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Abstract: In this note, I derive simple formulas based on the adjacency matrix of a network to
compute measures associated with Ronald S. Burt’s structural holes (effective size, redundancy, local
constraint, and constraint), together with the measure called improved structural holes introduced in
2017. This can help to see these measures within a unified computation framework because they
can all be expressed in matricial form. These formulas can also be used to define naïve algorithms
based on matrix operations for their computation. Such naïve algorithms can be used for small- and
medium-sized networks, where exploiting the sparsity of the matrices and efficient triangle listing
techniques are not necessary.
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1. Introduction

The notion of Burt’s structural holes, used when analyzing social networks, is perva-
sive and fascinating [1]. Intuitively, it refers to the absence of connections between groups
and has been linked to the fact that filling these voids and bridging these gaps can be a
source of opportunities and be very beneficial for individuals able to do so. On the one
hand, the versatility of this concept has stimulated the definition of several measures, each
capturing a different aspect [2], and each measure has been used in different frameworks
when analyzing real-world networks and social capital theories [3]. On the other hand, this
has also generated confusion when it comes to which exact measure one has to compute
and how to compute it [4,5]. Moreover, computing these measures directly by applying
the definition formulas can be very slow and computationally intensive, because it would
require looping over each node’s neighbors (and its neighbors’ neighbors).

As clearly described by [6], the advantages of structural holes lie in the information
benefits and in the control benefits. The former refer to the possibility of acquiring informa-
tion from different communities where there may be different opinions, ideas, and pieces of
information. The latter, instead, refer to the better negotiating position that a structural hole
spanner has because she has access to unique pieces of information with respect to other
agents who are instead closed and confined within the groups that are being bridged. In
several applications, it has been shown that structural holes are important for channeling
information flows, and in this way they can bridge different groups that would otherwise
not communicate with each other, thus acting as brokers. However, by blocking and con-
trolling such information flow, they play a crucial role in shaping opinion dynamics, since
they can also maintain close communities unaware of other groups’ opinions and beliefs,
possibly exacerbating echo-chamber effects [7–9]. In a world dominated by online social
networks, studying these phenomena can have important applications when opinions
about public and health issues are formed and spread, as recently demonstrated by the
different and conflicting ideas about the COVID-19 vaccination campaigns that circulated
in restricted groups of the population [10,11].
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In this note, I consider the main measures associated with Burt’s structural holes,
namely effective size, redundancy, local constraint, and constraint, and derive simple
formulas for them based on the adjacency matrix of the network. This can help to have a
unified framework where all measures are not only computed starting from the adjacency
matrix, but also with a matrix representation. It can also help to interpret and compare these
measures and produces intuitive and naïve algorithms, based on matrix multiplications,
that work fairly well on medium-sized networks (see Section 7 for more details on this).
While this approach is clean and simple, it has clear limitations when the network being
analyzed becomes very large. In such a case, one should avoid storing the matrices explicitly
and rely on distributed algorithms and more advanced techniques for triangle listing in
sparse graphs. It should be noted here that one of the limiting factors of this paper’s simple
approach is that the matrix A2 is denser than the adjacency matrix A. A comparison in
a controlled environment should show that more efficient algorithms based on triangle
listing with vertex orderings and neighborhood markers [12] scale better with the number
of nodes than the naïve algorithms proposed here.

Thus, the contribution of this paper to the extant literature consists, first, in making
clear that all these measures can be easily and directly computed starting from the net-
work’s adjacency matrix and, secondly, that the formulas obtained can be used as naïve
algorithms that can work when applied on networks of medium dimension without the
use of advanced techniques.

The paper is structured as follows. In Section 2, we clarify the notation that will be
used in the rest of the article, especially for what concerns matrix operations and element-
wise operations. In Section 3, we start from the definition of effective size (and redundancy)
given by [4] and show how it can be written with vector- and matrix-based operations
(i.e., Equation (4)). With the same line of reasoning, in Sections 4 and 5, we start from the
definition of local constraint and of constraint given by [5] and show how they too can be
written with vector- and matrix-based operations, respectively in Equations (16) and (17).
Then, in Section 6, we adopt the same approach and show how the measure developed
by [13] called improved structural holes can be written with matrix–vector operations, as in
Equation (18). Lastly, Section 7 concludes the paper.

2. Notation

In what follows, matrices are denoted by capital letters (e.g., A and P) and their
elements denoted by the corresponding letter with subscripts (e.g., aij and pij). Generic
nodes of a network (i.e., a graph) will be indicated by i, j, or k. Consequently, an adjacency
matrix will be indicated by A = (aij)i,j=1,...,n, where n is the number of nodes and the
elements aij can be 0 or 1 for binary networks or generic real numbers for weighted
networks.

Vectors and their elements will be respectively denoted by bold letters (e.g., x and y)
and letters with a (single) subscript (e.g., xi). The vector obtained by taking the diagonal
elements of a square matrix A is denoted by Diag(A); analogously, the matrix that has x as
its diagonal and 0s elsewhere is denoted by Diag(x). The transposed of a vector or matrix is
denoted by ·T (e.g., xT and AT). Hereafter, vectors are considered as columns, that is (n× 1)-
matrices and their transposed as row vectors xT . Accordingly, the (matrix) multiplication
of a column vector x times a row vector yT will yield a matrix (e.g., xyT ∈ Rn×n), whereas
xTy will yield a scalar.

The matrix multiplication between two matrices A and B will be denoted by juxtaposi-
tion, i.e., AB, whereas element-by-element operations such as element-wise multiplication
or division will be denoted, respectively, by � and �. The n-dimensional unitary vectors
in Rn containing all 0s but one 1 in the i-th position is denoted by ei, while the vector
containing all 1s is denoted by 1. The identity matrix is denoted by I.
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3. Effective Size and Redundancy for Undirected Binary Networks

The original definition of effective size and redundancy in Burt’s works was compli-
cated, but Borgatti [4] has shown that it can be simplified. Here, we consider an undirected
and binary network with no self-loops. The intuitive idea (see Figure 1) is first to com-
pute a node’s redundancy, which is the mean number of connections from a neighbor to
other neighbors. The effective size is then obtained by subtracting the redundancy to the
node’s degree.

Description of redundancy and effective size

Figure 1. Adapted from Burt’s and Borgatti’s works. Let us compute the effective size for node A.
Consider one of its neighbors, say G. They have 3 “common neighbors”: B, E, and F. Divide this
number by A’s degree: 3/4. Take another of A’s neighbors, say E. A and E have just 1 common
neighbor, which is G. Therefore, in this case, dividing by A’s degree gives 1/4. To determine A’s
redundancy, repeat this process for all 4 neighbors of A (respectively, B, E, F, and G) and sum up all
the numbers obtained: 1

4 + 1
4 + 1

4 + 3
4 = 6

4 = 1.5. Lastly, A’s effective size is its degree minus its
redundancy: 4− 1.5 = 2.5. In the example of this section, the matricial computation is also done for
the remaining nodes.

Let ri be the redundancy of node i and let ti be “the number of ties in the network
(not including ties to ego)” [4] (Note: “ego” here is node i). The redundancy is then simply
(since the network is assumed undirected, the links of ti have to be counted twice)

ri =
2 ti
di

, (1)

where di is i’s degree. Notice that ri goes from 0 to di − 1. (This is also well related to the
notion of local clustering, which can be thought of as a normalized version of redundancy
ranging from 0 to 1. It can easily be shown that the relationship between the local clustering
qi and redundancy ri of a node i of degree di is given by qi =

ri
di−1 [14]). The effective size

si of node i is then defined as
si = di − ri. (2)

We now look at how to compute this in a matricial form. Let A = (aij)i,j be the
adjacency matrix of such an undirected and binary network, and let d = (di)i be the vector
of nodes’ degrees. It should be noted that A is a symmetric matrix only containing 0s and
1s. In such a case the vector of nodes’ degree can be obtained in several ways, for example,
as d = Diag(A2) or d = A1. Notice also that, for a binary network, the elements of the
square A2 count the number of common neighbors. Indeed, for every two nodes i and j,
the (i, j)-th element of A2 is

(A2)ij =
n

∑
k=1

aikakj = |{k : k ∈ N(i) and k ∈ N(j)}|

= number of common neighbors of i and j,

(3)
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since aik is different from 0 if and only if i and k are linked; analogously, akj is different from
0 if and only if k and j are linked. Obviously, we only want to count the common neighbors
for pairs of nodes that are actually linked in the network. To do so, it suffices to multiply
A2 element by element for A itself. Lastly, we want to sum all these numbers and divide
them by the corresponding degree.

Summing up, a matricial way to compute the vector of nodes’ effective size, s = (si)i,
is by computing the following vector:

s = d− (A2 � A)1� d, (4)

where A2 is A squared with the standard matrix multiplication. The i-th component of
such a vector, si, is node i’s effective size. By definition, the redundancy is just the last term,
that is r = (A2 � A)1� d, where r = (ri)i.

An Example

Consider the network in Figure 1. The adjacency matrix and the degree vector are,
respectively,

A =



. 1 . . 1 1 1
1 . . 1 . . 1
. . . . . . 1
. 1 . . . . 1
1 . . . . . 1
1 . . . . . 1
1 1 1 1 1 1 .


, d =



4
3
1
2
2
2
6


.

For simplicity, in A, the 0s are not indicated. Notice that self loops are not allowed.
Now, since

A2 =



4 1 1 2 1 1 3
1 3 1 1 2 2 2
1 1 1 1 1 1 0
2 1 1 2 1 1 1
1 2 1 1 2 2 1
1 2 1 1 2 2 1
3 2 0 1 1 1 6


,

Equation (4) yields the effective size for each node:

nodes



A
B
C
D
E
F
G


→



2.5
1.667

1
1
1
1

4.667


.

4. Local Constraint (a.k.a. Dyadic Constraint)

In this section, we adopt the same approach used in the previous section to obtain a
formula based on the network’s adjacency matrix for the so-called local constraint.

Let A = (aij)i,j be the adjacency matrix of a network (not necessarily binary or
unweighted). That is, A is not necessarily symmetric and may contain elements different
from 0 and 1. The only assumption here is that no self-loop is allowed, that is, aii = 0 for
all nodes i. Following Everett and Borgatti [5], the local constraint on i with respect to j,
denoted `ij, is defined by
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`ij =

pij + ∑
k∈N(i)\{j}

pik pkj

2

, (5)

where N(i) is the set of neighbors of i, and pij is the normalized mutual weight of the edges
joining i and j, that is,

pij =
aij + aji

∑k(aik + aki)
. (6)

This is also known as the dyadic constraint. Notice that assuming the absence of self-loops,
then every pii = 0 because aii = 0. This implies that the second term in Definition (5) can
be written as

∑
k∈N(i)\{j}

pik pkj = ∑
k∈N(i)

pik pkj − pij pjj︸︷︷︸
=0

= ∑
k∈N(i)

pik pkj, (7)

and, hence, `ij becomes

`ij =

pij + ∑
k∈N(i)

pik pkj

2

. (8)

Now, let us focus on pij, writing Equation (6) in matricial terms:

pij = (A + AT)ij ·
1

((AT + A)ei)
T1

, (9)

and let us define vector x = (xi)i, where

xi = (A + AT)eT
i 1 = ∑

k
(aik + aki), (10)

Notice that the denominator here is the multiplication of a row vector times a column
vector, which is a number.

Thus,
x = (A + AT)T1 = (AT + A)1 (11)

and we can consider the vector containing all inverted elements:

y = 1� x =

1/x1
...

1/xn

. (12)

Notice that AT + A is always symmetric, even if A is not.
We then define a matrix that only requires that the diagonal is equal to y, that is,

Diag(y). Now, we can finally compute P = (pij)i,j as follows:

P = Diag(y) (A + AT). (13)

By pre-multiplying a diagonal matrix, we are simply multiplying every row i of (A + AT)
for the corresponding element yi of the diagonal.

We will now focus on `ij. Consider again the second term of the definition’s formula
as written in Equation (8)

∑
k∈N(i)

pik pkj = ∑
k

aik pik pkj, (14)

where the summation on the right-hand side is over all nodes k (not just limited to i’s
neighbors). Note that, if the network is weighted, then here one has to first compute the
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binary version A of the weighted adjacency matrix W, where aij = 1 if and only if wij 6= 0;
otherwise, aij = 0. One can then simply apply the formula written in the text.

Written in matricial form, this summation in Equation (14) can simply be expressed as

(A� P)P, (15)

where� is the element-wise matricial multiplication and the second is a matrix multiplication.
The modification regarding the dyadic constraint mentioned above consists in taking
P(P� A) here.

To conclude, we can write the matrix L = (`ij)i,j containing all links’ local constraints
as follows:

L =
[
P + (A� P)P

]
�
[
P + (A� P)P

]
. (16)

Summing up, the algorithm to compute the local constraints with this formula takes
the adjacency matrix A as input and proceeds with the following steps:

1. x = (A + AT)1;
2. y = 1� x;
3. P = Diag(y) (A + AT);
4. L =

[
P + (A� P)P

]
�
[
P + (A� P)P

]
.

Clearly, the output of such algorithm is the matrix L = (lij)i,j where lij is the local
constraint of link ij.

5. Constraint

In line with what was done in the previous sections, here we obtain a matrix-based
formula to compute the network’s constraint, starting from the local constraint computed
in Section 4.

Let L = (`ij)i,j be the local constraint matrix computed in Equation (16). According to
Everett and Borgatti [5], the constraint for node i (also known as first-type constraint in the
terminology used by [3]) is

ci = ∑
j∈N(i)

`ij.

Notice that, in our notation, N(i) does not include i itself. To be even more clear, one could
then write ci = ∑j∈N(i)\{i} `ij.

One can re-write this as follows:

ci = ∑
j
`ijaij,

where (aij)i,j = A is the adjacency matrix. In case the network is weighted, then the matrix
A here is the binary version of the weighted adjacency matrix W, as observed in Footnote
Section 4.

Therefore, the vector c = (ci)i containing the constraints of the network is obtained by
summing the rows of the matrix L� A:

c =
[
1T(L� A)

]T
. (17)

Remember that, in our notation, vectors are always considered as columns.
Thus, one can use this matrix Formula (17) as an algorithm to compute the constraints

of the network gathered in vector c = (ci)i, where ci is node i’s constraint.

6. Improved Structural Holes

In this section, we adopt the same approach used so far and apply it to a variation
of the constraint measure called improved structural holes (ISH) developed by [13]. This
measure has been used to identify key nodes in networks and, with respect to measures of
centrality such as betweenness and closeness, it has the advantage that it only uses local
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information, while, in comparison with more local measures of centrality, such as degree
centrality, it has the advantage that it is better able to capture the importance of a node. We
now describe how to compute the ISH with a matrix-based formula.

Consistently with the notation used so far, let us follow [13] and consider their definitions.

• The edge weight between two connected nodes i and j is wij := di + dj. In matricial
form,

W = A�
(

d1T + 1dT
)
= A�

(
A11T + 11T AT

)
.

• The node weight is wi := ∑j∈N(i) wij, so that w = W1 ∈ Rn.

• The relative importance is qij :=
wij
wi

, with ∑j qij = 1, and can be represented as

Q = W � (W11T).

The node importance (also known as ISH) of i is then defined as

si =
n

∑
j=1

qij + ∑
k∈N(i)\{j}

qik qkj

2

, ∀ i = 1, . . . , n.

In matricial form, the term within parenthesis bij = qij + ∑k aijqikqkj, where now k is
free to vary from 1 to n, and can be written as

B = Q + A�Q2.

Thus, the vector of the ISH, (ISH1, . . . , ISHn) ∈ Rn, can be computed as

ISH = (B� B)1. (18)

Concerning the computational complexity, as already observed by [13], the use of
naïve matrix multiplications to compute the ISH would result in a complexity of the order
O(n3); however, a deeper analysis can show that it can be computed with a time complexity
of O(n〈d2

i 〉), where 〈d2
i 〉 is the average of the degrees squared.

7. Discussion and Conclusions

The notion of structural holes, proposed in Burt’s seminal work [15], has been widely
used to explain how, in networks where information flows through contacts, certain posi-
tions matter more than others. Individuals classified as structural holes spanners are able
to exploit the lack of connections between separate parts of the network by bridging them
and act as gatekeepers or brokers. These concepts have seen applications in the literature
of management, sociology, and organization science, where the majority of the works
conclude that where such network gaps are present, the role played by intermediaries gains
importance precisely because they can control the flow of information and, hence, gain a
competitive advantage from their position [16–20].

Structural holes theory is related to [21], which is on the strength of weak ties, because
weak ties are capable of connecting parts of the network that would otherwise remain
distant. It is also often seen as a competing theory with respect to [22], which is on the
importance of network closure, redundancy, and network density [23]. However, these
theories ultimately rely on the same underlying principle: ties alter the constraint ego [24].

Although the notion of structural holes is widespread and very often used, its actual
measurement may be complicated for several reasons: First, a variety of measures have
been proposed, and each one is tailored to a specific application, whose purpose is to
capture a specific aspect of the structural hole notion. Second, as it often occurs for network
measures, their actual computation with naïve techniques obtained from the definition
formulas would require looping over every node and over every node’s neighbor.
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This paper thus contributes to the previous literature by making clear that all the
measures commonly associated with the notion of structural holes can indeed be computed
starting from the network’s adjacency matrix, and we provide formulas that are based on
this matrix and mainly use only matrix multiplication. As a consequence, we additionally
show that these formulas can be used as naïve algorithms and directly applied to networks
of up to a medium dimension to compute such structural holes measures. We also highlight
the limitations of this approach that can in fact be used on moderately-sized networks
(see Figure 2), but that should be outperformed by algorithms based on more advanced
techniques that optimize memory and speed, although further research is still needed to
explore this aspect.

Example: a comparison with NetworkX’s routines

Figure 2. As an example, we perform a basic comparison of computational speed between this
paper’s algorithms (orange) and NetworkX’s algorithms (blue) for effective size (left) and constraint
(right), as the number of nodes increases from 1000 to 10,000. The networks are Barabasi-Albert
graphs with parameter m = 5 (top row) and Erdos-Renyi random graphs with parameter p = 0.01
(bottom row). In particular, in orange, effective size and constraint are, respectively, computed
using the formulas in Equations (4) and (17). All of the code to implement it is available here: https:
//github.com/alessiomuscillo/matricial_ways_for_Burt_structural_holes (accessed on 27 October
2022). However, a more precise comparison in a controlled environment should show that more
efficient methods could scale better and be better suited for large networks. (All links accessed on 27
October 2022).
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