specifically, depending on the gestational age (GA) [World Health Organization, 2012], newborns 

can be classified as follows: 

• At term: if the birth is between the 37th and 42nd gestational week 

• Late Preterm: if the birth is between the 32nd and the 37th gestational week 

• Very Preterm: if the birth is between the 28th and the 32nd gestational week 

• Extremely Preterm: if the birth is before the 28th gestational week 
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It is important to remark that the risk of the death increases in newborns with a GA lower than 34 

weeks [Marlow et al. 2005]. Moreover, neonatal deaths mainly occur during the first week of life 

(almost the 80%, [Lawn et al., 2014]). Another recognized classification is defined according to the 

birth weight [World Health Organization, 2012]: 

• Low Birth Weight (LBW): newborns with a weight between 1501g and 2500g 

• Very Low Birth Weight (VLBW): newborns with a weight between 1001g and 1500g 

• Extremely Low Birth Weight (ELBW): newborn with a weight lower than 1000g 

This classification is used in combination with the corresponding GA. 

The survival rate of preterm newborns varies worldwide: in high-resources country such as Italy, the 

percentage of survived newborns after the first week, with a GA lower than 28 weeks, is the 90% 

[World Health Organization, 2012]. Instead in low-resources countries this percentage drops to 10%. 

The death causes for newborns are several and no exhaustive worldwide list is provided. The most 

common ones are shown in Figure 7.1. A preterm birth may carry several complications such as: 

Necrotizing enterocolitis (NEC), Retinopathy of prematurity (ROP), Bronchopulmonary Dysplasia 

(BPD), that they are the most common causes of neonatal death, with almost 3 million of deaths per 

year, the second cause of death under 5 years of life [Blencowe et al., 2012]. 

 
Figure 7.1. Global distribution of newborn deaths by cause (2018) [Unicef Report 2019]. 

 

As shown in Figure 7.1 among the death causes Sepsis represents the third most common cause. 

Infections during hospitalization represent a significant issue and challenge for healthcare and clinical 

staff. The incidence of infections in Europe is between 7% and 19%, in Italy it has been reported an 

incidence between 5-8%. The clinical signs of a neonatal infection are numerous and unspecific, and 

difficult to be detected. At the systematic level the newborn may show hypotension, hyperthermia or 

hypothermia, respiratory stress with apnoea, feeding difficulties, as well as an increasing demand of 

oxygen or assisted respiratory support [Bollani et al., 2016]. 

In the 45-55% a neonatal infection is due to sepsis, followed by the lower respiratory tract infections 

(16-33%), cutaneous infections (26.3%), urinary infections (8-19%) and meningitis (9.6%) [Bollani 

et al., 2016]. It has been estimated that the worldwide number of neonatal sepsis episodes are at least 

1.2 millions each year [Weiss et al., 2020]. 

The mortality rate of neonatal sepsis varies between 4% and 50% [Balamuth et al., 2014, Ames et al., 

2018, Prout et al., 2018]. Most infants that die for sepsis suffer from multiorgan disfunctions and 

refractory shock, and most of the deaths occur within the first 48-72 hours [Weiss et al., 2017, Morin 

et al., 2016]. It is noteworthy that with an early diagnosis and treatment, rarely a preterm newborn 

shows long-term effects due to the infection. However, it is still not easy to detect and evaluate any 

early symptoms of the infections, especially from the clinical signs only.  
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Usually, neonatal sepsis is divided into two categories: 

• Early Onset Sepsis (EOS), where symptoms occur until the first 72 hours of life (85% until 

the first 24 hours). Usually, the infection is transmitted from the mother to the newborn. The 

death rate is higher for sepsis caused by Gram-negative microorganisms (e.g., Escherichia 

coli and Haemophilus influenzae) [Bollani et al., 2016]. Several risk factors contribute to the 

development of EOS: low APGAR score, maternal urinary infections, prematurity, asphyxia 

etc. [Bollani et al., 2016]. 

• Late Onset Sepsis (LOS), that occurs after the first 48-72 hours of life, mainly caused by 

external microorganisms. For VLBW newborns, it is also possible to define the very-late-

onset Sepsis (VLOS), after the first 60 days of life and late-late-onset sepsis (LLOS), where 

sepsis occurs three months after birth. The incidence of LOS increases drastically in NICUs. 

In fact, among the risk factors it is possible to identify: mechanical ventilation, antibiotic 

therapy prolonged over time, cardiac deficits and any surgical intervention [Bollani et al., 

2016]. 

The blood culture test is the gold standard for the diagnosis of sepsis. The exam allows to recognize 

the aetiology, thus defining the corresponding treatment. However, often blood culture may produce 

false negative and positive results, thus it is not always clear when the antibiotic treatment should 

start [Bollani et al., 2016]. Moreover, the blood culture test requires time, thus the clinical staff might 

start the antibiotic therapy before the result of the test.  

To support the clinical staff in the detection or prediction of newborn at risk of sepsis, in the last years 

several AI techniques have been proposed. To develop such methods three different datasets have 

been considered in the literature: 

• The Medical Information Mart for Intensive Care III (MIMIC-III database), where almost 

8000 data regarding newborns are included [Johnson et al., 2016]. 

• The dataset provided by Lopez-Martinez et al. [López-Martínez et al., 2019], where 555 

newborns were included of which 34% with neonatal sepsis.  

• The dataset provided by Masino et al. [Masino et al., 2019], where 1100 newborns without 

sepsis and 375 with sepsis are included. The newborns with sepsis were further divided into 

two categories: “with a blood culture positive” (110) and “clinically positive” (265). Clinically 

positive cases are those with a culture negative but with the antibiotic therapy started at least 

120 hours before. They collected 36 clinical features spanning different domains (e.g., 

laboratory features such as creatinine or glucose, as well as vital signs features such as 

diastolic blood pressure or heart rate etc.). 

The aim of the methods developed in this field is mainly the discrimination between newborns with 

sepsis and without sepsis. They can be developed and validated in a similar way as the seizure 

detectors discussed in the previous chapters of this PhD thesis (from Chapter 1 to 5), considering the 

sepsis detection or prediction as a supervised classification problem. The most common metrics used 

for the evaluation of sepsis detectors are: the Positive Predictive Value (PPV) and the Negative 

Predictive Value (NPV), as well as Accuracy, Sensitivity and Specificity. However, the most used 

metric is the AUROC (or AUC). More details regarding the metrics considered in literature are 

reported in Chapter 1 and 2 of this PhD thesis.  

A comprehensive discussion about the main works on this topic is out of the aim of this PhD thesis, 

thus only the most relevant are reported here. Furthermore, only the works who used the three datasets 

described in this section will be introduced. We point out that there are less research works concerning 
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neonatal sepsis detection and prediction than for adults. Tahkur et al. in two different works [Tahkur 

et al., 2017, Tahkur et al. 2020] used the MIMIC-III database to develop and validate Machine-

Learning (ML) models to predict neonatal sepsis. In [Tahkur et al., 2017], they obtained an AUC of 

76% evaluating 1446 newborns, 179 with sepsis, by a Logistic Regressor model and the following 

features: birth weight, heart rate, body temperature, oxygen saturation and blood pression. Instead in 

[Tahkur et al., 2020], they showed that using only the body temperature as feature, it was still possible 

to obtain promising performances in terms of Accuracy. Song et al. [Song et al., 2020], evaluated the 

performance of ML models to detect LONS newborns using the MIMIC-III data. They obtained an 

AUC of 86% using a Logistic Regressor model.  

Regarding the dataset proposed by Lopez-Martinez et al. [López-Martínez et al., 2019], the same 

authors obtained an AUC of 92%, with an Artificial Neural Network using 27 clinical features. 

Masino et al. [Masino et al., 2019], on their dataset, obtained an average AUC of 80-82% for 

“clinically positive” cases and 85-87% when they considered also the “culture positive” cases. All 

these results confirming that AI models may be used in the future as a support for an early detection 

of newborns at risk of sepsis.  

In the last years, the improvements in the management and treatment, as well as the survival 

procedures for preterms, allowed a higher percentage of survived preterm newborns with sepsis. 

However, it has been found that preterm newborns are more sensible to neurodevelopmental delay or 

diseases, when compared to at term newborns. In fact, it has been noticed that more than 25% of 

newborns with a GA between the 28th and 32nd week show a delay on neurodevelopment, usually 

linked to several degrees of impairment [Lawn et al., 2014]. Recently, it has been argued that, in the 

survived newborns, sepsis may have a negative impact on their neurodevelopment. In fact, sepsis 

may cause significant alterations to cerebral networking in the neonatal period and could be harmful 

for brain development [Mukhopadhyay et al., 2020, Alshaikh et al., 2013, Ortgies et al., 2021, Pek et 

al., 2020]. 

Furthermore, the early detection of neurodevelopmental disorders or delay is of utmost importance 

in the clinical practice, as the first two years of life are considered the most vulnerable and critical 

period for the neurodevelopment [Scher, 2021]. Thus, the newborn at risk or with sepsis-related 

damages should be identified as soon as possible in order to define the best neuro-rehabilitative 

program [Scher, 2021].  

To monitor the neurodevelopment and detect any abnormal behaviour, the clinical staff often makes 

use of neurodevelopmental scales such as the Bayley Scales of Infant and Toddler Development or 

Griffiths Mental Development Scales [Del Rosario et al., 2020]. In general, these scales consist of a 

list of tests and tasks that the physician administer or verify on the infants at different follow-up 

periods, usually from the 3-6 months after birth up to 18-24 months after birth (considering the 

corrected age for preterm). As an example, the BAYLEY-III scale provides assessment on three 

different subscales of the neurodevelopment: cognitive, language and motor [Del Rosario et al., 

2020]. Moreover, for BAYLEY-III two more subscales indirectly administered are usually 

considered: the social-emotional and the adaptive behaviour scales. 

Each scale comprises a different number of items, and their administration is flexible but with a 

standard order. Moreover, the number of items varies according to the age of the subject. For example, 

the cognitive scale (maximum number of items 91) evaluates elements such as the development of 

spatial exploration, memory, manipulation, relationship between objects and concepts, information 

comprehension. This is usually the first scale administered during the evaluation since it requires a 

high effort for the subject. 
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According to the BAYLEY-III scores, it is possible to quantify the level of impairment of the subject. 

Usually scores below 85 and 70/75 denote a moderate or severe impairment, respectively [Del 

Rosario et al., 2020], while scores between 85/90-100 and higher are associated with normal 

conditions.  

Recently, some works in the literature proposed Artificial Intelligence (AI) methods to predict the 

neurodevelopment scores, using mainly Electroencephalographic (EEG) signals acquired from the 

newborns during or immediately after their stay in NICU [Alotaibi et al., 2022]. Thus, these methods 

could be used as a support for the clinical staff in the early detection of newborns at risk of 

neurodevelopmental disorders. Moreover, it is well known that the neurodevelopment itself is altered 

by preterm birth [Yiallourou et al., 2013] and changes could be detected by the analysis of the 

Autonomic Nervous System (ANS) [Thiriez et al., 2015]. Also Heart Rate Variability (HRV) analysis 

reflects ANS activity, thus it can provide information about its development [Ask et al., 2019]. HRV 

analysis can be obtained by Electrocardiographic (ECG) signals that usually are easily obtainable in 

the clinical practice, being less invasive and cheaper than EEG. However, to date, only few works 

investigated HRV features and AI methods as predictors of neurodevelopmental scores [Ask et al., 

2019]. Moreover, to the best of our knowledge, the work presented in this PhD thesis is the first one 

concerning newborns with sepsis. Thus, here we evaluated if EEG or HRV features as input features 

of regression models may provide a reliable estimation of BAYLEY-III scores for preterm newborns 

with and without sepsis obtained during follow-ups at 6- and 12- months. 

This chapter is organized as follows: Section 7.2 describes the dataset, the pre-processing applied to 

EEG and ECG signals, the features extracted, and the validation scheme adopted on regression 

models to evaluate their performance in predicting BAYLEY-III scores. In Section 7.3, results are 

shown. Section 7.4 is devoted to the discussion and conclusions about the use of EEG and HRV as 

predictors of neurodevelopmental scores. 

 

7.2. Material and Methods 

A dataset of EEG and ECG recordings was collected at the Neuro-physiopathology and Neonatology 

Clinical Units of AOU Careggi (Firenze, Italy). EEG and ECG were synchronously recorded using 

Nemus ICU Galileo NT Line system (EB Neuro S.p.A., Firenze, Italy). The dataset was collected 

between 2018 and 2022. The length of EEG and ECG signals was about 54±9 minutes, with a 

sampling frequency of 128Hz. The study was conducted in accordance with the Declaration of 

Helsinki and approved by the Institutional Review Board of Careggi University Hospital, Firenze, 

Italy. It consists of 64 preterm newborns with gestational age (GA) between 24 and 31 weeks (27.8 

± 1.8 weeks). The age of newborns was between 37 and 43 weeks (38.5 ± 1.5 weeks). Thus, all the 

newborns were analyzed when they reached the corrected term age (> 37 weeks). Regarding the ECG 

signals only 48 of 64 subjects were considered, since for the others the ECG signals were corrupted 

by noise. For the EEG recordings, 38 out of 64 subjects had sepsis during hospitalization, while for 

the ECG recordings, 27 out of 48 patients had sepsis during hospitalization. The distribution of cases 

as far as age at time of recording, GA, and sepsis and no-sepsis, are shown in Figure 7.2. Regarding 

the definition of sepsis used here, both EOS and LOS were included, referring to them with the same 

notation “sepsis”, without considering how it was diagnosed (e.g. with positive blood culture or by 

clinical evaluation).  

The BAYLEY-III scales were administered by an expert psychologist of the AOU Careggi staff. Both 

the cognitive, language and motor scores were collected at 6-months and 12-months follow-up. had 
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Here, as in [Del Rosario, et al., 2020], a moderate/severe impairment refers to the subjects with 

BAYLEY scores lower than 85. Further details about the subjects involved in the study are reported 

in Table 7.1 for the EEG recordings and in Table 7.2 for the ECG recordings. In Table 7.3 and 7.4 

the BAYLEY-III scores are shown for the EEG and ECG recordings, respectively. Pearson's χ2 test 

and Mann-Whitney tests confirmed no statistical differences as far as gender and age are concerned 

between the two groups considered: sepsis and no-sepsis (Mann-Whitney test, level of confidence 

0.05, both for EEG and ECG cohorts). 

Table 7.1. EEG dataset details, μ=mean, σ= standard deviation. 

Group 

GA 

μ±σ weeks 

Age at EEG 

μ±σ weeks 

Cases 

(M/F) 

Sepsis  27.3 ± 1.8  38.8 ± 1.2 (25/13) 

No-sepsis  27.8 ± 1.4 39.0 ± 1.8 (11/15) 
 

Table 7.2. ECG dataset details, μ=mean, σ= standard deviation. 

Group 

GA 

μ±σ weeks 

Age at ECG 

μ±σ weeks 

Cases 

(M/F) 

Sepsis  27.5 ± 2.0 38.7 ± 1.3 27 (17/10) 

No-sepsis  28.1 ± 1.5 38.8 ± 1.7 21 (8/13) 
 

  
(a) (b) 

 
(c) 

Figure 7.2. Histogram distribution of the EEG cohort. (a) The age in weeks at the time of EEG recordings and (b) the 

age at the time of the EEG recordings, for Sepsis and No-sepsis cases. (c) the GA distribution for the EEG cohort, for 

Sepsis and No-sepsis cases. [Parente, 2022]. 
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As this study is still ongoing, only the scores for 6- and 12- months were available for a large enough 

number of infants. For the ECG cohort, for 6-months scores about all the Bayley-III evaluations were 

available for each domain, and for 12-months just 38 evaluations were available. For the 18-24-

months scales, data and results will be presented in future developments of the research. 

As shown in Table 7.3, for the EEG cohort we found statistical difference in terms of BAYLEY-III 

scores between sepsis and no-sepsis groups for the cognitive scale at 6- and 12-months and for the 

language scale at 12-months, respectively (Mann-Whitney test, level of significance 0.05). The 

number of cases varies slightly among the scales, because for some subjects it was not possible to 

administer all the tests. Thus, for the 6-months cognitive scale 62 of 64 subjects were considered. 

Instead, as shown in Table 7.4, for the ECG cohort, we found statistically significative difference in 

terms of BAYLEY-III scores between the two groups for the cognitive scale and for the language 

scale at 6- and 12- months respectively (Mann-Whitney test, level of significance 0.05).  

Table 7.3. BAYLEY-III scores for all the sub-scales for both groups in EEG cohort. iqr is the interquartile range. The p-

value is related to the Mann-Whitney test performed. m=months. (*) denotes a significant p-value (level of significance 

0.05). [Parente, 2022]. 

BAYLEY-III scores 

Group 

Median (iqr) 

  

Sepsis No-sepsis p-value 
Cases  

(with Sepsis) 

Cognitive 6m 90 (15) 100 (10) 0.006* 62 (36) 

Language 6m 77 (11) 83 (13) 0.07 61 (35) 

Motor 6m 87 (13) 92 (9) 0.06 62 (36) 

Cognitive 12m 90 (15) 100 (15) 0.04* 52 (31) 

Language 12m 86 (12) 89 (8) 0.004* 52 (31) 

Motor 12m 79 (9) 85 (12) 0.26 52 (31) 
 

Table 7.4. BAYLEY-III scores for all the sub-scales for both groups in ECG cohort. iqr is the interquartile range. The p-

value is related to the Mann-Whitney test performed. m=months. (*) denotes a significant p-value (level of significance 

0.05). 

BAYLEY-III scores 

Group 

Median (iqr) 

  

Sepsis No-sepsis p-value 
Cases  

(with Sepsis) 

Cognitive 6m 90 (15) 100 (11) 0.01* 48 (27) 

Language 6m 77 (12) 83 (11) 0.06 48 (27) 

Motor 6m 87 (12) 91 (12) 0.14 48 (27) 

Cognitive 12m 93 (20) 102 (15) 0.15 38 (27) 

Language 12m 86 (10) 90 (8) 0.01* 38 (27) 

Motor 12m 79 (9) 86 (10) 0.29 38 (27) 

 

7.2.1 EEG analysis 

With the double banana montage for the EEG recordings, the following derivations were considered: 

Fp2-C4, C4-O2, Fp2-T4, T4-O2, Fp1-C3, C3-O1, Fp1-T3, T3-O1 [Parente, 2022]. To enhance the 

Signal-to-Noise ratio, the signals were filtered with a pass-band FIR filter of order 2000 in the range 

1-45Hz. Because there is no unanimous consensus on the optimal epoch length to characterize 

neonatal EEG for neurodevelopment assessment, the following lengths have been evaluated: 4s, 8s, 
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16s, 128s and 256s [Lavanga et al., 2018, De Wel et al., 2017, Lavanga et al., 2017]. No overlap was 

applied to epochs. For each extracted epoch and for each derivation, the following single-channel 

EEG features were computed: 

• Time-domain features: amplitude total power, amplitude standard deviation, skewness, 

kurtosis, mean of envelope, standard deviation of envelope. All the features were computed 

with the tool developed by O’Toole et al. [Toole and Boylan 2017].  

• Frequency-domain features: spectral power, spectral relative power, spectral entropy, spectral 

difference, spectral edge frequency. [Toole and Boylan 2017]. 

• Entropy-domain features (Chapter 3 of this PhD thesis): multiscale sample entropy (MSE) 

analysis. For MSE the number of scales was set to 20, using as embedding dimension m=3 

and tolerance threshold r=0.2. [Frassineti et al., 2021d, Costa et al., 2005]. For the multiscale 

procedure, the coarse-grained one was used [Frassineti et al., 2021d]. According to [De Wel 

et al., 2017], from MSE the Complexity Index, the maximum MSE among scales, the average 

slope for small scales (from 1 to 5) and for large scales (from 6 to 20) were computed and 

used as EEG entropy features. Thus, the original values of each MSE scale were not used in 

this analysis. 

Furthermore, several multi-channel EEG brain network dynamics features were added [Frassineti et 

al. 2021a] as they showed promising results for the neurodevelopment characterization [Lavanga et 

al., 2018]. Thus, the following multichannel EEG features were computed: 

• Mean and standard deviation of hemisphere coherence [Meijer et al., 2014]. 

• Connectivity features: mean connectivity coherence, maximum connectivity coherence, 

maximum frequency. These features were computed using the tool provided by O’Toole et al. 

[Toole and Boylan 2017]. 

• The Activation Synchrony index (ASI) and the Brain Synchrony Index (BSI) described in 

[Räsänen et al., 2013] and in [van Putten, 2007], respectively. Two EEG derivations were 

used to compute ASI and BSI indexes (Fp1-C3 and Fp2-C4, or C3-O1 and C4-O2). ASI and 

BSI were computed using the tool provided by O’Toole et al. [Toole and Boylan 2017]. 

• The Circular Omega Complexity (COC) [Baboukani et al., 2019] and the Hyper-Torus 

Synchrony (HTS) [Al-Khassaweneh et al., 2016], already introduced in Chapter 5 of this PhD 

Thesis. 

• Multivariate Permutation Entropy (MVPE) [He et al., 2016], using as embedding dimension 

m=3.  

Each single- and multi-channel feature was computed for the following frequency bands: Delta (0.5-

4 Hz), Theta (4-7 Hz), Alpha (7-13 Hz), Beta (13-30 Hz). Overall, 467 EEG features were considered: 

392 single-channel and 75 multi-channel. After the extraction of EEG features, the following statistics 

descriptors were applied for each subject: mean, median, standard deviation (std), kurtosis, skewness 

and interquartile range (iqr) [Frassineti et al., 2021b]. Thus, each EEG feature provided 6 different 

statistics descriptors. These features were considered as input to the regression models described in 

Section 7.2.3. 

 

7.2.2 HRV analysis 

To increase the Signal-to-Noise Ratio (SNR), before computing the Heart Rate Variability (HRV) 

features ECGs were pre-processed and filtered with a band-pass FIR filter in the bandwidth 0.05Hz-
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45Hz. For HRV analysis a sliding time window of 5 minutes of duration without overlap was applied. 

Then inter-beat-interval (IBI) time series were obtained using the Pan-Tompkins’algorithm [Pan and 

Tompkins, 1985]. 

According to [Frassineti et al., 2021b, Olmi et al., 2022a], 82 HRV features were extracted in order 

to characterize the newborn’s ANS. Specifically, the following features were considered: 

• Time-domain features: Heart Rate (HR), standard deviation of normal-to-normal intervals 

(SDNN) and of RR intervals (SDRR), percentage of successive RR intervals > 50ms 

(pNN50), root mean square of successive RR interval differences (RMSSD), HRV triangular 

index (TRI), Triangular Interpolation of the NN interval histogram (TINN), Poincarè plot 

standard deviation along the line of identity (SD2), SD1/SD2, where SD1 is the Poincarè 

standard deviation perpendicular of the line identity (SD1SD2ratio), correlation dimension 

(CD) [Shaffer and Ginsberg, 2017]. 

• Frequency features: absolute power of Very Low (VLF), Low (LF) and High Frequencies 

(HF), the relative power for LF and HF (pLF and pHF), the total power (TP) and the LF HF 

ratio (LF/HF) [Shaffer and Ginsberg, 2017]. 

• Entropy-domain features: approximate entropy (ApEn), multiscale sample entropy from scale 

1 to scale 20 (MSE1…MSE20), multiscale distribution entropy from scale 1 to scale 20 

(MDE1…MDE20), multiscale fuzzy entropy from scale 1 to scale 20 (MFE1…MFE20) and 

Bubble Entropy [Manis et al., 2021]. The Complexity Index (CI) [Costa et al., 2005] for MSE, 

MDE and MFE was also computed. 

As in [Statello et al., 2019, Lucchini et al., 2016], the LF range was adapted to (0.04-0.3) Hz, as well 

as the HR range (0.03-1.3) Hz. For multiscale entropy the coarse-grained procedure was applied 

[Frassineti et al., 2021d]. For all the entropy indexes, the embedding dimension was set to m=2. For 

MSE, a threshold value r=0.2 of the standard deviation of the epoch was considered. For MDE, we 

choose the number of bins B=512. For MFE the exponent n was set to 2 [Frassineti et al., 2021d].  

As for the EEG features, after the extraction of HRV features, the following statistics descriptors were 

applied to each subject: mean, median, standard deviation (std), kurtosis, skewness and interquartile 

range (iqr) [Frassineti et al., 2021b]. Thus, each HRV feature gave rise to 6 different statistical 

descriptors. A matrix of size Nx492 was obtained, where N are the patients (48 at 6-months and 38 

at 12-months) and 492 the overall statistics descriptors extracted from the original HRV features. 

These features will be used as input of the HRV-based regression models described in section 7.2.3. 

 

7.2.3 Regression Analysis  

As shown in Figure 7.3, before the regression model’s validation, the training features were 

normalized (zero mean and unit variances). Moreover, the validation sets were transformed according 

to the training statistics in order to avoid any data leakage. Then, the highly correlated predictors were 

removed applying a threshold equal to |0.80| to the Pearson correlation coefficient of all the HRV 

predictors. The remaining features were ranked using the F-tests for regression (FSR) [Avots et al., 

2022] or the ReliefF algorithm [Robnik-Šikonja and Kononenko,2003]. FSR tests the hypothesis that 

the response values grouped by the variable predictor values are drawn from populations with the 

same mean against the alternative hypothesis that the population means are different. Thus, the 

reordered HRV features were used as input predictors of support vector regression (SVR) models 

(linear and gaussian) and Ensemble regression models (Bag, LsBoost) [Hastie et al., 2001], starting 
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with models that considered only the first feature ranked by F-tests or ReliefF as far as using all the 

features. 

To evaluate the developed models, the Leave-One-Subject-Out (LOSO) validation was performed 

using the Bayesian Hyperparameter Optimization, searching for the model with the lowest Mean 

Absolute Error (MAE, equation (7.1)). The number of iterations for Bayesian Optimization was set 

up to 500. Furthermore, the MAE metric was divided into MAE Sepsis (hereinafter MAE1, the MAE 

of regression models only on subject with sepsis) and MAE No-Sepsis (hereinafter MAE0). 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦�̂�|

𝑛

𝑖=1

 (7.1) 

Where n is the number of observations evaluated, 𝑦𝑖 the i-th observed values and 𝑦�̂� its predicted 

values by the regression model. In our case the predicted values were the BAYLEY-III scores for 

each scale. During the LOSO validation the following hyperparameters were optimized:  

• For the SVR models: box constraint and kernel scale [Olmi et al., 2022b]. Both Box constraint 

and Kernel scale were evaluated during the Bayesian Optimization in the range 10-5:105. 

• For the Ensemble models: number of learning cycles, minimum leaf size, maximum number 

of splits and learn rate (only for LsBoost models). During the Bayesian Optimization, the learn 

rate was evaluated in the range 0.001:1, the number of learning cycles between 10 and 300, 

the minimum leaf size between 1 and 50, while the maximum number of splits between 1 and 

the size of the current training set (e.g., for the cognitive scales at 6-months, the upper limit 

was set to 61). 

• For both models (SVR and Ensemble): number of features, number of neighbours of ReliefF 

[Robnik-Šikonja and Kononenko, 2003]. During the Bayesian Optimization, the number of 

neighbours of ReliefF was evaluated in the range 1:15.  

 

 
Figure 7.3. Workflow of the regression model training and validation procedure. [Parente, 2022]. 

 

To have a complete overview about the performance of the models, also the Mean Squared Error 

(MSE, equation (7.2)) for both groups and the R2 parameter, was computed.  
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𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖

𝑛

𝑖=1

− 𝑦�̂�)
2 (7.2) 

R2, also known as the coefficient of determination, is a measure of the goodness of fit of a regression 

model. R2 formula is reported in equation (7.3). 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
 (7.3) 

Where SSres is the residual sum of squares and SStot is the total sum of squares. An ideal SVR model 

should obtain a R2 equals to 1. 

This validation scheme was repeated for all the BAYLEY-III scales, both on EEG and ECG cohorts, 

generating EEG- and HRV-based regression models. The results related to regression analysis will 

be shown in Section 7.3.  

 

7.3. Results 

In this section the main results regarding the regression analysis described in section 7.2.3 are 

reported. The results of EEG-based regression models are related to 16s epochs that gave the best 

regression performance, in terms of MAE, MSE and R2. In Table 7.5 the results of the LOSO 

validation for all the BAYLEY-III scales, using EEG features, are reported. For the two follow-up 

periods considered (6- and 12-months), it is possible to identify the best results in terms of the lowest 

MAE. At 6-months follow-up, a MAE of 4.5 was obtained for the language scale, using a Bag 

regressor (Ensemble Models), FSR as feature selection method and with the following 

hyperparameters:  

• number of learning cycles=63; minimum leaf size=2; maximum number of splits=19 and 

number of features=4.  

Specifically, the four features used in the final model are: amplitude kurtosis T3-O1 (band β, iqr); 

envelope amplitude mean Fp2-C4 (band β, mean); amplitude skewness C4-O2 (band θ, std); 

amplitude skewness Fp2-C4 (band α, iqr). 

For the 12-months follow-up the best results were obtained on the Language scale (Table 7.5, 

MAE=5.2). Such performance was achieved by a LsBoost regressor (Ensemble Models), ReliefF as 

feature selection method and with the following hyperparameters: 

• learn rate=0.5870; number of learning cycles=104; minimum leaf size=13; maximum number 

of splits=1; ReliefF’s k=5 and number of features=64.  

In Figure 7.4 the predictions of the two best EEG-based models in LOSO validation are shown. For 

the language scores at 6-months, the predicted scores (□, blue rectangles), the true scores (○, red 

circles) and their respective absolute error lines (black vertical lines) are reported in Figure 7.4a. The 

same is shown in Figure 7.4b for the language scores at 12-months.  

The 12-months model was found more complex than to the 6-months one. In fact, it used 64 EEG 

features instead of the 4 features used for the other follow-up. Here, all the feature’s names are not 

reported, however all of them belong to the single-channel domain. In particular, the first seven 

features are related to frequency-domain. Other models with less features than the best one were 
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investigated. However, all the models reached comparable performance using more than 60 features. 

These results confirm that the prediction of BAYLEY-III scales at 12 months by EEG features, 

obtained from recordings at term, remains a challenging and hardly interpretable task.  

 

Table 7.5. Results of the LOSO validation for all the BAYLEY scales considered, using EEG features (m=months). 

 Regressor metrics 

BAYLEY scales MSE 

MAE  

(MAE0-MAE1) R2 

Cognitive 6m 53 5.8 (5.9 – 5.7) 0.14 

Language 6m 35 4.5 (4.8 – 4.3) 0.36 

Motor 6m 72 6.8 (5.6 – 7.9) 0.13 

Cognitive 12m 92 7.6 (8.5 – 7.2) 0.10 

Language 12m 45 5.2 (6.6 – 4.3) 0.33 

Motor 12m 43 5.4 (5.7 – 5.2) 0.12 

 

  
(a) (b) 

Figure 7.4. (a) the predicted scores (□, blue rectangles) and the true scores (○, red circles) for the BAYLEY-III 

language scores at 6-months using EEG features. (b) predicted and true scores for the BAYLEY-III language scores 

at 12-months. Vertical black lines represent the absolute error. 

 

As for EEG-based regressors, in table 7.6 the results of the LOSO validation for the BAYLEY-III 

scales using HRV features, are reported. For the 6-months scores the lowest MAE was reached for 

the cognitive one (MAE=4.8). This was obtained by a Bag regressor (Ensemble Model), with FSR as 

feature selection method and using the following hyperparameters: 

• number of learning cycles=83; minimum leaf size=1; maximum number of splits=9 and 

number of features=2.  

Specifically, the two features used are MSE2 (iqr) and the MDE18 (std). Note that for such scale the 

MAE remained lower than 5 points both for the Sepsis and the No-Sepsis group. Instead for the 12-

months follow-up the best one was the language scale (Table 7.6, MAE=5.3 and R2=0.32). This was 

obtained by a LsBoost regressor (Ensemble Model), with FSR as feature selection method and using 

the following hyperparameters: 
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• learn rate=0.5488, number of learning cycles=14; minimum leaf size=12; maximum number 

of splits=23 and number of features=2.  

Specifically, the two features used are LF (mean) and the MFE12 (mean). A comparable result was 

achieved also for the cognitive scale (MAE=6.0 and R2=0.27). In Figure 7.5 the predictions of the 

two best HRV-based models in LOSO validation are shown. In Figure 7.5a for the cognitive scores 

at 6-months, the predicted scores (□, blue rectangles), the true scores (○, red circles) and their 

respective absolute error lines (black vertical lines) are shown. The same is shown in Figure 7.4b for 

the Language scores at 12-months. 

Table 7.6. Results of the LOSO validation for all the BAYLEY scales considered, using HRV features (m=months). 

 Regressor metrics 

BAYLEY scales MSE 

MAE  

(MAE0-MAE1) R2 

Cognitive 6m 34 4.8 (4.8 – 4.7) 0.44 

Language 6m 56 5.7 (5.4 – 6.0) 0.08 

Motor 6m 76 6.2 (6.6 – 5.9) 0.10 

Cognitive 12m 87 6.0 (7.5 – 4.9) 0.27 

Language 12m 51 5.3 (7.1 – 4.0) 0.32 

Motor 12m 46 5.8 (6.1 – 5.5) 0.02 

 

  
(a) (b) 

Figure 7.5. (a) the predicted scores (□, blue rectangles) and the true scores (○, red circles) for the BAYLEY-III 

cognitive scores at 6-months using HRV features. (b) predicted and true scores for the BAYLEY-III language scores 

at 12-months. Vertical black lines represent the absolute error. 

 

7.4. Discussion and Conclusions 

In this work a first attempt is presented regarding the prediction by EEG- HRV-based regression 

models of the BAYLEY-III scores of newborns with and without sepsis at different follow-ups. The 

research aims at evaluating if the electroclinical characteristics of the newborn at the term age could 

be predictive of its neurodevelopmental scores. Moreover, this possibility was also evaluated in 

preterm newborns with sepsis episodes during their hospitalization, where sepsis could affect their 

neurodevelopment and if such alterations can be detected by AI methods. Results suggest that EEG 

or ECG exam, performed when the preterm newborn reached the term age, could support 

neonatologists or peadiatric neurologists, identifying the newborns at risk of neurodevelopmental 

delays. 
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As shown in Tables 7.5 and 7.6, promising findings suggest that, for some BAYLEY-III scales, EEG- 

HRV-based regression analysis could predict the neurodevelopmental scores of the newborns at 6- 

and 12- months. In fact, for the cognitive scale at 6-months and for language scales at 6- and 12-

months, regression model were able to predict the BAYLEY-scores with a MAE lower or close to 5 

points. HRV-based regression models performed better than EEG ones for all the metrics considered 

(MSE, MAE and R2), also as far as the model complexity is concerned: HRV models just with two 

features obtained performance higher than EEG ones (which used almost 65 features). Thus HRV-

based models should be preferred in terms of interpretability.  

Furthermore, considering the results in Table 7.5 and 7.6, we remark that the motor scores always 

obtained the worst performance on all the metrics considered. This suggests that such scales might 

not be predictable by regression methods and thus any estimation of such scores must be considered 

with caution.  

To the best of our knowledge, this is one of the first study that considers at the same time 

neurodevelopmental scores, regression analysis and sepsis. In a similar manner, Alotaibi et al. 

[Alotaibi et al., 2022] proposed a regression model to predict BAYLEY-III scores on newborns with 

hypoxic-ischemic encephalopathy. They obtained a MAE of 12.07 on cognitive scores, confirming 

that the regression analysis could be a valuable support tool in the neurodevelopment assessment. 

Furthermore, several studies confirmed that HRV features could be de predictive of 

neurodevelopment related scales [Thiriez et al., 2015, Leon et al., 2022, Goulding et al., 2015], 

although most of them considered only univariate analysis or did not consider newborns with sepsis.  

The analysis of newborns with sepsis and the prediction of their BAYLEY-III scores by AI models, 

required the analysis of several EEG and HRV features previously used in other neonatal applications: 

almost 500 for EEG, and 80 for HRV, without considering the statistical descriptors expansion [Kong 

et al., 2018, De Wel et al., 2017, Lavanga et al., 2017, Frassineti et al., 2021a, Frassineti et al., 2021a, 

O’Toole et al., 2017]. This preliminary analysis led to two considerations: 

• EEG-based regression models have shown lower performance both in terms of metrics and 

interpretability with respect to HRV-based models. This suggests that the features considered, 

or the pre-processing applied may be no optimal (section 7.2, e.g. the epoch length used). 

Thus, other EEG features have to be considered in next studies. 

• In this work SVR and Ensemble models were tested. For all the scales considered Ensemble 

models showed better performance than SVR. Thus, Bag or LsBoost methods should be 

preferred for such application. However, in future studies other models should be evaluated 

in order to confirm it (e.g. Gaussian Process or Generalized Linear Models [Frassineti et al., 

2021c]). Moreover, here FSR and ReliefF were evaluated as feature selection methods, but in 

future studies other methodologies could be considered such as LASSO or mRMR [Frassineti 

et al., 2021c]. 

HRV multiscale entropy features were included in the validated models. These findings confirmed 

that multiscale entropy indexes for HRV analysis can add helpful information in the evaluation of 

ANS activity in the newborn [Statello et al., 2021]. HRV entropy features were already found linked 

to altered cardiovascular dynamics in newborns [Frassineti et al., 2021c, Frassineti et al., 2021d, 

Lavanga et al., 2020]. Furthermore, for the 12-months language scales, also the Low Frequency 

feature (LF, statistical descriptor: mean) was included in the HRV-based regression model.   

In this study, it seems that the information provided by EEG-based and HRV-based models may be 

seen as complementary. In fact, when just EEG or HRV was not able to predict the BAYLEY-III 
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score the other one might obtain reliable performance (e.g. for cognitive scale at 6-months EEG-

based model obtained MAE=5.8 instead HRV-based model MAE=4.8). This suggests a possible 

improvement of the methods proposed in this Chapter: developing regression models able to integrate 

both EEG and HRV features. 

We remark that there is no result in the literature about this topic, thus an optimal threshold on 

regression models’ errors is to be defined in order to be reliably valuable in the clinical practice 

(ideally MSE and MAE should tend to 0 and R2 to 1). As the sensitivity of BAYLEY-III scales is 

close to 5 points for our cohort, it is reasonable to consider a model as promising if it gives a MAE 

(or MAE1/MAE0) value lower than 5. Also notice that regression models performed better on the 

Sepsis group than the No-sepsis one (Tables 7.5 and 7.6, MAE1 often lower than MAE0). 

Furthermore, most the newborns considered in our study had BAYLEY-III greater than the threshold 

usually accepted to exclude possible neurocognitive impairments (i.e. > 85-90, Table 7.3 and [Del 

Rosario, et al., 2020]). Therefore, our methods should be evaluated on a larger set of infants with 

severe impairments (i.e. with BAYLEY-III scores <75). In fact, as shown in Figures 7.4 and 7.5, the 

highest errors were obtained on the extreme values of the BAYLEY-III scales.  

Significant differences on BAYLEY-III scores exist between sepsis and no-sepsis groups on 

cognitive scales at 6- and 12-months, as well as on language scales at 12-months (Table 7.3), and 

these differences are detectable by the regression models proposed. However, it is not possible to 

confirm yet if the differences are due to the preterm birth [Yiallourou et al., 2013], to sepsis or a 

combination of them. Anyway, even if the variations were due only to preterm birth, the models were 

able to predict such alterations, allowing an early detection of newborns with low BAYLEY-III scores 

at 6- and 12- months. Thus, further studies are required in order to confirm that sepsis affected the 

neurodevelopment of the infants involved, as well evaluate if sepsis might produce irreversible brain 

damages. In literature several studies have confirmed that sepsis may significantly alter the 

neurodevelopment and the proper functioning of the brain [Rallis et al., 2019]. However only few 

works evaluate which physiological mechanisms may occur to cause such effects. Shah et al. [Shah 

et al., 2008] found that sepsis may alter the white matter of newborns and that it may produce long-

term effect. Thus. our results confirm that sepsis may have an active role in the neurodevelopment, 

but further analysis is required in order to assess the localization or the damage entity, both in the 

Central Nervous System and in the Autonomic Nervous System.  

We remark that results are preliminary: regression models have to be validated also on 18-24 months 

BAYLEY-III scores to assess if and how EEG or HRV features will be able to predict scores of these 

scales and thus different periods of infant’s neurodevelopment. At present, it can be argued that the 

approach proposed seems promising to predict scores of the cognitive scale at 6- months and of the 

language scale at 6- and 12-months. Moreover, neurodevelopmental tests, such as BAYLEY-III, 

being operator dependent, present several intrinsic sources of variability, limits and pitfalls and tend 

to overestimate the infant’s development [Anderson and Burnett, 2016]. Thus, it might be challenging 

to obtain a perfect correspondence between models’ predictions and ground-truth scores. A possible 

solution may be the combination of different evaluations made by several experts on the same subject. 

This analysis is out of the aim of the study and will be considered in future research. Moreover, the 

effect of possible confounding variables (e.g. BPD, ROP or NEC) could be included in future analysis 

to assess the results obtained about the impact of the sepsis on the neurological outcomes.  

In summary our results confirmed that ANS development may be linked to CNS maturation and that 

alterations affecting the correct neurodevelopment of the newborn could be predicted by HRV 

features. If our results will be confirmed, also HRV-based regression models might be used as a 
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support for the clinical staff for an early detection of preterm newborns at risk of neurodevelopmental 

disorders. Such models could be integrated in the clinical assessment as a pre-screening test before 

the administration of neurodevelopmental tests planned at different follow-up periods. 
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Conclusions 

This PhD thesis concerns the development of multimodal systems to detect and characterize 

neurological disorders in paediatric subjects. Specifically, the PhD work was focused on the 

development of Artificial Intelligence (AI) methods for: neonatal and absence seizure detection; the 

quantitative characterization of the speech phenotype for some genetic syndromes; the prediction of 

the neurodevelopmental scales in newborns with sepsis.  

First attempts were made to validate EEG-based Neonatal Seizure Detectors (NSDs), showing that 

the neonatal seizure detection is still a tricky and time-consuming issue in the clinical practice. Heart 

rate variability (HRV) analysis was proposed as an alternative approach for the detection of neonatal 

seizures. Experimental results confirmed the involvement of the Autonomic Nervous System (ANS) 

during or close to neonatal seizures. Such findings were confirmed by Brain-Heart Interactions 

analysis. Moreover, the usefulness of multiscale entropy indexes in the characterization of neonatal 

seizures was shown. The comparison between EEG-based NSDs and HRV ones suggest that the best 

approach to detect neonatal seizures is still the EEG. However, when EEG techniques are not 

available, the use of HRV-based NSD could be a promising alternative. Furthermore, in future studies 

the possibility to merge EEG and ECG/video information into a single NSD could be evaluated. The 

use of EEG and/or HRV features also for the automatic classification of the aetiologies behind 

neonatal seizures.  

Quantitative acoustical analysis has been applied for the definition of speech phenotype in genetic 

syndromes. Preliminary encouraging results confirm that acoustical measures could add helpful 

information for several syndromes with well-known language/voice impairments. Being completely 

non-invasive, acoustical analysis and AI methods might significantly contribute to the clinical 

assessment of such pathologies, also after surgical, pharmacological or logopaedic treatments and for 

long-term monitoring of the acoustical characteristics of the voice of these subjects. Several specific 

differences were found between pathological and control cases, showing a peculiar picture for each 

syndrome considered. Though non-optimal, the use of smartphones may allow the analysis both in a 

controlled environment, such as specialized clinics and hospitals, and/or in-home monitoring, after 

careful training of the parents or tutors of the subject.  

The last part of this PhD thesis exploits the possibility of forecasting neurodevelopmental scores in 

preterm newborns with and without sepsis. Using AI regression models, reliable results at different 

time steps of the follow-up were obtained, both with EEG and HRV features. However, further studies 

are required in order to confirm the impact of sepsis on the neurodevelopment as related to the preterm 

birth, as well as if sepsis might produce irreversible brain damages. If confirmed, such methods could 

be used for an early detection of infants with high risk of neurodevelopment delays. 

In conclusion, future studies will be devoted to the validation of such method in the clinical practice, 

also in prospective studies, evaluating their possible contribution to the improvement of the clinical 

practice and to the enhancement of the health conditions of the paediatric subjects over the years. 
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