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Abstract: In this paper, we study the problem of managing an energy community hosting a fleet
of electric vehicles for rent. On the day ahead, service requests for electric vehicles are submitted
to the community. Then, the optimal request-to-vehicle assignment has to be found, as well as the
optimal charging schedule of vehicle batteries. A suitable model is presented and included in an
existing energy community architecture. The overall community management problem is formulated
as a bi-level model, featuring two nested optimization problems. The optimal request-to-vehicle
assignment requires the solution of a mixed-integer linear program. To reduce the computational
complexity, a heuristic solution to the assignment problem is presented. Numerical results show that
participation in the community grants a remarkable reduction in the electric vehicle charging cost.
The adoption of the heuristic assignment solution provides a dramatic reduction in the computation
time required to solve the bi-level model. At the same time, the level of suboptimality introduced
appears to be negligible, being less than 1% in most of the considered cases.

Keywords: energy communities; electric vehicles; optimization

1. Introduction

Energy communities are social aggregations of entities, that exchange energy among
themselves through the public grid they are connected to. The single entities may engage
in generation (especially from renewable energy sources), consumption, and energy stor-
age, as well as provide energy services to other community members or the public grid.
Participation of entities in an energy community is voluntary and open. To solicit this
participation, the primary purpose of energy communities is to provide environmental,
economic, or social benefits to its members or shareholders [1]. This process can also be
favored by existing social relationships [2]. Several pilot studies carried out worldwide
have shown that aggregation is actually capable of generating benefits of different types
(see, e.g., [3,4]).

The constitution of, as well as incentives granted to, energy communities are regulated
by national or local laws [5], whereas each energy community may typically decide the
internal mechanisms governing its operation. Indeed, an energy community is based on
a physical layer, whose components (loads, distributed energy resources, energy storage
systems, electric vehicles) should be suitably coordinated, managed, and controlled to fully
exploit all the benefits of aggregation.

In the literature, energy volumes to be exchanged within a community are often
obtained together with energy prices by clearing a suitably designed local energy market.
Local energy markets can be organized either in a centralized or peer-to-peer fashion
(see [6] for a comprehensive review). The centralized solution is typically based on a
community operator, who manages trading activities inside the community, as well as
plays the role of intermediator between the community and the rest of the system [7–9]. In
peer-to-peer market design, entities directly negotiate with each other, achieving consensus
on an energy transaction for a certain amount of energy and a price without centralized
supervision [10–12]. The mechanism governing the operation of a community may also
include a strategy to redistribute community benefits among the members [7].
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Besides energy exchange among its members, energy communities may also engage in
providing flexibility and services to the grid, e.g., through enrollment in demand response
programs and the provision of reserves. Another option, as explicitly highlighted in [1], is
to provide charging services for electric vehicles (EVs). Given the increasing penetration
of EVs in the transportation sector [13], this option is expected to become more and more
concrete, and bring benefits at different levels. Indeed, mass adoption of EVs is known to
have a number of impacts on distribution grid operation and management [14,15]. One of
these is the high peak power consumption determined by the simultaneous charging of a
large number of EVs [16]. In this respect, EV charging within energy communities could
help reduce peak power thanks to the overall optimization performed at the community
level. Moreover, including EVs in energy communities could provide additional flexibility
to enable the integration of renewable energy into existing power grids. At the user level,
social and economic benefits are expected because the energy for EV charging can be
bought at cheaper prices resulting from the internal market of the community [7]. To
achieve the expected benefits, EV charging has to be suitably scheduled and optimized. The
management of EV charging stations connected to distribution grids has been addressed in
numerous contributions, see, e.g, [17–22]. However, to the best of the authors’ knowledge,
the optimal integration of a fleet of EVs into energy communities has received little attention
so far. The energy management system for a public EV charging station integrated within a
community microgrid is proposed in [23]. The aim is to minimize the cost of energy for EV
charging and to meet the community demand while maximizing the revenue from selling
the surplus energy of a photovoltaic (PV) system and the energy discharged from EVs.
The scheduling of a community-integrated energy system with an EV charging station is
considered in [24]. Here, an integrated demand response program is designed to promote a
balance between energy supply and demand. In both contributions, the resulting problems
are formulated in the framework of mixed integer programming.

In this paper, we extend the energy community architecture proposed in [7], by
introducing a new entity that manages a fleet of EVs for rent. A local market based
on the marginal pricing scheme is organized at a centralized level. The market aims at
maximizing the social welfare of the community. This is performed by defining energy
prices and volumes to achieve a more efficient allocation of resources, a reduction in the
peak, and an increased amount of reserve at the community level. Since we focus on
a setup where EV rental requests are submitted to the community one day ahead, two
additional problems must be addressed. First, each rental request must be assigned to a
vehicle. Then, the optimal EV charging scheduling must be found. A community operator
is assumed to manage the market and to redistribute the community benefits among the
entities, in such a way that the solution achieved by each entity within the community is
not worse than that obtained by acting individually. Different from [7], where the clearing
of the local market is formulated as a linear program, in this work the request-to-vehicle
assignment requires the introduction of binary variables, which makes the local market
optimization problem a mixed-integer linear program (MILP). To avoid the high worst-case
computational complexity of solving the MILP (as could be faced in practice, when the
numbers of EVs and requests increase), a heuristic procedure is proposed to solve the
assignment problem, based only on the set of the received requests. Once the assignment of
requests to vehicles has been fixed, the local market optimization problem becomes again
a linear program, that can be efficiently solved. Numerical results presented in the paper
show that the proposed heuristics has a very cheap cost in terms of computation time, and
performs very well in instances for which the MILP can be solved at the optimum, thus
making it possible to compare the solution of the heuristics with the optimal one.

The paper is organized as follows. Section 2 reviews the problems formulated in [7]
for the clearing of the local market, and the redistribution of community benefits. The two
problems are presented in a unified fashion in the form of a bi-level program. Section 3
shows how to include a fleet of EVs for rent in the framework previously introduced. The
proposed heuristic solution to the request-to-vehicle assignment is described in Section 4.
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Numerical results are reported in Section 5 and discussed in Section 6. Finally, Section 7
draws the conclusions.

Notation: The subscript t is used to denote a discrete time instant within the considered
time horizon T = {1, . . . , T}. The time between two consecutive time instants is denoted
by ∆. The subscript u is used to denote an entity in the entity set U . The subscript d denotes
an EV in the vehicle set D. Finally, the subscript h is used to denote an EV service request
in the request setH.

2. Energy Community Model

An energy community is a collection of entities located in the same geographical area
that pool their resources using the public distribution network. Entities can be very
heterogeneous, ranging from residential customers to small and medium-sized enterprises.
In general, an entity is characterized by a number of different components that may include
one or more loads (sheddable or non-sheddable), generators (steerable or non-steerable),
electrical storage systems and EV charging stations. The members of a community exchange
electricity between them, share energy storage systems and provide services to the external
grid. An energy community may bring several benefits, such as energy cost savings, peak
cost reduction and provision of reserve on an aggregate basis.

While it is assumed that the entities are connected to the same local bus, the energy
community provides a virtual layer over which entities may exchange energy flows (see
Figure 1). Denote by egri

u,t ≥ 0 and igri
u,t ≥ 0 the energy exported to and imported from the

grid by entity u at time t. Moreover, let ecom
u,t ≥ 0 and icom

u,t ≥ 0 be the energy exported to
and imported from the community by entity u at time t. Then, the net energy flowing from
entity u to the local bus amounts to (egri

u,t + ecom
u,t )− (igri

u,t + icom
u,t ). Since the energy balance at

the community level implies ∑u∈U (icom
u,t − ecom

u,t ) = 0, the net energy flowing from the grid

to the local bus is ∑u∈U (i
gri
u,t − egri

u,t).

Public grid

∑

u∈U
(igriu,t − egriu,t )

Entity 1

egri1,t igri1,t

ecom1,t icom1,t

Entity 2

egri2,t igri2,t

ecom2,t icom2,t

Entity n

egrin,t igrin,t

ecomn,t icomn,t

· · ·

Local Bus

Community Virtual Bus
Energy Community

Figure 1. Energy flows in an energy community. Red arrows: imported energy; blue arrows: exported
energy.

It is assumed that the energy flows with the external grid are subject to the same
pricing mechanism as if the entities were not part of a community. Conversely, the peak
power penalty is applied to the aggregate net power flow, and the provision of the reserve
to the grid is remunerated at the community level, depending on the aggregate amount of
power reserve provided. A community operator coordinates the behavior of the entities in
order to maximize the benefits for the community. On the day ahead, the operator collects
the load and generation profiles of each entity, as well as their flexibility, and schedules the
operation of the devices based on the prices of the electricity imported from or exported to



Energies 2022, 15, 8697 4 of 16

the grid. For the remuneration of this activity, the entities pay a fee to the operator, which
is assumed to be proportional to the aggregate amount of energy exchanged within the
community, i.e., it is equal to γcom ∑∀u∈U ∑∀t∈T (ecom

u,t + icom
u,t ), where γcom [e/kWh] is a

given unitary price. In [7], an optimization model was proposed to solve the problems that
the community operator has to face. In the following, such a model is briefly reviewed. For
the sake of exposition, the mathematical details are skipped and the interested reader is
referred to [7] for an exhaustive description. In Section 3, it will be shown how to extend
this model so as to include the management of a fleet of EVs for rent.

The community operator has to determine the energy flows among the entities and
the corresponding prices (i.e., the operator has to clear the market), and then it has to share
the profits among the community members. These tasks can be simultaneously formulated
as a bi-level model, which is a mathematical program composed of two nested optimization
problems, termed upper and lower level [25]. In general, a bi-level model can be written as

max
x∈X

F(x, y∗) (1)

s.t. y∗ ∈ arg max
y∈Y

f (y; x) , (2)

where F and f are the objective functions of the upper and lower level problems (1) and
(2), respectively. In the framework considered in [7], the lower-level problem models the
market clearing task, while the upper-level problem takes care of profit redistribution. In
the following, we outline the main features of both problems.

2.1. Lower Level Problem

The objective function f (y; x) of problem (2) represents the social welfare of the
community over a given time horizon T . It is composed of three terms:

f (y; x) = f E(y) + f R(y) + f P(y). (3)

The term f E(y) accounts for costs and revenues related to the energy flows. Among
others, they include the costs of energy purchased from the grid or from the community,
the costs of shed demand and steered generation, the costs of storage usage and the fees
paid to the community operator. The revenues come from selling energy to the grid or
to other community members. The term f R(y) represents the revenues collected by the
community for providing symmetric reserve to the grid. It is assumed that the revenue is
proportional to the aggregate reserve rsym provided by the community, i.e., it is equal to
πresrsym, where πres [e/kW] is a given reserve price. The term f P(y) corresponds to the
loss incurred by the community for the peak power p consumed by the community from
the grid over the time horizon T , and it is equal to −πpeak p, where πpeak [e/kW] is the
peak price. The vector of the optimization variables y ∈ Y includes the energy volumes
exchanged by each entity and the charging/discharging profiles of the storage devices. The
feasible set Y is used to enforce technical constraints on the optimization variables (e.g.,
maximum steerable generation, maximum capacity of a storage system, etc.), as well as
to model the storage dynamics and to guarantee the energy balance for each entity at all
times. In [7], it is shown that the lower level problem (2) can be cast as a linear program
and thus efficiently solved. Moreover, according to the marginal pricing framework [26],
the dual variables of the energy balance constraints represent the optimal purchase/selling
prices of the energy traded within the community.

2.2. Upper Level Problem

The purpose of problem (1) is to share the community profit among the entities
according to a given redistribution policy. A possible choice is to maximize the smallest
(absolute or relative) profit increase that the entities experience when participating in
the community. The objective function F(x, y∗) naturally reflects the chosen policy. The
optimization variables x include the fraction of revenues from reserve provision and peak
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costs that are ascribed to each entity, as well as slack variables instrumental to encoding the
redistribution policy in the objective function. The feasible set X ensures that no entity is
penalized compared to acting individually. In particular, this means that when participating
in the community, the profit of each entity cannot be less than the profit the entity would
achieve by acting individually.

Remark 1. In a bi-level model (1) and (2), the optimizer y∗ and the feasible set Y of the lower
level depend, in general, on the optimization variables x of the upper level. In turn, the feasible set
X of the upper level may depend on y∗. However, in the considered application, the lower level
problem (2) is a linear program that does not depend on x, i.e. f (y; x) = f (y), see (3). Moreover,
for a given solution y∗ of the lower level problem, the upper level is also a linear program. As a
consequence, problem (1) and (2) can be efficiently solved as the cascade of two linear programs, one
corresponding to the lower level, and the other corresponding to the upper level. A discussion about
possible solution strategies can be found in [7].

3. EV Charging Management

In this section, we show how to include an entity hosting a fleet of EVs in the energy
community model previously introduced. To this aim, we first present a model of such
an entity and then describe how to modify the upper and lower level problems (1) and (2)
accordingly.

3.1. EV Rental Service Model

For the sake of exposition, we assume that one entity of the community is hosting
|D| vehicles, i.e., this entity does not have any other kind of load, generation or storage
systems other than the vehicles. The considered scenario is that of an entity that runs a
fleet of EVs for rent. On the day ahead, a customer submits a request h to the entity, by
specifying the departure time tl

h, the return time tr
h and the expected amount of energy Eh

consumed for the vehicle usage. The first problem the entity has to face is to decide which
vehicle to assign to each request (vehicle assignment problem). For the sake of exposition,
we assume that EV requests are such that there always exists a feasible assignment. An
optimal charging schedule for the vehicles should be found. In order to come up with a
solution that is optimal at the community level, we assume that the vehicle requests are
forwarded to the community operator that returns the optimal vehicle assignment and
charging schedule as a result of the social welfare maximization problem (2). Let us define
the following request parameters

σh,t =

{
1 if t = tr

h
0 else,

ωh,t =

{
1 if t = tl

h
0 else,

(4)

δh,t =

{
1 if tl

h ≤ t < tr
h

0 else.
(5)

In (4), σh,t and ωh,t are equal to one only when the time index t coincides with the
return and departure times of request h, respectively. On the other hand, δh,t in (5) is
equal to one if request h is active at time t. Concerning the assignment problem, it can be
formulated by introducing the following set of constraints

zh,d ∈ {0, 1} ∀h ∈ H, ∀d ∈ D (6)

∑
d∈D

zh,d = 1 ∀h ∈ H (7)

∑
h∈H

δh,tzh,d ≤ 1 ∀d ∈ D, ∀t ∈ T . (8)

where the variable zh,d is such that zh,d = 1 if and only if request h is assigned to vehicle d.
Clearly, each request must be fulfilled by exactly one vehicle and a vehicle cannot serve
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more than one request at the same time instant. These two conditions are imposed by
constraints (7) and (8), respectively.

In order to model the dynamics of the EV batteries, let sd,t denote the battery energy
level of vehicle d at time t, and by ad,t the fraction of the power rating Pd that the battery of
vehicle d consumes at time t. Then, for each d ∈ D, the battery level satisfies

sd,t = sd,t−1+ ηd∆Pdad,t − ∑
h∈H

σh,tzh,dEh ∀t ∈ T (9)

sd,0 = Sd, sd,T = Sd (10)

0 ≤ sd,t ≤ Sd, 0 ≤ ad,t ≤ 1 ∀t ∈ T . (11)

In (9), the parameter ηd represents the battery charging efficiency of vehicle d. More-
over, if vehicle d is fulfilling request h, its battery level is reduced by Eh when the vehicle
returns to the entity (at time tr

h). In (10) the battery level of each EV at the initial and final
time is set. For the sake of simplicity, we are imposing that the EV batteries are filled up to
the maximum level Sd at the beginning and at the end of the considered time horizon, but
different choices can be made. Clearly, both the battery level and the charging rate must be
within the limits enforced by (11). Finally, it must be noted that a vehicle cannot be charged
while fulfilling a request (so that ad,t must be zero during the request period). Moreover, if
a vehicle is assigned to a request h, then its battery level at departure time tl

h must be not
less than the energy Eh required by the request. These constraints can be written as

ad,t ≤ 1− ∑
h∈H

δh,tzh,d ∀d ∈ D, ∀t ∈ T (12)

sd,t ≥ ∑
h∈H

ωh,tzh,dEh ∀d ∈ D, ∀t ∈ T . (13)

The fleet of EVs contributes to the power reserve that the community provides to
the grid. If we assume no vehicle-to-grid power injection, each EV can provide only a
downward reserve when charging (i.e., it can increase the power consumed from the grid
if needed). The maximum power increase is dictated by the residual battery capacity, as
well as by the current and the maximum charging rate. Clearly, when a vehicle is fulfilling
a service request, it cannot provide any reserve. Hence, the downward reserve rd,t ≥ 0
provided by vehicle d at time t must satisfy the following constraints

rd,t ≤
Sd − sd,t

ηd∆
∀d ∈ D, ∀t ∈ T (14)

rd,t ≤ Pd(1− ad,t) ∀d ∈ D, ∀t ∈ T (15)

rd,t ≤ Pd

(
1− ∑

h∈H
δh,tzh,d

)
∀d ∈ D, ∀t ∈ T . (16)

3.2. Lower Level Problem

We can now summarize the modifications to problem (2) that are required to include
the entity hosting the fleet of EVs. In the following, let v ∈ U be the index of such an entity
in the entity set U .

Concerning the objective function f (y; x) in (3), the quantity f E(y) includes an addi-
tional term−π

igr
t igri

v,t − γcomicom
v,t representing the energy cost and the contribution of the EV

fleet to the community operator fee, where π
igr
t is the price of the energy imported from the

grid at time t. The revenue f R(y) coming from reserve provision and the cost f P(y) related
to peak power is modeled by means of the slack variables rsym and p, respectively. Hence,
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the contribution to reserve and peak power boils down to modifying existing constraints
that define the set Y in (2) with the following ones

rsym ≤ ∑
u∈U\{v}

r−u,t + ∑
d∈D

rd,t ∀t ∈ T (17)

p ≥ ∑
u∈U\{v}

(
igri
u,t − egri

u,t

)
/∆ + igri

v,t /∆ ∀t ∈ T , (18)

where r−u,t in (17) is the amount of downward reserve that entity u can provide at time t,
whereas the sum in (18) would be the community peak power at time t without the fleet
of EVs.

There are two kinds of additional optimization variables that need to be included in the
vector y in (2). First, the entity hosting the fleet of EVs requires a set of variables common
to all other entities, namely the energy flows imported from the grid or the community (igri

v,t ,
icom
v,t ) and the downward reserve rd,t provided by each EV. Conversely, the new variables

which are specific to the rental requests and the EVs are the binary assignment variables
zh,d, the EV battery levels sd,t and the EV charging rates ad,t.

Concerning the new constraints defining the feasible set Y in (2), besides (6)–(16), the
energy balance at entity v must be added, as follows

−igri
v,t − icom

v,t + ∆ ∑
d∈D

ad,tPd = 0, ∀t ∈ T . (19)

3.3. Upper Level Problem

The purpose of the upper-level problem (2) is to redistribute the community profit
among the entities. In this paper, the adopted redistribution policy aims at maximizing
the smallest relative profit increase in the entities. This choice is slightly different from
what was performed in [7], where the smallest absolute profit increase was considered. Let
J* = f (y∗) be the optimal profit of problem (2). Denote by Ju the profit of entity u ∈ U
when participating in the community. Clearly,

J* = ∑
u∈U

Ju. (20)

The underlying idea is to decompose Ju as

Ju = JE
u + J̃u ∀u ∈ U . (21)

The term JE
u in (21) represents the profit coming from the energy generation and

consumption of entity u when operating in the community. Notice that JE
u can be easily

obtained from the solution of (2) by extracting the community energy prices from the dual
variables of the energy balance constraints (see [7] for the details). Moreover, ∑u∈U JE

u =
f E(y∗) in (3). Conversely, J̃u in (21) is left free as an optimization variable of the upper-
level problem.

In order to express the relative profit increase in an entity, denote by JSU
u the optimal

profit of entity u when acting as a single user, i.e., outside the community. Notice that
the value JSU

u is computed by solving for each entity an optimization problem similar to
problem (2), but without any interaction among the entities. Then, introduce the slack
variable α ≥ 0 and consider the constraints

Ju − JSU
u ≥ α|JSU

u | ∀u ∈ U . (22)

Maximizing α corresponds to maximizing the minimum relative profit increase Ju−JSU
u

|JSU
u |

for the entities such that |JSU
u | > 0. Notice that, since α ≥ 0, constraints (22) imply that

Ju ≥ JSU
u , ∀u ∈ U , ensuring that no entity is penalized compared to acting individually,

thus promoting the participation in the community.
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Summarizing, the objective function of problem (1) is simply F(x, y∗) = α. The vector
x of the optimization variables includes Ju, J̃u and α. The feasible set X is defined by
constraints (20)–(22), besides the condition α ≥ 0.

Remark 2. The bi-level model (1) and (2) resulting after the introduction of the fleet of EVs retains
its original structure. Specifically, it enjoys the same decoupling property between the upper and
lower levels. As such, it can still be tackled by solving sequentially the lower level and the upper
level problem. The upper-level problem is still a linear program. The major difference is that now
the lower-level problem involves binary optimization variables (the assignment variables zh,d) so it
becomes a MILP. A flow chart of the overall procedure is shown in Figure 2a.

(b)

Data

Lower Level
(MILP)

Upper Level
(LP)

ResultsResults

(a)

Data

Heuristic
Assignment

Lower Level
(LP)

Upper Level
(LP)

Results

Figure 2. (a) Flow chart of the procedure leading to the optimal solution. (b) Flow chart of the
proposed heuristic solution.

Large-sized instances of the lower-level problem, featuring many requests and a large
number of EVs, require an excessive computational burden to be solved at the optimum. A
possible way to deal with this issue is to solve the assignment problem beforehand, prior to
the market clearing. This approach leads in general to suboptimal solutions but makes the
lower-level problem a linear program. To this purpose, in the next section, we propose a
heuristic procedure that can be used to solve the assignment problem, based only on the
requests received on the day ahead.

4. Heuristic Assignment

In this section, we present a heuristic solution to the problem of assigning an EV to each
request. The requests are sorted by their departure time and they are processed sequentially
in that order. The proposed heuristic builds the final assignment incrementally, starting
from z(0)h,d = 0, for all h, d. At iteration i, a vehicle di is assigned to a new request hi by setting

z(i)hi ,di
= 1 and z(i)h,d = z(i−1)

h,d for all h 6= hi and d 6= di. In doing so, it must be guaranteed that

the resulting assignment z(i)h,d is a feasible assignment. Specifically, three conditions must be

met. First, z(i)h,d must satisfy (8). This amounts to verifying that, in the previous assignment

z(i−1)
h,d , vehicle di was not already assigned to requests overlapping with request hi. Second,

there must exist a feasible charging profile adi ,t such that condition (13) is verified for d = di,

zh,d = z(i)h,d. Practically, this amounts to checking that, given the initial battery level sdi ,0

in (10), the previous assignment z(i−1)
h,d and the maximum charge rate Pd, the battery of
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vehicle di at departure time tl
hi

can be charged up to Ehi
(the amount of energy required by

request hi). Third, there must exist a feasible charging profile adi ,t such that the constraint

sdi ,T = Sd in (10) is verified. Again, this can be checked from sdi ,0, z(i−1)
h,d and Pd.

In general, at iteration i there exist multiple EVs that can be assigned to request hi
without violating any of the above conditions (candidate vehicles). In this case, the heuristic
attempts to assign to hi the most promising candidate vehicle, by maximizing the time
that a vehicle has at its disposal to recharge its battery before request hi begins. For each
candidate vehicle ci, the availability time is computed as the maximum of the return times of
the requests associated with vehicle ci in z(i−1)

h,d . Then, request hi is assigned to the candidate
vehicle having the earliest availability time. Intuitively, the heuristic tries to maximize
the time between two consecutive requests that must be served by the same vehicle. This
choice aims at introducing more flexibility in the charging schedule problem to be solved
afterwards, thus obtaining less suboptimal results.

Remark 3. When the assignment problem is addressed by means of the proposed heuristic procedure,
problem (2) boils down to a linear program, since the binary variables zh,d are assigned. Hence,
the overall bi-level model (1) and (2) can be efficiently tackled by solving two linear programs
sequentially. The resulting flow chart is shown in Figure 2b. The proposed procedure leads to a
dramatic reduction in the computational burden, although it is not guaranteed to return the optimal
solution. However, numerical simulations have shown that the heuristic solution attains a cost close
to the optimal one. These aspects will be extensively discussed in the next sections.

5. Numerical Results

To validate the proposed approach, three examples are provided. The first two are toy
examples reported to illustrate how the proposed procedure works, while a third example
aims at evaluating the procedure’s performance and computational feasibility in a more
realistic scenario. In each example, a comparison between the proposed heuristic for vehicle
assignment and the optimal solution of the MILP is carried out. In all simulations, the
optimization horizon is assumed to be 24 h. In the following examples, the peak price is set
to πpeak = 0.5 e/kW, while the reserve price is πres = 0.3 e/kW. Finally, the fee received
by the community operator is γcom = 0.01 e/kWh. Simulations have been performed on
Matlab, the optimization problem is formulated in Yalmip [27] and solved by Gurobi [28]
on an Intel i7-11700 @ 3.60 GHz, 32 GB of RAM.

Example 1. Let us consider a community composed of three entities, and let us perform a simulation
of one day. The sampling time is set to ∆ = 1 h. The first entity is assumed to be a non-flexible
load, whose demand of 5 kW is kept constant throughout the day. The second entity may provide
steerable generation up to 7.5 kW, while the third entity is equipped with two identical EVs. EV
battery capacities are set to Sd = 50 kWh with a maximum charging power Pd = 7.4 kW. Battery
efficiencies are set to ηd = 0.9. Three EV requests are considered, as detailed in Table 1.

Table 1. Set of EV requests in Example 1.

tl [h] tr [h] Eh [kWh]

Request 1 5 9 24

Request 2 12 15 18

Request 3 17 20 18

Electricity prices for import from and export to the grid are assumed to be constant during the
day and equal to π

igr
t = 0.15 e/kWh and π

egr
t = 0.035 e/kWh, respectively. Moreover, the unit

cost of steerable generation is assumed constant and amounts to 0.04 e/kWh.
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In Table 2, the request assignment is reported. Specifically, an entry is labeled if a
vehicle and a request are matched by one of the procedures (H stands for heuristic, while O
stands for the optimal MILP solution). In this setup, the optimal solutions obtained from
solving the MILP and applying the proposed heuristic coincide.

Table 2. Request assignment in Example 1.

EV 1 EV 2

Request 1 H,O

Request 2 H,O

Request 3 H,O

In fact, to mitigate the peak power consumption, the optimal allocation is the one that
maximizes the time between consecutive requests of each vehicle, since it provides more
flexibility for the recharge. In Figure 3, it can be noticed that EV batteries are charged at a
power rate lower than its maximum, in order to limit the peak consumption.

Day time [h]

B
a
tt
e
ry

 l
e
v
e
l 
[k

W
h
]

Figure 3. Example 1. Battery level sd,t of vehicles 1 (blue) and 2 (red).

Notice that the power imported from the grid never exceeds 2.5 kW and the steerable
generation facility (entity 2) sells all the generated energy to the community in order to
achieve the minimum aggregated cost. From the community market point of view, the
prices change three times a day. At the beginning of the day, only entity 1 is demanding
energy, which is satisfied by the steerable generation. From 9 to 13, the EV charging process
begins, but the power imported from the grid remains below the daily peak, which occurs
in the last part of the day when the community is asking the grid for a constant power
of 2.5 kW. The community incurs an overall cost of 15.08 ewith respect to a total cost of
32.33 e if each entity would act alone exchanging energy only with the grid.

The energy flows at the community level and the community prices are reported in
Figure 4.

Example 2. To provide an example where the heuristic is suboptimal, a setup similar to that reported
in the previous example is considered. The same data of Example 1 have been used, except for the
price of energy imported from the grid, and the maximum amount of steerable generation. The import
energy price is set to π

igr
t = 0.30 e/kWh for t = 9, . . . , 17, while it remains π

igr
t = 0.15 e/kWh for

the rest of the day. The maximum steerable generation is null from 9 to 17, while it is set to 7.5 kW
at other times.
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]

Entity 2
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]

Day time [h]

Entity 3
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 [
k
W

h
]

Figure 4. Example 1. Energy exchanged inside the community (purple), energy exchanged with the
grid (black) and community prices (green) for entities 1, 2 and 3.

It is apparent that it is not convenient to charge vehicles in the interval [9, 17] since the
energy price is doubled and steerable generation is not available. However, the solution
returned by the heuristic coincides with that of Example 1, because it does not depend on
prices and on other entity features. On the other hand, the optimal MILP solution assigns
the first two requests to one EV and the last one to the other vehicle, as reported in Table 3.
In this case, the optimal cost incurred by the community is 30.73 e, while that provided by
the heuristic assignment amounts to 32.55 e.

Table 3. Request assignment in Example 2.

EV 1 EV 2

Request 1 H,O

Request 2 O H

Request 3 H O

Example 3. Let us consider a more realistic framework composed of 5 entities as described in Table 4.
Each table entry denotes the number of non-flexible loads (nfl), sheddable loads (she), non-steerable
generators (nst), steerable generators (ste), storage systems (sto) and EVs. Notice that, entity 5 is
equipped with 10 identical vehicles. A simulation of 100 days is carried out, solving problem (1)
and (2) for each day. The sampling time is ∆ = 10 min.
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Table 4. Configuration of the community in Example 3.

Entity nfl she nst ste sto EV

1 0 1 1 1 0 0

2 1 0 1 1 0 0

3 0 1 0 1 1 0

4 1 0 1 0 0 0

5 0 0 0 0 0 10

The non-flexible energy demand profiles for entities 2 and 4 in a given day are depicted in
Figure 5. Such profiles are a slightly perturbed version of those reported in [29]. Sheddable loads of
entities 1 and 3 can reduce their consumption up to 25% of the nominal value.

Day time [h]

E
n
e
rg

y
 [
k
W

]

Entity 2

Entity 4

Figure 5. Example 3. Non-flexible energy demand profiles in day 10.

Non-steerable generation is assumed to be provided by PV plants (see Figure 6), whereas the
steerable generators are capable of producing up to 5, 7.5, 8 kW of electrical power for entities 1, 2
and 3, respectively.

Day time [h]

E
n
e
rg

y
 [
k
W

h
]

Entity 1

Entity 2

Entity 4

Figure 6. Example 3. Non-steerable generation profiles in day 10.

The storage system of entity 3 has a capacity of 40 kWh with maximum charging/discharging
power equal to 10 kW, while the charging and discharging efficiencies are both set to 0.9.

Regarding the vehicles associated with entity 5, a set of 10 EVs with identical specifications
are considered. Their battery capacity is Sd = 50 kWh, while their maximum charging power and
battery efficiency are set to Pd = 22 kW and ηd = 0.9, respectively. For each day, up to 30 EV
service requests are considered. These requests are chosen to ensure the feasibility of the heuristic
procedure. Departure times are drawn from a discrete uniform distribution from 1 to 108 time steps,
corresponding to the range 12 a.m.–6 p.m. On the other hand, for a given EV request h, its duration
is set according to a discrete uniform distribution from 1 to 4 h. The energy required by each request
follows a uniform distribution in the interval [10, 40] kWh. Finally, the prices of energy imported
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from the grid are taken from the Italian electricity market [30] (see Figure 7), while the export energy
prices are set to 25% of the import energy prices.

Day time [h]

Figure 7. Example 3. Prices of import from the grid in day 10.

The unit cost of sheddable demand and steerable generation are considered constant throughout
the day and their values are 0.09 e/kWh and 0.07 e/kWh, respectively.

Concerning the simulation results, the procedure based on the heuristic assignment
provides an average community daily cost of 114.16 e, whereas the total cost of all the
entities acting individually would be 129.48 e. Energy flows and community prices for a
given day are reported in Figure 8.
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Figure 8. Example 3, proposed heuristic. Energy exchanged inside the community (purple), energy
exchanged with the grid (black) and community prices (green) for all entities in day 10.

Focusing on the entity hosting EVs, it would incur an average daily cost of 71.21 e by
acting alone, while joining the community grants a cost reduction of 11.83%. To evaluate
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the optimality level of the heuristic, the solution obtained by the proposed procedure is
compared to that returned by the MILP. In the considered setup, the two approaches show
similar results. In fact, the maximum daily gap between the two solutions is less than 1%.

Regarding the computation time, the average time to find a solution to problem (1)
and (2) for one day using the heuristic procedure or solving the MILP is 0.79 and 144.29 s,
respectively. Hence, in this case, the proposed heuristic is around 200 times faster than the
optimal procedure.

6. Discussion

While Examples 1 and 2 reported in the previous section are toy examples aimed at
illustrating how the proposed procedure works, Example 3 is more realistic and allows one
to obtain insight into the potential performance of the proposed approach.

The main outcome is that the cost of EV charging is significantly reduced when the
rental service operates within the energy community (more than 10% in the considered
setup). Notice that this comes at no expense to the other community members. Overall, the
community enjoys an average daily cost saving of about 15 e, which is then shared among
all the entities. The adopted redistribution policy ensures that, when participating in the
community, all the entities benefit from a cost reduction, compared to operating alone (i.e.,
outside the community).

In order to evaluate the level of conservatism introduced by the heuristic assignment
procedure presented in Section 4, the heuristic solution (i.e., the one computed as in
Figure 2b) was compared with the optimal solution (i.e., the one computed as in Figure 2a).
Notice that the latter requires the solution of a MILP, whose complexity scales badly with
the number of binary variables. This was the reason of the size of Example 3, in which the
number of entities and EVs was chosen such that the MILP could be solved in reasonable
time. Quite remarkably, the cost returned by the heuristic solution is very close to the
optimal one, with a performance degradation that is always less than 1%. As a matter of
fact, on many days, the heuristic assignment coincides with the optimal one.

A third aspect that was analyzed is the computational complexity of the proposed
approach. In the considered example, the processing time required to compute the heuristic
solution is about 200 times less than that needed to find the optimal solution. Such a
dramatic time reduction is expected to be even more evident in larger and more realistic
scenarios. Indeed, when the number of EVs increases, the solution of the MILP quickly
becomes intractable. On the other hand, the complexity of the proposed approach scales
nicely with respect to the problem size, since it does not require the solution of any combi-
natorial problem. We stress that the possibility of skipping the solution of a MILP is what
mainly distinguishes our contribution with respect to [23,24].

We stress that the obtained results are in agreement with European energy policy
directives [1], stating that the primary purpose of energy communities is to provide envi-
ronmental, economic or social community benefits to its members or shareholders. Indeed,
the more advantageous energy prices originated within the community bring clear eco-
nomic benefits to the members, but also induce social benefits, by helping fight energy
poverty through lower supply tariffs. Environmental benefits are achieved not only by fos-
tering the penetration of renewable energy sources, but also enabling the decarbonization
of the transportation sector by making EV management more affordable. Optimization
performed at the community level promotes more virtuous consumption behaviors at the
household level, by fostering concepts of common responsibility. Finally, optimal com-
munity management brings benefits also at the system level, by enabling the reduction in
the peak power resulting from uncoordinated simultaneous charging of a large number
of EVs.

7. Conclusions

In this paper, the optimal management of an energy community hosting a fleet of EVs
for rent has been considered. The contribution is threefold. First, a new optimization model
for EV rental service has been proposed, which includes the request-to-vehicle assignment
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problem, as well as the optimal charging schedule of the vehicle batteries. Second, it has
been shown how to embed such a model into an existing optimal management architecture
of energy communities. The resulting optimization problem is a bi-level model, whose exact
solution requires tackling a MILP. Third, a heuristic solution to the assignment problem has
been devised. This results in a dramatic reduction in the overall computational complexity,
at the price of minor performance degradation.

Several research directions are currently under investigation. A more extensive ex-
perimental validation of the proposed heuristic is needed in order to evaluate its ability
to return feasible assignment solutions in case of a high request-to-vehicle ratio. The pro-
posed management model solves a planning problem on the day ahead. A further step
is to derive online operation policies that adjust the day-ahead schedule on the basis of
the actual load and generation profiles, as well as of the deviation of vehicle usage from
the times and energy declared in the submitted requests. In this respect, it will also be
useful to incorporate more accurate techniques for the prediction of EV charging duration
time [31,32] in our model.
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