Detecting the imprints of past clear-cutting on riparian forest plant communities along a Mediterranean river

 Giuseppe Pio Cifaldi ${ }^{1}{ }^{(0)} \mid$ Simona Maccherini ${ }^{1,2}$ (${ }^{\text {© }}$ Emanuele Fanfarillo ${ }^{1,2}$ ©

${ }^{1}$ Department of Life Sciences, University of Siena, Siena, Italy
${ }^{2}$ NBFC, National Biodiversity Future Center, Palermo, Italy

Correspondence

Leopoldo de Simone, Department of Life Sciences, University of Siena, Via P.A. Mattioli 4, Siena 53100, Italy.
Email: leopoldo.desimone@unisi.it

Funding information

Consorzio di Bonifica 6 Toscana Sud; Italian Ministry of University and Research, National Biodiversity Future Center, PNRR,
Grant/Award Number: CN00000033

Abstract

In riparian forests, clear-cutting causes long-lasting changes in both riparian and aquatic biota. In this work, we examined if past clear-cutting events occurred at different times have imprints on riparian forests in a Mediterranean river in central Italy. We carried out a randomized, plot-based vegetation survey of riparian forests in systematically sampled 500 m-long sectors along the whole river, dividing the riparian zone into two internal and two external strips. From historical aerial photos, past clear-cutting events within plots were detected and classified in age classes: (i) cut in the past 8 years (recent); (ii) cut between 8 and 19 years ago (intermediate); (iii) no signs of clear-cutting in the last 19 years (distant). We analyzed the responses of vegetation to clear-cutting and strip position. Alien species richness was higher and woody species richness was lower in recently clear-cut areas compared to those with a distant clear-cutting event. Moreover, recently cut woods had more alien and synanthropic species. Intermediate clear-cut areas had higher levels of invasion by alien species compared to areas with distant cut. Riparian forests of internal strips are impacted by clear-cutting, but seem to recover in 8-19 years thanks to their natural resilience. Conversely, recent or intermediate clearcutting events did not affect any of the investigated vegetation attributes in the external strips since such forests were already invaded by alien and synanthropic species after human disturbance. Our results confirm that clear-cutting events can have long-lasting effects on Mediterranean riparian forests, confirming the vulnerability of river ecosystems to clear-cutting and suggesting the need for more caution in management practices to improve the conservation status of riparian forests.

KEYWORDS

biodiversity, community composition, disturbance, harvesting, past management, plant diversity, recovery

1 | INTRODUCTION

Riparian areas are nutrient-rich, physically, and ecologically complex ecosystems. They represent transition zones between aquatic and
terrestrial environments, being shaped by the variability of flood regimes and characterized by the coexistence of different habitats and local ecotones (Ward et al., 1999). They have a major role in increasing regional biodiversity, being hotspots of plant species

[^0](Gilliam, 2002; Roberts \& Zhu, 2002). On the contrary, changes in composition can last for longer. Some species linked to old forests and of high conservation concern may take even centuries to recover from cutting (Hermy et al., 1999; Loya \& Jules, 2008). Moreover, some studies highlighted that riparian forests respond differently to overstory harvesting based on their location along the lateral/upland gradient, with those located in the higher reach and in lateral uplands being less resistant and resilient to disturbance (Decocq, 2002; MacDonald et al., 2014). After cutting, forests located further from the water can be colonized by early-successional and ruderal species at the expense of nemoral species. On the contrary, streamside forests are more resistant to cutting-induced changes in species compo-
sition, since they include species typically adapted to natura sition, since they include species typically adapted to natura disturbance regimes (MacDonald et al., 2014).
In the Mediterranean basin, the conservation value of riparian forests as biodiversity hotspots, even when present as remnants, is well same time, even today, clear-cutting keeps on being widely used to same time, even today, clear-cutting keeps on being widely used to
manage riparian woody vegetation, consequently representing one of the major stressors for these forests (Borrelli et al., 2017). The rivers of the Mediterranean basin need particular attention and constant monitoring since they are often located in highly human-modified landscapes. Consequently, Mediterranean riparian forests are often heavily managed to guarantee waterflow and avoid flooding events in agricultural and urban areas. This makes Mediterranean river ecosystems particularly vulnerable to human modifications and climate change (Stella et al., 2013). In spite of this, studies analyzing the ecological impacts of clear-cutting on riparian forests are only available for boreal regions (Biswas \& Mallik, 2010; MacDonald et al., 2014; Mallik et al., 2013; Newaz et al., 2019; Zenner et al., 2012). This lack of knowledge on the effects of clear-cutting on Mediterranean riparian forests implies the missing of scientific bases for a correct planning of management strategies. A better understanding of such issues is
thus needed to detect trade-offs between conservation and manage-
To fill the above-mentioned gaps in knowledge, in this study we examined the impacts of clear-cutting on riparian forests along a Mediterranean river, collecting original field data and using univariate and multivariate analysis of variance approaches. We hypothesize that
clear-cutting has different effects on different vegetation attributes, and that such effects are variable according to time since disturbance and that such effects are variable according to time since disturbance
and distance from the river. Accordingly, our aims were: (a) to assess how clearcut harvesting affects plant species richness and abundance, life forms, and species composition in relation to time since disturbance and (b) to test if the effects of clear-cutting on vegetation vary according to the distance from the river channel.

2 | MATERIALS AND METHODS

The study was carried out in the riparian corridor of the Arbia river,
located in southern Tuscany, central Italy (WGS 84, EPSG 4326:
richness and indispensable for the survival of many other organisms f both aquatic and terrestrial environments (Pielech, 2021; Sabo ems across the World (Richardson 2007. Rodrí-guez-González et al., 2022) and they host some of the most threatened habitats of Europe and the Mediterranean (Gigante et al., 2018). Riparian forest vegetation is a complex of communities characterized by a high spatial and temporal variability driven by multiple environ-
mental gradients, such as those generated by bioclimatic, geomorphological, and land-use features (Angiolini et al., 2017). It represents a fundamental component of rivers, supporting a high number of plant species (Gennai et al., 2021; Naiman et al., 2010; Nucci et al., 2012), performing numerous socio-ecological functions (Caneva et al., 2021; Naiman et al., 2010), and providing ecosystem services (Fisher et al., 2009). In the northern hemisphere, riparian forests are domised by González et al., 2018). These species have a series of reproductive, physiological, and morphological adaptations to counteract flooding, sediment deposition, and erosion, which make them one of the most important components of the river ecosystem (Naiman et al., 2010). However, the extent, structural complexity, and naturalness of ripar
 urban land use, human-induced hydrogeomorphological changes, the building of infrastructures (Brown et al., 2018; Dufour \& RodríguezGonzález, 2019), biological invasions (Lazzaro et al., 2020; Pyšek et al., 2010), and clear-cutting harvesting (Richardson et al., 2007).
 disturbances for riparian forests (Newaz et al., 2019).

Clear-cutting has several effects on riparian forests. It alters abitic componial t al., 2018; Tolkkinen et al., 2020). Moreover, it produces long-lasting changes in the riparian and aquatic biota (Domer et al., 2019; Richardson \& Béraud, 2014; Studinski \& Hartman, 2015). Concerning plant pecies richness, there is contrasting evidence about its changes after cutting events, that is, increases (Boch et al., 2013), decreases (Moola \& Vasseur, 2004), or no changes (MacDonald et al., 2014; Zenner et al., 2013). Studies about plant life forms, which are extensively used in riparian ecosystems as proxies of funtion Angiolini et al., 2011; Bejarano et al., 2020), showed how clearutting events reduce the presence of certain life forms in riparian forests (Biswas \& Mallik, 2010; Newaz et al., 2019). Furthermore, there is a substantial agreement among studies that uncut riparian forests significantly differ in species composition from cut riparian forests. Clear-cut forests lose part of their pool of late-seral species and gain
ruderal and alien invasive species, which sometimes become the domnant component of such communities (Loya \& Jules, 2008; Richardson et al., 2007). Time since the disturbance event is a crucial factor when assessing the effects of forest management on the spelies richness and composition of riparian vegetation (Rob Gilliam, 1995). As regards species richness, an initial decrease is fol-
lowed by a recovery within a few decades in most cases
(a) ANGIOLINIETAL.
FIGURE 1 (a) Map of the Arbia river and its catchment area, location of the river in Italy, and sampling design. Yellow dots represent plots. Numbers represent the selected sectors; (b) Schematic representation of the position of plots within a sector; each plot is placed in a differen
iparian strip. Plot codes indicate their sector number, bank side (L, left; R, right), and strip position (E, external; l, internal). Coordinates: EPSG 3003. [Color figure can be viewed at wileyonlinelibrary.com]
$11.275^{\circ} \mathrm{E}, 43.477^{\circ} \mathrm{N}$ to $11.475^{\circ} \mathrm{E}, 43.138^{\circ} \mathrm{N}$) (Figure 1). The river alien species, spreading after human disturbances (Cierjacks et al., 2013; Motta et al., 2009). Two parts of the river corridor are protected under the European Habitats Directive: the upper reach is included in the Spe-
cial area of conservation (SAC) "Monti del Chianti" [IT5190002], and a small part of the medium reach is included in the SAC "Crete di Camposodo e Crete di Leonina" [IT 5190004].
To investigate the status of riparian forests after clear-cutting events, we carried out a plot-based vegetation survey along the entire longitudinal gradient of the Arbia riparian corridor. Sampling effort was
higher in the upper reach, since the river is geomorphologically more complex there. In fact, geomorphological complexity directly affects the heterogeneity of plant communities by generating a higher number of different ecological niches (Tukiainen et al., 2019). Moreover, the amount of forested area was much higher in the upper reach. To distinguish between the upper and lower reaches, we classified the river according to Strahler (1957). Reaches having a Strahler order from one to four were considered the upper reach. Reaches having a Strahler order of more than four were considered the lower reach. To include biotic and abiotic variations along the longitudinal gradient,
we divided the course of the river in 125 sectors of 500 m-length,
 $11.275^{\circ} \mathrm{E}, 43.477^{\circ} \mathrm{N}$ to $11.475^{\circ} \mathrm{E}, 43.138^{\circ} \mathrm{N}$) (Figure 1). The river $573.48 \mathrm{Km}^{2}$, and elevation ranges between about 550 and 150 m a.s. The bioclimate is transitional between Temperate and Mediterranean (Pesaresi et al., 2017). Geological substrates are represented by carbonatic flysches and marls in the upper reach and by silty-clay Pliocene deposits in the lower reach (Regione Toscana, 2022). The river has a permanent fow, though some reaches almost comp out during summer, with seasonal flooding events occurring in spring
and autumn. Due to such permanent flow, the natural riparian forest vegetation of the river is represented by azonal woods dominated by Alnus glutinosa, Populus sp pl., and Salix sp. pl., common to many parts of Eurasia and north Africa and well distinguished from the riparian scrub vegetation of intermittent Mediterranean rivers (Mucina et al., 2016).
In the upper reach, land use is represented by broadleaved deciduous forests (mainly Quercus cerris and Q. pubescens hardwoods), vineyards, and olive groves (Casini et al., 1995). In the medium and lower reaches, the river runs through a valley characterized by urban, industrial, and agricultural land use (De Dominicis \& Casini, 1997). Here, the few remnants of natural/semi-natural vegetation are represented by pioneer vegetation of biancana badlands, shrublands, and woods (Maccherini et al., 2011). Natural riparian forests with Alnus glutinosa, Populus sp. pl., and Salix sp. pl. are present where human impact is lower. Such forests

Nucci et al., 2012). Each sector was centered on the river channel and (ii) intermediate cut (hereafter " l "): plots that have been cut between 8 and 19 years ago (transition periods: 2002-2005, 2005-2007,
2007-2010, 2010-2013); (iii) distant or absent cut (hereafter "D"): plots that have not been cut in the last 19 years (reference orthophoto of year 2002).
We calculated the following attributes for each plot: (i) species richness; (ii) species richness of each life form group and of alien species and (iii) abundance (cumulated percentage species cover) of each life form group and of alien species. After checking for the noncollinearity of the categorical variables (function VIF in the package car of R [R Core Development Team, 2022]), to investigate the effects of clear-cutting factor and strip position on these univariate attributes, we used two-way factorial ANOVA models with clear-cutting age classes (R, I, D) and strip position (internal, external) as fixed factors. When the clear-cutting factor was significant, we carried out post hoc
pairwise Tukey tests. Moreover, if the clear-cutting factor or its interpairwise Tukey tests. Moreover, if the clear-cutting factor or its inter-
action with strip position was significant, pairwise Tukey tests were carried out to assess differences between clear-cutting age classes within internal and within external strips. ANOVA models were calculated using type III sum of squares. All the tests were performed using
 To investigate the effects of clear-cutting factor and strip position
 we used permutational analysis of variance (PERMANOVAAnderson, 2001) using type III sum of squares. When the clear-cutting factor was significant, we carried out pairwise comparisons with the
 interaction within strip position was significant, pairwise t-tests were carried out to test for differences between clear-cutting age classes
 with 9999 permutations of residuals under a reduced mode
 Clarke, 1993) to highlight the species contributing the most to the dissimilarity between plots with different clear-cutting age classes and
 metric multidimensional scaling ordination (NMDS) to visualize the
 clear-cutting age class, plotting the species having a Spearman correlation > 0.45 with the NMDS axes. Both the PERMANOVA

Before the ANOVA, PERMANOVA, and NMDS analyses, data
ere $\log _{2}(x+1)$ transformed to reduce the right-skewness of data distribution and the influence of species with high covers. We set alpha at 0.05. The SIMPER analysis was instead carried out on
 a fixed width of 40 m per side (Clerici et al., 2013; Sutula et al., 2006). Nineteen sectors-one each threewere selected in the upper reach and 13 sectors-one each five-were selected in the lower reach, for a total of 32 sectors (Figure 1a). Each bank (left/right) was divided in two contiguous 20 m wide strips
(4 strips per sector), to guarantee a homogeneous sampling effort along the lateral gradient. The strips close to the river were defined as "internal strips," while the outer ones were defined as "external
 Of the resulting 128 plots, we a-posteriori selected the 60 forest plots, that is, where the tree canopy exceeded 50% of the overall plot 18 were located in the external strips. All the selected plots had a 18 were located in the external strips. All the selected plots had a
rectangular shape $\left(25 \times 2 \mathrm{~m}^{2}\right)$ and were oriented with their longer
 of vegetation along the lateral gradient (Lite et al., 2005; Pielech, 2021; Popescu et al., 2021).

2.3 | Vegetation survey

2.4 | Classification of clear-cutting events

To classify and define clear-cutting events in our plots, we visually interpreted aerial orthophotos at 7 years (2002, 2005, 2007, 2010, 23 (QGis Dello 3.20.3 (QGIS Development Team, 2021). Diachronic analyses of
orthophotos are commonly used to detect spatiotemporal changes and structural transitions caused by management in riparian vegetation (Miller et al., 1995; Sawtschuk et al., 2014). We defined clearcutting as the removal of at least 90% of the overall tree vegetation cover among two subsequent orthophotos at a given sampling site (Appendix A, Supplementary Material 1). We categorized clear-cutting events in 3 age classes, according to their distance in time from the

路

TABLE 1 Effects of clear-cutting age class, strip position, and their interaction on the richness of all the species and on the richness and
abundance of alien species and life-form groups in the 60 plots, based on the ANOVA.

Source of variation	Df	Species richness					Species abundance (\% cover)			
		$\frac{\text { Overall }}{\mathrm{F}}$	$\frac{\text { AIS }}{\mathrm{F}}$	$\frac{\mathrm{AnS}}{\mathrm{~F}}$	$\frac{\mathrm{HPS}}{\mathrm{~F}}$	$\frac{\text { WS }}{\mathrm{F}}$	$\frac{\text { AlS }}{\mathrm{F}}$	$\frac{\mathrm{AnS}}{\mathrm{~F}}$	$\frac{\mathrm{HPS}}{\mathrm{~F}}$	$\frac{\text { WS }}{\mathrm{F}}$
Clear-cutting age class	2	0.667	$9.423^{* * *}$	2.482	0.262	4.004*	6.413**	1.332	2.202	2.165
Strip position	1	7.222**	0.487	2.601	9.648**	0.345	8.835**	3.564	2.802	1.844
Clear-cutting age class \times strip position	2	0.3598	0.5333	0.2293	0.5906	0.82	0.759	0.547	0.545	0.588
Residuals	54									
Total	59									

PERMANOVA was performed using the PERMANOVA routine in We highlighted different effects of clear-cutting within strips. Namely, the number of alien species was higher in R and the number of woody species was higher in D within the internal strips. Con-
versely, clear-cutting had no effects on univariate vegetation attributes in the external strips (Figure 4).

3.3 | Multivariate analyses

Both clear-cutting age class and strip position significantly affected species composition (Table 2). Conversely, there was no significant interaction among factors. Regarding clear-cutting age classes, R and D were significantly different in species composition. Concerning clear-cutting age classes in relation to strip position, R and D resulted be significantly different only within the internal strips (Table 3). ruderal species such as Artemisia verlotiorum, Robinia pseudoacacia, Anisantha sterilis, and Urtica dioica, but also pioneer riparian trees like Populus nigra, were linked to R. Conversely, nemoral grasses like Brachypodium sylvaticum and riparian trees like Alnus glutinosa and Corylus avellana were more abundant in D (Table 4). Plots positioned in internal and external strips had an average dissimilarity of 80.54 . Plant
communities in the internal strips were characterized by a higher cover of typical riparian trees such as Populus nigra, Alnus glutinosa, and Corylus avellana, as well as of native herbaceous species like Brachypodium sylvaticum and alien herbaceous species like Artemisia verlotiorum. Conversely, the external strips were characterized by a higher abundance of alien and synathropic taxa, such as Robinia pseudoacacia and Ailanthus altissima in the tree layer and Anisantha sterilis and Urtica dioica in the herbaceous layer. Here, also non-riparian
native woody species are more abundant, for example, Acer campesLigustrum vulgare, and Rubus ulmifolius (Table 4).

The two main gradients highlighted by the NMDS of plot are consistent with the SIMPER results. Along the first axis, there is a transition from synanthropic species, linked to R, to nemoral species, linked to D. Similarly, the second axis highlights a turnover from aquatic and
nemoral species in internal strips to synanthropic species in external nemoral species in internal strips to synanthropic species in external
strips (Figure 5). PRIMER 6, including the add-on package PERMANOVA+ (Gorley \& Clarke, 2008). The NMDS analysis was performed using the function metaMDS in the package "vegan" in R (Oksanen et al., 2020).

$3 \mid$ RESULTS

3.1 General results

Recent clear-cutting events were detected on 19 plots. Intermediate lear-cutting events were detected on 13 plots. Distant or absent clear-cutting events were detected on 28 plots. Full plant community

We recorded a total of 349 vascular plant species, belonging to 220 genera and 72 families. Herbaceous perennial species were 182, annual species were 103, nigra, Robinia pseudoacacia, Acer campestre, and Alnus glutinosa were
the most frequent tree species. Among shrubs, Rubus caesius, R. ulmifolius, Cornus sanguinea, and Euonymus europaeus were the most frequent. Clematis vitalba and Hedera helix were the most frequent vine species. Chaerophyllum temulum, Galium aparine, Brachypodium ylvaticum, and Poa sylvicola were the most frequent herbaceous species.

3.2 | Univariate analyses

The richness of both alien and woody species significantly differed between clear-cutting age classes, with the former being higher in R and the latter being higher in D (Table 1; Figure 2a). The abundance of alien species was significantly higher both in R and I in comparison to D (Table 1; Figure 2b). Concerning strip position, both overall and her baceous perennial species richness were significantly higher in the
internal strips (Table 1; Figure 3a). The abundance of alien species internal strips (Table 1, Figure 3a). The abundance of alien species significant interactions were detected between clear-cutting age classes and strip position (Table 1).

FIGURE 3 Boxplots showing differences in species richness (a) and abundance (cumulative percentage cover) (b) in the studied riparian forest communities according to strip position. Single values are shown as dots. Mean values are shown as black lines. AIS, alien
species; AnS, annual species; E, external strip position; HPS, species, AnS, and
herbaceous perennial species; I, internal strip position; Overall, total species richness; WS, woody species. Different letters indicate
statistically significant differences at $p<0.05$ (Tukey tests). in such terms. Some studies in boreal zones highlighted an increase of species richness immediately after cutting, due to the colonization by heliophilous native and alien species (Roberts \& Zhu, 2002). In fact, clear-cut forests are highly heterogeneous and contain a high number of ecological niches. This allows them to host more species than
homogeneous ecosystems like undisturbed forests (Davis et al., 2000). Other studies, in accordance with our results, found no effects of clear-cutting on the species richness of riparian forests (MacDonald et al., 2014; Zenner et al., 2013). This is supported by resource-rich environments like riparian ecosystems being more resis-

Despite clear-cutting being one of the most relevant anthropogenic
pressures on riparian forests, to the best of our knowledge no studies号 have documented its impacts on such ecosystems in the Mediterra-
nean basin. We assessed whether past clear-cutting events have nean basin. We assessed whether past clear-cutting events have imprints on riparian forests by analyzing the responses of several veg-
etation attributes, and confirmed our initial hypothesis that the effects f this kind of disturbance differ across time, space, vegetation types, of this kind of disturbance differ across time, space, vegetation types,
and different response variables.

We did not detect any effect of different clear-cutting age classes
on the overall plant species richness. Previous evidence is contrasting

WILEY $\quad 7$

FIGURE $4 \quad$ Boxplots of alien and woody
species richness within strips. Single values are species richness within strips. Single values are shown as dots. Mean values are shown as black
ines. D, distant or absent cut; I, intermediate cut; R, recent cut. Different letters indicate
statistically significant differences at $p<0.05$ statistically significant differences at $p<0.05$
(Tukey tests).
$\begin{array}{ll}\text { AB LE } 2 \text { Effects of clear-cutting age class, strip position, and } & \text { TABLE } 3 \\ \text { Differences in species composition between plots } \\ \text { heir interaction on species composition according to the } & \text { according to different clear-cutting age classes and to different clear }\end{array}$
according to different clear-cutting age classes and to different clear-
cutting age classes within strips (t-test). \square
1.087
$1.573^{* *}$
1.326
1.326
0.855

 species, maintaining their abundance over time (Lazzaro et al., 2018,
2020). Furthermore, river ecosystems are naturally prone to the inva2020). Furthermore, river ecosystems are naturally prone to the inva-
sion by alien plants due to their dynamic hydrology and because they

 showing a significant decrease in R compared to D. Consistently, cutting is one of the main factors affecting woody species richness in
 However, species richness alone is not a good indicator of the modifications of plant communities, since the number of species might remain the same even after important species turnovers following disurbance events (MacDonald et al., 2014; Newaz et al., 2019). R plots had a higher richness of alien species than D plots. Moreover, both R and I plots had higher abundance of alien species than D -nasd p!u!qoy pue mno!! doacacia. Thus, the effects of clear-cutting in favoring biological invasions were still detectable up to 19 years after disturbance. This was expectable, since disturbances generate environmental changes, such
as increases in light availability, which favor the spread of alien species Richardson et al., 2007; Tolkkinen et al., 2020). Many alien invasive secies, such as R. pseudoacacia, extensively colonize fluvial terraces

[^0]: This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
 © 2023 The Authors. River Research and Applications published by John Wiley \& Sons Ltd.

