Multidisciplinary study of the Lower Palaeolithic site of Cimitero di Atella (Basilicata), Italy

This is a pre print version of the following article:

Original:

Availability:

This version is available http://hdl.handle.net/11365/1245474 since 2023-09-22T13:59:16Z

Published:

DOI:10.1016/j.quaint.2023.09.004

Terms of use:

Open Access

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. Works made available under a Creative Commons license can be used according to the terms and conditions of said license. For all terms of use and more information see the publisher's website.

(Article begins on next page)
Abstract: The Lower Palaeolithic site of Cimitero di Atella is located in the Basilicata region (Southern Italy), about 10 km south of the extinct Monte Vulture volcano. The site was discovered in the early 1990s and was continuously excavated for nearly twenty years under the supervision of Professor E. Borzatti von Löwenstern (University of Florence). This open-air site contained a five-metre-thick fluvio-lacustrine sequence characterized by the occurrence of two main archaeological units with lithic industries and faunal remains. Based on the composition of the lithic assemblages, and in particular the presence of handaxes in the Lower unit, Borzatti von Löwenstern (et al., 1997) attributed the site to the Early Acheulean. Cimitero di Atella was interpreted as the result of various lake shore occupations linked to the exploitation of large mammals (Palaeoloxodon antiquus and Bison sp.) and the opportunistic use of raw materials to produce simple small and large lithic tools (Borzatti von Löwenstern et al., 1997). The purpose of this paper is to present the last five years of research at the site. Geochronological, palaeontological and palynological investigations have been conducted to shed light on the environmental and chronological context of the site and the associated human occupations levels. This first essential step enables us to evaluate the nature and potential of archaeological data in order to place the results in a broader framework.
<table>
<thead>
<tr>
<th>Email</th>
<th>Name</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>rzmrn@unife.it</td>
<td>Biagio Giaccio</td>
<td>biagio.giaccio@cnr.it</td>
</tr>
<tr>
<td></td>
<td>Jean-Luc Guadelli</td>
<td>jean-luc.guadelli@u-bordeaux.fr</td>
</tr>
<tr>
<td></td>
<td>Małgorzata Kot</td>
<td>m.kot@uw.edu.pl</td>
</tr>
<tr>
<td></td>
<td>Laurent Deschodt</td>
<td>laurent.deschodt@inrap.fr</td>
</tr>
</tbody>
</table>
Dear Editor,

I have the honour to submit, on behalf of all the collaborators, this article entitled “Multidisciplinary study of the Lower Palaeolithic site of Cimitero di Atella (Basilicata), Italy”. This is a first synthetic work on the Lower Palaeolithic site of Cimitero di Atella in Italy. We resumed excavation on the site in 2016 and carried out new studies on the archaeological material, but also on the environmental context and the chronostratigraphic framework. Roxane ROCCA and Daniele AURELI have the excavation permit from the Italian Heritage and manage the field organisation and documentation together with Lucie GERMOND, Amélie DA COSTA and François FOURIAUX. Roxane ROCCA, Daniele AURELI, Lucie GERMOND and Amélie DA COSTA participate to the lithic study. Paolo GIANNANDREA, Dario GIOIA and Marcello SCHIATTARELLA, conducted the geological study, Alison PEREIRA and Sebastien NOMADE the Ar/Ar dating, Jean-Jacques BAHAIN and Pierre VOINCHET the ESR dating. The archaeozoological and palaeontological study was led by Francesco BOSCHIN, Alessio IANNUCCI, Beniamino MECOZZI and Raffaele SARDELLA. Donatella MAGRI and Federico DI RITA where in charge of the palynological analysis. All the co-author to the article produced the figures and text corresponding to their skill and have approved the final version of the manuscript.

Hoping that this article will be of interest to your review.

Best regards,
Roxane ROCCA
Multidisciplinary study of the Lower Palaeolithic site of *Cimitero di Atella* (Basilicata), Italy.

Roxane ROCCAa, Paolo GIANNANDREAb, Alison PEREIRAc, Jean-Jacques BAHAINd, Francesco BOSCHINe, Amélie DA COSTAf, Federico DI RITAg, François FOURIAUXh, Alessio IANNUCCIi, Lucie GERMONDIj, Dario GIOIAk, Donatella MAGRIl, Beniamino MECOZZIi, Sebastien NOMADEm, Raffaele SARDELLAi, Marcello SCHIATTARELLAb, Pierre VOINCHETd, Daniele AURELIn.

a. Université Paris 1 Panthéon-Sorbonne, école d’histoire de l’archéologie de la Sorbonne, UMR 8068, Technologie et Ethnologie des Mondes PréhistoriqueS (TEMPS), MSH Mondes, Bâtiment René Ginouvès, 21 Allée de l’Université, 92023 Nanterre Cedex, France. roxane.rocca@univ-paris1.fr

b. Dipartimento delle Culture Europee e del Mediterraneo, Università della Basilicata, via Lanera, 20 – 75100 Matera, Italy. paolo.giannandrea@unibas.it marcello.schiattarella@unibas.it

c. Université Paris-Saclay, Umr 8148 GEOPS, Campus de l’Université Paris Sud Bâtiment 504, Rue du Belvédère, 91405 Orsay Cedex, France. alison.pereira@universite-paris-saclay.fr

d. Muséum national d’Histoire naturelle de Paris, Département « Homme et Environnement », UMR7194, Histoire Naturelle de l’Homme Préhistorique (HNHP), 1 rue René Panhard, 75013, Paris, France. jean-jacques.bahain@mnhn.fr pierre.voinchet@mnhn.fr

e. Università Degli Studi di Siena, Dipartimento di Scienze Fisiche, Della Terra e Dell'Ambiente, UR Preistoria e Antropologia, Via Laterina 8, IT 53100, Siena, Italy. boschin@unisi.it

f. Service départemental d'archéologie du Val d'Oise, UMR 7041, ArScAn, Equipe AnTET, MSH Mondes, Bâtiment Max Weber, 21 Allée de l’Université, 92023 Nanterre Cedex, France. amel.dacosta@gmail.com

g. Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Piazzale Aldo Moro 5,
Abstract:

The Lower Palaeolithic site of Cimitero di Atella is located in the Basilicata region (Southern Italy), about 10 km south of the extinct Monte Vulture volcano. The site was discovered in the early 1990s and was continuously excavated for nearly twenty years under the supervision of Professor E. Borzatti von Löwenstern (University of Florence). This open-air site contained a five-metre-thick fluvio-lacustrine sequence characterized by the occurrence of two main archaeological units with lithic industries and faunal remains. Based on the composition of the lithic assemblages, and in particular the presence of handaxes in the Lower unit, Borzatti von Löwenstern (et al., 1997) attributed the site to the Early Acheulean. Cimitero di Atella was interpreted as the result of various lake shore occupations linked to the exploitation of large mammals (*Palaeoloxodon antiquus* and *Bison* sp.) and the opportunistic use of raw materials to produce simple small and large lithic tools (Borzatti von Löwenstern et al., 1997).
The purpose of this paper is to present the last five years of research at the site. Geochronological, palaeontological and palynological investigations have been conducted to shed light on the environmental and chronological context of the site and the associated human occupations levels. This first essential step enables us to evaluate the nature and potential of archaeological data in order to place the results in a broader framework.

Keywords:
Lower Palaeolithic, Quaternary, Monte Vulture Volcano, Geology, Geochronology, 40Ar/39Ar geochronology, Lithic industry, Early–Middle Pleistocene Transition (EMPT)

1. Introduction

The Lower Palaeolithic site of Cimitero di Atella is located in the Basilicata region (Southern Italy), about 10 km south of the extinct Monte Vulture volcano (Figure 1). The site was discovered in the early 1990s and was continuously excavated for nearly twenty years under the supervision of Professor E. Borzatti von Löwenstern (University of Florence). This open-air site contained a five-metre-thick fluvio-lacustrine sequence characterized by the occurrence of two main archaeological units with lithic industries and faunal remains. Based on the lithology of the sedimentary layers and biochronological information from the faunal assemblages, the site was confidently attributed to the Middle Pleistocene timescale (Borzatti von Löwenstern et al., 1990; Ciolli, 1997; Di Muro, 1999; Zucchelli, 2002). The presence of volcanic materials (tephra, ignimbrites and reworked volcanic minerals found in the fluvial deposits) typical of the early explosive activity of the Monte Vulture volcano indicates that human occupation took place between about 740 ka and 480 ka (Di Muro, 1999). Based on the composition of the lithic assemblages, and in particular the presence of handaxes in the Lower unit, Borzatti von Löwenstern (et al., 1997) attributed the site to the Early Acheulean. Cimitero di Atella was interpreted as the result of various lake shore occupations linked to the exploitation of large mammals (*Palaeoloxodon antiquus* and *Bison* sp.) and the opportunistic use of raw materials to produce simple small and large lithic tools (Borzatti von Löwenstern et al., 1997).

In the light of increased early Acheulean evidence over the past decade (García-Medrano et al.,
2014; Moncel et al., 2016, 2019; Mosquera et al., 2016), as well as the still-open debate on the modes and temporality of the emergence of handaxes in Europe (Moncel and Schreve, 2016; Moncel et al., 2018; Nicoud, 2013; Rocca et al., 2016a), Cimitero di Atella is of particular interest. The presence of handaxes and large cutting-tools before 0.5 Ma is now well attested, mainly in South-western Europe. This is generally explained by a second wave of settlement originating from Africa driving classical Acheulean development. In many respects, this hypothesis is still tenuous as available data are still scarce for this pivotal period in Europe, between early settlement and the classical Acheulean. Moreover, the comprehensive interpretation of settlement dynamics during this period is difficult, given the diversity of archaeological contexts (cave, palimpsest, snapshot, etc…), as well as the plurality of lithic methodological approaches. In this background, the site of Cimitero di Atella will undoubtedly help to test the various hypotheses concerning the diffusion of the Acheulean in Europe.

At the end of Borzatti von Löwenstern excavation at the site, many questions were still pending. First of all, the chronological attribution based on volcano-stratigraphic correlation required confirmation by sedimentological analysis and radiometric dating. Secondly, the question of site formation dynamics was crucial to interpret the archaeological record and assess the different taphonomic aspects. Finally, it was indispensable to study the archaeological material with a methodology adapted to topical issues in order to compare it to other contemporaneous sites.

A new multidisciplinary research project was thus launched at Atella in 2015, aiming to understand the site infilling and to clarify the archaeological context of the sequence. This work was rendered possible by the advancement of stratigraphic and palaeoenvironmental research on Middle Pleistocene volcanic and epiclastic successions outcropping at the Monte Vulture volcano and in the adjacent Atella and Venosa fluvio-lacustrine basins (Schiattarella et al., 2005; Giannandrea et al., 2006; Giannandrea, 2009; Schiattarella et al., 2016). New excavation campaigns were carried out and the material (lithic and fauna) preserved in the Melfi Museum collection was re-studied.

The purpose of this paper is to present the last five years of research at the site. Geochronological, palaeontological and palynological investigations have been conducted to shed light on the
environmental and chronological context of the site and the associated human occupations levels. This first essential step enables us to evaluate the nature and potential of archaeological data in order to place the results in a broader framework.

2. Regional setting

2.1 History of research at Atella

Since the end of the nineteenth century, the Monte Vulture region, and in particular the Venosa and Atella basins (see SM1).

Since the 2000s, research focused on the upper part of the stratigraphy, and revealed an alluvial environment with a high composition of volcanoclastic sediments (Borzatti von Löwenstern, 2011).

In parallel, Borzatti von Löwenstern’s team installed explanatory panels around the site and published a series of books geared towards the general public (Borzatti von Löwenstern, 1985; Borzatti von Löwenstern and Sozzi, 2001). The systematic excavation by the Florentine research group ended in 2012.

Renewed interest in the non-bifacial component of Lower Palaeolithic lithic industries led to a technological and techno-functional study of all the lithic industries from level F of the Atella site (Abruzzese, 2014). From 2017 to 2021, research at Atella was mainly funded by the École française de Rome as part of a larger programme on settlement dynamics during the Lower Palaeolithic in Italy (Rocca et al., 2018, 2020; Rocca and Aureli, 2019). Currently, the site of Atella is part of a valorization project funded by local and European institutions.

2.2 Geological context

The study area is in a volcanic district of Southern Italy, characterized by a complex stratigraphy of interbedded pyroclastic and sedimentary deposits spread over a 750 km² area along the external (i.e., north-eastern) sector of the Apennines chain (Figure 2, a). More precisely, the Cimitero di Atella site is located at the top of the fluvial-lacustrine succession of the Atella Basin (Giannandrea et al., 2006), about 10 km south of the Monte Vulture volcano (Figure 2, b).
The volcanic sequence has been subdivided into unconformity-bounded stratigraphic units (UBSU), in turn grouped into two Middle Pleistocene Supersynthems, labelled Monte Vulture and Monticchio (Tab. 1). The Monte Vulture Supersystem includes the products of the central volcano (subdivided into the Foggianello, Barile, and Melfi synthems), the underlying alluvial sediments, and the fluvial-lacustrine infill of the Atella and Venosa basins (Figure 2), whereas the Monticchio Supersynthem comprises products correlated to some small eruptive vents. The age of the Monte Vulture Supersynthem ranges from 698 ± 8 ka to 573 ± 4 ka, whereas the time-span of the Monticchio Supersynthem is between 494 ± 5 ka and 141 ± 11 ka (Giannandrea et al., 2006; Villa and Buettner, 2009).

The lacustrine silty-sandy clay and the heteropic alluvial conglomerate of the Atella Basin i) cover the ignimbrite deposits of the Fara d’Olivo Subsynthem (Table 1), ii) are correlated with the pyroclastic and fall deposits of the Rionero Subsynthem, and iii) are covered by lava and pyroclastic flows of the Vulture - San Michele Subsynthem (Giannandrea et al., 2014; Schiattarella et al., 2016; Table 1). The latter are overlain by epiclastic deposits of the Piana del Gaudo and by travertines of Atella village. (Figure 3).

3. Material and methods

The new research on the Palaeolithic site of Cimitero di Atella begin in 2014 after excavations by the Borzatti von Löwenstern team had stopped. In this section we will present the material studied in this paper and the methods employed. These include excavation methods in the field, geological, geochronological and palaeoenvironment data, and the sampling and study methods applied to faunal and lithic remains.

3.1. Excavation method

The excavation strategy had to take into account constraints linked to the state of preservation of the site. During the initial excavation years in the early 1990s, the Borzatti von Löwenstern team decided to build a first protective cover. It consisted of a roof covering the excavation area, supported
by a first module made of metal tubes. Then, over the following years, a series of interventions were carried out. The covered surface was extended towards the cemetery wall, in order to increase the excavation surface. When the new research project began in 2015, the site was therefore covered by the metallic protective structure (SM2a) and included more than 2 metres section limiting the excavation possibilities. Moreover, as some archaeological finds were still exposed on the excavation surface, in 2015 we first of all focused on the restoration and when possible the recording of finds. During these two preliminary years of the project, we concentrated in particular on the revaluation of the chronostratigraphic context, by drilling two cores, one from each side of the site, and collecting samples for radiometric dating. In 2016, 2017 and 2018, we began the excavation of several square metres in the F levels inside the Borzatti von Löwenstern area, and in 2019 we opened a new 25 m² area to the east of the former excavation (Figure 4). In 2020, we were able to enlarge the excavation area owing to a project promoting archaeology led by the Atella municipality. The Borzatti von Löwenstern protective structure was dismantled and a new area was opened with mechanical diggers. The excavation area is now 250 m² and includes the Borzatti von Löwenstern area and the 2019 area (Figure 4), which is now covered by a new adapted covering roof.

In each geological unit, the archaeological excavation proceeded by artificial levels of 5 cm, per quarter of a square metre, in order to locate the small elements found in the sediments during sieving. The three coordinates (x, y, z), the direction, dip and dip angle were recorded for all remains larger than 1 cm. The exploitation of these data is still in progress, and together with the micromorphological analysis, will provide information on the formation process of the levels.

3.2. Geology

The stratigraphy of the exposed sediments of the Cimitero di Atella site was studied and the sediments from the drilling cores were analysed (Figure 4a). The detailed sedimentological analysis, which took into account grain size, sorting, and primary sedimentary structures, brought to light a series of lithofacies grouped into two associations, briefly described in Table 2. The facies were determined and interpreted on the basis of papers by Miall (1978), Walker and James (1992), Fisher
and Schmincke (1994), Sanders et al. (2009), Nehyba and Nývlt (2014), and Palladino et al., (2018).

In addition, some layers were sampled for palynological and geochronological analyses. In order to establish lateral stratigraphic correlations between the deposits from the Cimitero di Atella site and the Monte Vulture sequence, we performed a detailed field survey in the Atella village area, studying a topographic profile across the Atella plateau and drilling two cores (Figure 3, Figure 4a). From a geomorphological viewpoint, the investigated site is located on a flat-topped hill, overlain by travertine deposits. A straight scarp crosses this sub-horizontal land surface, due to the presence of a high-angled normal fault cutting into the entire succession (Figure 5).

3. 3. Dating

Four sedimentary layers (Figure 6), labelled Atella INF (ash flow deposit Tng, 5 m below the archaeological excavation), F, I and L2, were dated by $^{40}\text{Ar}/^{39}\text{Ar}$ on single grains at Cimitero di Atella. In addition, two levels, L1 and L3 (Figure 6), were sampled for ESR dating of optically-bleached quartz grains.

3.3.1. $^{40}\text{Ar}/^{39}\text{Ar}$

The samples were crushed and sieved, and crystals were extracted from the 500-250 µm fraction size. They were then cleaned in distilled water using an ultrasonic bath. Unaltered and pristine potassic feldspars (mainly sanidines) were then handpicked under a binocular microscope and leached with a 7 % HF solution for about 5 minutes to remove potential particles and alteration phases from the surface of minerals. Thirty to fifty crystals were selected to be irradiated. They were loaded into aluminium discs. Prior to mass spectrometric measurements, samples were activated in two distinct irradiations. All the samples were irradiated in the β_1 tube of the Osiris reactor (French Atomic Energy Commission, Saclay France). Sample Atella INF was irradiated for 60 min (IRR 99) while samples F, I and L2 were irradiated for 90 min (IRR 108). Interference corrections were based on the nucleogenic production ratios given in Guillou et al. (2018) for Osiris. After irradiation, crystals were transferred into a copper sample holder and individually loaded into a differential vacuum Cleartan© window. The analytical procedure is described in detail in Nomade et al. (2010). Minerals were fused
one by one using a 25 Watts Synrad CO2 laser at about 10 to 15 % of nominal power. The extracted gases were then purified for 10 min by two hot GP 10 and two GP 50 getters (ZrAl). Argon isotopes (40Ar, 39Ar, 38Ar, 37Ar and 36Ar) were successively measured using a VG 5400 mass spectrometer equipped with an electron multiplier (Balzer SEV 217 SEN). Each argon isotope measurement consisted of 20 cycles of peak-hopping. Neutron fluence J for each sample was calculated using co-irradiated Alder Creek sanidine standard (ACs at 1.1891 Ma, optimization calibrated age of Niespolo et al., 2017) and the 40K total decay constant of Renne et al., 2011). For the two irradiations (IRR 99 and 108), J-values were computed from a monitor co-irradiated with each dated sample (Atella INF: J = 0.000396998 ± 0.00000199; F: J = 0.00039550 ± 0.00000159; I: J = 0.00038743 ± 0.00000155. L2: J = 0.0004186 ± 0.00000029). Mass discriminations were monitored by the analysis of air pipettes throughout the analytical period, and relative to a 40Ar/36Ar ratio of 298.56 (Lee et al., 2006). Procedural blank measurements were taken after every two or three unknown samples. For a typical 10-minute duration of isolation, typical backgrounds are about 2.0-3.0 x 10-17 and 5.0 to 6.0 x 10-19 moles for 40Ar and 36Ar, respectively.

3.3.2. ESR on bleached quartz

ESR analyses of quartz grains were performed using the multi-centre approach, based on the measurement of both aluminium (Al) and titanium-lithium (Ti-Li) centres in a given quartz sample (Toyoda et al., 2000; Tissoux et al., 2007). Indeed, these two ESR centres display different behaviours with regard to light on the one hand and irradiation on the other hand. Ti-Li centres are quickly and totally bleached by solar light (in a few days), and are also much more radiosensitive than Al centres, and saturate under irradiation much faster than the latter (Duval and Guilarte, 2015). In contrast, Al centres are very stable under irradiation but are not totally reset even after long light exposure (several months). Therefore, a more complex protocol is required to determine the unbleachable part of the dated quartz grains (Voinchet et al., 2004).

Firstly, the quartz grains were extracted from the samples using the chemical and physical protocol described by Voinchet et al. (2020). After extraction, each purified quartz sample was split into eleven aliquots. Nine of them were irradiated with a γ 60Co source (Commissariat à l’Énergie Atomique,
Saclay, France) at doses ranging from 264 to 12,500 Gy. One aliquot was conserved as a natural reference and the eleventh aliquot was exposed during 1,600 h to light in a Dr Honhle© SOL2 solar simulator (light intensity between 3.2 and 3.4 × 10^5 Lux) in order to determine the unbleachable portion of the ESR-AI signal. Each sample set of eleven aliquots was measured at least three times by ESR at 107K using a Bruker© EMX spectrometer and every measure of each aliquot was undertaken three times after an approximatively 120° rotation of the tube in the ESR cavity, in order to consider angular dependence of the signal due to sample heterogeneity. The ESR acquisition parameters used were 5 mW microwave power, 1024 point resolution, 20 mT sweep width, 100 kHz modulation frequency, 0.1 mT modulation amplitude, 40 ms conversion time, 20 ms time constant and 1 scan.

Signal intensity was then measured between the top of the first peak at g=2.018 and the bottom of the 16th peak at g=2.002 of the Aluminium hyperfine structure and by measuring the difference between the peak top (g= 1.913) of the Ti-Li signal and the baseline (Toyoda and Falguères, 2003). Equivalent doses (DE) were then determined from the obtained ESR intensities versus the dose growth curves using a coupled exponential and linear function with Microcal OriginPro 8 software with 1/F weighting (Voïnchêt et al., 2020).

External alpha and beta contributions to the dose rate were obtained using the dose-rate conversion factors of Guérin et al. (2011) from the sediment radioelement contents (U, Th and K) measured in the laboratory by high-resolution and low background gamma-spectrometry (Table 3). Gamma dose rate was determined by in situ measurements with an Inspector 1000 (Canberra©) gamma spectrometer (Canberra©) using the threshold method (Mercier and Falguères, 2007). A k-value of 0.15 ± 0.1 (Laurent et al., 1998), alpha and beta attenuations from Brennan (2003) and Brennan et al. (1991), sediment water content estimated from the difference in mass between the natural sample and the same sample dried in an oven at 40°C for a week and water attenuation formulae from Grün (1994) were used in the age calculation. The cosmic dose rate was estimated from the equations of Prescott and Hutton (1994). The internal dose rate was considered to be negligible because of the low radionuclide content usually found in quartz grains.
3. 4. Fauna

A preliminary identification was carried out on 621 faunal remains stored at the Heritage Office in the Castle of Melfi (PZ). These remains are from Borzatti von Löwenstern’s fieldwork and the new excavations carried out in 2015 and 2016. Most of the identifications are limited to the taxonomic family or genus. Further work will attempt to refine the taxonomy of faunal remains from Atella. A taphonomic approach was applied to a subsample, excluding specimens with modern fractures, or incrusted by concretions. Specimen size was considered for 585 specimens, and the state of preservation was observed on 600 remains. In particular, considering the geological setting of the site, we classified specimens according to their level of rounding: i) specimens with no rounding; ii) specimens with slightly rounded edges; iii) specimens with rounded edges or completely reshaped by agents of transport (probably water).

3. 5. Palynology

Fourteen samples were taken from core 2 of Cimitero di Atella for pollen analysis, from the following depths: 5.60, 6.80, 9.20, 9.60, 10.80, 11.20, 12.03, 12.40, 12.80, 13.20, 13.60, 14.02, 14.40, and 14.80 m. They were chemically treated with HCl (37%), HF (40%) and NaOH (10%) according to standard procedures for pollen extraction summarized in Magri and Di Rita (2015). Pollen concentrations were determined by adding tablets of spores of exotic Lycopodium to known weights of sediment. Observations were carried out by means of a light microscope at ×400 magnifications. For each sample, at least two slides were prepared and analysed.

Unfortunately, all the samples, excluding the sample at 14.02 m, were barren. In the sample at 14.02 m, after a series of three analysed slides, only one pollen grain of Poaceae was counted, which is clearly insufficient to define the past vegetation of the site. The lack of pollen grains can be ascribed to problems of pollen preservation, a very high sedimentation rate which would have diluted the pollen content within the sediment, or barren vegetation due to harsh glacial conditions. However, it is also likely that all these factors contributed to the absence of pollen.
3.6. Lithic artefacts

The studied corpus is from the previous excavation led by Borzatti von Löwenstern and from the new 2015 to 2018 excavations (Table 4). The old collection contains two main assemblages, excluding surface finds, one from Level L, the other from Level F. Given the disparate states of alteration, and some doubts concerning the anthropic nature of several pieces, only the more reliable items were selected (Abruzzese et al., 2016). The following criteria were retained to improve the reliability of the assemblage: type of blank and raw material, the degree of alteration, the type of patina and the presence of a double patina, and the presence or absence of knapping scars. We subdivided the material into three groups, definite non-anthropic items, probable poorly-preserved anthropic elements, and anthropic items. Only the last group was analysed. In level L, only 107 pieces were selected out of 2553 (Borzatti von Löwenstern, 2005), and 666 of the 7887 pieces from level F (Abruzzese et al., 2016).

Raw materials can be divided into three types: flint, quartzite and a highly altered raw material, described as “porous radiolarite” (Borzatti von Löwenstern et al., 1997), which is probably a fine limestone.

A technological approach was applied to the lithic assemblage of Atella (Boëda et al., 1990; Inizan et al., 1999; Boëda, 2013), in order to describe the reduction sequence (selection, production aims, use, management, etc.). In this paper, we focus on the production phase and the identification of the main technological categories: cores, debitage flakes, small tools, large tools, retouch flakes, based on the diacritical scheme of each piece (chronology and direction of removal, measurements, angles, etc.). We also began to analyse some piece with a techno-functional analysis (Lepot, 1991; Boëda, 2013; Aureli et al., 2016; Rocca et al., 2016) in order to identify the transformative and prehensile part of the tools.
4. Results

4.1. Stratigraphic and sedimentological analysis

The horizontally-beded Quaternary succession outcropping in the study area unconformably overlies the sedimentary bedrock, represented here by Numidian Flysch (age: Burdigalian – Langhian?). Miocene sediments only outcrop to the east of Atella village (Figure 3) and consist of tilted quartzarenite beds. The Quaternary sequence of the site (Figure 6) is formed, from the base, of light-grey horizontally-laminated volcanioclastic siltstone of the Sh lithofacies (Figure 7 and Figure 7a), attributed to sediment decantation in a lacustrine environment. Toward the north, such sediments are in heteropic relationships with volcanioclastic alluvial conglomerates (Figure 3a). Above them, a lava flow and pyroclastic and epiclastic deposits, labelled 3a, 3b and 4 in Figure 3, and swamp and alluvial deposits, are recorded in the surveyed area. Finally, the travertine of Atella village (Figure 3) unconformably overlies the previously described deposits, through an erosive surface.

In the Cimitero di Atella site, at the top of facies Sh, the base of the stratigraphic succession (Figure 6) is composed of horizontal beds of the TLm lithofacies (Figure 7b), interpreted as pyroclastic ash flow deposits, with intercalations of fallout ash deposits, attributed to lithofacies Tng (Figure 7c) and Tm (Figure 7d). Laterally (i.e., towards the north and to the west of Atella village), the pyroclastic beds overlie a lava flow (Figure 3) attributed to the Vulture - San Michele Subsynthem by Giannandrea et al. (2006). Moving up, about 2-m-thick lacustrine deposits of lithofacies Sh, Dh, and Su (Figure 8a) are overlain by two epiclastic breccia (Figure 7e) with volcanic clasts (lithofacies Bmli), connected to cohesive debris flow. Each breccia layer is covered by reworked sediments of the Suli lithofacies (Figure 7e). Both lithofacies Bmli and Suli contain lithic industry and two tusks of Palaeoloxodon antiquus (Borzatti von Löwenstern et al., 1997). A westward-dipping erosive surface is present at the top of these sediments (Figure 7).

The upper portion of the succession is characterized by alternating beds of primary volcanic deposits – made up of ash and lapilli fallout from lithofacies Tm and Lm (Figure 8d) and pyroclastic flow from lithofacies LTm (Figure 8b), TLm, and TLBm (Figure 8c) – and trough cross-bed
epiclastic volcanic sediments corresponding to lithofacies SBT and Sr (Figure 8b and Figure 8d). It is noteworthy that Lm and SBT facies are frequently associated in the same horizon. Often, the beds at the base of lithofacies LTm, TLm, TLBm, and Bmli show water-escape pipes. These are soft-sediment deformation structures due to the unstable density of the water-saturated alluvial (Figure 8c and Figure 8d) and lacustrine (Figure 8) sediments. Here, such structures can be interpreted as loading structures resulting from the rapid sedimentation of mass deposits (Anketell et al., 1969).

This suggests that the deposition of facies Bmli occurred immediately after the lake was drained, when sediments were still saturated. Is also likely that the cohesive debris flow deposits (facies Bmli) were caused by the activation of water flows associated with lake drainage. The presence of such a sedimentary structure shows continuity in sedimentation at the transition from lacustrine to alluvial deposits. Therefore, no stratigraphic unconformity is present at the base of that facies. Soft-sediment deformation structures are also present in the upper part of the Cimitero di Atella succession (Figure 9). They consist of boudinage-like breccia structures, made of ash elements in alluvial epiclastic SBT-facies sandstone (Figure 8d and Figure 9) and represent a typical case of seismite. Therefore, there must have been synsedimentary seismic activity at that time in the study area (e.g., Pope et al., 1997; Gibert et al., 2011). The above-described facies association can be referred to as a braided alluvial plain with abrupt contributions of primary volcanic products by fallout process and connected to mass deposition by pyroclastic flows.

Two fallout ash deposits (lithofacies Tm), separated by an eluvial-colluvial horizon (Figure 6), are present at the top of the pyroclastic/epiclastic sequence of the Atella site. Here, a southeast-dipping erosive surface intersects the whole sequence, cutting out a space subsequently filled by historical sediments (Figure 9).

4. 2. Dating

Atella INF - Ten crystals were individually dated. Nine of them provided a statistically equivalent age within uncertainty, confirming the primary volcanic nature of the deposit. The weighted mean age, calculated using a juvenile crystal population, is 655.2 ± 12 ka (MSWD = 0.2 and P = 1.0, full
The $^{40}\text{Ar}/^{36}\text{Ar}$ initial ratio given by the inverse isochron of 290.8 ± 56 (Table 3) is very unprecise but equivalent within uncertainty to the atmospheric ratio of 298.56 (Lee et al., 2006).

Atella F - Twelve sanidines were individually dated for this layer. The probability diagram obtained for this sample is multimodal and shows a high percentage of reworked volcanic minerals. Only six crystals constitute the homogeneous and youngest population. At least four older eruptive successions are evidenced. The weighted mean age calculated for the youngest population is 577.5 ± 6.4 ka (MSWD = 1.1 et P = 0.3, full external errors at 2σ uncertainties. The $^{40}\text{Ar}/^{36}\text{Ar}$ initial ratio given by the inverse isochron for this population is 299.4 ± 4.8 (Table 3), equivalent within uncertainty to the atmospheric ratio of 298.56.

Atella I - For this level, unfortunately only six crystals of potassic feldspars were found and successfully dated. Despite the limited number of dated crystals for this layer, these analyses provided significant information. The related probability diagram shows crystals dated from 715 to 575 ka. This crystal age dispersion is very similar to that of level F.

Atella L1 – ESR analyses of this sample provide similar equivalent doses and ages for both Al and Ti-Li centres, indicating good initial bleaching of both signals. A weighted quadratic mean age of 509 ± 56 ka (2σ, full external error, MSWD = 0.051, probability = 0.82) was calculated for this sample using IsoPlot 3.0 software (Ludwig, 2003).

Atella L2 - Thirteen sanidines were individually dated. Again, the related probability diagram is multimodal. Two major crystal populations are evidenced, as well as three older crystals ranging between about 650 and 720 ka (see Figure 10). The younger population included six crystals and gave a weighted mean age of 583 ± 4 ka (full external errors at 2σ uncertainties) (MSWD = 0.9 et P = 0.5 (11 ka). The older crystal population is dated to 610 ± 3 ka. The $^{40}\text{Ar}/^{36}\text{Ar}$ initial ratio of 297.6 ± 3.0 for the younger population (see Table 3, 2σ analytical uncertainties) is equivalent to the atmospheric one (Table 3).

Atella L3 - Once again, equivalent doses and ages determined from both Al and Ti-Li centres
correspond, confirming good initial bleaching of the quartz grains and allowing for the calculation of a weighted quadratic mean age of 442 ± 39 ka (2σ, full external error, MSWD = 0.35, probability = 0.55).

4.3. Archaeological sequence

Our first hypothesis for the archaeological sequence is based on the results of the sedimentological analysis and the first taphonomic observations on faunal and lithic remains. The Borzatti von Löwenstern team initially proposed (Borzatti von Löwenstern et al., 1990) dividing the Cimitero di Atella sequence into 15 geological layers, and two large archaeological units: F and L (Borzatti von Löwenstern et al., 1997). According to Borzatti von Löwenstern, the F level was the result of a lakeshore occupation and level L a redeposition by the river of earlier occupations without handaxes (Borzatti von Löwenstern and Sozzi, 1994; Borzatti von Löwenstern, 2005). Our aim was to re-evaluate site formation and to try to interpret the archaeological records of each level (Figure 11).

The combination of an applied excavation method, the study of archaeological finds, and preliminary sedimentological results yields a revised interpretation of the sequence. In the current state of knowledge, we are able to identify four main archaeological units (F-Base, F-Deb2, F-Deb1, L), resulting from different formation processes.

At the base of the sequence, we identified F-Base, a first archaeological layer partially excavated by the previous team over about four square metres. This layer is still exposed but was not investigated by us and our interpretation is thus only based on field observations. It contains a high concentration of remains, a *Palaeoloxodon* tusk and other well-preserved macro-faunal remains, and lithic finds consisting of a few handaxes and many small tools and flakes. This horizon lies on top of a palustrine diatomic layer (Figure 11). Human occupation occurred in level F-Base after the retreat of the lake and was covered by a reworked colluvium of fine sediment composed of epiclastic volcanic sandstone, with volcanic angular to sub-angular pebbles (ranging in size from 1 to 10 cm). Preliminary observations on well-preserved remains (fauna and lithic industries), the combined presence of small and large elements, along with the high concentration of finds in fine sediment,
indicate that this level is the result of a sub-primary occupation. This hypothesis needs to be confirmed by further analyses after the resumption of excavations in the field.

The second archaeological unit (F-Deb2) was extensively excavated by Borzatti von Löwenstern over a surface of 25 m2 and also by our team over 4 m2. The material from this level corresponds to the base of level F of the Borzatti von Löwenstern excavation, with a lithic assemblage studied by Abruzzese (et al., 2016). The lithic and faunal remains recorded in this level are in a poor state of preservation. The lithic remains present smoothed edges, often with double patina. The fauna is fragmented and rounded. The concentration of remains is very high in a poorly-sorted matrix supported epiclastic volcanic breccia, interpreted as a cohesive debris flow deposit. Thus, we postulate that the deposit containing the archaeological record is the result of the reworking of one or several occupations in a secondary position. At this stage, it is difficult to evaluate the degree of reworking of the deposit as well as distance from the primary occupations. Refitting should help to determine whether this corresponds to a major or a light mass movement of the initial occupation.

At the top of this reworked deposit, we identified a third archaeological layer covered by the I tephra (F-Deb1). This level was initially called H by Borzatti von Löwenstern and then mixed together with the material from layer F. It was partially excavated by us over a surface of 7 m2. The thickness of this level varied between a few centimetres to 15 cm, as the top was affected by erosion before being covered by the overlying tephra layer (Figure 8). The lithic and faunal material recorded in this layer is well preserved. The lithic finds present rather fresh edges and no double patina. The assemblage contains a large tool in limestone, small tools and small flakes of different sizes. The faunal remains are less fragmented and rounded and some pieces present fresh surfaces, as for example two Cervidae remains (a coxal and a rib). The archaeological remains are in a fine sediment of epiclastic volcanic sandstone, interpreted as a reworked low-intensity colluvium. The distribution of the archaeological finds, the concentration of material, the presence of small and large pieces and the state of preservation of the remains indicate that the material has not undergone major reworking.

We propose that this layer is in a sub-primary position, partially intersected by erosion and quickly
covered by the I tephra layer. Further investigations (use-wear analysis, extension of the excavation, refitting, taphonomic analysis on the fauna, etc) should clarify the degree of coherence of this level.

The last Pleistocene occupations recorded in the site of Atella are in the upper part of the sequence (L). The archaeological finds were found in a coarse epiclastic volcanic sandstone and angular to sub-rounded epiclastic volcanic clast-supported breccia, interpreted as a channel infill by water stream flow of reworked volcanic fallout and pyroclastic flow deposits. This part of the sequence was almost exclusively excavated by the previous team, apart from a small pit in the new area with only a few very small debris found during sieving. The studied lithic material of the Borzatti von Löwenstern assemblage is differentially preserved. Some pieces look very fresh whereas others are smooth and polished. The faunal remains are also differentially preserved. At this stage of the study, this large unit appears to contain material from partially preserved sporadic occupations on a river shore, with differential sorting and erosion depending on the flow of the river.

Thus, based on the results obtained so far, we can identify four moments of occupation at Atella. These layers may be very different in terms of duration, as the F (Deb2) and the L accumulations probably result from several occupations, and it is thus difficult to evaluate their duration. The presence of a palimpsest in secondary position was already known, and we identified at least one well-preserved layer between the F accumulation and the I tephra layer. Given these new and promising data, further investigations at Atella will focus on the excavation of this horizon over a larger surface. Another point to clarify will be the estimation of the time range between occupations, as for the time being, the resolution of absolute dating provides no information concerning the timespan of each unit, nor the period of time between them. Further analyses, especially on the tephra I, should reduce the imprecision of the dating resolution of the sequence.

4. 4. Fauna

The faunal remains are highly fragmented: the most represented size classes are 2 and 3 cm (22.4% and 19.8% of remains respectively) and 81.4% of remains fall within the 1-5-cm interval (Table 6). Most specimens from unit L are unaltered by transport (74%). On the other hand, 38.5% of specimens
are rounded (i.e., bone fragments with a spherical or subspherical polished shape) in phase F and 43.4% in phase H (Table 7). As most of the faunal remains from Atella are represented by incomplete or fragmented specimens of poor diagnostic value, taxonomic identifications are mainly limited to family or genus, namely ungulates (Bovinae indet., *Cervus elaphus*, *Dama* sp.) or *Palaeoloxodon antiquus*/*Palaeoloxodon*-size categories (Table 8). Apart from *P. antiquus*, Borzatti von Löwenstern et al. (1997) reported the presence of a few bovid and cervid remains, and a hyaena tooth. Zucchelli (1999) attributed the Bovinae remains to *Bos primigenius* and Zucchelli (2002) identified *Cervus elaphus*, *Dama dama*, and *Capreolus* sp. among the cervids. The revision of the Borzatti von Löwenstern material, in addition to the study of new finds, reveals that some bovid postcranial elements have *Bison*-like features, such as, for example, metapodials (e.g., interarticular incisure U-shaped and less proximally extended in relation to the margin of both condyles; parallel or slightly convergent medial and lateral intercondylar crests). Nonetheless, pending the discovery of new taxonomically significative fossils, the attribution of the bovid material remains opens (Bovinae indet.). No specimens identified so far within the studied sample indicate the presence of hyaenas or *Capreolus* at Atella.

4. 5. Palynology

Unfortunately, all the analysed levels, excluding those at 6.30, 6.60 and 14.02 m, were barren. After a series of three analysed slides per sample, one *Zelkova* pollen grain was identified in the sample at 6.30 m, one *Pinus* grain at 6.60 m, and one Poaceae grain at 14.02 m, but they were insufficient to define the past vegetation of the site. The lack of pollen grains can be ascribed to factors preventing pollen preservation, the dilution of the pollen content in the sediment due to a very high sedimentation rate, or the occurrence of barren vegetation due to harsh glacial conditions. However, it is also possible that a combination of factors may have contributed to the absence of pollen.

4. 6. Lithic industry

The analysis of the lithic assemblage confirms the presence of the three main reduction sequences already identified in the Borzatti von Löwenstern assemblage (Abruzzese et al., 2016): small tools,
debitage flakes and large tools (Table 5).

The first is aimed at small tools confection. This reduction sequence is therefore represented by small tools (266 items, see Table 5) and confection small flakes, namely notch flakes and retouch flakes (268, see Table 5, Figure 12a). The first step consists of blank selection for the future tool. The selected blanks, when determinable, can be small blocks of raw material, flakes, or more rarely residual core fragments. The study of the morphological and volumetric characters of the blank before tool confection brought to light important criteria, such as the small dimensions, the relative thickness, and the presence of a flat surface. Another element can also be present on the initial blank, such as an abrupt surface, for example a back of a debordant flake or the butt of the flake. Then, the tool confection phase depends on how the degree of affordance of the blank matches the sought-after tool.

This phase consists of shaping and retouching the blank to obtain several cutting edges. The removals generally come from the flat surface of the blank and concern the transformative part of the future tool and in some cases the prehensile part. On the cutting edges, several modalities of confection are performed from short, low and parallel removals to notched abrupt retouch. The management of the prehensile part is rarer and consists mainly of the correction or accentuation of an abrupt part. Consequently, the flakes from the confection of these small tools are varied and depend on the features of the initial blank and of the sought-after tool. Notch flakes are short and wide and characterized by a thick and convex butt (Figure 12a). Retouch flakes are thin and curved, with a linear or punctiform butt, and the dorsal surface can present previous retouch scars.

The aim of this reduction sequence is to obtain several cutting-edges on small tools. The tool sample is too small for the moment to describe this techno-functional group in detail. It consists mainly of rostrums, trihedral, and rectilinear edges, as observed in the previous publication (Abruzzese et al., 2016). The illustrated example (Figure 13) presents three transformative parts (TFU1, TFU2, TFU3) on the same piece, each associated with a prehensile part. The transformative part consists of a trihedron composed of a flat surface, two facets obtained by lateral notches, and a central ridge (Figure 14). Only part of the whole volume is modified to fashion the tool. The
prehensile part, in this case a prepared back, can be adapted to several transformative parts. From a production point of view, several gestures and probably several hammerstones were used to make this small tool. For the management of convexities and the production of the flake, blows are internal, probably made with a hard hammer. The back is obtained by an orthogonal gesture (fracture blow). The notches blow, important to highlight the trihedrons are internal and were probably made with a smaller hammerstone.

The second reduction sequence consists of flake production. Due to the rarity of whole cores in the assemblage (25 items, mainly fragments, Table 5), it is difficult at this stage of the study to define flaking modes and the objectives of flake production based on core analysis. The few cores belong to an additional production system (Boëda, 2013; De Weyer et al., 2022). The exploited volume of the cores only represents a small part of the initial blank. No cores show global preparation of volume, or partial management of convexities. The flaking sequence is very short, with no more than five removals per core. Flake scars indicate the production of elongated and quadrangular flakes, with large butts, two cutting edges or one cutting edge and a back. The entire core and fragments are in flint and quartzite. This scant information from the cores is consistent with data from flakes. The latter (401 items, Table 5) are elongated or quadrangular, with one or two scars on the dorsal surface and often present a natural back (Figure 12b). These large flakes in flint and quartzite are never retouched, but present one or two cutting edges. The characteristics of these flakes, dimensions and technical features are different from the small flakes issued from making small tools. This category of large flakes is compatible with core attributes, indicating that they are flakes from the debitage reduction sequence. Some of these flakes may have been used as blanks for small tools, but as the latter are highly reduced, it is difficult to identify the initial blank. The debitage reduction sequence can also be interpreted as a goal in itself, to obtain a longer cutting edge. This component is almost always present in Lower Palaeolithic assemblages. Further investigation into this debitage reduction sequence and the relationship between small tools and flakes is required in the future, on a larger sample, particularly of cores.
The large shaped tools constitute the third reduction sequence. This category comprises what we can call, from a typological point of view, Large Cutting Tools, handaxes, unifacial pieces, and pebble tools (28 items, Table 5). These tools are mainly made on poorly-preserved limestone pebbles and analysis is therefore difficult. From a production point of view, the chosen blank is plano-convex, and can be a pebble or a large cortical flake. Shaping is mainly limited to the upper apical part of the blank, and the basal part is unretouched. The shaping phase takes into account the volumetric characteristics of the chosen blank and only affects the future transformative part, as the prehensile part is rarely modified. This very short shaping phase does not affect the volumetric structure of the blank. We were not able to identify flakes from this reduction sequence. This is maybe due to the poor state of preservation of the limestone, particularly affecting on thin and small shaping flakes. It is also important to recall that macro-tools are very rare in the assemblage and bear a low number of scars.

The technical features of large tools show that shaping flakes may present a cortical, semi-cortical surface or positive scar on the dorsal surface. Due to shaping modes, the classical expected features for shaping flakes, such as a curved profile, an open angle between the ventral surface and the butt, and soft hammer percussion, may not be determinant here. Indeed, flakes from large tool shaping do not bear specific features, and it is thus difficult to distinguish them from other flakes.

The identification of this techno-functional group is problematic due to the low number of large tools. At this stage of the analysis, the main categories of large tools are represented by distal rostrums and in one case by a lateral cutting edge (Figure 15).

Thus, the assemblage of Cimitero di Atella studied so far is composed of three main reduction sequences. The main one, in term of the number of items and techno-functional variability, is represented by the small tools. Large shaped tools and backed flakes are less frequent and for the moment, we can go no further with our interpretation due to the limited quantity of elements.
5. Discussion

5.1. Site of Atella

5.1.1 Geology

As a result of field investigations, following the stratigraphic framework proposed by Giannandrea et al. (2006) and Schiattarella et al. (2016), we correlated the basal 1-m-thick portion of lacustrine sediments (facies Sh in Figure 6) with the Rionero Subsystem and, consequently, we were able to correlate the overlying volcanic (facies Tm, Tng, LTm, and TLm) and lacustrine layers, up to the epiclastic layers of the facies Bmli (unit F of Borzatti von Löwenstern et al., 1997), with the Vulture - San Michele Subsynthem. The presence of soft-sediment deformation structures in lacustrine sediments below the Bmli facies suggests that the deposition of unit F of Borzatti von Löwenstern (et al, 1997) occurred immediately after the lake was drained, when the fine sediments were still saturated. It is also likely that the cohesive debris flows (facies Bmli) were deposited by the activation of water flows associated with lake drainage. This sedimentary structure shows continuity in sedimentation at the transition from lacustrine to alluvial deposits. Therefore, no stratigraphic unconformity is present at the base of the archaeological fluvial facies. Also, sedimentological analyses performed in unit L of Borzatti von Löwenstern (et al., 1997) reveal tepha layer intercalations, interpreted as pyroclastic flow, in the fluvial facies. Considering the presence of seismically-induced soft-sediment deformation structures, this can be ascribed to particularly intense and voluminous eruptions of the Monte Vulture volcano.

5.1.2 Geochronological interpretations

Based on the geology, archaeology, and palaeontology of the site, Borzatti von Löwenstern et al. (1997) proposed a date for the Cimitero di Atella sequence between about 600 and 500 ka. Later, Di Muro (1999) suggested correlating stratigraphic levels A to E with the Rionero Subsynthem of Monte Vulture (i.e., 630 ± 20 ka to 714 ± 18 ka following Villa and Buettner, 2009). While our new individual data obtained by 40Ar/39Ar and ESR on bleached quartz appear insufficient for accurately determining the ages of the Cimitero di Atella archaeosurfaces, combining this new geochronological dataset with
the available geological information helps to constrain the period of human occupations with greater confidence and accuracy.

Concerning the $^{40}\text{Ar}^{39}\text{Ar}$ analyses, the lowest level dated by this technique, Atella INF (Tng primary volcanic layer, see Table 3, Figure 10) is accurately dated to 655 ± 12 ka, the maximum age for the entire sequence of the Cimitero di Atella archaeological site. The analytical data for levels F, I, and L2 are more difficult to interpret, as all the corresponding probability diagrams are complex and multimodal (see Figure 10), suggesting the massive reworking of volcanic materials from several eruptive events, the youngest of which is dated to around 570-580 ka. The various ages of the oldest populations of crystals can be attributed to the first part of the Monte Vulture volcano eruptive activity (between about 610 and 760 ka), corresponding to the San Michele and Rionero Subsynthem activities (Villa and Buettner, 2009). For these three dated stratigraphic levels, the youngest sanidines are all dated to around 580-570 ka. This age can only be considered here as a maximum age for the deposition of the Cimitero di Atella archaeological horizons. It is noteworthy that even if the Monte Vulture volcano was very active from the beginning of the Middle Pleistocene until 490 ka, it was nonetheless characterized by a long phase of quiescence between about 570 and at least 530 ka, followed by an eruptive sequence after local tectonic activity (i.e., Case Lopes subsynthem). Therefore, the fact that no eruptions more recent than about 580-570 ka were recorded in levels F, I, and L2, can be taken as a further chronological indicator. Deposits from the Case Lopes Subsynthem are dated to 530 ± 22 ka and 494 ± 5 ka (Villa and Buettner, 2009, Monticchio Supersynthem) and found a few kilometres NE of the site but not found in the reworked and dated volcanic material at Cimitero di Atella. Even though the absence of such deposits cannot be considered as chronological proof of the antiquity of the archaeological remains, it nevertheless implies that the Cimitero di Atella sequence predates the Case Lopes eruptive phase. This hypothesis is reinforced by the ESR ages calculated for L1 (509 ± 46 ka) whereas L3 (442 ± 39 ka) suggests a younger age for the deposition of the upper part of the sequence. Even if these ages lack precision, they provide a needed chronological framework for the deposition age of the sedimentary sequence of Cimitero di Atella.
They also demonstrate the continuity of the stratigraphic sequence and reinforce interpretations based on the geology and $^{40}\text{Ar}/^{39}\text{Ar}$ data. They allow us to determine a deposition age between L1 and L3 (509 ± 46 ka - 442 ± 39 ka). The age of 509 ± 46 ka also provides a minimum age for the archaeological levels underlying L1 (F unit). The combined geochronological data therefore suggest that at least the lower Palaeolithic F levels can be securely dated between 509 ± 46 ka and 570-580 ka, covering the end of MIS 15 until MIS 13 (Figure 10).

5.1.3 Palaeobotany

Previous pollen analyses at Cimitero di Atella were carried out on 15 pollen samples by Borzatti von Löwenstern et al. (1998). However only four levels presented enough pollen grains to describe the surrounding environment, namely levels A01, A02, A03 and I. According to the new chronology of the Borzatti von Löwenstern sequence presented here, these levels were deposited between 655 ± 12 and 575 ± 7 ka BP. The pollen content of A02, A03, and I, showing Arboreal Pollen (AP) percentages above 88%, *Abies* up to 15%, *Quercus* deciduous ranging from 7 to 35%, and many other deciduous and evergreen broadleaved trees in low frequencies, suggests a cool and wet phase of the interglacial stage corresponding to MIS 15. Conversely, in the underlying level A01, the AP percentage (76%) with 53% *Pinus*, and high proportions of bush and herbaceous xeric taxa, such as *Ephedra*, *Artemisia*, and Poaceae, suggest an arid phase during the MIS 16 glacial stage.

5.1.4 Occupation modes

In the current state of knowledge, it is difficult to accurately reconstruct the human occupations of Cimitero di Atella. However, some new data contribute to a better understanding of the type of occupation. Overall, the stratigraphic succession registered several episodes of human presence between 0.58 and 0.44 Ma. At that time, the landscape changed from a lacustrine to a fluvial environment in a territory highly impacted by the activity of Monte Vulture. The recording of human occupations is different in term of temporality. Some layers, such as F-Deb2, are probably a mix of several occupations, of unknown duration, whereas others, like F-Base and F-Deb1, probably result from a single “moment” of occupation, including tool making and faunal exploitation. The future excavation of unit L, corresponding to the fluviatile sequence, will provide crucial information. The
archaeological record shows that such contexts are propitious to simultaneous faunal and human occupation and to the quick burial of their tracks. Unit L, as already observed by Borzatti von Löwenstern (2005, 2011), could contain several more or less well-preserved occupation “spots”, depending on site formation taphonomy (velocity of sedimentation, the riverbed position and flow intensity). The presence of rich but mixed units alongside short well-preserved occupations in the sequence is interesting and is in our opinion complementary. The secondary position (colluvium) of the unit is not conducive to spatial or techno-economic analysis, but the material is useful for a more global view of technical variability. Conversely, the level interpreted as an occupation surface may contain important information on occupation modes, spatial organization, faunal exploitation and tool manufacture and use. At Atella, given the type of sedimentation, we are probably not in presence of a genuine snapshot, as observed at Ficoncella (Aureli et al., 2015; Boschin et al., 2018), Soucy 3 (Lhomme, 2007), La Polledrara di Cecanibbio (Santucci et al., 2016), and Schöningen (Serangeli et al., 2015), but rather a sub-primary position site resulting from one or more occupations in a relatively short time period, like in some levels of Notarchirico (Piperno et al., 1999) and Isernia La Pineta (Peretto et al., 2004). It is interesting to note that in both levels (F-Base and F-Deb1), like in other many contemporaneous sites, human occupation is linked to an aquatic environment (lake and river) with large herbivores, especially elephants (Kodinaris et al., 2016; Rocca et al., 2021). The relationship between humans and elephants also needs to be reassessed, beyond the hunting/scavenging debate, in order to really focus on exploitation modes and purposes. For meat? For toolmaking or other technical activities? What was the impact of the elephant on the landscape? Was the carcass a landmark in the territory? etc. We hope that the extension of the excavation surface to about 250 m² will reveal new information on site formation and spatial organization, in order to enhance our interpretations of occupations at Atella.

5.2. Atella in a broader context

5.2.1. Is it relevant to speak about an Early Acheulean?
The south European Lower Palaeolithic panorama has been extensively reshaped in recent years.
Until the end of the 1990s, this cultural period was divided into two lengthy phases on the basis of typological studies; an older one, called the pre-Acheulean without handaxes, and a younger one, including Acheulean, Clactonian and Tayacian industries (Palma di Cesnola, 2001; Grifoni and Tozzi, 2006). New data, mainly from the sites of Isernia La Pineta and Notarchirico, call into question this model. At the end of the 1990s, new dates from Notarchirico significantly pushed back the age of early handaxes in Europe (Pilleyre et al., 1999; Piperno et al., 1999). Then, conversely, in the 2010s, the new dating of Isernia La Pineta, a site without handaxes, attributed the site to a more recent period (Peretto et al., 2015). Those new data led to a reconsideration of the Lower Palaeolithic periodisation, alongside the development of lithic industry study methods. The Isernia La Pineta team applied new methods, such as technology, experimentation, use-wear analysis, resulting in the criticism of Tayacian typology (Crovetto, 1993; Crovetto et al., 1994; Peretto et al., 1994; Longo et al., 1997).

The discovery of new early sites with handaxes in Europe in the 2010s led to the construction of a new chrono-cultural model (Moncel et al., 2013, Garcia-Medrano et al., 2014, Mosquera et al., 2016). These early occupations (Arzarello et al., 2012; Ollé et al., 2013; Michel et al., 2017; Despriée et al., 2018) brought to light a new conception of tools in Europe from about 0.8/0.7 Ma, based on the handaxe or Large Cutting-Tool, called the Early Acheulean (Moncel et al., 2015, 2020; Moncel and Schreve, 2016). Thus paradoxically, after a short parenthesis focusing on the reduction sequence and technical diversity, we are now returning to a very typological definition based on the Acheulean guiding fossil: the biface. Indeed, the origins of the Early Acheulean in Europe are often implicitly and schematically explained using the following model:

Presence of a phase of core and flake industries between 1.4 Ma and 0.8 Ma (Mode 1) and the arrival from Africa of new industries with handaxes (Mode 2), from 0.8/0.7 Ma onwards, spreading rapidly to the north (La Noira) and south (Notarchirico, la Boella) of the European continent. Can we really define this period on the basis of a single tool? What can other ways of making tools, such as flake production or the so-called small tools tell us? Do we have solid proof of an external arrival of this new technical tradition? Is it relevant for researchers to coin the term Early Acheulean in studies of
this key period of the Palaeolithic? How can the lithic industries of Cimitero di Atella contribute to an enhanced definition of this period?

The assemblage of Cimitero di Atella studied so far is consistent with the other contemporaneous technical system, the so-called Early Acheulean. As in other sites, abundant small tools and/or flakes play an important role in tool kit variability, while large shaped tools are rare (Nicoud et al., 2016; Tourloukis et al., 2018; Grimaldi et al., 2020). Furthermore, large tools are significantly different to the Acheulean handaxes that emerge in the second part of the Lower Palaeolithic, in that shaping does not affect the global volume of the blank and is aimed at obtaining a specific cutting edge, mainly rostrums. Edge-point bifacial tools are very rare, as well as lateral cutting edges. At Atella, as elsewhere, these shaped tools display wide technical diversity: each specimen is almost a specific tool type. This diversity is also present for example at Notarchirico (Moncel et al., 2019, 2020; Nicoud 2011), and at la Boella (Mosquera et al., 2016).

Further discussion is required to enhance our understanding of the specificity of this ambiguous category of large tools in the Early Acheulean. Nicoud (2011) proposes the term “pebble with bifacial removals”, as does Moncel (2019, 2020), to distinguish “bifaces and bifacial tools” from “pebble tools” at Notarchirico. Mosquera (et al., 2016) groups together all the shaped pieces under the term “large cutting-tools”. A more in-depth investigation of this category of tools is now required, focusing on techno-functional aspects. Paradoxically, early large cutting-tools are overrepresented in publications, despite their small numbers, but are rarely studied in relation with other contemporaneous tools and compared with younger handaxes. We choose to call these pieces from Atella large shaped tools, because they cannot all be considered to be bifacially shaped from a technological point of view. Yet it would be illogical to distinguish bifacial from non-bifacial large tools, as they can present the same morpho-technical features. However, we can note that these pieces are different from classical handaxes in terms of volumetric structure and techno-functional features. Even more surprisingly, some transformative parts, such as the rostrum, for example, seem to be comparable to ones on small tools in terms of technical-functional features and techno-productional
modes. In terms of weight and dimensions, use, but also probably prehension modes, these tools are clearly distinguishable from their smaller counterparts. But it is nonetheless interesting to approach the relationships between several categories without always considering these first handaxes as an archaic model of future Acheulean bifacial pieces.

The small tool category also necessitates further discussion. The presence of small tools was recognized in Tayacian typology (Tayac and Quinson point), but the variability and importance of this category was subsequently re-evaluated in Central European and Middle Eastern assemblages (Burdukiewic and Ronen, 2003). In line with this work, we attempted to better define this part of the lithic assemblage from a technological and techno-functional point of view (Aureli et al., 2016; Rocca 2016; Rocca et al., 2016). The term small tool can be misleading, since it emphasizes size, rather than the technical reality of this specific reduction sequence. Indeed, the presence of small and thick tools on specific selected blanks with a flat surface opposed to a convex surface, with cutting edges, is widespread. Regardless of the term, this specific tool kit is a crucial element for characterizing the technical system of this phase of Lower Palaeolithic.

In sum, the results obtained on the lithic assemblage of Cimitero di Atella contribute to a better knowledge of the technical system in Southern Europe. The tool kit is mainly obtained by the confection of small tools and secondarily by shaping large tools and flaking backed flakes. Many questions still need to be addressed in the future, including the selection/production of blanks and the techno-functional diversity of small and large tools. But in our opinion, in order to better comprehend this phase of the Lower Palaeolithic, we need to examine the whole assemblage, not only LCTs, from a technological perspective.

5.2.2. The fauna of Atella in a broader context

The Early Acheulean spread throughout Europe alongside considerable faunal turnover, in a broader context of remarkable environmental and climatic changes. Consequently, the period between the latest Early and Early Middle Pleistocene (~1.2-0.5 Ma) is often referred to as the Mid-Pleistocene Revolution, or Early–Middle Pleistocene Transition (EMPT). The EMPT witnessed a climatic change
of paramount importance: the increase in the amplitude of glacial-interglacial oscillations, a shift that
in turn prompted sharper recurrent changes in associated phenomena, such as, for instance, ice volume
cycles (Clark et al., 2006; Head and Gibbard, 2015; Maslin and Brierley, 2015). The mutated (and
more instable, at a ~100 kyr temporal scale) climate conditions favoured the spread of adaptable
species, which eventually completely replaced previous Villafranchian mammals by the end of the
EMPT (Gliozzi et al., 1997). These animals include several forms closely related to extant lineages
or species, for instance, red deer, wild boars, hyenas, and wolves (van der Made et al., 2017; Iannucci
et al., 2021a; Iurino et al., 2022). The general pattern is quite clear, but these bioevents did not all
occur at once, as the different species reacted variously to environmental changes. As emphasised by
several authors (Martinez-Navarro et al., 2010), investigating the faunal response and the timing of
bioevents can provide relevant clues on potential coincidental diffusions of hominin populations or
lithic tradition.

The faunal list of Atella should still be considered to be provisional, as the ongoing excavations
will yield new material that will contribute to refining current attributions and possibly identify new
species. However, some considerations can be noted. The straight-tusked elephant, Palaeoloxodon
antiquus, is the best-represented species at Atella. An isolated molar recovered from the latest Early
Pleistocene of Slivia, in north-eastern Italy (~0.9–0.8 Ma) is the earliest record of this elephant in
Europe (Bon et al., 1992), which becomes much more abundant during the Middle Pleistocene
(Palombo and Ferretti, 2005). In Italy, the latest well-dated occurrences of the species are not recorded
after MIS 5 (Braun and Palombo, 2021; Mecozzi et al., 2021b; Pieruccini et al., 2022). The straight-
tusked elephant is more frequently reported during interglacial stages, but the species was a mixed
feeder and inhabited different environments (Palombo et al., 2005; Rivals et al., 2012).

The red deer, Cervus elaphus, is also documented in some latest Early Pleistocene localities,
including Atapuerca, Dorn-Dürkheim, and Slivia (Bon et al., 1992; Franzen et al., 2000; van der Made
et al., 2017), while it becomes widespread in Middle Pleistocene assemblages (Di Stefano et al., 2015;
vander Made et al., 2017). Again, C. elaphus is an adaptable species with a wide ecological tolerance
and flexible feeding behaviour (Gebert and Verheyden-Tixier, 2001; Benvenuti et al., 2017).

Few remains attest to the presence of the fallow deer, *Dama* sp., at Atella. The taxonomy of *Dama*-like deer is far from unanimously agreed upon (e.g., Di Stefano and Petronio, 2002; Breda and Lister, 2013; van der Made et al., 2017; Croitor, 2018), and thus it is somewhat contentious to attempt to place occurrences of the genus in a chronological context. Differences in Middle Pleistocene fallow deer are mainly documented on antlers, and when these are not available, specific attributions are often based on chronological grounds. In any case, fallow deer are common during the Middle Pleistocene, but are usually reported in localities related to interglacial stages (Mecozzi et al., 2021c).

Moreover, although the diet of extant fallow deer populations varies in many respects (Esattore et al., 2022), a browsing behaviour is generally inferred for Middle Pleistocene fallow deer (Rivals and Ziegler, 2018; Strani et al., 2022).

The Atella bovids cannot be confidently identified at a species level (*contra* Zucchelli, 1999), even though some bones show *Bison*-like features. Nonetheless, this group arouses much interest within the context of Acheulean diffusion in Europe, with Martínez-Navarro et al. (2010) emphasising a coincidental spread of the Acheulean culture and *Bos*. This was supported in particular by the attributions of the material of Notarchirico and Loreto to *B. primigenius* (Caloi and Palombo, 1979; Cassoli et al., 1999). However, subsequent research has pushed back the chronology of Early Acheulean diffusion into Europe (see section 5.2.1.), while the taxonomic identification of the scant postcranial bovid material recovered from the aforementioned localities of the Venosa Basin requires further investigation (Iannucci et al., 2021b). Incontestable *B. primigenius* cranial remains are only documented since ~0.5 Ma. As in the case of the other species, the representativeness of *B. primigenius* in the fossil record increased at a later stage, during the late Middle to Late Pleistocene (Wright, 2013; Iannucci et al., 2021b).

To sum up, the species encountered at Atella represent a typical assemblage for the Middle Pleistocene of Italy. Most of them are characterized by high ecological tolerance, but some indications (abundance of *P. antiquus*, presence of *Dama* sp., absence of species mainly related to cold and open
habitats) suggest a warm, perhaps interglacial, environment.

5.2.3. Environmental evolution

In Central and Southern Italy, the 650-500 cal. BP time interval, encompassing the site of Cimitero di Atella, is characterized by major vegetation turnover, revealed by a number of pollen records spanning at least part of this interval, stretching from MIS 16 to the first part of MIS 13.

MIS 16 is recorded at Vallo di Diano, the largest tectonic basin of the Southern Apennines, located in the Campania region, ca. 50 km south of Cimitero di Atella (Russo Ermolli, 1994; Russo Ermolli and Cheddadi, 1997). The pollen record reveals a semi-open landscape with steppe vegetation dominated by Poaceae, *Artemisia* and other Asteraceae species. Conifers were mostly represented by *Pinus* and *Abies*, especially at the transition with MIS 15, when steppe taxa declined. Apart from oaks, broadleaved trees were represented by scattered occurrences. The contents of pollen sample A01 in the Borzatti von Löwenstern sequence match the final part of MIS 16 at Vallo di Diano.

MIS 15 is recorded at Vallo di Diano and in the Sessano Basin (Russo Ermolli et al., 2010), a large tectonic depression located in Molise. The pollen record of this interglacial period points to a remarkable development of broadleaved woodlands dominated by deciduous oaks with *Ulmus*, *Zelkova*, *Carpinus*, and *Acer*, accompanied by sparse evergreen formations composed of evergreen oaks and Ericaceae. The permanence of conifers in the landscape is revealed by significant frequencies of *Abies*, suggesting cool and wet conditions, and *Pinus*. Some steppe vegetation was also present in this environment, despite increased humidity. Overall, the vegetation features documented by samples A02, A03 and I of the Borzatti von Löwenstern sequence are similar to some MIS 15 pollen spectra from Vallo di Diano. A remarkable ecological and biostratigraphic aspect of the Borzatti von Löwenstern sequence is the occurrence of *Tsuga* (<3%) in samples A01 and A02. In Central Italy, the last significant abundance (>5%) of this conifer occurs in the Torre Mucchia record, correlated with MIS 17 (Pieruccini et al., 2016; Magri et al., 2017). It probably persisted until MIS 13, when it occurred at Sessano (Russo Ermolli et al., 2010). Thus, the presence of *Tsuga* at Atella is consistent with the new chronology of the site and shows that sparse populations of this tree were still
present in the Italian Peninsula during the Middle Pleistocene. MIS 14 is well represented in the pollen records of Vallo di Diano, Sessano, and Acerno. The latter site is a narrow tectonic depression located in the central sector of the Picentini Mts, ca 50 km west of Cimitero di Atella (Munno et al., 2001). The vegetation history of this period points to a new decline of forests, in particular broadleaved trees and shrubs, alongside a marked expansion of steppe vegetation, but with clear floristic differences in the three sites. At Vallo di Diano, a progressive decline in deciduous oaks is coeval with an abrupt conifer turnover, with a clear reduction of Abies and a new expansion of Pinus. At Sessano, deciduous oaks declined more markedly, accompanied by the disappearance of almost all the broadleaved trees and Abies. At Acerno, broadleaved trees were still abundant, at some point with Betula. In general, climate conditions during glacial phases MIS 16 and MIS 14 do not seem sufficiently harsh to wipe out temperate forests, and plants and animals may have persisted for some time in glacial refuges in Southern Italy (Orain et al., 2013).

The vegetation history of the MIS 13 interglacial phase has been reconstructed from several sites in Central and Southern Italy, including (from north to south) Rignano Flaminio (Di Rita and Sottili, 2019) and Ceprano from Lazio (Margari et al., 2018), Sessano (Russo Ermolli et al., 2010) and Boiano from Molise (Orain et al., 2015), Acerno (Munno et al., 2001) and Vallo di Diano (Russo Ermolli et al., 1994, Petrosino et al., 2014a) from Campania, and the Mercure Basin at the Calabria-Basilicata boundary (Petrosino et al., 2014b). These sequences suggest that local environmental factors (including edaphic, topographic and climatic conditions) led to the development of specific forest landscape characters in each site, which are difficult to place in regional vegetation patterns (Russo Ermolli et al., 2015). In the pollen records closest to Cimitero di Atella, namely Vallo di Diano and Acerno, forests were dominated by deciduous Quercus and Abies, with a still conspicuous presence of Pinus. It is likely that these trees were also the main floristic elements of the woodlands surrounding Atella during MIS 13.

6. Conclusion

The new stratigraphic, sedimentological and geochronological data identified tephra layers in the
sediments of the Cimitero di Atella archaeological site, interpreted as fallout deposits and pyroclastic flows related to the eruptive activity of the upper portion of the Monte Vulture Supersynthem (starting at the boundary between the Rionero and Vulture-San Michele subsynthsems). 40Ar/39Ar dating on the lowest tephra layer (Atella INF) of the measured stratigraphic section dated the base of the Vulture – San Michele Subsyntem to 655 ± 12 ka. Sedimentological analysis also correlates the Bmli and Suli facies (archaeological unit F of Borzatti von Löwenstern et al., 1997) with the draining of the lake. According to our 40Ar/39Ar dating of the F horizon of Atella, this dramatic event should have taken place at about 570-580 ka. The erosional surface at the top of these sediments indicates a morphological development of an alluvial channel, subsequently filled by 2.5-m-thick volcaniclastic braided-type alluvial facies with intercalations of primary volcanic layers. These sedimentological data suggest a volcanic reactivation of Monte Vulture Volcano, leading to an increase in the sedimentary load in an alluvial environment. The presence of seismically-induced soft-sediment deformation structures can be related to eruptions with sufficient energy to quake the Atella territory. Geochronological analyses carried out in the alluvial part of the stratigraphic section suggest sedimentation between 509 ± 46 ka and 570-580 ka. These data do not allow us to accurately identify the upper limit of the Vulture - San Michele Subsyntem nor to link the deposits from the upper portion of the Cimitero di Atella section to the younger eruptive stages of the Monte Vulture Supersynthem. Therefore, in order to date the archaeological site more accurately, and also in relation to the stratigraphic scheme of Monte Vulture Volcano by Giannandrea et al. (2006), in the future we aim to collect further sedimentological, geochemical, and geochronological data from the portion revealed by ongoing excavations of the site and to perform stratigraphic checks in the Monte Vulture volcanic sequence. Archaeological investigations identify at least four occupation episodes at the site during the second phase of the Lower Palaeolithic. They are different in terms of preservation and probably accumulation duration, but these occupations belong to the same techno-cultural context, and are consistent with other more or less contemporaneous sites in Italy and Western Europe. The tool kit is
obtained in three main ways: small tool confection, flakedebitage and LCT shaping. The specific productional and functional attributes of these categories need to be clearly defined in the future, along with discussions of the definition of these typical Early Acheulean productions. The still preliminary results from the techno-functional analysis of small tools reveal the technical complexity of this phase of the Lower Palaeolithic. The nature of interactions between human groups and fauna will also be developed, in particular after the extensive excavation of level F-Deb1, the most promising in terms of preservation and deposition duration. The faunal elements identified so far constitute a typical assemblage for the Middle Pleistocene of Italy, with abundant straight-tusked elephants *Palaeoloxodon antiquus*, bovids and cervids. *Palaeoloxodon antiquus* and fallow deer *Dama* sp. are more frequently recorded during interglacial stages, and Middle Pleistocene fallow deer are usually associated with a browsing feeding behaviour. The identification of an elephant footprint at the top of tephra I by Borzatti von Löwenstern will need to be confirmed by fieldwork. Last year, new work focused on the ichnological sources, of animals but also humans (Altamura et al., 2020; Duveau et al., 2019; Mayoral et al., 2021). The development of this approach, based on more samples and new technical methods, will also reconsider the Atella trace found in the 1990s and explicitly look for other possible footprints. The study of the fauna will focus on faunal procurement but also on carcass exploitation for alimentary or technical purposes, as in other contemporaneous contexts (Boschian and Sacca, 2015; van Kolfschoten et al., 2016; Tourkoulis et al., 2018; Aranguren et al., 2019; Villa et al., 2021). Future investigations at Atella, in the field and on the material will assess the degree of preservation of each occupation and better define the technical system. Then these results need to be compared with results from other sites in Italy and in Europe also under study, and placed in a broader context.

Acknowledgment:

We would like to thank the institutions that support the Atella project. The Soprintendenza Archeologia Belle Arti e Paesaggio della Basilicata, the French school of Rome, the Basilicata region and the municipal administration of Atella.
Table 1: Description of Monte Vulture Volcano stratigraphic units (after Giannandrea et al., 2004, 2006; Stoppa et al., 2008). Unit codes correspond to those of the official 1:50,000-scale geological sheet (Foglio 451 Melfi, Carta Geologica d’Italia, 2010).

Table 2: List of pyroclastic and epiclastic lithofacies with brief descriptions and interpretations

Table 3: ESR data and ages obtained for Atella samples.

Table 4: Number of archaeological finds

Table 5: Distribution of lithic artefacts by technological category. Retouch flakes: small retouch flakes, notch flakes, small flakes of from the confection of small tools; Small tools: entire and fragmented small tools; Cores: entire cores and core fragments; Flakes: production flakes from a flaking reduction sequence; Large tools: Handaxes and large shaped tools; Indet: debris, indeterminate small fragments, chunks

Table 6: Size of faunal specimens in the whole site

Table 7: Alteration of fragments

Table 8: Taxonomy of faunal remains according to stratigraphy

Figures:

Figure 1: Map of the region. A. Atella and Venosa Basin in Southern Italy; B. Picture of the Atella Basin (archivio scavo Borzatti von Löwenstern).

Figure 2: a. Geological sketch map of Southern Italy; b. DEM-based sketch map of Monte Vulture volcano and Atella and Venosa mid-Pleistocene basins, with location of the Cimitero di Atella site.

Figure 3: a. Detailed geological map of the Atella area; b. geological cross-section through the Cimitero di Atella site.

Figure 4: (a), position of the cores (b) Cimitero di Atella excavation plan with the location of the different excavation areas from 1990 to 2021.

Figure 5: Panoramic view of the study area with Monte Vulture volcano in the background showing the Atella sub-horizontal landsurface.

Figure 6: Sedimentary log with indications of lithofacies and facies associations, correlation with previously published units (Borzatti von Löwenstern et al., 1997; Giannandrea et al., 2006), and 40Ar/39Ar and ESR dating samples.

Figure 7: Photos showing some Cimitero di Atella site lithofacies: a) thinly laminated epiclastic volcanic siltstone, Sh; b) fine- to coarse-grained massive tuff, TLM (black triangles indicate co-current falls); c) fine- to medium-grained normal graded tuff, Tng; d) three beds made of fine-grained structureless (the lowermost bed) and poorly laminated (the upper two beds) tuff, Tm; e) epiclastic volcanic breccia (lithofacies Bmli) sandwiched abruptly between two reworked colluvium deposits, Suli (black triangles indicate the basal erosive surface; white triangles indicate the upper boundary of the Bmli bed consisting of an articulated erosive surface); at the top, a tusk of Palaeoloxodon antiquus unconformably covers the Bmli and Suli lithofacies. Details of lithofacies codes in Table 2.

Figure 8: Photos showing some lithofacies from the upper part of the Cimitero di Atella site: a) fine-grained lacustrine beds of lithofacies Sh, Dh, and Su, under the lithofacies Bmli, coarse-grained deposits (triangles indicate soft-sediment deformation structures: black triangle indicates dome-like flame structure, and yellow triangle indicates simple load casts); b) alluvial fine (Sr) - to coarse (SBt)-grained epiclastic sandstone abruptly overlain by a massive pyroclastic deposit of lithofacies LTm; c) pyroclastic bed of lithofacies TLBm, showing at the base dome-like flame structure (white triangles); d) from the bottom: bed of pyroclastic deposit of lithofacies TLm, sandwiched between alluvial sediments made of a mixture of pyroclastic (Lm) and epiclastic (SBt) lithofacies (yellow triangles indicate simple load cast structures; white triangles indicate the erosive surface at the top of the lithofacies Lm; black triangles indicate the depositional surface of the lithofacies Lm above the alluvial sediment SBt); in the upper portion, irregular ball-and-pillow morphology (red triangles indicate boudinage-like breccia structures). Details of lithofacies codes in Table 2.

Figure 9: Depositional architecture of alluvial facies association outcropping in the upper portion of the Cimitero di Atella succession (yellow triangles indicate load structures; red triangles indicate irregular ball-and-pillow structures); lithofacies codes reported in Table 2.

Figure 10: 40Ar/39Ar and ESR results obtained on Atella samples, presented as probability diagrams. Ages are calculated at 95% of confidence.

Figure 11: Correlation between the log of Borzatti von Löwenstern (et al., 1997), the new log (Giannandrea this work) and the archaeological levels.
Figure 12: Flakes from Cimitero di Atella unit F (a): flakes from the small tool reduction sequence. (1), (2): flint confection flakes; (3): flint resharpener flakes; (4), (5): flint notch flakes. (b) Flakes from the debitage reduction sequence. (6): coarse flint flake; (7) limestone flake proximal fragment; (8), (9) small flint flakes.

Figure 13: Diacritical analysis of a small tool, piece n° 892, F-Deb 1, dimension 47x38x12 mm. (a): Order and direction of removals; (b): Schematic description of the phases. The piece is a coarse flint flake, with a fresh overall physical state and a slight polish. The presence of partial cortex and the series of first removals (1 to 6) indicate that the flake (7) comes from the initial phases of core reduction with partial management of convexities. Phase I: 1 to 6, series of removals showing opposite and orthogonal direction with respect to the future flake (7) decorticating the block and managing the distal and lateral convexities of the debitage surface. Some of these first removals, all smaller and thinner than the future flake (7), such as, for example removal (6), can have functional lateral cutting edges. 7, detachment of thick flake, blank of future tool. Phase II: 8, 9: Orthogonal blow fracture (8) starting from lower face and adjustment (9) starting from upper face. These removals create the back of the future tool. 10 to 16: creation of TFU1 composed of trihedron and adjacent cutting edge. Two notch blows (10, 11) starting from lower face created trihedral functional part and series of small alternate retouch (12 to 16) to create a saw cutting edge. Phase III: 17 to 20: Series of scaly blows starting from upper face to create the flat surface of future TFU2. 21 to 26: Creation of TFU2 composed of trihedron. Series of small blows (21, 24, 26) push back the edge of flake, while three notch blows (22, 23, 26) create the trihedral functional part. All these blows start from the upper face. Phase IV: 27 to 31: Creation of TFU3 composed of a trihedron.

Figure 14: Techno-functional analysis of a small tool, n° 892, F-Deb 1. (a) Prehensile part (TFUp in green) composed of a flat/convex thick volume and lateral back prepared by a facture blow; transformative part (TFUt in red) made up of a trihedron and cutting-edge. (b) Prehensile part (TFUp in green) composed of a flat/convex thick volume and lateral back prepared by a facture blow; transformative part (TFUt in red) formed by a trihedron. (c) Prehensile part (TFUp in green) composed of a flat/convex thick volume and lateral back prepared by a facture blow; transformative part (TFUt in red) formed by a trihedron.

Figure 15: Large shaped tools from unit F. Due to the very poor state of preservation, it was not possible to record the angles and features of the section. (a) Shaped tool on a limestone nodule. Diacritical analysis: first phase (in grey, 1 to 10): removals linked to volumetric construction; second phase (in green, 11 to 19): series of removals to complete the prehensile part; third phase (in red, 20 to 25): series of removals to implement the transformative part. Techno-functional analysis: prehensile part (TFUp in green) consisting of a natural thick volume bordered by a natural back and a prepared back; two transformative parts (TFUt in red): TFUt 1 tip-edge and TFUt 2 a serrated edge. (b) Shaped tool on a limestone pebble. Diacritical analysis: first phase (in grey, 1 to 16) removals linked to the volumetric construction; second phase (in green, 17 to 21) series of removals to complete the prehensile part; third phase (in red, 22 to 29), series of removals to implement the transformative part. Techno-functional analysis: prehensile part (TFUp in green) consisting of a thick natural volume and a prepared lateral back; two transformative parts (TFUt in red): TFUt 1 rostrum and TFUt 2 saw edge.

References

middle Pleistocene of Central Italy. Quaternary Research 88, 327–344.

https://doi.org/10.1017/qua.2017.51

Borzatti von Löwenstern, E., Sozzi, M., Vannucci, S., Vianello, F., 1990. L’acheuleano del cimitero...

L’Anthropologie 101, 617–638.

stratigraphic units. IJG 133, 27–44. https://doi.org/10.3301/IJG.2013.11

Guillou H, Scao V., Nomade S., 2018. 40Ar/39Ar age of cryotochron C2r.2r-1 as recorded in a lava sequence within the Ko'olau volcano (Hawaii, USA). Quaternary Geochronology 43,91–101. doi: 10.1016/j.quageo.2017.10.005

https://doi.org/10.1016/j.quaint.2015.09.042

Iannucci, A., Mecozzi, B., Sardella, R., 2021b. Large Mammals from the Middle Pleistocene (Mis 11) site of Fontignano 2 (Rome, Central Italy), with an overview of “San Cosimato” assemblages. Alpine and Mediterranean Quaternary 34, 155–164. https://doi.org/10.26382/AMQ.2021.07

47

Schiattarella, M., Beneduce, P., Di Leo, P., Giano, S.I., Giannandrea, P., Principe, C., 2005. Assetto strutturale ed evoluzione morfotettonica quaternaria del vulcano del Monte Vulture (Appennino
Lucano). Bollettino-Società Geologica Italiana 124, 543.

<table>
<thead>
<tr>
<th>Stratigraphic units</th>
<th>Radiometric age by Villa and Buettner, 2009 (Ma)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Supersynthem</td>
<td>Synthem</td>
</tr>
<tr>
<td>Subsynthem</td>
<td>Units code</td>
</tr>
<tr>
<td></td>
<td>Brief description of lithology and deposit interpretation</td>
</tr>
<tr>
<td>MONTICCHIO</td>
<td></td>
</tr>
<tr>
<td>Laghi di Monticchio</td>
<td></td>
</tr>
<tr>
<td>Serra di Sirada</td>
<td>LGM5</td>
</tr>
<tr>
<td>Lago Piccolo</td>
<td>LGM4</td>
</tr>
<tr>
<td>Lago Grande</td>
<td>LGM3</td>
</tr>
<tr>
<td>Piano Comune</td>
<td>LGM2</td>
</tr>
<tr>
<td>Kascola</td>
<td>LGM1</td>
</tr>
<tr>
<td>Valle dei foci di Fosso del Corvo</td>
<td></td>
</tr>
<tr>
<td>Masseria di Cuscineto</td>
<td>VGc3</td>
</tr>
<tr>
<td>Imbandina</td>
<td>VGc2</td>
</tr>
<tr>
<td>Case Lipes</td>
<td>VGc1</td>
</tr>
<tr>
<td>MONTE VULURE</td>
<td></td>
</tr>
<tr>
<td>Molfi</td>
<td></td>
</tr>
<tr>
<td>Isola e Ariodelaconata</td>
<td>SMP4</td>
</tr>
<tr>
<td>Piano di Croce</td>
<td>SMP3</td>
</tr>
<tr>
<td>Castello di Melfi</td>
<td>SMP2</td>
</tr>
<tr>
<td>Sasso</td>
<td>SMP1</td>
</tr>
<tr>
<td>Barile</td>
<td></td>
</tr>
<tr>
<td>Venturano</td>
<td>SBL4</td>
</tr>
<tr>
<td>Vulture – San Michele</td>
<td>SBL3</td>
</tr>
<tr>
<td>Ronero</td>
<td>SBL2</td>
</tr>
<tr>
<td>Toppo San Paolo</td>
<td>SBL1</td>
</tr>
<tr>
<td>Foggianello</td>
<td></td>
</tr>
<tr>
<td>Fara d’Olivo</td>
<td>FGG3</td>
</tr>
<tr>
<td>Campanile</td>
<td>FGG2</td>
</tr>
<tr>
<td>Spinoritola</td>
<td>FGG1</td>
</tr>
</tbody>
</table>

Table 1: Description of the Monte Vulture Volcano stratigraphic units (after Giannandrea et al., 2004, 2006, and Stoppa et al., 2008). Unit codes correspond to those of the official 1:50,000-scale geological sheet (Foglio 451 Melfi, Carta Geologica d’Italia, 2010)
Table 2: List of pyroclastic and epiclastic lithofacies with a brief description and interpretation

<table>
<thead>
<tr>
<th>Facies code</th>
<th>Facies description</th>
<th>Sedimentary structures</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bmli</td>
<td>Poorly-sorted matrix-supported epiclastic volcanic breccia, with angular to sub-angular pebbles ranging in size from 1 to 10 cm. Matrix consists of grey middle- to coarse-grained epiclastic volcanic sandstone.</td>
<td>Structureless/massive beds</td>
<td>Cohesive debris flows deposits</td>
</tr>
<tr>
<td>Suli</td>
<td>Epiclastic volcanic sandstone, with volcanic angular to sub-angular pebble (ranging in size from 1 to 10 cm) and lithic industry.</td>
<td>Poorly-defined undulated beds</td>
<td>Reworked colluvium</td>
</tr>
<tr>
<td>SBl</td>
<td>Coarse epiclastic volcanic sandstone and angular to sub-rounded epiclastic volcanic clast-supported breccia, with scattered cobbles (10-50 cm size).</td>
<td>Trough cross-beds</td>
<td>Channel infill by water stream flow of the reworked volcanic fallout and pyroclastic flow deposits</td>
</tr>
<tr>
<td>Sr</td>
<td>Gray fine-grained epiclastic volcanic sandstone.</td>
<td>Ripple cross-lamination</td>
<td>Ripples (lower flow regime)</td>
</tr>
<tr>
<td>Sh</td>
<td>Light grey epiclastic volcanic siltstone.</td>
<td>Horizontally thinly laminated</td>
<td>Decantation, lake deposits.</td>
</tr>
<tr>
<td>Dh</td>
<td>White to light-grey silty-clay diatomites.</td>
<td>1-15-cm-thick massive to laminated beds</td>
<td>Shallow-lake deposits</td>
</tr>
<tr>
<td>Su</td>
<td>Red siltstone.</td>
<td>Massive appearance or with poorly defined planar laminaion in undulated beds</td>
<td>Hydrothermal alteration of volcanic material</td>
</tr>
<tr>
<td>TLBm</td>
<td>Medium- to coarse-grained tuff with fine- to coarse-grained angular lapilli stones and blocks (max 27 cm size).</td>
<td>Structureless/massive beds</td>
<td>Pyroclastic debris flows</td>
</tr>
<tr>
<td>LTm</td>
<td>Fine- to coarse-grained lapilli stone, with medium-grained tuff. Presence of some angular blocks max 10 cm size.</td>
<td>Structureless/massive beds</td>
<td>Pyroclastic debris flows</td>
</tr>
<tr>
<td>Lm</td>
<td>Coarse-grained clast-supported lapilli stone with grey pumice.</td>
<td>Structureless/massive beds</td>
<td>Lapilli fallout deposits</td>
</tr>
<tr>
<td>TLm</td>
<td>Grey fine- to coarse-grained tuff, with fine-grained scattered lapilli, locally covered by 1-3-cm-thick light-grey fine-grained tuff.</td>
<td>Massive appearance or with poorly defined planar laminaion in undulated beds</td>
<td>Lower-concentration pyroclastic currents and co-current falls</td>
</tr>
<tr>
<td>Tng</td>
<td>Grey fine- to medium-grained tuff.</td>
<td>Normal grading</td>
<td>Decantation of a volcanic fall deposit in shallow fresh water</td>
</tr>
<tr>
<td>Tm</td>
<td>Fine- to coarse-grained tuff.</td>
<td>Structureless/massive or poorly-defined laminated beds</td>
<td>Fallout deposits</td>
</tr>
</tbody>
</table>

Table 3: ESR data and ages obtained for Atella samples.

<table>
<thead>
<tr>
<th>Level</th>
<th>238U (ppm)</th>
<th>232Th (ppm)</th>
<th>K (%)</th>
<th>D_α (µGy/a)</th>
<th>D_β (µGy/a)</th>
<th>$D_{\gamma+cosmic}$ (µGy/a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L3</td>
<td>7.09±0.15</td>
<td>20.19±0.28</td>
<td>1.35±0.02</td>
<td>179±3</td>
<td>2083±32</td>
<td>2018±102</td>
</tr>
<tr>
<td>L1</td>
<td>4.44±0.17</td>
<td>18.37±0.32</td>
<td>1.19±0.02</td>
<td>138±4</td>
<td>1652±38</td>
<td>2375±110</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level</th>
<th>Used center</th>
<th>Bi max. (%)</th>
<th>W (%)</th>
<th>D_γ (Gy)</th>
<th>D_α (µGy/a)</th>
<th>Ages (ka)</th>
<th>Mean Ages (ka)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L3</td>
<td>Al</td>
<td>51</td>
<td>10±5</td>
<td>1870±100</td>
<td>4297±111</td>
<td>435±23</td>
<td>442±39</td>
</tr>
<tr>
<td></td>
<td>Ti - Li</td>
<td>100</td>
<td></td>
<td>1990±175</td>
<td></td>
<td>463±41</td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>Al</td>
<td>53</td>
<td>10±5</td>
<td>2134±159</td>
<td>4147±121</td>
<td>515±39</td>
<td>509±56</td>
</tr>
<tr>
<td></td>
<td>Ti - Li</td>
<td>100</td>
<td></td>
<td>2081±175</td>
<td></td>
<td>502±42</td>
<td></td>
</tr>
</tbody>
</table>
Table 4: Number of archaeological finds

<table>
<thead>
<tr>
<th>Levels</th>
<th>Old excavation (Borzatti)</th>
<th>New excavation (EFR)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>L complex</td>
<td>107</td>
<td>0</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deb 1: 261</td>
<td></td>
</tr>
<tr>
<td>F complex</td>
<td></td>
<td>Deb 2: 129</td>
<td></td>
</tr>
<tr>
<td></td>
<td>667</td>
<td>273</td>
<td>940</td>
</tr>
<tr>
<td>Total</td>
<td>774</td>
<td>273</td>
<td>1047</td>
</tr>
</tbody>
</table>

Table 5: Distribution of lithic artefacts by technological category. Retouch flakes and flakes from shaping small tools: small retouch flakes, notch flakes, small flakes from shaping the edges of small tools; Small tools: entire and fragmented small tools; Core: entire core and fragment of core; Flakes: production flakes from a flaking reduction sequence; Large tools: Handaxes and large shaped tools; Indet: debris, indeterminate small fragment, chunks.

<table>
<thead>
<tr>
<th>Technological categories</th>
<th>Retouch and small tool-shaping flakes</th>
<th>Small tools</th>
<th>Cores</th>
<th>Flakes</th>
<th>Large tools</th>
<th>Indet</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level L</td>
<td>46</td>
<td>16</td>
<td>2</td>
<td>15</td>
<td>0</td>
<td>28</td>
<td>107</td>
</tr>
<tr>
<td>Level F</td>
<td>222</td>
<td>250</td>
<td>23</td>
<td>386</td>
<td>28</td>
<td>31</td>
<td>940</td>
</tr>
<tr>
<td>Total</td>
<td>268</td>
<td>266</td>
<td>25</td>
<td>401</td>
<td>28</td>
<td>59</td>
<td>1047</td>
</tr>
</tbody>
</table>

Table 6: Size of faunal specimens in the whole site

<table>
<thead>
<tr>
<th>Size</th>
<th>TOT</th>
<th>TOT %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 cm</td>
<td>54</td>
<td>9.2</td>
</tr>
<tr>
<td>2 cm</td>
<td>131</td>
<td>22.4</td>
</tr>
<tr>
<td>3 cm</td>
<td>116</td>
<td>19.8</td>
</tr>
<tr>
<td>4 cm</td>
<td>108</td>
<td>18.5</td>
</tr>
<tr>
<td>5 cm</td>
<td>67</td>
<td>11.5</td>
</tr>
<tr>
<td>6 cm</td>
<td>29</td>
<td>5.0</td>
</tr>
<tr>
<td>7 cm</td>
<td>20</td>
<td>3.4</td>
</tr>
<tr>
<td>8 cm</td>
<td>11</td>
<td>1.9</td>
</tr>
<tr>
<td>9 cm</td>
<td>7</td>
<td>1.2</td>
</tr>
<tr>
<td>10 cm</td>
<td>9</td>
<td>1.5</td>
</tr>
<tr>
<td>11 cm</td>
<td>4</td>
<td>0.7</td>
</tr>
<tr>
<td>12 cm</td>
<td>5</td>
<td>0.9</td>
</tr>
<tr>
<td>13 cm</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>14 cm</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>15 cm</td>
<td>5</td>
<td>0.9</td>
</tr>
<tr>
<td>16 cm</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>17 cm</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>Levels</td>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td>-------------</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Bovinae indet.</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Bovid/Cervid</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Caprine</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cervus elaphus</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Dama sp.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cervid</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>Ungulate</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Palaeoloxodon antiquus</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>Palaeoloxodon size</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Unidentified</td>
<td>385</td>
<td>2</td>
</tr>
<tr>
<td>Small mammal</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Testudines</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOT</td>
<td>469</td>
<td>2</td>
</tr>
</tbody>
</table>
Declaration of interests

☒ The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

☐ The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:
Click here to access/download
E-component/Supplementary Material
Atella_SM.pdf