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ABSTRACT

The direct involvement of the public in data collection and analysis can be a powerful tool to 
fill information gaps, while simultaneously improving community influence on urban planning and 
land management policies. Using a robust case study, this paper shows how Citizen Science (CS) 
data can support complex sustainability transitions. In a study of the Ombrone River Basin (ORB) 
in Italy, the paper shows how data produced by a large group of citizen participants was integrated 
into official datasets on land use and water quality, demonstrating the potential for this method in 
supporting the monitoring of Sustainable Development Goal (SDG) indicators at the local level. 
In addition, through scenario analysis including a reforestation hypothesis, the paper offers useful 
pointers for leveraging and optimising the voluntary participation of non-professional scientists in the 
various stages of research and innovation activities, in support of data-driven policies and planning 
that take environmental sustainability into account.
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INTRODUCTION

In 2015, the United Nations signed the 2030 Agenda for Sustainable Development, which 
established a powerful strategic framework based on 17 Sustainable Development Goals (SDGs), 
169 targets, and an unprecedented set of indicators capable of tracking their level of achievement, 
revolving around the five Ps (people, planet, prosperity, peace, and partnership). Based on three key 
principles established in the agenda—to be indivisible, universal, and participatory—SDGs trace a 
collective path to leave no one behind and require tight collaboration among scientific researchers, 
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decision-makers, institutions, and nonstate actors in order to accelerate processes of change in 
individual, institutional, and collective behavior (Cossu et al., 2023).

To date, many SDGs are still far from being achieved. To assess their progress, a framework 
and set of indicators were developed through a shared global methodology, but these are viable only 
when data are available to support them. While national governments have the primary responsibility 
to measure SDG targets and indicators, parallel monitoring should also take place at subnational 
and local levels to ensure consistency of the policies and actions undertaken and also to ensure their 
effectiveness in a territorial context based on a logic of “one size does not fit all.”

Official statistics used for the monitoring processes have typically been based on data collected 
and validated by national governments [e.g., through surveys, censuses, etc. (Fraisl et al., 2020)]. 
Nevertheless, traditional data sources are not always sufficient for measuring all the targets. This 
is not only because the data are sometimes not available or costly to obtain, but also because, in 
some cases, official datasets are lacking in accuracy or geographical coverage and/or are not always 
produced at the geographical scale suitable for observing the phenomenon being studied. Moreover, 
official data incur high production costs and long periods for their release, and they can quickly 
become outdated. Therefore, “new and nontraditional sources of data are required. Citizen science 
[CS] is an emerging example of a nontraditional data source that is already making a contribution” 
(Fritz et al., 2019, p. 922).

Although a single definition is yet to be agreed upon, CS broadly “refers to the active engagement 
of the general public in scientific research tasks…[CS] is a growing practice in which scientists and 
citizens collaborate to produce new knowledge for science and society” (Vohland et al., 2021, p. 
1). Although some studies have shown the potential use of CS data for monitoring SDGs (Fritz et 
al., 2019), to our knowledge, data collected through CS have been used for reporting on only a very 
limited number of cases for a specific target at the national or global level (Fraisl et al., 2020, 2023a).

The aim of this article is therefore to shed light on the future role and potential of CS for monitoring 
SDGs. By means of a practical application of data generated as part of the activities of the Citizen 
Science for Rivers (CS4RIVERS) project (Citizen Science for Rivers, n.d.) on the Ombrone River 
Basin (ORB) in Tuscany and through the use of forecasting models (up to the year 2050 and including, 
among others, a reforestation scenario), we demonstrate how data produced through CS not only are 
able to contribute to the estimated values of SDG indicators that were previously unmeasured but 
also can guide useful policy recommendations for taking concrete action, developing sustainable and 
data-driven policies, and planning activities. The ultimate goal of this research is thus to offer useful 
approaches for optimizing the voluntary participation of nonprofessional scientists in the various stages 
of research, innovation activities, and policymaking in support of planning that takes into account 
environmental sustainability and the participation of local actors and stakeholders.

CS AS A TOOL FOR RESEARCH, INNOVATION, AND POLICYMAKING

CS has existed for a long time. Historically, its application was rooted in the natural sciences—
from biodiversity conservation to environmental monitoring and natural resource management (Crain 
et al., 2014; Hyder et al., 2015; Chandler et al., 2017; Kelly et al., 2019). In 2016, more than 80% of 
CS practices were devoted to life and natural sciences and 11% to the social sciences and humanities 
(Hecker et al., 2018a, p. 193).

In recent years, the digital turn (Ash et al., 2018; Westera, 2012), advancements in information 
technology, and new ways of collecting data such as crowdsourcing, digital sharing, online projects, 
and social networks (Hecker et al., 2019; Vohland et al., 2021) have enabled the proliferation of CS 
applications and projects that not only address the environmental sphere but also are increasingly 
being used to address a wide range of societal challenges (Haklay, 2013).

CS has further expanded through EU funded projects, and it is encouraged by Horizon Europe to 
“support and promote the involvement of citizens, civil society, and end users in public engagement, 
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CS, and user-led innovation modes of research and innovation” (European Commission, 2021). In 
this regard, eight pillars have been identified by the European Commission to promote open science, 
and CS is one of the activities specifically mentioned as being capable of (and aimed at) “promoting 
public engagement in research and innovation and enhancing public trust in science” (European 
Commission, n.d.). As a result, CS is increasingly being applied to interdisciplinary research in the 
social sciences and humanities (Hecker et al., 2018a; Tauginienė et al., 2020; Albert et al., 2021), 
with prominent examples in urban planning (Karvonen & Van Heur, 2014; Devisch et al., 2016; 
Butkevičienė, 2021) and sustainable urban development (Albert et al., 2021; Cappa et al., 2022).

CS for Sustainability: Challenges and Advantages
The proliferation of CS programs has stimulated a great deal of curiosity and studies about the 

effects and impacts of projects and initiatives (Skarlatidou & Haklay, 2021). Successful elements but 
also disadvantages and challenges can be synthesized according to a framework that traces the three 
pillars of sustainability: social, economic, and environmental (Millar & Searcy, 2020).

In terms of the social pillar, CS expands the opportunities for public participation in scientific 
research, builds knowledge, increases the well-being and literacy of citizens, and thus serves social 
and educational purposes. When interviewed, CS project participants indicated that their involvement 
increases scientific knowledge and provides information for the greater good (Martin, 2016). In many 
cases, participation in CS programs creates resilience to key local- to global-scale environmental 
issues (e.g., CS has supported local communities in terms of geohazard monitoring and disaster 
resilience) (Lee et al., 2020, p. 615). Existing studies show that CS boosts engagement in urban and 
environmental management by members of the public and that it increases awareness of the importance 
of research and monitoring (Crain et al., 2014) in policymaking and urban and regional planning.

By serving causes with and for the population, and by answering the calls for nonscientists’ 
engagement in knowledge production processes (Hecker et al., 2019), CS has increasingly shown its 
potential for the democratization of science (Irwin, 1995). This is further encouraged by the very nature 
of CS initiatives that are the result of a cocreation exercise in which different stakeholders—ranging 
from interested citizens to scientific institutions, local organizations, public authorities, businesses, 
members of the educational sector, etc.—take part (Carayannis et al., 2012). Due to the participation 
of a variety of stakeholders, CS initiatives also strengthen local network ties, train stakeholders to 
participate, and enhance local development processes. As a result, CS research findings are increasingly 
being used to design more democratic, less research-centric approaches to creating policy-informing 
science (Mattei, 2023).

However, CS also faces challenges related to accessibility, justice, equity, diversity, and inclusion. 
In terms of accessibility, one issue is the digital divide and the possibility of using digital tools, 
mobile applications, platforms, or instrumentation that is expensive or otherwise not accessible 
to all categories of user (e.g., elderly people). In terms of equity, diversity, and inclusion, CS has 
been accused of not being “an egalitarian variant of science, open and available to all members of 
society” (Cooper et al., 2021, p. 1386). Indeed, assessments have shown that CS participants “are 
overwhelmingly white adults, above median income, with a college degree” (Cooper et al.). Finally, 
exploitation of free work (citizens/volunteers normally are not paid for their contributions), private 
data (e.g., from participants), and data collected (that have a value) have been raised as crucial issues 
that are often overlooked in CS (Tauginienė et al., 2020).

With regard to the economic pillar, CS allows a series of research phases and/or tasks to be 
conducted more quickly and economically. Contributions from a large number of citizens increase 
the cost-effectiveness and overall investment of the project (Kieslinger et al., 2018; Bonney et al., 
2009). This has a direct effect also on the efficiency of data collection, resulting in a greater temporal 
extent and finer spatial resolution of the data collected (Ballard et al., 2018). Citizen scientists with 
longer engagement provide a large amount of valid data, e.g., to document the worldwide presence 
or absence of birds (Lepczyk, 2005). CS experiments have proven to provide data at finer spatial and 
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temporal scales than would otherwise be possible (Diblíková et al., 2019), as data are often collected 
at higher frequencies than traditional data sources used as inputs to the SDG indicators, as well as in 
a spatially disaggregated manner (Diblíková et al., 2019).

Nevertheless, potential economic disadvantages remain, for example, setup costs (Kieslinger et 
al., 2018). If a project involves the use of a mobile application that does not exist or is not accessible as 
an open-source product, this may be a barrier to entry. Overall, all preparatory phases of CS projects, 
such as the training and equipping of citizen scientists, have a per capita cost. CS data collection is 
labor intensive and often requires much more work than expected to ensure the data quality needed 
for scientific analysis. Data quality is, in fact, one of the greatest challenges in CS projects (Loiselle 
et al., 2016; Quinlivan et al., 2020; Stankiewicz et al., 2023), depending mainly on the clarity of data 
collection protocols, data forms, and the presence of support for participants (Bonney et al., 2009). 
Nevertheless, “assessing and quantifying the quality of data is still an area of debate” (Fraisl et al., 
2020, p. 1747).

Often, the number of participants to be included in a CS project is relatively high, and when 
technical equipment is needed for evaluations (e.g., in the environmental field) and it is not sufficient 
merely to observe and report on mobile apps, the costs increase (Kieslinger et al., 2018). Long-term 
projects require feedback and subsequent training of citizen scientists, so the financial sustainability 
of projects is in many cases dependent on the availability of funding. Finally, long-term projects 
require commitment by individual volunteers, while “most contributors participate only once and 
with little effort” (Sauermann & Franzoni, 2015, p. 679), leaving the top 10% of them responsible 
for almost 80% of total classifications (Sauermann & Franzoni).

When it comes to the environmental pillar, it is widely acknowledged that CS contributes to the 
monitoring and reduction of environmental impacts (Cappa et al., 2022, p. 649). According to Chandler 
et al. (2017), CS makes substantial contributions to national and international biodiversity monitoring 
and has revealed its full potential to help generate the environmental data needed to understand and 
address wider challenges such as loss of biodiversity, flooding risks, deforestation, air pollution, etc. 
Besides stimulating and increasing public interest and engagement, which are essential for societal 
change (Hecker et al., 2018b), policies and grass-roots activities ideated or boosted in the framework 
of CS projects (e.g., nature-based solutions) have enhanced human–nature interactions, pro-nature 
conservation behaviors, and nature connectedness (Bonney et al., 2009).

Clearly, CS is more than just a way to gather environmental data, and despite the wide and 
well-established use of CS in the field of environmental monitoring, it should be noted that its use is 
also growing in urban areas for diverse purposes, e.g., to map, monitor, and assess the condition of 
roads and their walkability, architectural barriers, odors, silenced areas, etc. (Butkevičienė et al., 2021). 
The use of CS in urban settings can represent a strategy for cities to combine environmental benefits 
with those of sustainable urban planning, helping to reconcile human life with the environment. The 
application of CS at the urban scale, as “an essential ally for sustainable cities” (European Commission, 
2023), is also strongly promoted by the European Commission within the Horizon 2020 and Horizon 
Europe programs, as evidenced by the increasing number of EU funded projects tackling a wide array 
of urban challenges. Examples include the recently funded Urban ReLeaf (European Union Citizen 
Science, 2023), CitiObs (n.d.), and GREENGAGE projects (Sanz, 2024).

Finally, environmental disadvantages are not often explored or mentioned in the literature. 
Limitations exist, and some challenges have been identified by a survey of participants in CS projects 
(Martin et al., 2016). For example, merely accessing some sensitive sites could harm biodiversity, or 
revealing the location of rare animal or plant species could risk loss or damage (e.g., making them 
traceable for illegal activities, poaching, illegal collectors, or general damage). More generally, doubt 
has been expressed as to how the data (often made open access) may be used to benefit the natural 
environment.
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The Contribution of CS to SDG Monitoring and Achievement
Among the recognized impacts of CS, its actual and potential contribution to the monitoring and 

achievement of the SDGs is of increasing importance. A growing body of studies addresses this issue; 
as we will discuss briefly, some contribute more theoretically, while others contribute through specific 
reviews and case study analyses. The literature examining the contribution of CS to the monitoring 
of SDGs is very diffuse and is frequently based on specific and goal-related case studies at different 
territorial scales (often at the local scale and relating to the precise interventions of citizen scientists 
in specific locations); inferring the potential to scale up these practices to regional or national scales 
is particularly complex.

West and Pateman (2017) pointed out how CS can contribute to the definition, monitoring, and 
evaluation of SDGs by identifying 42 of the 169 targets to which CS could potentially contribute. Some 
studies carried out at the EU level have analyzed CS projects in declarative terms, i.e., whether the 
project states that it aims to contribute directly to the achievement of one or more SDGs or whether 
it does so indirectly (Bio Innovation Service, 2018).

Similarly, Liu et al. (2023) analyzed 44 projects active between 2016 and 2027 in more than 100 
European cities that, through EU funding, conducted research projects involving the use of CS and 
that had a link—direct or indirect—with the SDGs. The study revealed that CS practices in cities 
predominantly relate to SDG 3 (good health and well-being), 11 (sustainable cities and communities), 
and 13 (climate action). However, there is a difference between what is declared (in the project or by 
the participants) and what is officially used at the city level for official monitoring.

In a survey of CS projects by Ballerini and Bergh (2021), subjects were asked, “Is your project 
familiar with the 17 SDGs?” Most participants claimed that their involvement was rather superficial 
and that the subjects “never explicitly engage with [the SDGs]” (Ballerini & Berg, p. 1956).

Among the most recent initiatives, of particular interest is the creation in 2020 of the Task Group 
on Data from Participatory Mapping for the SDGs (Committee on Data of the International Science 
Council [CODATA], n.d.). Aimed at supporting the use of citizen-generated data toward achieving the 
requirements of the Result Framework proposed by the United Nations 2030 Agenda, the CODATA 
group amplifies the values and contributions of citizen-generated data and in particular its fitness for 
use by the United Nations and NGOs to make data work for cross-domain grand challenges.

Nevertheless, to date and to our knowledge, only a few international organizations use CS data 
for SDG monitoring and reporting—specifically the World Bank, United Nations Environment 
Programme (UNEP), UN Office for Disaster Risk, International Union for Conservation of Nature, and 
the World Health Organization (Fraisl et al., 2020, 2023b). The authors undertook a comprehensive 
systematic review of the SDG indicators by analyzing a wide array of CS projects, determining 
for each SDG indicator whether “data from at least one CS project” has already been used for 
monitoring or reporting the SDG indicator at national or global level, could potentially contribute, 
or is not aligned (Fraisl et al., 2020, p. 1738). In particular, this in-depth study reveals that CS data 
are already contributing directly to only five indicators, most of which related to an environmental 
and social issue: 9.1.1, rural access index; 14.1.1, index of coastal eutrophication and floating plastic 
debris density; 15.1.2, proportion of important sites for terrestrial and freshwater biodiversity that 
are covered by protected areas, by ecosystem type; 15.4.1, coverage by protected areas of important 
sites for mountain biodiversity; and 15.5.1, red list index.

According to UNEP (2024), in order to improve data coverage, Sierra Leone and Zambia for 
the first time combined citizen-generated data with national monitoring data to report on ambient 
water quality (SDG 6) with the launch of the Citizen Scientist 632 Toolbox (UNEP, 2021) for the 
monitoring of SDG Indicator 6.3.2, the proportion of water bodies with good ambient water quality. 
The lack of information for this indicator is a widespread problem in many countries, including Italy, 
because reporting on it requires (among others) in situ water quality data to be collected on basic 
physicochemical parameters from designated monitoring locations on a defined sample collection 
schedule.
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In Italy, our analysis of the national SDGs reports (Italian National Institute of Statistics [Istat], 
n.d.) for the past 20 years (and related datasets) regarding Indicator 6.3.2 and its components reveals 
that a proxy (partial) for the statistical measure of coastal bathing waters was produced from 2013 to 
2019; percentage of rivers with high or good quality of ecological state and percentage of rivers with 
good quality of chemical state were estimated at the hydrographic district level in 2015 and 2021. 
Nevertheless, they are not reported on the country’s most recent official Istat report (Istat, 2023). 
At the regional level, river indicators were estimated only in 2015. For the following years and/or 
at finer territorial levels, indicators on water bodies (rivers, lakes, and groundwater) are missing.

In order to fill this gap and to contribute to this emerging body of studies, in the next sections 
we offer a concrete example of how CS data can be used to monitor and report on this indicator for 
an Italian river basin.

CASE STUDY: THE WATER QUALITY OF THE ORB

Study Area
The ORB is located in the part of central Italy facing the Tyrrhenian Sea (Fig. 1). With a length 

of 161 km, the Ombrone is the second largest river of Tuscany after the Arno (241 km). It flows north 
to south through the southernmost part of the Tuscan region, reaching as far as the region’s central 
valley, and then turns southwest until it reaches its delta in the municipality of Grosseto (42° 46’ 
N, 11° 06’ E). The river has the highest flow of suspended solid sediment among the Tuscan rivers. 
This is due to the high erodibility of the rocks on which the river has established its course. The 
surface area of its basin is 3,494 km2. It has several tributaries, including, on the hydraulic right, the 
Arbia, which rises on the slopes of the Caballari hill (648 m ASL), near Castellina in Chianti, in the 
province of Siena, and flows into the Ombrone at Buonconvento; the river Merse, 70 km long, which 
originates on the Croce di Prata hill and flows into the Ombrone shortly after receiving the Farma 
(its first tributary) at Piani di Rocca; and the Gretano and Lanzo Rivers. The left-hand tributaries of 
the Ombrone are the Melacce, the Trasubbie, the Maiano, the Grillese, the Rispescia, and the Orcia. 
The latter is the most important, with a total basin area of 748 km2.
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Figure 1. The ORB and the 2019 CORINE land cover

Approximately 280,000 inhabitants live in the basin area distributed among 38 municipalities, 
of which 25 are in the province of Siena and 13 in the province of Grosseto (Istat, 2021). The climate 
of the ORB is influenced by the Tyrrhenian Sea and its mitigating action, by the overall exposure to 
the west, and by the protection to the east offered by the Apennine barrier, which contrasts with the 
infrequent but cold winter currents from the east and northeast. The predominant currents are those 
from the west and especially those from the northwest, and the wind regime is influenced by the 
succession of depressions of Mediterranean origin and by orographic depressions during the winter 
semester: the latter, from October to April, pull in humid currents from the south over Tuscany.

Available Data for SDG Monitoring on the Case Study
Environmental data in Italy are available from various national [e.g., the National Institute for 

Environmental Protection and Research (ISPRA)], regional (e.g., regional environmental protection 
agencies), and local (e.g., municipal) sources. Parallel to this, the entity entrusted by the UN Statistics 
Division with the task of coordinating the production of national indicators for measuring and 
monitoring SDGs is Istat. Since 2018 (Istat, 2018), Istat has published the SDGs report1 (Istat, n.d.), 
which describes, on an annual basis, Italy’s position along the path of sustainable development and 
offers some thematic and analytical insights at different territorial levels, where available.

Regarding water quality in Tuscany, the agency responsible for producing official data is the 
Regional Agency for Environmental Protection of Tuscany (ARPAT).
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As a proxy for Indicator 6.3.2 (percentage of water bodies with good ambient water quality), 
the European Water Framework Directive (European Union, 2000) established that the quality of 
water bodies is measured by the assessment of ecological and chemical status2. By using the latest 
ARPAT measures (2023), we can estimate that in 2021, 44% of the ORB water bodies were of good 
environmental quality, while 56% of the remaining water bodies of the basin did not reach that status.

Although ARPAT carries out a series of sampling and data collection activities on the regional 
river basins, the first and only useful measure (proxy) for the regional scale (Tuscany) was published 
in 2015, while no specific SDG river water quality indicator was produced at either the municipal 
scale (Siena and/or Grosseto) or the local scale (ORB). As discussed above, this information gap is 
reflected in the Istat annual report, which does not include these indicators.

To fill this gap at the local level, we utilized CS data combined with existing data sources to 
assess Goal 6, clean water and sanitation, Indicator 6.3.2, proportion of bodies of water with good 
ambient water quality. Moreover, the CS data are compared with those produced by ARPAT for mutual 
quality control and are then used to forecast water quality under a series of possible future scenarios 
to demonstrate how such CS data can also be used for future planning purposes.

The CS4RIVERS Project: Objectives, Methodology, and Data Collection
The sampling campaigns were developed as one step in the CS4RIVERS project, which started 

in September 2022. This is an initiative led by the National Biodiversity Future Center with the aim 
of establishing an observatory for river biodiversity in the ORB, including tributaries, through the 
monitoring and protection of river biodiversity.

Through CS4RIVERS, citizens can take part in one or more types of activities, including the 
monitoring of the macroinvertebrate community, the monitoring of riparian vegetation, and water 
quality measurements. For the purposes of this article, only water sampling data will be used.

After a citizen recruitment3 and training campaign—a standard step in any CS project—in the 
period September 2023 to July 2024, a group of 21 citizen scientists carried out monthly sampling 
and data collection activities4. Sampling sites were identified in collaboration with the volunteers5. 
The data collection, storage, and validation platform identified by the scientists is FreshWater Watch 
(FWW), a global CS project developed by the environmental charity Earthwatch Europe (2022). 
The one-day training events included initial theoretical training and field activities in which citizens 
carried out practical exercises together with the scientists6.

As recognized in other similar CS projects, the level of training of citizen scientists can influence 
the accuracy of monitoring data (Fore et al., 2001). To guarantee the highest level of data accuracy, 
each participant was instructed on key ecosystem concepts and freshwater issues, and during the 
practical sessions they were provided with all the equipment and sampling kits (as discussed below 
and shown in Fig. 2) and instructed on the project’s sampling protocol and on the FWW methodology 
and mobile app. Citizens were given time to practice using the sampling kits during field activities 
along the river under the supervision of the scientists, who were able to provide feedback, answer 
questions, and verify the accuracy of the operations carried out by the citizens.
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Figure 2. FreshWater Watch kit

Note. The kit includes a reusable Secchi tube, a sample cup, color charts, 15 nitrate tests, 15 phosphate 
tests, an instruction sheet, and a pair of compostable gloves.

To validate the model, trained citizens used the FWW method and mobile app to determine and 
report on water quality at 50 sites in the Ombrone catchment. More precisely, participants collected 
both observation data (color, presence of algae, etc.) and semiquantitative measurements of nitrate, 
phosphate, and nephelometric turbidity.

Traditional scientific methods employ standardized protocols to ensure that the data collected 
meet specific standards, and it is largely because of the lower accuracy of equipment and simpler data 
quality control procedures used in CS projects that the scientific community and official monitoring 
agencies often question or distrust data from CS projects (Hoyer & Canfield, 2021). With this in 
mind, the colorimetric method—also employed in this CS project—is low cost and easy to use for 
almost everyone and provides ranges or classes of concentrations (Win et al., 2019; Quinlivan et al., 
2020). The large amount of data collected by the colorimetric method reduces this difference, and 
the data are useful for providing a baseline of water quality conditions or for identifying pollution 
hotspots, as demonstrated in other studies following the FWW methodology (e.g., Thornhill et al., 
2017; Zhang et al., 2017; Ulloa et al., 2020).

In terms of specific semiquantitative measurements, while nitrate (NO3) is a primary form of 
nitrogen (N) in lakes and streams, phosphate (PO4) is the most common form of phosphorus (P) in 
natural waters. Nitrate-nitrogen (NO3–N) and phosphate-phosphorus (PO4–P) levels were therefore 
measured in closed plastic tubes, which are designed to mix a fixed volume of water with reagents 
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to produce increasing color values (peak absorption at 540 nm) with increasing concentration7. The 
median values for each classification were used for quantitative analysis.

During the measurements, geolocation and time were recorded automatically using the FWW app 
and transferred to the online database. As summarized in Fig. 3, according to the FWW methodology 
the final stage concerns the validation of the data performed by both the platform and project scientists. 
Once entered, all data underwent quality control by project leaders and citizen scientists. Data were 
checked by experts against samples from similar areas and from the ORB.

Figure 3. FreshWater Watch methodology

Note. From left to right, the pictures show classroom and field training sessions; sampling activities 
conducted by the trained citizens; and data quality verification, processing, and reporting by the 
FWW platform and local project experts.

Of particular interest are the data collection points along the course of the rivers. In several 
cases, the coordinates provided by citizen scientists were incorrect, as they did not correspond to the 
location of a water body, most likely due to uncalibrated GPS devices or poor network coverage. As 
instructed in the FWW protocol, participants must provide a brief site description and/or a photograph 
of the collection point. These allowed the incorrect coordinates to be relocated correctly during the 
validation phase by the project scientists.

Thanks to the local and experiential knowledge of those who habitually frequent the basin 
context (such as fishermen, trekkers, teachers, and citizens), the network of data collection points has 
been expanded compared to the monitoring points used by ARPAT. Ten selected sites were defined 
by project members in correspondence with or near ARPAT monitoring sites. This reinforces data 
quality and not only is useful for the validation of the CS data against official data by the project 



11

International Journal of E-Planning Research
Volume 13 • Issue 1 • January-December 2024

experts but also allows verification of the accuracy of the official data released by ARPAT. Other 
sites were selected directly by citizens considering accessibility to the site (e.g., the road network in 
Fig. 4), interest in monitoring a specific area, or proximity to their home. As can be seen from Fig. 
4, the network of CS monitoring points is more widespread and capillary than the official one: there 
are more than 50 CS monitoring sites (blue dots) on a monthly basis in the CS4RIVERS project, 
compared to the 32 official ones of ARPAT (red dots), which carries out only four data collection 
campaigns per year.

Figure 4. CS4RIVERS project and ARPAT monitoring sites (2024)
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Consistent with the benefits produced by CS, it was agreed among local governments, academia, 
citizens, and environmental agencies—and formalized with an official agreement between the 
University of Siena and ISPRA—that data on biodiversity and water quality will flow into the 
repository of ISPRA’s National Biodiversity Network. ISPRA will then use this data to develop the 
National Strategy for Biodiversity Protection. Data collection standards were then defined to make 
them interoperable and integrable with other data (e.g. “Open Toscana”, an open data repository for 
Tuscany).

MODEL DEVELOPMENT: WORKFLOW

Model development and validation were performed using information from different regional, 
national, and global datasets and through in situ monitoring from both ARPAT (2024) and CS4RIVERS 
citizen scientists. The geographic and temporal dynamics of the nutrient export and retention in 
the ORB were modeled following the mass balance approach of the InVEST software kit nutrient 
delivery ratio model (Version 3.14.2) (Stanford University, n.d.). This model is based on mapping 
nutrient sources and their potential for transport to the river to identify the spatial variation in nutrient 
retention across the watershed with respect to different land use/land cover (LULC) conditions (e.g., 
vegetative areas) and catchment morphology (Di Grazia et al., 2021).

Catchment nutrient dynamics were based on nutrient loads across the landscape and the nutrient 
retention capacity of the landscape. Nutrients loads per LULC were identified from data acquired in 
collaboration with ARPAT and available empirical data by Istat. Nutrient flows were divided into 
sediment-bound (transported via surface flow) or dissolved (and transported via subsurface flow). A 
nutrient delivery ratio index was simulated for each pixel (10 m resolution) of the catchment based on 
the nutrient loads, LULC, and a digital elevation model. At the watershed outlet, the P and N export to 
the river was calculated based on the weighted aggregation of pixel-level contributions: site-specific 
information related to the maximum retention efficiency, a runoff proxy (i.e., annual precipitation) 
representing the spatial variability in runoff potential, and an estimate of the proportion of nutrients 
delivered via subsurface and surface flows. The subsurface flow was considered for N only and was 
estimated from NO3 concentrations in the ground and surface waters.

Data Sources for Model Development and Validation
In addition to the data collected by the citizen scientists, data required to develop and validate 

the nutrient N and P models were obtained from multiple sources. Some of these are as follows:

•	 A digital elevation model, of 10 m resolution, obtained from the Italian National Institute of 
Geophysics and Volcanology (Tarquini et al., 2023), which was corrected to fill hydrological 
sinks and checked with the digital watercourse network to ensure routing along the specific 
watercourse using QGIS 3.46.

•	 LULC raster data (2019) were obtained from Tuscany Region geoservices (Open Toscana, 2021) 
based on CORINE LULC Level 4 for Italy at a 100 m resolution.

•	 Nutrient runoff proxies were based on raster precipitation data from 2012 to 2023 at a 10 m 
resolution (Regione Toscana Servizio Idrologico Regionale, 2024). These raster data were 
interpolated using an inverse distance weighting of information from 59 ARPAT stations.

•	 Future nutrient runoff proxies were based on precipitation estimates for 2050 by Dezsi et al. 
(2018) with high-resolution gridded surfaces (1 km cell size) developed in an Albers equal-area 
conic projection for Europe.

•	 Vector delineation of the watershed was obtained from the geoportal of the Basin Authority of 
the Northern Apennines relative to the Water Protection Plan 2015–2021 (Autorità di bacino 
distrettuale dell’Appennino Settentrionale, 2015).
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•	 The threshold value for flow accumulation, the number of upriver cells that flow into a cell 
before it is considered part of a river, was set to 1,000 after several tests to compare the river 
layer output of the model to the measured river network data.

•	 Borselli’s k for the connection of the surrounding land to the river with respect to the ratio of 
nutrients reaching the river was set to 2 (Borselli et al., 2008).

•	 The nutrient (P and N) sources associated with each LULC class (kg ha-1 year-1) were based 
on the estimation of N and P loads resulting from the resident population, industrial activities, 
agricultural and uncultivated land use, and livestock activities (ARPAT, 2001). For CORINE 
LULC Classes 111–142 (artificial surfaces), data were obtained from the Italian population census 
(Istat, 2021) and the enterprises census (Istat, 2011). The CORINE LULC Classes 210–244 
(agricultural areas) for each municipality were scaled for the quantities of N and P present in 
fertilizers reported in the Istat lists of fertilizers by province (Istat, 2022). For CORINE LULC 
Classes 311–523 (forest and seminatural areas and water bodies), nutrient load data for 2019–2023 
were obtained from ARPAT (2024).

•	 Retention efficiencies for N and P, as the maximum nutrient retention expected from each LULC 
type, were calculated following Pärn et al. (2012), Mayer et al. (2007), and Zhang et al. (2010).

•	 Retention lengths for N and P for each LULC class, as the typical distance necessary to reach 
the maximum retention efficiency, were based on previous studies of riparian buffers and ranged 
from 10 to 300 m. In the absence of data, the retention length was set to the pixel size.

•	 Subsurface critical length, the distance after which the soil retains N at its maximum capacity, 
was set to 200 m following Mayer et al. (2007). Maximum retention of N reached through 
subsurface flow was set to 0.8.

•	 NO3 and PO4 concentrations were obtained through regulatory (ARPAT, 2023) and CS 
measurements. Quarterly ARPAT monitoring of total N and total P in ten stations in the ORB 
was used for model development.

The complete biophysical table is available in the Supplementary Materials (STab 1)

Scenarios
In order to inform local policymakers about possible impacts on water quality related to land 

management and data-driven planning policies, we developed a multiple-scenario analysis, including 
a forecast analysis based on a future reforestation setting. Scenario analysis is a process of examining 
and evaluating possible events and policy options that could take place in the future by considering 
various feasible outcomes. The development of several scenarios helps to understand what actions 
are needed to achieve better (good) water quality in the river as required by the European Water 
Framework Directive and what actions are needed to achieve SDG 6.3.2.

The overall period considered for the scenario analyses is 2019–2050. Below are the proposed 
scenarios and a discussion of the methodological reasons for this choice:

A. 	 Baseline scenario (2019)
B. 	 Medium-term (business as usual) (2030)
C. 	 Long-term (including climate change) (2050)
D. 	 Reforestation scenario (2050)

CORINE Land Cover was used to conduct the analysis for the current scenario (2019), with a 
spatial resolution of 100 m. The future land cover scenario was developed based on an analysis of 
land-use change trends (from 1990 to 2023), including photometric and satellite-based images.

The scenarios are outlined in more detail below. CS data produced by the project is used in 
Scenarios B, C, and D:
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A. 	 The 2019 baseline scenario8 is the situation that has been used to compare, calibrate, and 
validate the future model predictions. This model considered the 2019 nutrients, river flow, and 
precipitation data by the regional environmental monitoring agency (ARPAT).

B. 	 The medium-term scenario analysis focuses on predicting the future in the medium term (5–10 
years, up to 2030)9 based on available and existing past and present data, including CS data, e.g., 
using current trend analysis methods (a continuation of present business as usual) extrapolated 
into the future.

C. 	 The long-term scenario analysis focuses on making projections in the long term (up to 2050) 
based on what might happen under a specific set of assumptions, which at the time of making the 
projections was judged plausible. In this case, the assumptions are based on the climate changes 
(temperature and precipitation) modeled by the Intergovernmental Panel on Climate Change 
(IPCC)10, which globally predicts a +1.5°C (±0.5) increase in temperature and a reduction in 
precipitation by 2050.

D. 	 The reforestation scenario is a long-term backcasting model that focuses on planning in the 
medium (5–15 years) or long term (>15 years). Backcasting is a method that starts with defining 
a desirable future and then works backward to identify policies and programs that will connect 
that specified future to the present (Bibri, 2018). In this case, the climate assumptions are the 
same as in Scenario C, but these are compounded by the assumption of reforestation (see Fig. 5) 
based on 10% reforestation11 of selected agricultural areas of the ORB. The reforested areas were 
identified mainly along the river network to promote the buffering function (nutrient removal) 
of riparian forests (Gumiero & Boz, 2017).
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Figure 5. Reforestation scenario (D) with mixed forest (LU class 313)

As already tested by other scholars, introducing scenarios allows policymakers to estimate the 
consequences of actions or inactions over time. In the case of Scenario C, as already applied by Dezsi 
et al. (2018), who estimated a reduction in water availability across Europe—with a more pronounced 
decrease in southern Europe—the scenario analysis allows the estimation of the quantity and quality 
of water available in the future, considering the effects of climate change already estimated by the 
IPCC. Scenario D goes a step further with the introduction of a possible action (reforestation) that 
has been shown to improve water quality in this and other rivers (Gumiero & Boz, 2017; Di Grazia 
et al., 2021).
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RESULTS AND DISCUSSION

In reference to SDG Indicator 6.3.2, knowing that the ecological status of surface waters is an 
expression of the quality of the structure and functioning of aquatic ecosystems and that according to 
the 2020 European Water Framework Directive, a quality rating of good is given by the assessment 
of ecological status and chemical status. By using the data collected by the CS4RIVERS project, we 
can estimate that in 2024, 46% of the ORB water bodies are of good quality (versus 44% in 2021, 
estimated using only ARPAT data), while 54% do not reach good status (versus 56% in 2021).

In order to boost water quality and achieve good levels throughout the entire ORB, actions should 
be taken. We suggest, for example, reforestation. This measure would lower the pollutant load of NO3 
and PO4 in the ORB and would therefore contribute to the achievement of SDG 6.3.2.

As shown below, the changes in nutrient retention in the Ombrone catchment, in the medium and 
long term up to 2050, show the relative impact of different land-use scenarios and the impact of climate 
change, in particular increased temperature and decreased precipitation as estimated by the IPCC.

In order to validate the modeled N and P load exported to the river, the ARPAT and CS data were 
used, considering monthly average nutrient concentrations, minimum and maximum values, and river 
water flow for 2019 due to data availability. The monthly average flow rate in the ORB was 22 m3/s.

ARPAT samples (see Table 1) show high concentrations of total N in the winter of 3.1 mg L-1 
and lower concentrations in the summer of 0.5 mg L-1. Total P concentrations were high in the spring 
(2.5 mg L-1) and low in the autumn (0.025 mg L-1).

Table 1. Annual concentrations of total N and P from ARPAT monitoring in the ORB in 2019 and estimated export per year

Nutrient (ARPAT) Mean Min. Max. SD Export (ARPAT) (tonne year-1)

Total N (mg L-1) 1.99 0.5 9 ±1.97 7.63 x 10+3

Total P (mg L-1) 0.14 0.025 2.5 ±0.35 5.34 x 10+2

Note. Standard deviation (SD) is a measure of the amount of variation of the values of a variable about its mean. A low SD indicates that the values 
tend to be close to the mean, also called the expected value.

Trained citizen scientists collected more than 120 samples along the entire ORB (see Table 2), 
where the number of ARPAT monitoring stations is limited (as discussed above in Fig. 2). NO3–N 
concentrations were high in the winter and spring (1.5 mg L-1) and low in the summer (0.35 mg L-1). 
The PO4–P concentrations were low in the summer (0.035 mg L-1) and high in the winter (0.15 mg L-1).

Table 2. Annual concentrations of NO3–N and PO4–P from CS monitoring in the ORB in 2024 and estimated export per year

Nutrient (CS) Min. Max. Mean SD Export (CS) (tonne year-1)

NO3–N (mg L-1) 0.1 7.5 0.8 ±1 2.25 x 10+3

PO4–P (mg L-1) 0.01 0.35 0.06 ±0.07 1.65 x 10+2

Note. SD, see Table 1.

The nutrient delivery ratio index model outputs showed a total N and P export of nearly 4,500 
tonnes per year of N and 600 tonnes of P (see Table 3).
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Table 3. Nutrient delivery model results of the baseline scenario A (2019)

Model nutrients Surface load 
(tonne year-1)

Surface export 
(tonne year-1)

Total export 
(tonne year-1)

Total N 2.99 x 10+4 7.12 x 10+3 1.02 x 10+3

Total P 7.17 x 10+3 1.24 x 10+2 -

Note. Surface load: total P and N loads (sources) in the watershed. Surface export: total P and N export from the watershed by surface flow. Total 
export: total N export from the watershed by surface and subsurface flow.

By using the precipitation scenario raster for 2050, changes in nutrient export were explored. 
By applying the baseline land cover in 2050, P export is expected to increase by 2.2% and N export 
is expected to increase 1.5% (Table 4). A decrease in the delivery and retention of total N and total 
P reflects the precipitation reduction for the 2050 projection.

Table 4. Nutrient delivery model results comparing the scenario estimations of nutrient loads and exports

Scenario P surface 
load (tonne 

year-1)

P surface 
export (tonne 

year-1)

N surface 
load (tonne 

year-1)

N surface export 
(tonne year-1)

N total export 
(tonne year-1)

A. Baseline (2019) 7.17 x 10+3 1.24 x 10+2 2.99 x 10+4 7.12 x 10+3 1.02 x 10+3

B. Mid-term trend (2030) 7.21 x 10+3 1.25 x 10+2 3.00 x 10+4 7.17 x 10+3 1.03 x 10+3

C. Long-term trend (2050) 7.28 x 10+3 1.27 x 10+2 3.00 x 10+4 7.20 x 10+3 1.03 x 10+3

D. Reforestation (2050) 6.41 x 10+3 1.11 x 10+2 2.72 x 10+4 6.92 x 10+3 9.73 x 10+2

Note. Surface load: total P and N loads (sources) in the watershed. Surface export: total P and N export from the watershed by surface flow. Total 
export: total N export from the watershed by surface and subsurface flow.

The reforestation scenario results in a reduction in both the N and the P load and export (see 
Table 4). The P export decreases by 11%, corresponding to a reduction of 459 tonnes per year, while 
the N export reduction is relatively lower (5%), with a reduction of 129 tonnes per year (see Fig. 6).
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Figure 6. Percentage reduction in N and P load (input) and export (output) in different scenarios along the ORB

The results of the simulated nutrient conditions in three different scenarios (B, C, and D) suggest 
that the nutrient load and export in the ORB catchment are sensitive both to climate change and to 
an increase in wooded areas, particularly in agricultural areas where there is a trend in agricultural 
land abandonment (Vergari et al., 2013; Debolini et al., 2015).

Similar to what has been demonstrated in previous research on other river basins in Italy (e.g., 
Di Grazia et al., 2021), reforestation presents multiple benefits, promoting biodiversity (Wade et al., 
2006) as well as reducing surface water runoff and soil erosion, improving water quality (Tasser et 
al., 2007), controlling sediment loss, and improving soil properties (Seeber & Seeber, 2005).

The overall impact of the mid- and long-term scenarios is clear in the reduced export of both P 
and N, with the largest reduction occurring in the reforestation scenario (D). The values support results 
from other studies that show that increased forest cover and decreased agricultural areas decrease 
sediment, N, and P exports (De Mello et al., 2017).

Through the use of spatially explicit models, it was possible to identify the locations within the 
catchment with the greatest sensitivity to climate change and reforestation actions, in this case with 
respect to nutrient loads and nutrient export. The costs of natural reforestation are limited, and the 
benefits for the watershed and the receiving waters (the Tyrrhenian Sea) could be translated into 
support for farmers to manage these lands as productive forests.

It is expected that the new European common agricultural policy (CAP) (Regulation 2021/2115) 
and the Nature Restoration Law (Regulation 2024/1991) will incentivize this land-use transformation. 
The Italian CAP Plan (Goal 2.2 greener CAP) (European Commission, 2024) focuses on the green 
transition of the agricultural, food, and forestry sectors. To this end, more than 80% of the agricultural 
area will comply with good agricultural and environmental conditions, such as establishing buffer 
strips between rivers and agricultural crops to reduce the water pollution12 (Gumiero & Boz, 2017; 
Lampkin et al., 2020). On the other hand, N and P loads from urban wastewater represent a significant 
source (Cozzi et al., 2019). Recent studies on lowland rivers that have created riparian buffer strips 
have demonstrated a high NO3 removal efficiency (Gumiero & Boz).

The unit cost for P removal in different treatment alternatives ranges from 80 EUR/kg of P to 
120 EUR/kg of P (Bashar et al., 2018). Jabłonska et al. (2020) estimated the costs of a hypothetical 
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establishment of wetland buffer zones to reduce the nonpoint source of N and P to be EUR 9 M ± 
107 M to remove 11–82% of the N load and 14–87% of the P load from the catchment. This translates 
into a cost that is saved due to the lack of eutrophication and the problems associated with poor water 
quality (Nie et al., 2018).

The above exercise indicates the way in which complex analysis and recommendation can be 
achieved by boosting traditionally derived institutional data with the inevitably far more volumetric 
and comprehensive data produced by active citizen scientists, the latter group of data being verified 
for validity by expert comparison with both historical and like-for-like data.

CONCLUSION

The purpose of this paper was twofold. The overall objective was to reflect on the future role and 
potential of CS for transitions toward sustainability, while the empirical goal was to demonstrate how 
data produced through CS can contribute to the estimation of SDG indicators that were previously 
unmeasured. Moreover, through forecast analysis, we aimed to provide examples of the possible 
use of CS data to forecast water quality under future scenarios and therefore reveal how CS data 
can also be used for future planning purposes. This exercise allowed us to confirm the validity and 
importance of CS approaches and their contribution to open science by offering useful pointers for 
optimizing the voluntary participation of nonprofessional scientists in the various stages of research 
and innovation activities.

Referring to Indicator 6.3.2, proportion of bodies of water with good ambient water quality, with 
observations collected by the CS4RIVERS project over the course of 11 months (using the FWW 
method), we assessed that 46% of the water bodies of the ORB are of good quality, while 54% do 
not reach good status.

In order to comply with the national and European water regulations and to achieve a good level 
of water quality (thus achieving and advancing SDG 6.3.2), interventions need to be made. What we 
have suggested in this paper is reforestation.

Starting from a baseline scenario (2019) derived using existing official statistics through the 
integration into a forecast model of water quality data collected from citizen scientists on the ORB, 
we made assumptions by deriving possible future scenarios: medium term (to the year 2030) business 
as usual, calibrating the model as a continuation of current trends in water quality and land use; long 
term (to the year 2050) introducing a climate change assumption with increased temperatures and 
decreased precipitation as estimated by the IPCC; and a future scenario to the year 2050 that, leaving 
the previous assumptions unchanged, introduced an intervention: reforestation.

Through these forecasts, we provided an example of how existing information can be used to 
predict water quality trends in a future business-as-usual scenario and compare it with a future situation 
involving climate change and activities to restore environmental quality. The results of our forecasts 
suggest that the water quality of the ORB is sensitive to climate change but also to restoration actions 
(e.g., reforestation).

As discussed by Di Grazia et al. (2021), decreasing trends in P export by rivers in Europe have 
resulted mainly from environmental and agricultural policies leading to reduced nutrient inputs to 
river catchments. The IPCC’s Climate Change Report (IPCC, 2022) and the European Union’s Nature 
Restoration Law (Regulation 2024/1991) emphasize the need to explore the mitigation potential of 
restoration actions and the improved management of forests. The scenario analyses may therefore 
be able to inspire and guide data-driven policies and more conscious spatial planning practices that 
will not only contribute to the goals of the 2030 Agenda but also meet urgent regulatory pressures.

Our research demonstrated that CS contributes to the three pillars of sustainability for a number 
of reasons. It allows socially and environmentally oriented research projects to be conducted and 
data to be collected quickly and economically in accordance with the Sustainability Development 
Goals’ economic pillar.
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Our experiment confirmed that not only can CS data complement the data production of official 
statistics in real time (in terms of both increased frequency and spatial resolution), but it also has the 
potential to have its accuracy confirmed during validation by professional scientists. In addition, the 
current production of a historical CS dataset will soon allow the monitoring of changes in water quality 
in the ORB during the next project year and therefore continuation of the monitoring of SDG 6.3.2.

In remote areas (as in the case of the project), input from citizen scientists may even prove to be 
invaluable, since it can lead to the production of information that otherwise would not be collected 
at all. Indeed, citizens engaged in the CS4RIVERS project have even begun to collect and contribute 
data on FWW about smaller rivers in the areas where they live. This means that in the future, the 
project might be able to use additional information to assess and monitor water quality in other rivers 
of the region.

The active participation of citizen scientists in the CS4RIVERS project is already producing 
a variety of social effects—fulfilling the social pillar—that will be discussed in future outputs of 
this research, and, in line with the environmental pillar, it actively contributes to the monitoring and 
reduction of environmental risks in the study area.

Another important outcome is the collaboration and partnership established as part of the project 
with ISPRA that will enable not only the pooling of resources (the data will feed both into the Open 
Data Tuscany Region and into the National Strategy for Biodiversity Protection) but also has the 
potential to enhance local development processes and data-driven policies and support regional 
planning. This will enable positive long-term results and the systematization of CS efforts.

We also intend to highlight how the formalization and institutionalization of bottom-up 
coproduction processes are leading, at least in the Italian case, to the acceptance of the dataset produced 
within the CS project in Tuscany by the bodies in charge of producing official government statistics.

In conclusion, we argue that greater participation in the management and monitoring of our river 
environments is necessary to further improve their status. CS has proven to be an additional tool 
for supplementing available official data and validating models in this study and others. Involving 
citizens directly in monitoring activities can be a powerful tool to supplement missing information 
and to improve the influence of local communities on their land management policies.
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ENDNOTES

1 	 Istat publishes data and metadata, with specific note, target by target, of the indicators used for each 
goal and indicator, and the geographical scale at which these are made available (or for which a proxy is 
provided).

2 	 “Good” indicates an ambient water quality that damages neither ecosystem functions nor humans. For the 
purpose of global reporting (level 1 of the indicator), overall water quality is estimated based on an index 
that incorporates data on five core parameter groups and informs on major water quality impairments 
present in many parts of the world: oxygen (surface water), salinity (surface water and groundwater), 
nitrogen (surface water and groundwater), phosphorus (surface water), and acidification (surface water 
and groundwater).

3 	 The recruitment of volunteers started in 2023 using different dissemination channels from both the 
university and the various project partners (municipalities, associations, etc.). Meetings for the public 
presentation of the project were held, as well as stakeholder-engagement activities such as forum 
discussions.

4 	 For the purposes of this article, we are therefore using data collected over the course of 11 months. 
Nevertheless, the sampling campaign continues, so it will also be possible to add new information to 
these analyses in future project years.

5 	 Scientists and volunteers visited the river and decided together which sites were most suitable for the data 
collection considering, for example, accessibility of the banks.

6 	 Field training sessions for the chemical water quality took place in Paganico (September 24, 2023), 
Buonconvento (March 7, 2024), and Grosseto (March 28, 2024). Participants received the sampling kits 
(Fig. 2), printed manuals, and all the information needed for the data collection.

7 	 PO4–P concentrations were estimated colorimetrically using inosine enzymatic reactions in seven specific 
ranges from 0.02 mg L-1 to 1.0 mg L-1 PO4–P (<0.02, 0.02–0.05, 0.05–0.1, 0.1–0.2, 0.2–0.5, 0.5–1.0, >1.0 
mg L-1). NO3–N concentrations were estimated colorimetrically using N-(1-naphthyl)ethylenediamine 
in seven specific ranges from 0.2 mg L-1 to 10 mg L-1 NO3–N (<0.2, 0.2–0.5, 0.5–1.0, 1.0–2.0, 2.0–5.0, 
5–10, >10 mg L-1).

8 	 The year 2019 was chosen because is the most recent year where complete data is available for the ORB 
and all its tributaries.

9 	 The years 2030 (B) and 2050 (C) were chosen due to the deadlines to achieve the SDGs and the Green 
New Deal targets. Moreover, the UN-IPCC forecast scenarios are also based on these years.

10 	 Representative Concentration Pathways 4.5 intermediate scenario.
11 	 Conversion of CLC Classes 211, 213, 231, 241, 242, 243, 324, 333, and 334 to Class 313, mixed forest.
12 	 In Italy, Standard 5.2, establishment of buffer strips along water courses (M.D. 27417, December 22, 

2011) establishes that any strip of land, minimum 5 m wide, adjacent to all water courses (with some 
exceptions) where no farming is carried out, can be considered a buffer strip (Gumiero & Boz, 2017, p. 
446).
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APPENDIX

Supplementary Materials
The table shows, for each Land Use (LU) class (kg/ha/year), the biophysical properties related to 

nutrient load and retention. Nitrogen (N) and phosphorus (P) loading to land and retention coefficients 
were derived from existing literature, and data acquired from Italian National Institute of Statistics 
(ISTAT), and the Regional Environmental Agency (ARPAT).

The nutrient retention capacity is expressed as a proportion of the amount of nutrient from 
upslope. High values such as 0.6 to 0.8, are assigned to forests, and indicate that 60-80% of nutrients 
are retained. The critical length is the distance after which the LU class is assumed to retain nutrients 
at its maximum capacity.

Table 5. Basin nutrient dynamics were based on nutrient loads across the landscape and the nutrient retention capacity of the 
landscape

LU class 
code

Load N (kg/ha/
year)

Retention 
N

Critical 
length 

N

Load P (kg/ha/
year)

Retention 
P

Critical 
length 

P

Land use class description

111 164.43 0.6 100 24.48 0.7 100 Continuous urban fabric (IM.D. ≥ 80%)

112 164.43 0.6 100 24.48 0.7 100 Dense urban fabric (IM.D ≥ 30-80%)

1121 164.43 0.6 100 24.48 0.7 100 Low density fabric (IM.D ≤ 30%)

121 97.1 0.6 100 2.36 0.7 100 Industrial, commercial and military units

1211 164.43 0.6 100 2.36 0.7 100 Purifiers

1212 97.1 0.6 100 2.36 0.7 100 Photovoltaic plants

122 164.43 0.6 100 2.36 0.7 100 Railroad networks and technical 
infrastructure

1221 164.43 0.5 100 2.36 0.7 100 Roads in wooded areas

124 164.43 0.5 100 24.48 0.7 100 Airports

131 164.43 0.5 100 24.48 0.7 100 Mining areas

132 164.43 0.5 100 2.36 0.7 100 Dumps

133 164.43 0.5 100 2.36 0.7 100 Construction sites

141 164.43 0.5 100 2.36 0.7 100 Urban green areas

1411 164.43 0.5 100 2.36 0.7 100 Cemeteries

142 164.43 0.5 100 2.36 0.7 100 Recreational and sports areas

210 169.28 0.3 100 41.2 0.5 100 Irrigated and non-irrigated agriculture land

2101 169.28 0.4 100 41.2 0.5 100 Greenhouses

2102 169.28 0.4 100 41.2 0.5 100 Plant nurseries

213 169.28 0.4 100 41.2 0.5 100 Rice paddies

221 169.28 0.4 100 41.2 0.5 100 Vineyards

222 169.28 0.4 100 41.2 0.5 100 Orchards

2221 169.28 0.4 100 41.2 0.5 100 Arboriculture

223 169.28 0.4 30 41.2 0.5 30 Olive groves

231 169.28 0.4 30 41.2 0.5 30 Permanent grassland

241 169.28 0.4 30 41.2 0.5 30 Temporary crops combined with permanent 
crops

242 169.28 0.4 30 41.2 0.5 30 Complex cultivation patterns

continued on following page
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LU class 
code

Load N (kg/ha/
year)

Retention 
N

Critical 
length 

N

Load P (kg/ha/
year)

Retention 
P

Critical 
length 

P

Land use class description

244 169.28 0.4 30 41.2 0.5 30 Agroforestry areas

311 23.7 0.6 30 0.05 0.8 30 Broadleaved forests

312 23.7 0.6 30 0.05 0.8 30 Coniferous forests

313 23.7 0.6 30 0.05 0.8 30 Mixed coniferous and deciduous forests

321 46.37 0.8 30 0.05 0.8 30 Natural pastures and grasslands

322 46.37 0.8 30 2.32 0.8 30 Heaths and shrublands

323 46.37 0.8 30 2.32 0.8 30 Sclerophyll vegetation

331 46.37 0.5 100 2.32 0.5 100 Beaches, dunes and sands

332 46.37 0.5 100 2.32 0.5 100 Bare rocks and outcropping cliffs

333 46.37 0.5 30 2.32 0.5 30 Sparse vegetation

3331 46.37 0.5 30 2.32 0.5 30 Firebreaks

334 46.37 0.5 30 2.32 0.5 30 Damaged forest

411 0.48 0.2 100 0.02 0.2 100 Inland marshes

421 0.48 0.2 100 0.02 0.2 100 Salt marshes

511 0.48 0.2 100 0.02 0.2 100 Canals and watercourses

512 0.48 0.2 100 0.02 0.2 100 Water bodies

521 0.48 0.2 100 0.02 0.2 100 Lagoons

523 0.48 0.2 100 0.02 0.2 100 Sea

Table 5. Continued
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