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Abstract: There has been growing scientific interest in the research field of deep learning techniques
applied to skin cancer diagnosis in the last decade. Though encouraging data have been globally re-
ported, several discrepancies have been observed in terms of study methodology, result presentations
and validation in clinical settings. The present review aimed to screen the scientific literature on the
application of DL techniques to dermoscopic melanoma/nevi differential diagnosis and extrapolate
those original studies adequately by reporting on a DL model, comparing them among clinicians
and/or another DL architecture. The second aim was to examine those studies together according to
a standard set of statistical measures, and the third was to provide dermatologists with a comprehen-
sive explanation and definition of the most used artificial intelligence (AI) terms to better/further
understand the scientific literature on this topic and, in parallel, to be updated on the newest applica-
tions in the medical dermatologic field, along with a historical perspective. After screening nearly
2000 records, a subset of 54 was selected. Comparing the 20 studies reporting on convolutional neural
network (CNN)/deep convolutional neural network (DCNN) models, we have a scenario of highly
performant DL algorithms, especially in terms of low false positive results, with average values of
accuracy (83.99%), sensitivity (77.74%), and specificity (80.61%). Looking at the comparison with
diagnoses by clinicians (13 studies), the main difference relies on the specificity values, with a +15.63%
increase for the CNN/DCNN models (average specificity of 84.87%) compared to humans (average
specificity of 64.24%) with a 14,85% gap in average accuracy; the sensitivity values were comparable
(79.77% for DL and 79.78% for humans). To obtain higher diagnostic accuracy and feasibility in
clinical practice, rather than in experimental retrospective settings, future DL models should be based
on a large dataset integrating dermoscopic images with relevant clinical and anamnestic data that is
prospectively tested and adequately compared with physicians.

Keywords: melanocytic skin lesions; melanoma; nevi; atypical nevi; artificial intelligence; deep
learning; convolutional neural networks; algorithms; diagnostic models

1. Introduction
1.1. Historical Background

The first publication on artificial neural networks (ANNs) appeared in 1943, “A
logical calculus of the ideas inherent in neural activity”. The first artificial intelligence (AI)
model dates back to 1950, with Alan Turing’s publication “Computing Machinery and
Intelligence”, describing how to create intelligent machines; at the time, he had already
constructed the well-known AI machine capable of breaking the Enigma code, called “The
Bomb”. However, the term “Artificial Intelligence” was officially coined in 1956 during a
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meeting aimed to create, in two months, a machine capable of simulating every aspect of
human learning and intelligence [1].

The first ANN architecture, called Perceptron, was proposed in 1958 by Frank Rosen-
blatt, the forerunner of today’s ANNs [1,2]. The definition of “Machine Learning” (ML)
dates back to the same year, meaning the process that “gives computers the ability to learn
without being explicitly programmed” [3]. ML thus involves the creation of algorithms
that process data to produce models, which can then recognize patterns, make decisions, or
predict outcomes based on new information. The applications of ML are vast and varied,
ranging from Natural Language Processing (NLP), where ML helps in understanding
and generating human language, to computer vision applications, enabling the ability to
interpret visual data from the world, leading to advancements like facial recognition and
object detection. Predictive analytics use historical data to forecast future trends, benefiting
fields such as stock market prediction and weather forecasting.

Three main elements ushered in the “golden age” of ML: first, the generation of very
large amounts of data, “big data”, fostering the search for new computational approaches;
second, the development of multiple hardware and software items for analyzing big data
and, in parallel, the progressive decrease in their cost; eventually, third, the birth of “Deep
Learning” (DL), which was a definition proposed in 1986 to define the subset of ML
that incorporates computational models and algorithms that imitate the architecture of
human brain networks of neurons (NNs). These models have transformed various fields
by enabling computers to detect patterns, make decisions, and predict outcomes with high
accuracy [4–6].

Briefly, the DL era has seen the birth of convolutional neural networks (CNNs) special-
ized for processing grid-like data structures, becoming the standard for image-related tasks.
Recurrent Neural Networks (RNNs) are specially designed for sequential data; autoen-
coders (AEs) are used for unsupervised learning in tasks such as dimensionality reduction
and anomaly detection. Transformers are designed to handle sequential data, particularly
in NLP by using a mechanism called self-attention to weigh the significance of different
words in a sentence regardless of their position. Finally, Generative Adversarial Networks
(GANs) are based on two competing neural networks, a generator and a discriminator,
which are trained simultaneously through adversarial processes for generating realistic
images, videos, and even music [2–11].

In 1998, for the first time, a CNN developed by Le Cun et al. was used to detect
handwritten digits and also demonstrated its utility in object and document recognition,
while in 2015, their model outperformed human participants in an object classification
competition, with an error of 3.6% [7]. CNNs soon evolved into “deep” CNNs (DCNNs)
and absorbed image segmentation techniques, creating more complex architectures able
to achieve a higher abstraction level and accuracy in feature extraction through image
processing [8,9].

CNN/DCNN-based image recognition rapidly became of interest to the industry
(employed in automatic car driving for detecting emergency situations using surveillance
cameras) [1,2].

Naturally, DCNNs rapidly became of interest as decision support systems for medical
image analysis, starting with the neurological and radiological field [10–12], and particu-
larly in 2017, when the DCNN ImageNet achieved an error rate of <5% in a Large-Scale
Visual Recognition Challenge (ILSVR) competition [13].

Since dermatology is a discipline that fully relies on image recognition, interpretation,
and classification to reach a diagnosis, DL models (particularly DCNNs) soon became of
interest as decision support systems for dermatologists.

1.2. AI Application in Skin Cancer Diagnosis

Malignant Melanoma (MM) is the most aggressive type of skin cancer, represent-
ing a significant burden on public health [14]. The data from the International Agency
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for Research on Cancer (IARC) report a worldwide incidence of more than 330,000 new
cases/2022, causing about 58,000 deaths [15].

Starting from 2000, the advent of dermoscopy—either with portable dermatoscopes or
fixed videodermatoscopes—has represented a milestone in the early diagnosis of melanoma
(MM) and differential diagnosis using clinical simulators. However, dermoscopy accuracy
is completely operator-dependent, as it largely varies according to the dermatoscopists’
personal skills. It also requires long-term personal training, and the ability to recognize
atypical forms is the prerogative of secondary skin cancer centers dealing with many case
studies [16,17].

To give a more standardized approach to this diagnosis, ML models such as “Digital
dermoscopy analysis” started to be tested in the early 2000s in experimental settings as deci-
sion support systems not only using clinical images, but mostly dermoscopic images, which
are standardized in terms of illumination and dimension, presenting the real structure of
melanocytic skin lesions (MM, nevi, and atypical nevi) [18,19]. Since 2017, CNN/DCNN
models have competed in international challenges on large datasets of clinical or dermo-
scopic images to reach the best classification power possible [20,21]. Some models have
been developed to analyze and classify clinical MM images [22–28], but the majority of
the experiments to date have been dedicated to models trained on dermoscopic images
± clinical images recognition; the main objective was to differentiate MM from benign
pigmented cases [29–36].

1.3. Current Scenario

The amount of scientific literature in the AI field has dramatically increased ever since,
with thousands of records appearing on scientific search engines. Taking a view of the
most commonly used search engines, we can observe that the keywords “AI”, “DL”, “ML”,
“ANN”, “CNN”, and “DCNN” appear to be often used with overlapping significance;
different techniques are often merged together in one paper, although not claimed in the
abstract, while in many cases, the work reports on a lesion segmentation/border detection
technique and not the diagnostic outcome of the ANN model itself. Moreover, it is not
often clear what the database used is (authors’ database or public databases such as those
in the ISIC challenge) or what it is composed of. Especially benign cases are often referred
to as “no skin cancer” or “benign cases”, but the specific benign diagnoses considered
are not reported. Finally, different studies and authors report the experiments using
different strategies and describe the results according to different parameters, leading to
objective difficulty in comparing the DL models’ performance for a dermatologist reader.
When approaching this massive group of merged data, the majority of the review papers
produced to date summarize many different AI techniques applied to multiple diagnostic
fields, especially skin cancer in general, or report on the results of online international
challenges of different computational models [37–42].

1.4. Aims

On this basis, the present narrative review aimed to screen the scientific literature
produced to date on the application of DL techniques to dermoscopic MM/nevi differential
diagnosis in order to extrapolate, for the first time, a limited pool of original studies
adequately reporting the diagnostic performance of a DL model and comparing them with
the clinicians’ performance and/or that of another diagnostic method. The second aim was
to compare the selected studies according to a defined set of statistical measures. The third
aim was to provide a dermatologist with a comprehensive explanation and definition of
the most used AI terms in order to better/further understand the scientific literature of this
topic and, in parallel, to be updated on the newest applications in the medical dermatologic
field, along with a historical perspective.
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2. Methods

A thorough literature review was performed in line with the recent recommendations
in absence of existing guidelines for narrative reviews [43]. The findings were reported
in accordance with the PRISMA (Preferred Reporting Items for Systematic reviews and
Meta-Analyses) extension for Scoping Reviews (PRISMA-ScR) Checklist [44].

2.1. Information Source

Two search phases were carried out. As a preliminary phase, the Google Scholar
search engine was launched to broadly explore all records, including those with only an
English written abstract in the fields. In the search phase, we contemporarily used 5 search
engines, including those more focused on medical publications (Pubmed, Scopus, and
MedRxiv) and those more focused on mathematics, statistics, and engineering publications
(ArXiv and WoS). To include all relevant studies, a reference list was checked for any
possible article that was ignored by the initial search. The results of the second search phase
were compared with those of the first search phase; high-quality papers were selected
during each step according to 8 authors’ judgements (see below) and to their appearance
in multiple search engines, ensuring high rates of removal. Then, filtering and eligibility
phases were performed on this pool of records.

2.2. Search

The literature search was carried out for all the articles dealing with DL algorithms
that applied to the diagnosis of MM up to 21 May 2024. Three authors (A.C., S.L., and
C.M.) were involved in the searching phase and first screening phase. Three authors (L.T.,
E.I., and A.L.) were involved in the second screening phase. Three authors (G.C, P.R., and
L.T.) were involved in the eligibility phase. The titles and abstracts were examined in the
search and screening phases, while the whole texts were analyzed in the eligibility phase.
In each phase, any eventual disagreement concerning the selection of a record was resolved
upon discussion and, if necessary, by consulting an author involved in a different phase.
Detailed analysis and data extraction from the final pool of records selected at the end of the
eligibility phase was performed by two authors (L.T. and A.C.); the average sensitivity (SE),
specificity (SP), accuracy (ACC), and AUC (area under the ROC curve) were calculated.

2.3. Eligibility and Exclusion Criteria

The search strategy is detailed in Figure 1. The search terms used for each search engine
are reported in Table 1. A restriction for English language abstracts, manuscript categories
(original papers), topics (MM vs. nevus dermoscopic diagnosis), and methodologies
(presentation of one CNN/DCNN trained and tested only on MM/nevi having a predictive
outcome) was then applied. Filters in each phase/step were applied by the authors as
previously described.

Table 1. Overview of the key terms used for the search engines during definitive and preliminary
search phases.

D
efi

ni
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ch

Wos

ti = (“Deep Learning” OR convolutional OR dcnn OR cnn OR cnns OR dcnns OR rcnn) AND ti = (“skin lesion*” OR
“skin defect*” OR nevus OR nevi OR melanocytic OR “skin cancer” OR melanoma OR “skin tumor*” OR “skin
tumour*” OR “skin neoplasm*” OR “cutaneous cancer” OR “cutaneous tumor*” OR “cutaneous tumour*” OR

“cutaneous neoplasm*” OR dermoscopy OR dermoscopic OR dermatoscopy OR dermatoscopic).

Pubmed

(“Nevi and Melanomas”[Mesh]) AND (“Deep Learning”[Mesh]) OR (“Deep Learning”[ti]) OR convolutional[ti] OR
dcnn[ti] OR cnn[ti] OR cnns[ti] OR dcnns[ti] OR rcnn[ti] AND (“skin lesion*”[ti] OR “skin defect*”[ti] OR nevus[ti] OR
nevi[ti] OR melanocytic[ti] OR “skin cancer”[ti] OR melanoma[ti] OR “skin tumor*”[ti] OR “skin tumour*”[ti] OR “skin

neoplasm*”[ti] OR “cutaneous cancer”[ti] OR “cutaneous tumor*”[ti] OR “cutaneous tumour*”[ti] OR “cutaneous
neoplasm*”[ti] OR dermoscopy[ti] OR dermoscopic[ti] OR dermatoscopy[ti] OR dermatoscopic[ti]).
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Table 1. Cont.

D
efi

ni
te
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ch

ArXiv, MedRxiv

“deep convolutional/convolutional neural network and melanoma/skin cancer/skin lesions/melanocytic
lesions”, “deep learning and dermatology/dermoscopy”, “automated classification/detection and

dermatology/dermoscopy”, “image classification and melanoma/melanocytic lesions/dermoscopy”.

Scopus

TITLE (“Deep Learning” OR convolutional OR dcnn OR cnn OR cnns OR dcnns OR rcnn) AND TITLE (“skin
lesion*” OR “skin defect” OR “squamous cell” OR nevus OR nevi OR melanocytic OR “skin cancer” OR
melanoma OR “basal cell carcinoma*” OR “skin tumor*” OR “skin tumour*” OR “skin neoplasm*” OR
“cutaneous cancer” OR “cutaneous tumor*” OR “cutaneous tumour*” OR “cutaneous neoplasm*” OR

dermoscopy OR dermoscopic OR dermatoscopy OR dermatoscopic)

Pr
el

im
in

ar
y

se
ar

ch Google Scholar

(“Deep Learning” [Mesh] OR “deep-learning” OR “deep-learning” OR “deep neural networks” OR ““deep
neural network” or ((deep OR machine* OR convolute*) AND (learn* OR neural*)) OR “convolutional neural
network” OR CNN* or “Artificial Intelligence* [Mesh] OR “artificial intelligence” OR “artificial-intelligence”

OR AI [Title/Abstract] OR “Machine Learning”[Mesh] OR “Neural Networks, Computer” [Mesh] OR
melanoma* OR melanoma diagnosis* OR (melanoma*) AND (deep learning*)) OR (convolutional neural

network*) AND (melanoma*) AND (nevus*))
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Figure 1. Flow diagram illustrating the search and selection strategies followed for each step. 
Figure 1. Flow diagram illustrating the search and selection strategies followed for each step.

3. Results

The results of the search strategy are synthesized in Figure 2, which also displays the
9 consecutive steps of searching and filtering. At the end of the two screening phases and
one eligibility phase, a total of 54 original papers were obtained from the initial 1974 records,
i.e., 34 illustrated a DL non-convolutional model, and 20 illustrated a CNN/DCNN. The
various findings are discussed and compared below in detail. The computational character-
istics of each ML and DL techniques and their definitions are also explained below.
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3.1. AI Definitions

Machine learning. ML is a subfield of AI that focuses on developing algorithms and
statistical models which enable algorithms to learn from data and perform tasks without
explicit instructions. The applications of ML are vast and varied, ranging from Natural
Language Processing (where ML helps understand and generate human language) to
computer vision (which allows systems to interpret visual data from the world, leading to
facial recognition and object detection). ML techniques include: (i) supervised learning—in
the presence of an outcome to be predicted; (ii) unsupervised learning—if the aim is to find
particular patterns in data; (iii) semisupervised learning—used in case of large amounts of
data that must be labeled and composed in three steps (a small subset of data is manually
labeled, and then a model that learns how to label is developed, and, in the end, this model
is used to label the rest of the data); (iv) reinforcement learning—algorithms using “trial and
error” methods to find optimal strategies, where an agent learns to make consequential
decisions by interacting with the environment (i.e., the agent receives rewards or penalties
based on its actions, aiming to maximize a cumulative reward over time) [4,5,45–51]
(Figure 3).
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Supervised learning. The most common form of ML requires the supervision of human
beings feeding the machine with a large set of information, labelling each category, and
training the algorithm to recognize these categories. Supervised learning aims to predict an
outcome with as little error as possible. Among its applications, support vector machines
(SVM)s were successfully used in MM image classification in 2016 in the International Skin
Imaging Collaboration ISBI Challenge [20].

Unsupervised learning. In unsupervised learning, the machine learns simple concepts,
from which it builds abstract concepts. The principal methodologies are “cluster analysis”
and “dimensionality reduction”. Cluster analysis is focused on the investigation of sub-
groups that present similar characteristics based on a multivariate profile. All the cluster
techniques are sensible to the number of desired clusters and the chosen type of distance.
As an example, the XG boost technique was demonstrated to outperform clinicians in skin
cancer detection [52]. Dimensionality reduction techniques are useful in the presence of
many variables/observations, especially when expressed in multiple units, to decrease the
number of variables by combining them into new ones. It is interesting to recall that human
learning is largely unsupervised; we discover the structure of the world by observing it,
not by being told the name of every object [47–51].

Semisupervised learning. Semisupervised learning is a ML technique that uses a small
amount of labeled data and a big amount of unlabeled data during training. This method is
effective when labeling data is expensive or time-consuming, yet unlabeled data are abun-
dant. The main idea is to utilize the labeled data to create a model that can make predictions,
and then use these predictions to label the unlabeled data iteratively, thus improving the
model’s performance. Semisupervised learning methods frequently use self-training tech-
niques, in which the model is trained on labeled data before being used to predict labels for
unlabeled data. These predictions are then added to the training set. Another prevalent
method is co-training, which involves training multiple models on various perspectives of
the data and allowing them to teach one another. Semisupervised learning, which makes use
of both labeled and unlabeled data, can outperform the completely unsupervised learning
approaches [5,51–54].

Reinforcement learning. This refers to algorithms using “trial and error” methods
to find optimal strategies, where an agent learns to make consequential decisions by
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interacting with the environment (i.e., the agent receives rewards or penalties based on its
actions, aiming to maximize a cumulative reward over time) [5,51–53].

Deep learning. DL maintains the same structure as ML, comprising both supervised
and unsupervised techniques, and the principal technique is the artificial NN (ANN). The
ANN is a distributed network of computing elements, modeled on a biological neural
system and implemented as software. It is capable of identifying the relations in input data
that are not easily apparent with the current common analytic techniques. Functioning
ANN knowledge is built on learning and experience from the previous input data. On
the basis of this priorly acquired knowledge, ANNs can predict relations found in newly
presented datasets. ANN models are variegated and currently include CNNs, DCNNs,
RNNs, and GANs [49–55].

CNNs. CNNs use convolutional layers, along with trainable filters and pooling opera-
tions, on raw input images to learn and extract sets of complex high-level/meaningful fea-
tures automatically. It is possible to create a CNN combining the following layers/functions:
convolutional layers (small, learnable filters that slide or “convolve” across the input image
to detect patterns like edges, textures, or shapes); pooling layers (used to reduce the spatial
dimensions of the feature maps, while retaining essential information); fully connected
layers (after feature extraction, these layers connect every neuron to every other neuron
in the preceding and subsequent layers, enabling high-level feature combination; one or
more fully connected layers are called dense layers); activation functions (applied after
each convolutional and pooling layer to introduce non-linearity into the model); a dropout
function (regularization technique to prevent overfitting that randomly drops a fraction of
neurons during training, reducing the model’s reliance on specific features); and a Loss
Function (employed to measure the difference between the predicted and actual values
during training). Finally, the output layer produces predictions based on the task at hand;
for image classification, it typically has as many neurons as there are classes, so softmax
activation is used to convert a raw output into a 0–1 class score. Figure 4 illustrates a
common architecture of a CNN. The main three tasks performed by a CNN are image
classification (i.e., recognizing what is represented inside the image), image segmentation
(i.e., automatically drawing a border around the object represented inside the image), and
object detection (i.e., finding specific objects inside the image or video) [45–51].

Bioengineering 2024, 11, x FOR PEER REVIEW 8 of 26 
 

learning, which makes use of both labeled and unlabeled data, can outperform the com-
pletely unsupervised learning approaches [5,51–54]. 

Reinforcement learning. This refers to algorithms using “trial and error” methods to 
find optimal strategies, where an agent learns to make consequential decisions by inter-
acting with the environment (i.e., the agent receives rewards or penalties based on its ac-
tions, aiming to maximize a cumulative reward over time) [5,51–53]. 

Deep learning. DL maintains the same structure as ML, comprising both supervised 
and unsupervised techniques, and the principal technique is the artificial NN (ANN). The 
ANN is a distributed network of computing elements, modeled on a biological neural 
system and implemented as software. It is capable of identifying the relations in input 
data that are not easily apparent with the current common analytic techniques. Function-
ing ANN knowledge is built on learning and experience from the previous input data. On 
the basis of this priorly acquired knowledge, ANNs can predict relations found in newly 
presented datasets. ANN models are variegated and currently include CNNs, DCNNs, 
RNNs, and GANs [49–55]. 

CNNs. CNNs use convolutional layers, along with trainable filters and pooling oper-
ations, on raw input images to learn and extract sets of complex high-level/meaningful 
features automatically. It is possible to create a CNN combining the following layers/func-
tions: convolutional layers (small, learnable filters that slide or “convolve” across the input 
image to detect patterns like edges, textures, or shapes); pooling layers (used to reduce the 
spatial dimensions of the feature maps, while retaining essential information); fully con-
nected layers (after feature extraction, these layers connect every neuron to every other 
neuron in the preceding and subsequent layers, enabling high-level feature combination; 
one or more fully connected layers are called dense layers); activation functions (applied 
after each convolutional and pooling layer to introduce non-linearity into the model); a 
dropout function (regularization technique to prevent overfitting that randomly drops a 
fraction of neurons during training, reducing the model’s reliance on specific features); 
and a Loss Function (employed to measure the difference between the predicted and ac-
tual values during training). Finally, the output layer produces predictions based on the 
task at hand; for image classification, it typically has as many neurons as there are classes, 
so softmax activation is used to convert a raw output into a 0–1 class score. Figure 4 illus-
trates a common architecture of a CNN. The main three tasks performed by a CNN are 
image classification (i.e., recognizing what is represented inside the image), image seg-
mentation (i.e., automatically drawing a border around the object represented inside the 
image), and object detection (i.e., finding specific objects inside the image or video) [45–
51]. 

 
Figure 4. Schematic overview of a CNN/DCNN structure. (Adapted from ref. [51]). 

DCNNs. DCNNs are CNNs characterized by a very high number of hidden layers, 
which give them a high level of abstraction and computing power. In parallel, DCNNs 
need a very large amount of data to be adequately pre-trained before launching the 

Figure 4. Schematic overview of a CNN/DCNN structure. (Adapted from ref. [51]).

DCNNs. DCNNs are CNNs characterized by a very high number of hidden layers,
which give them a high level of abstraction and computing power. In parallel, DCNNs
need a very large amount of data to be adequately pre-trained before launching the ex-
periment on the dataset of interest. Both CNNs and DCNNs are able to “learn” their own
filters in a hierarchical manner that is fully independent of human knowledge [45–50].
To date, researchers have employed different available DCNN/CNN architectures, of-
ten pre-trained, which were then customized according to the study’s peculiarities. The
most commonly used CNN-based architectures include, ordered by the date of launch,
the following: Alexnet (2012), GoogleNet Inception v3 [23], Microsoft ResNet-152 [24],
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GoogleNet Inception v4 [27–30], Microsoft ResNet-50 [31–33], GoogLeNet DCNN [34],
VGG, ResNet, DenseNet, and EfficientNet [50]. Each of these models comes with multiple
versions. All these architectures aggregate convolutional layers, pooling layers, dense
layers, and drop out layers in different ways, while also using different kinds of small,
learnable convolutional filters (named “kernels”) [45–51].

RNNs. RNNs are designed for sequential data, such as time series and natural lan-
guage; they are a type of artificial neural network designed to analyze a sequential input,
where the order of the data points is critical. Unlike standard neural networks, RNNs allow
information to persist over time. This architecture makes them very useful for language
modelling, speech recognition, and time series prediction. RNNs operate by maintaining a
hidden state that stores information about the past inputs. At each time step, they take an
input and update the concealed state, thereby “remembering” previous data. This allows
them to manage sequences of varying durations and identify trends over time [50,51].

GANs. Generative Adversarial Networks are deep learning frameworks that produce
realistic synthetic data. GANs, proposed for the first time in 2014 [53], are made up of
two neural networks, the generator and the discriminator, which compete in a zero-sum
game. The generator’s role is to generate fictitious data that resemble the actual data
distribution. It starts with random noise and converts it to reasonable data samples. The
discriminator, on the other hand, assesses these samples and attempts to differentiate
between the actual and created data. During training, the generator improves its ability to
generate realistic data, and the discriminator improves its ability to detect fakes. Until the
generator provides data that are identical to the genuine data, tricking the discriminator,
this adversarial process is repeated. There are different types of GAN models depending
on the mathematical formulas used and the various ways in which the generator and
discriminator interact with each other. Conditional GANs (cGANs) introduce the concept
of conditionality, which enables targeted data generation. The generator and the discrim-
inator receive additional information, typically in the form of class labels or other types
of conditioning data. For example, if generating images, the condition could be a label
that describes the content of the image. The conditioning allows for the generator to pro-
duce data that meets specific conditions. Deep Convolutional GANs (DCGANs) integrate
CNN architectures into GANs, making them specifically tailored for image processing.
With DCGANs, the generator uses transposed convolutions to produce high-level data
distributions, and the discriminator also uses convolutional layers to classify the data. The
DCGAN also introduces architectural guidelines to make the training more stable. GANs
are effective tools for jobs requiring the production of high-quality data since they have
been effectively used in a variety of fields, such as image synthesis, video generation, and
data augmentation [51–53].

3.2. Included Studies for Melanoma/Nevi Differential Dermoscopic Diagnosis

A total of 54 studies focused on MM diagnosis, in which the model was trained/tested/
validated on dermoscopic images and compared with dermatologists/other similar DL
techniques, were finally included. Only 20 studies reported on a CNN/DCNN architec-
ture [29,32,33,54–70], as shown in Table 2. The remaining 34 studies were focused on DL,
not the CNN/DNN architecture, and are briefly discussed below [18–20,70–78].



Bioengineering 2024, 11, 758 10 of 25

Table 2. Comparison of methodologies and performances of 20 CNN/DCNN architecture designed
for melanoma/nevi differential diagnosis.

Year Authors Ref Dataset Used
Clinical Data +
Dermoscopic

Images

Diagnostic
Testing by

Participants

Management
Study of the

cnn/dcnn

Management
Study of

Participants

Comparison
with Another

DL
Architecture

Details training/testing/
validation yes/no yes/no yes/no yes/no yes/no

2018 Haenssle
HA, et al. [54] training, testing,

validation no yes no yes no

2018 Yu C,
et al. [55] training, testing no yes no no no

2019 Chandra
TG, et al. [56] training, testing,

validation no yes no no yes

2019 Binker T,
et al. [57] training, testing,

validation no yes no no no

2019 Brinker, T.
et al. [34] training, testing,

validation no no no no no

2019 Abbas Q,
et al. [58] training, testing no no no no yes

2019 Phillips
M, et al. [59] training, testing no no yes yes no

2019
Gonzalez-

DIaz,
et al.

[60] training, testing,
validation yes yes no no yes

2020 Tognetti
L, et al. [61] training, testing,

validation yes yes yes yes yes

2020 Lee S,
et al. [32] training, testing no yes no no yes

2020 Winkler
JK, et al. [62] training, testing no no no no no

2020 Fink C,
et al. [29] training, testing no yes no yes no

2020 Han,
et al. [63] training, testing no yes no no no

2020 Adegun
A., et al. [64] training, testing no no no no yes

2020 Grove R,
et al. [65] training, testing no no no no yes

2021 Nasiri S,
et al. [66] training, testing,

validation no no no no yes

2020 Ningrum
DN, et al. [67] training, testing,

validation yes no no no yes

2021 Pham,
et al. [68] training, testing no yes no no no

2022 Winkler
JK, et al. [69] training, testing no yes no no no

2023 Winkler
JK, et al. [70] training, testing no yes yes no no
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DL models (not CNNs/DCNNs). These models were developed in early 2000, col-
lectively known as “digital dermoscopy analysis” (DAA) and consisted, generally, of
computer-assisted diagnosis (CAD) models, computer vision system (CVM) or support
vector machine (SPV) models. In particular, computer-aided detection systems for auto-
matic diagnosis of pigmented skin lesions have been developed by researchers for nearly
30 years. Globally, several studies obtained encouraging results, assuming the compu-
tational power available at the time. Generally, the pre-processing phase was given less
attention compared with the feature extraction phase. Briefly, the DDA can be considered
as the first attempt to move from image color analysis to more complex architectures—of
the DL type—combining multiple algorithms, including lesions segmentation, the identifi-
cation of the region of interest, border detection, and entropy assessment [18–20,39–43,79].
Some examples of early models published in 2002 relied on CAD [19,71] software and
focused on the nevi/MM differential diagnosis. Piccolo et al. [71] proposed DEM-MIPS
software trained on 100 and tested on 341 melanocytic skin lesions (benign/malignant),
respectively, able to reach 92% sensitivity (SE) and 74% specificity (SP) compared with
the clinical performances of one expert (SE = 92%; SP = 99%) and one resident (SE = 69%;
SP = 94%). The DDA model proposed by Rubegni et al. trained on 90 atypical nevi and
57 MMs, evaluating 48 objective parameters, reaching 93% ACC in discriminating the
two [19]. Then, in 2011, the updated model (DB-DM-MIPS© System, evaluating 49 objec-
tive parameters) proved to be highly performant in a management decision task through a
multicentric trial involving 3227 patients across Europe [72] with 91 patients for 10 years.

As per the computer vision system, the one proposed by Friedman et al. in 2008
reached 62% ACC and 98% SE over 99 lesions. Some examples of SVM models for MM/nevi
discrimination and management date back to 2010–2015. Tenenhaus et al., 2010 [76], devel-
oped a “KL–PLS-based classifier” that when tested on 227, obtained 95% SE and 60% SP
compared with their participants’ diagnosis (SE = 70.2%, SP = 83.2%) and therapeutic deci-
sion (SE = 86.4%, SP= 56.6%). Ferris et al. [77] tested a DL model on 173 lesions compared
with 30 participants (10 dermatologists, 10 residents, and 8 trainees), obtaining 0.81 AUC
(SE 96%, SP42.5%). Then, in 2015 [78], Codella et al. elaborated a new approach integrating
together DL, sparse coding, and SVM learning algorithms, adopting an unsupervised pat-
tern recognition/feature transfer approach, mimicking the process of expert dermatologists.
The proposed model was tested on 334 MM, 144 atypical nevi, and 2146 benign lesions
from the ISIC archive, achieving 73.9% accuracy (73.8% SE and 74.3% SP) for the MM/nevi
classification task.

CNN/DCNN models. Since 2017/2018, a multitude of experimental models involv-
ing CNN/DCNN architecture have been produced in the MM diagnostic field for MM
diagnosis. However, according to our filtering strategy, only 20 records turned out to
be reporting on original investigations on MM/nevi differential diagnoses performed by
CNNs/DCNNs (Figure 2). The main methodological approach is synthesized in Table 2,
while Table 3 reports in detailed technical characteristics of each study.
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Table 3. Comparison of methodology and experimental details of the 20 selected studies on CNN/DCNN architecture designed for melanoma/nevi differential
diagnosis.

Ref Architecture DL Model
Dermoscopic

IMAGE Dataset
Pre-Training

Training Dataset Testing Dataset Validation Dataset Model Output Body Site of
Application

original/available
format

CNN, DCNN,
RNN

Public/institutional/
own

Public/institutional/
own Binary/continuous Details

[54] Google’s Inception v4 CNN, pretrained
on 1000 images ISIC archive 300 images (34 MM +

266 N) 100 images 100 images (80 MM +
20 nevi) continuous 0–1 unspecified

[55]
MatConvNet,

modified, VGG model
with 16 layers

53
MatConvNet,

modified, VGG model
with 16 layers

/ binary otuput
(N/MM) palms and soles

[56] original scheme,
14 layers DCNN ISIC archive 1643 images (773 N +

870 MM)
400 images (200 N +

200 MM) 156 N + 44 MM binary otuput
(N/MM) unspecified

[57] ResNet50 CNN ISIC archive +
HAM10000 dataset;

4204 images (1888 MM +
2316 AN

1200 images (800 N +
200 MM) ratio MM/N

= 1:4

1359 images (230 MM
+ 1129 AN); ratio

MM/N = 1:14
continuous 0–1 unspecified

[34] ResNet50 CNN
ISIC archive

+ HAM10,000: 20735:
images

12,378 images 100 images

1,259 images
(MED-NODE

database + clinical
images)

binary otuput
(AN/MM) unspecified

[58]
fusion of multiple

feature CAD system +
DCNN + RNN

DCNN,
“DermoDeep”,

original

ISIC archive (1600) +
(500) + Skin-EDRA

dataset +
Ph2-dataset (100) +

DermNet (600)

2800 images (1400 N +
1440 MM)

2800 images (1400 N +
1440 MM) / binary otuput

(N/MM) unspecified

[59] original scheme DCNN

1550 images: 551
biopsied (125 MM +
148 AN + 278 other)
+ 999 controls not

biopsied (Public: not
specified)

858 images (36 MM, 253
not MM) (istitutional

dataset)
731 images (51 MM) / continuous 0–1 unspecified

[60] ResNet50
CNN,

“DermaKNet”,
original

2017 ISBI Challenge
+ EDRA dataset +

ISIC

2000 images (374 MM,
1372 N, 254 SK) ±

age/sex

150 images ± age/sex
data

600 images ± age/sex
metadata

binary output
(MM vs. N; MM

vs. SK)
unspecified
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[61] ResNet50 “iDCNN_aMSL”
ISIC archive: 20735
images (18566 N +

2169 MM)

630 images (429 AN +
201 EM) ±

age/sex/diameter/anatomy
site clinical data

(iDScore_body dataset)

214 images (140 AN +
74 EM) ±

age/sex/diameter/
anatomy site clinical
data (iDScore_body

dataset)

135 images (93 AN +
42 EM) ±

age/sex/diameter/
anatomy site clinical
data (iDScore_body

dataset)

continuous 0–1 Body (no face,
palms, soles)

[32] ResNet 50 CNN “ALM-net” own: 1072 images of
MM and N

872 images N + MM ±
clinical data (unspecified)

200 images ± clinical
data (unspecified) / binary otuput

(N/MM) palms and soles

[62] Google’s Inception v4 “Moleanalyzer-
Pro® CNN”

istitutional
(50000 images) NA

180 MM, 600 nevi
(363 biopsied,

210 followed-up,
27 consensus)

6 subsets, each
including 100 N +

30 MM)
NA

SSM, LMM,
mucosal MM,
NM, nailMM,

AMM,

[29] Google’s Inception v4 “Moleanalyzer-
Pro® CNN”

istitutional: 129,487
images + labels 115,099 images N + MM 72 images (36 MM +

36 CN) /
binary otuput

(combined N vs.
MM)

unspecified

[63] Microsoft ResNet 152 CNN
224,181 images

(public +
istitutional)

220, 680, 174 disease
classes / / binary otuput

(CN/MM)

[64] original scheme

DCNN (“Deep
Convolutional

EncoderDecoder
Network”)

ISIC 2017, PH2
datasets / / binary otuput

(N/MM) unspecified

[65] ResNet 50

ISIC archive +
“UDA1, UDA2,
MSK-2, MSK-3,

MSK-4" databases

3222 images (2361 N +
591 MM) (ImageNet)

77 images (27 MM +
50 N) (“Dermnet NZ”)

binary otuput
(N/MM) unspecified

[66] original
CNN (“DePicT

Melanoma
Deep-CLASS”)

ISIC archive,
400 images

1346 images N + MM
(ISIC archive)

1796 images N + MM
(ISIC archive)

450 images N + MM
(ISIC archive)

binary otuput
(N/MM) unspecified

[67] CNN + ANN
“ISIC, HAM 10000,

MSK-1, MSK-2,MSK-
3,MSK-4”

900 (281 MM + 619 N) +
clinical data (age, sex,

anatomic site)

300 images (93 MM +
207 N) + clinical data

(age, sex, site)

180 images + clinical
data (age, sex,
anatomic site)

binary otuput
(N/MM)

body +
head/neck
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[68]
wInceptionV314,

ResNet5015, Dense-
Net16916

DCNN

ISIC 2019:
17302 images
(4503 MM +
12,799 N)

1730 images (450 MM +
1280 N) (MClass-D

dataset)
NA 59 high-risk patients binary otuput

(N/MM) unspecified

[69] GoogleNet Inception
v4

“Moleanalyzer-
Pro® CNN”

M10000 dataset +
institutional dataset 150000 images 236 images continuous 0–1 unspecified

[70] GoogleNet Inception
v4

“Moleanalyzer-
Pro® CNN”

228 images (190 N +
38 MM) continuous 0–1 unspecified

Ref Model Performance Model
Management Participants Participants’ Skill Level Participants’

Performance
Participants’
Management Comparison with Performances of

the Other Models/Checklists Tested
on the Same DatasetAUC %; SE%; SP%: ACC (%), PPV, NPV,

DOR n, Profession Years/Experience in
Dermoscopy

AUC %; SE%; SP%: ACC (%), PPV, NPV, DOR,
PRECISION

[54] AUC = 0.95;
SE = 63.8%; SP = 86% NA 58 dermatologists

17 with <2 years, 11 with
2–5 years, 30 with

≥5 years

only dermoscopy:
ACC = 79%;

SE = 86.6%, SP =
71.3%. clinic +

dermoscopy: ACC =
82%, SE = 88.9%, SP =

75.7%

only dermoscopy:
ACC 0.82%; SE 98.8%,

SP64.6%. clinic +
dermosc: ACC =

0.83%,SE = 9844%6%,
SP 66.7%

/

[55]
AUC = 0.835;
SE = 92.57%,
SP = 75.39%

NA
2 general

practicioners,
2 dermatologists

2 beginners, 2 experts
Experts: ACC =

81.08%; Beginners:
ACC = 67.84%

/ /

[56] AUC = 0.817;
SE = 75%; SP = 88% NA dermatology

residents
2nd and 3rd year of

residency
ACC = 87%; SE 85.2%;

SP 60.9% NA

Automatic Multi-Layer Perceptron
(MLP): ACC = 76%, SE 70.5%, SP =
87.5%; ABCD rule: AUC = 56.10%,

SE = 78.1%, SP = 45.7%

[57] NA NA
145

(142 dermatologist,
3 residents)

100 with >10 years, 15
with 5–10 years, 85 with

<5 years

Avg ACC = 76.9%; SE
= 67.2%, SP = 62.2% NA /

[34] SE = 82.3%,
SP = 77.9% NA

157
(52 dermatologists,

92 residents
NA SE = 74.1%, SP = 60% NA /

[58] AUC = 0.96; SE = 93%;
SP = 95%; ACC = 95% NA / / / /

DCNN: “Jeremy_deep”: 82%, 78%,
80%, 79%; “Premaladha_deep”: 84%,

80%, 83%, 82%
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[59] average AUC = 0.918;
SE = 100%/SP = 78.1%

NNB = 6.83 on
average / /

ACC = 77.8; SE = 95%,
SP = 69.9% (over 1582

images)

NNB 4.92, PPV 20.3%,
NPV100% NA

[60] AUC 0.873; MM vs.
N); 95.2% MM vs SK NA / / / /

“DermaNet” (without clinical data):
AUC 85.6%, MM vs. N); 95.6% MM

vs. SK

[61] AUC = 0.903;
SE = 86.5; SP = 73.6%

SE = 89,
SP = 73.5%

111 (65 dermatolo-
gists,46 residents),

(63 F, 48 M)
residents.

45 with >8 years, 20 with
5–8 years, 37 with

1–4 years, 9 with <1 years,

ACC = 69.2%, SE =
77%, SP = 61.4% SE = 78%, SP = 21%

DCNN_aMSL (no clinical data):
diagnosis:AUC 86.6%, SE 89.2%, SP

65.7%. Management: SE = 86%,
SP = 65.7%

[32]
AUC = 0.976;

SE = 90%; SP = 95%;
ACC = 92.5%

NA

60
(20 dermato-logists,

20 residents,
20 general pract)

NA
ACC = 74.7%;

SE = 79.9%;
SP = 69.5%;

/ model with no clinical data: SE =
88.7%, SP = 85%, ACC = 86.9%

[62]

SSM/NM: AUC0.98;
LMM: AUC 0.926;
AMM: AUC 0.928;
mucosal MM: AUC

0.75; nail MM:
AUC = 0.621

NA / / / / /

[29]
SE = 97.1%,

SP = 78.8%; DOR = 34
(95% CI [4.8–239]

NA 11 dermatologists
Beginner: <2 years (3),

Skilled:2–5 years (5)
Expert: ≥5 years (3)

SE 90.6%; SP = 71%,
DOR = 24 (95% CI

[11.6–48.4]
SE 100%, SP 47.6% /

[63]

SNU AUC
0.937 ± 0.004

Edinburgh AUC
0.928 ± 0.002

NA
70 (21 dermatologist,

26 residents,
23 nonmedical

Dermatologists
SE 77.4% ± 10.7
SP 92.9% ± 2.4

AUC 0.66 ± 0.08

/

[64]
segmentation:

ACC = 95%, SE = 95%,
SP = 95.5%

NA / / / /
“U-Net”: ACC = 93%, SE = 82%, SP

= 97%ResNet: ACC 93%, SE 80%,
SP: 98%

[65] ACC 86.7%
(SE = 81.4%, SP = 92%) NA / / / / DenseNet169:80% ADDI CNN:97.5%

[66] ACC = 75%, SP = 78% NA / / / / “DePic T Melanoma CLASS”:
AUC 0.68
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[67]

AUC = 0.971;
Precision = 94.33%,
recall = 87.1%, ACC

97.10%

NA / / / /
Same CNN model: AUC = 0.82;
precision = 81.67%, RECALL =

52.7%, ACC 81.67%

[68] AUC = 0.94, SE = 85%,
SP = 95% NA 157 dermatologists

42 with >12 years, 32 with
4–12 years, 37 with
2–4 years, 46 with

<2 years

ACC = 67.1%, SE =
74.1%, SP = 60% NA /

[69]

baseline AUC = 60.69
(SE = 25.4%,
SP = 92.7%)
Follow-up:

AUC = 81.7%
(SE = 44.1%,
SP = 92.7%)

NA 26 dermatologists different skill levels
ACC = 40.7%,

SE = 66.1%
SP = 55.4%

NA /

[70]
ACC = 87.7%,

SE = 81.6%,
SP = 88.9%

ACC = 63%, SE
100%, SP = 55.8% 22 dermatolgogists

78 lesions examined by
dermatologists with <2

years, 96 lesions by derm
with 2–5 years, 54 lesions

by derm with >5 years

ACC = 74.1%, SE =
84.2%, SP = 72.1% NA Dermatologists + CNN: AUC =

86.4%, SE 100%, SP = 83.7%
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Concerning the computational architecture, a total of eleven records described the
CNN architecture [29,32,34,54,55,57,60,62,63,66,69,70], one CNN + ANN architecture [67],
and eight DCNNs [56,58,59,61,64,68]. Of note, while fifteen studies report on a different
original model, five studies report on the clinical application of the same CNN model,
authorized as a medical device, in different subsets of lesions and MM subtypes compared
with different groups of clinicians [29,55,63,69,70].

Concerning the pre-training labels, only three studies had the clinical data of the
patient integrated with dermoscopic pictures in the training/testing dataset, clearly speci-
fied [60,61,67], whereas in two cases, we do not know exactly which kind of clinical data
were integrated [29,32]. Of note, only four studies out of twenty had the body sites of the
lesions specifically indicated in the dataset [32,61,62,67].

A total of 13 out of 20 studies compared the performances of a proposed CNN/DCNN
model with a reader study performed by medical staff (dermatologists/dermatology resi-
dents/general practitioners/non-medical personnel/nurses) [29,32,34,54–56,59,61,63,68–70].
After deriving the ACC values, which were not directly expressed, we estimated that in
these studies, the CNN/DCNN models surpassed the humans by +14.85%, showing an
average CNN/DCNN-ACC of 87.6% versus an average ACC of 72.75% in the participants’
diagnosis. In 10 out of 13 studies where the SE and SP values were reported, the models
obtained an average SE of 79.77% and an average SP of 84.87%. Considering the partici-
pants’ SE and SP when reported (12 out of 13 studies), the average SE was 79.78%, and the
SP was 69.24%.

Considering the comparison of the proposed CNN/DCNN model with another archi-
tecture, we found ten studies. Seven studies compared the CNN/DCNN model only with
another architecture (either a CNN or a DCNN) showing an average AUC of 0.902 of the pro-
posed model versus +0.75 AUC, while the participants’ study was not realized [58,60,64–67].
Three studies compared the CNN/DCNN model with both clinicians’ performances and
with another architecture performance on the same tasting dataset, globally showing the
overall superiority of the proposed model [56,61,70].

Three studies compared a DCNN [59] or a CNN [32,61] trained with clinical data with
the same architecture, but trained with dermoscopic data only, showing an average gain of
+5% in accuracy, particularly with +9% in SP. Only one study evaluated the real effect of
using AI to correct the intuitive diagnosis of clinicians, with a second-round reading [70],
showing increases of +12.3% ACC, +15.8% SE, and +11.6% SP.

Finally, four studies additionally evaluated the management tasks of the partici-
pants [29,54,59,61], but only two [59,61] compared them with the model management
task. When analyzing these data, it appeared that the participants were poor at making
management decisions (excise/follow-up); hence, they sent them the excision-relevant
findings on the blinded MM/nevi cases that were much less specific than those of the
model for the same lesion (44% SP participants versus 65% SP-DL on average), while the
gap in sensitivity was lower (78% SP participants versus 89% SP-DL on average).

Concerning the report of classification performances, some discrepancies were also
found. Ten studies had both the AUC and the ACC values indicated, six had only ACC
expressed, and sixteen had the SE and SP parameters reported. We derived the ACC values
that were possible (18 out of 20 studies), obtaining an average ACC of 83.99%. On average,
16 out of 20 models had the sensitivity and specificity values indicated, resulting in 77.74%
SE and 80.61 SP on average.

Alternative approaches. Outside the present selection, we found an interesting al-
ternative, recently proposed approach during the search phases [79,80]. Although not
fitting the research criteria for the 20 studies of Table 2, it is worth reporting these records
for methodological comparison purposes. A paper by Al Sadhan et al. reports on the
performance of four unified DCNNs that locate the skin lesions and categorize them into
the predefined classes instead of using classification-based solutions. This approach using
four DCNN models at the same time (YOLOv3, YOLOv4, YOLOv5, and YOLOv7) was
named “You Only Look Once (YOLO) deep learning models”. The experiments carried
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out over 2750 images from the ISIC dataset (including 374 MM, 1372 N, and 254 seborrheic
keratoses) first showed promising results (AUC of 0.91, SE = 86.35%, and SP =85.9%).
Another approach is the one that integrated microwave reflectometry and DL imaging
for the in vivo diagnosis of skin cancer [80]. The rational riles on the fact that microwave
reflectometry can reveal chemical/physical differences between healthy skin and skin with
melanoma by interpreting the dielectric properties of biological tissues, known as “dielec-
tric data”. Thus, by integrating microwave reflectometry with CNN-identified features
(e.g., asymmetry, irregular borders, abnormal colorations, etc.), the diagnostic accuracy was
superior to that of the non-integrated algorithms.

Both the approaches should however be further confirmed in the next future by
focusing on the differential diagnosis over melanoma/nevi and by including a human
comparison in the clinical setting.

4. Discussion

In the last 50 years, the detection and classification of human diseases has been a topic
of growing interest for AI research, with a particular focus on oncology [1–3,45–50]. For
example, ML tools (logistic regression and decision trees) and DL tools (DCNNs) have
been demonstrated to significantly help physicians in breast cancer detection and moni-
toring [81–84]. In dermatology, where the diagnosis largely relies on image interpretation,
large attention is paid to skin cancers [81–83], and particularly, to MM [38–40,85], the
most aggressive form. It is characterized by a very good prognosis in the case of early
removal. The timely diagnosis of MM relies on the dermoscopic examination in most cases,
considering the diffusion of this technique worldwide and its use since 2000 [16,17].

To the best of our knowledge, the present narrative review is the first examining, in
detail, only original studies reporting on a DL model applied to the dermoscopic differential
diagnosis of MM from nevi/atypical nevi [37–46,79–85].

Limits and weaknesses of DL models tested to date. Globally, the DL models proposed
since 2017 and tested in experimental settings on skin cancer detection (both on clinical
and dermoscopic images) showed a superior or similar performance compared with those
of the dermatologists/dermatology residents/general practitioners, taking histology as
the gold standard. However, several relevant methodological differences appeared when
analyzing these experimental studies; thus, they make any adequate model performance
comparison really hard [40]. Moreover, besides the methodological discrepancies, issues
in data interpretability, ethical concerns, and different and/or limited clinical validation
have been found (Tables 2 and 3). In particular, by analyzing the 54 studies on DL-
based MM diagnosis [18–20,29,32,34,54–78], six main differences were detected, concerning
(i) the research team, (ii) the study nature, (iii) the dataset composition, (iv) the computa-
tional experiments, (v) the human comparison, and (vi) the comparison with comparison
with human participants and/or another model.

• Concerning the composition of the research team, they can be essentially grouped into
a non-medical researcher team (e.g., engineers/mathematics/statistics/informatics)
and a hybrid team (expert dermatologists collaborating with biomedical engineers/
informatic engineers). Consequently, these differences are reflected in many aspects,
such as the study methodology, the pre-processing phases, and attention to the data
labelling the images. For example, the non-medical teams usually employ large
publicly available datasets and achieve high computational power, but miss clinical
tests with a human participant group, and/or do not pay attention to the details
associated with the dataset (e.g., lesion body location) [18,30,32,58,60,62,64–67,69–78].
Technically, those works generally move the basis on the CAD analysis, dedicating
large parts of the experiments to the border detection, segmentation, and identification
of the region of interest, as well as the widespread use of data pre-processing and
image augmentation strategies.

• Regarding the study nature, almost all studies are retrospective, having almost all the
lesions tested via histology available, and thus the human decision assisted by DL is
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virtually deduced [17–28]. Moreover, dermatologists recruited for image classification
and management tasks do not have the real patient in front of them, but only one
dermoscopic picture, or, in a few cases, the picture plus some clinical objective data,
while the single lesion history is missing in 98% of studies. Thus, the provided
performance results should be interpreted bearing in mind that the study scheme fails
to reproduce an in vivo setting.

• The dataset used in the pre-training/training/testing/validation phases is largely vari-
able in terms of image acquisition (tool/conditions), dimension, quality, case selection,
and labelling degree. From a technical point of view, dermoscopic and clinical images
may differ in size/quality, possible artefacts (pencil marks, rulers/objects, etc.), the
device of acquisition, light calibration, etc., and we are not able to understand which
patterns the DCNNs/CNNs learn and take into account for the final “decision”, as
the process is largely unsupervised. It should be also stressed that some authors use
their own datasets for pre-training and testing, some others exploit only one publicly
available dataset, while some others use a combination of different public datasets,
always choosing a different ratio of MM/nevi/atypical nevi, without any specific
explanation in most cases. Furthermore, in some studies, the number of cases does
not match the number of lesions/patients not only in the pre-training phase, but
also in the training phase; thus, multiple pictures of the same lesion appear to be
included in the testing process, altering the final output [59,73]. Concerning clinical
dataset characteristics, such as a patient’s phototype, ethnicity, and the body site of
the lesion, are almost always not specified, especially in research studies carried out
by engineers (without the collaboration of dermatologists). Finally, more and more
investigations should be carried out on MM in acral sites, mucosae, or on nails in the
future, given that, to date, the used datasets were generally indicated as “body lesions”
when indicated.

• Nevertheless, more variability exists in the procedure scheme adopted by different
research groups, ranging from pre-processing adopted techniques, segmentation, and
feature extraction procedures, and mostly, the construction of the DL architecture
(Table 2). The possible combinations in this phase are almost infinite, and we should
say, they will persist as an intrinsic feature of this research topic. At present, we can
just speculate that one scheme may be more suitable for multiclass classification rather
than binary output, but specific comparative work should be carried out in this sense.

• Concerning the comparison with humans, many authors do not plan a “reader study”
performed by dermatologists/residents and, when present, all studies report different
compositions of these groups in terms of numerosity, professional degree, and, most
importantly, dermoscopic skill. Indeed, the experience level should be regarded as the
most important parameter influencing a participant’s performance (Table 3).

• Finally, some authors choose to compare the proposed model with the pre-existing
ones, and some others do not. If present, the decision on which different architecture
to use as a comparison in each original study seems to be totally arbitrary and often
driven in order to show the superiority of the proposed model [37–40,56,58,64–67].

For these reasons, any generalization derived from meta-analysis/a systematic review
should be interpreted with caution [38–40].

Strengths and advantages of CNN/DCNN models tested to date. Concerning the small
set of 20 studies produced since 2018 and specifically selected according to the research
topic (MM/nevi dermoscopic differential diagnosis) and similarity in general methodology
(CNN/DCNN), we can make three premises (Tables 2 and 3).

Firstly, discrete homogeneity can only be found in the pre-training phase, concerning
the use of images from the ISIC archive. We can thus speculate that there is surely an
under-representation of some ethnic groups in these studies and that those algorithms can
be applied only to a certain group of patients/lesions.

Secondly, only two studies specify that the testing and validation dataset included
atypical nevi beside MM [57,61], after a pre-training phase with non-atypical and atypical
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nevi. This leads to the consideration that all the other 18 studies include easy-to-diagnose
benign lesions; thus, the CNN/DCNN model accuracy should be interpreted accordingly.
Thirdly, only one study can be regarded as a hybrid retrospective prospective from a
methodological point of view, showing the effective impact of the CNN’s suggestion on
clinicians’ decisions [70].

Taking into account all these premises, looking at the statistical measures derived from
the thorough analysis of 17 out of 20 studies, we have a scenario of highly performant DL
algorithms, especially in terms of low false positive results, with average values of ACC
(83.99%), SE (77.74%), and SP (80:61%) (Table 3).

• Then, in order to speculate if the CNNs/DCNNs were really helpful in a clinical setting,
we looked, in detail, at the subset of 13 studies that tested the physicians’ diagnostic
abilities to examine the same lesions [29,32,34,54–56,59,61,63,68–70]. Again, the main
difference between algorithms and humans relies on the specificity values, with an
+15,63% increase for the CNN/DCNN models (average SP = 84.87%) compared to that
of the humans (average SP = 64.24%). Notably, the average sensitivity values of the
two groups were very similar, with an SE of 79.77% for the DL models and 79.78%
for the humans. According to the reported global performance values, the gap was
14.85% (mean ACC = 87.,6% CNN/DCNN vs. 72.75% of participants).

• As expected, when the participants had the possibility to reformulate their diagnosis
based on the DL tool suggestion, they increased not only in SP (+11.6%), but also
in SE (+15.8%) [70]; however, other studies are needed to be carried out with this
perspective view to clearly demonstrate the usefulness of this kind of algorithm in
clinical practice [37–40,80–84].

• Interestingly, the more relevant clinical patient/lesion data we give to the algorithm to
learn, the more specific it becomes (+9% in SP in three studies [32,60,61], with minimal
clinical data). Further experiments on larger datasets focused on this specific aim are
needed to confirm this hypothesis in the future.

Future perspectives. The use of dermoscopic clinical data for CNN/DCNN training is
really a crucial point for this kind of experiment; in general, there is an objective difficulty in
reaching a compromise between the data quality (i.e., a thoroughly detailed dataset of cases
matching the dermoscopic pictures with the clinical ones and clinical anamnestic relevant
data), and, on the other side, the data number (i.e., to reach adequate accuracy, these models
require thousands of image cases and different subsets for each developmental phase—pre-
training/training/testing/validation). Indeed, only a few specialized centers worldwide
are able to set up this kind of integrated/complete dataset and submit them to adequate
training and testing, considering that both the dataset collection phase and algorithm
creation phases require a long time [17–40,61]. Moreover, as this field is a borderland
between medicine and mathematics, the aim is to finally apply it to patients and help
saving people’s lives with early MM diagnosis. More and more studies generated from the
close and continuous collaboration of dermatologists with bioengineers and informatics
are needed [37,40,60,61,81].

Finally, the homogenization in study methods and strategies deserves to have compara-
ble studies in the future, paying particular attention to the use of a uniform standard of met-
rics language and to validation in real-life clinical settings. As shown in this review, no stud-
ies were completely uniform in this regard, where the authors chose to use metrics (AUC,
accuracy, precision, specificity, recall, false positives/negatives, true negatives/positives,
false negatives, positive/negative predictive values, DOR, etc.) essentially according to
their preference/technical statistical needs (Table 2). In this sense, position statements
and/or recommendations produced by international study groups/task forces variously
composed by physicians/dermatologists and bioengineers/informatics/statisticians may
be helpful [86].

It is worth noting that, currently, patients seem to rely on diagnostic algorithms
more than expert dermatologists do, especially those who are highly skilled in dermo-
scopic diagnosis, given the diffuse use of smartphone apps/online software for auto-
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diagnosis/screening/follow-ups [86,87]. In order to make algorithms more familiar to
the majority of dermoscopists, preliminary work on the improvement in model specificity
should be done. Three parallel strategies may be helpful in this sense. First, we should
adopt training and testing methods that simulate, as much as possible, the in vivo setting
conditions of a dermatologic. As an example, the possibility to “feed” the model with
patients’ macro clinical images/total body photographs/tridimensional images, with a
series of relevant anamnesis data and laboratory parameters, and, if understood, with
standardized sequential lesional image/data acquired over time should be introduced.
Second, involving more and more human intelligence in the second step of the learning
phase, reaching a kind of compromise in semisupervised learning, where the model is con-
tinuously corrected in those situations and where only humans’ deduction skills succeed,
may not only enhance the diagnostic power, but particularly, the management skills of
the DL model [59,60]. In this sense, it has been demonstrated that “hive dermatologists”
(i.e., multiple experts working together) are more accurate than individual dermatolo-
gists and significantly more accurate than a largely validated CNN medical device when
tested on images of rare conditions for which the model was not frequently/specifically
trained [88]. Third, it would be desirable to perform a long, final validation phase of the
model that is carried out exclusively pre-peptically in a real-life setting, which is an office of
an expert dermatologist.

In the future, hybrid models trained with collective human knowledge derived by
the best-performing dermatoscopists may create the generation of hybrid and extremely
powerful diagnostic tools. In parallel, future research should clearly investigate and report
how the dataset characteristics can influence the model performance and generalizability
power [61]. In this sense, the creation of an international online registry integrated with
clinical data and the possibility to perform tests in a tele-dermoscopic way may be the
response to this problem [37,61].

5. Conclusions

On these premises, despite the lack of clinical studies clearly confirming their benefit
through investigations on large datasets, including successive clinical decision-making
steps, we can be confident in hypothesizing that research advances will make DCNN/CNN
tools more and more useful/reliable in the dermoscopic diagnosis of MM using a complex
simulator, at least in the near future. Based on the experiments carried out to date, the
expected benefits of this future scenario could include a reduction in unnecessary excision
due to these tools’ higher specificity compared with that of any dermatologist, with the
consequent saving of healthcare resources and money; an increase in the early diagnosis of
MM, especially by less-experienced/novice dermoscopists; and a reduction in waiting lists
thanks to the possibility of receiving a second opinion in real time, decreasing the number
of second confirmatory visits.
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