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Online Minimization of the Robot Silhouette Viewed
From Eye-to-Hand Camera

G. Cortigiani‡,∗, B. Brogi‡,∗, A. Villani‡, T. Lisini Baldi‡,§, N. D’Aurizio‡,§, and D. Prattichizzo‡,§

Abstract— Redundant robots have the potential to perform
internal joints motion without modifying the pose of the end-
effector by exploiting the null-space of the Jacobian matrix.
Capitalizing on that feature, we developed a control technique
for minimizing the robot visual appearance when observed
from an eye-to-hand camera. Such algorithm is instrumental
in contexts where quickly adjusting the perspective to see
objects obstructed by the robot is impractical (e.g., teleoperation
in narrow environment). Diminished reality techniques are
frequently employed in these cases to mitigate the robot
intrusion into the environment, although these techniques may
sometimes compromise the perceived realism. The experimental
evaluation confirmed the effectiveness of our control algorithm,
demonstrating an average reduction of 4.67% of the area covered
by the robot within the frame when compared to the case without
the optimization action.

I. INTRODUCTION

Virtual and Augmented Reality have found in the Metaverse
one of their most promising accomplishments, showcasing a
three-dimensional digital world wherein users, embodied in
customized avatars, meet each other in a shared environment
that augments their physical surroundings [1]. In our previous
work [2], we introduced for the first time the concept of
Physical Metaverse1, a shared augmented environment where
users are able to interact not only with virtual entities but
also with tangible objects. This capability is achieved through
a novel interface named Avatarm, which uses a robotic arm
that mimics users interactions with the digital objects by
manipulating their real twins. The robot remains hidden from
view thanks to an online diminished reality technique which
overlays the robot in the frames streamed from an eye-to-hand
camera with an image of the background, acquired before
placing the robotic arm in the real environment.

Despite this technique successfully improving the users in-
teraction experience in the Physical Metaverse, the overlaying
of a static background on the streamed image of the robot is
perceived as unnatural by some users, reducing the sense of
realism of the surrounding mixed environment. This limitation
is particularly relevant when variations in lighting conditions
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Fig. 1: Three key time instants taken from the execution
of a representative end-effector trajectory performed with
(right column) and without (left column) the action of the
control algorithm minimizing the robot silhouette in the eye-
to-hand camera framing. The starting pose (first row) of
the robot is the same for both conditions. Throughout the
trajectory execution (second and third rows), the algorithm
actively reduces the robot visibility while maintaining the
end-effector pose along the desired path.

and dynamic changes within the environment occur during
the experience.

The need for reducing the visual encumbrance of the
robot can also be faced in more general critical domains
such as teleoperation in unstructured environments [3], or
visual servoing applications, in which vision occlusions
lead to the control failure [4], [5]. Other scenarios include
individuals with disabilities who rely on robots to mitigate
their limitations [6]. Indeed, visual perception is one of
the most fundamental aspects that affects the quality and
accomplishment of teleoperation tasks [7]. Typically, oc-
clusion issues are addressed by employing an eye-in-hand
configuration, wherein a camera is mounted on the robot’s
end-effector. However, this causes an unintuitive remote
control, as well as a limited and configuration-dependent
field of view [8]. Approaches involving multiple cameras
have been proposed to overcome this issue [3], [5], [9],
[10], with the disadvantage of requiring more complex setups

http://physicalmetaverse.cloud
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Fig. 2: Visual representation of the two methods for approxi-
mating the robot silhouette in the framing. On the left, the
link-based method uses the sum of the distances (denoted as
di) between consecutive joint projections pi onto the camera
frame. On the right, the dispersion-based method computes
the determinant of the covariance matrix Σ of the projected
joint positions pi onto the camera frame centered around their
mean value µ.

and control strategies. Superimposition techniques [11], [12]
may be used to reconstruct the occluded areas, though
affecting, as previously mentioned, the perceived realism.
Alternatively, improving the visibility can be addressed
through the implementation of camera control algorithms
to ensure tracking of targeted objects [13]. However, this
approach falls short in scenarios in which adjust or modify
the pose of the camera is unfeasible.

This paper aims at dynamically reducing the impact of
the robot in the user’s field of view proposing a control
algorithm that minimizes the robot silhouette in a eye-to-
hand configuration. In particular, achieving this objective
involves leveraging the manipulator redundancy to optimize
the robot pose while maintaining the desired pose of the
end-effector.

From a mathematical perspective, the null space of the
Jacobian matrix can be exploited to accomplish an auxiliary
task having no effects at the pose of end-effector [14]. For
instance, Liegeois et al. [15] used this space to accomplish
an additional avoidance action of the robot joint limits. In a
similar way, Yokishawa et al. maximized the kineto-static and
dynamic manipulability measures, as presented in [16] and
[17], respectively. More recently, Chen et al. in [18] presented
a control law based on the null space of the Jacobian matrix
integrating self-collision and joint limits avoidance with the
maximization of an extended manipulability measure.

In this work, the null space of the Jacobian matrix is
exploited to minimize the number of pixels in the camera
framing that contains portions of the robot silhouette, and, at
the same time, maximize the distance from the joint limits to
keep the primary task (i.e., accomplish a desired trajectory)
feasible. Fig. 1 visually summarizes a trajectory of the robot
performed with and without the action of the proposed control
method.

II. ROBOT CONTROL ALGORITHM

A prevailing approach to the control of redundant manipu-
lators entails the computation of the desired joint velocities
q̇ ∈ Rn, with n representing the number of joints. Given
the desired robot end-effector motion, inverse kinematics
can determine an appropriate joint velocity configuration for
which the end-effector moves toward the target pose. Since
the robot is redundant, there exist multiple solutions that
meet the required motion, and thus we can select the one
that better satisfies some additional metrics. This idea is
based on a hierarchical arrangement of the involved tasks
and can be interpreted as a local optimization. The highest
priority task is executed employing all the capabilities of the
robotic system. The second priority task is then accomplished
exploiting the null space of the top priority one. In other
words, the secondary task is This concept can be formulated
as:

q̇ = J†(ṙd +Ke) + (I − J†J)q̇0

where ṙd ∈ R6 is the vector containing the desired end-
effector linear and angular velocities, J ∈ R6×n is the
Jacobian matrix of the robot, (·)† is the pseudo-inverse
operator, e ∈ R6 is the error of the end-effector pose,
K ∈ R6×6 is a positive definite matrix that ensures the error
convergence, (I − J†J) is the projector on the null space
of the Jacobian matrix N (J), and q̇0 is an arbitrary vector
that parametrizes the solution sets. The product between the
last two terms gives the projected joint velocities that belong
to N (J) and do not contribute to the end-effector motion.
Therefore, these velocities can be utilized to accomplish a
secondary task while guaranteeing the accurate execution
of the primary task, i.e., tracking the desired end-effector
trajectory.

The secondary task may involve minimizing (or maxi-
mizing) a given scalar objective function C(q) : Rn → R.
To accomplish this, the gradient of the function can be
projected onto the null space by choosing q̇0 (in the case of
minimization) as follows:

q̇0 = −∇qC(q).

This projection can be applied as long as the function
C explicitly depends on the joint variables q ∈ Rn and is
differentiable with respect to q.

As the purpose of this work is to minimize the amount
of pixels in the framing containing portions of the robot,
ideally, we should define the function C to describe this
quantity. Unfortunately, directly utilizing this approach proves
unfeasible as it is impossible to formulate a differentiable
closed-form function that accurately computes the area
covered by the robot within the scene for any camera pose.
This difficulty arises due to several factors, including robot
self-occlusions with respect to the point of view and the
irregular shape of its links. Hence, the strategy here presented
is to design a differentiable function capable of accurately
reflecting the behavior seen in the robot silhouette within



the framing. To achieve this, two distinct methods were
devised for comparison purposes, providing insight into their
effectiveness in accurately representing the aforementioned
area value.

A. Robot Projection Onto the Image Plane

Both methods are based on the projection of the positions
of the robot joints onto the image plane of the camera.
Let the reference frame of each robot joint i be chosen
according to the Denavit-Hartenberg (DH) convention, and
let the homogeneous transformation matrix A0

i (q) describe
the pose of the ith joint frame with respect to the world
reference frame O0 − x0y0z0. This matrix can be computed
by exploiting the DH parameters of the robot as:

A0
i (q) = A0

1(q1)A
1
2(q2) · · ·Ai−1

i (qi).

The fourth column of the matrix A0
i (q) is the homogeneous

vector of the ith joint position, denoted as p̃0
i = [p0

i ; 1] ∈ R4,
where p0

i represents the vector of spatial coordinates of the ith

joint. Afterward, taking into account the pose of the camera
in the environment, it is possible to identify the homogeneous
transformation matrix T c

0 between the world reference frame
and the frame attached to the camera Oc − xcyczc. The
homogeneous representation of the ith joint position from the
world frame to the camera frame is described as:

p̃c
i = T c

0 p̃
0
i .

The reference frame on the image plane is considered with
axes parallel to the axes xc and yc of the camera frame,
and the origin is at the intersection of the optical axis with
the image plane. Taking into account the frontal perspective
transformation [19], it is possible to map the points from the
camera frame to the image frame as:

x̂i =
fp̃ci,x
p̃ci,z

, ŷi =
fp̃ci,y
p̃ci,z

where f is the focal length of the lens in correspondence of
the axis zc of the camera frame. Further imperfections such
as aberrations and geometric distortions were not considered
for the purpose of this work, since all the computations were
performed in simulation. As a result, the point p̂i = [x̂i ŷi]

T ∈
R2 describes the position of the robot joint i on the camera
image plane.

B. Function #1: Link-Based Method

The first function proposed within this work approximates
the area of the robot to the cumulative length of the links
projected onto the camera plane. More precisely, the distances
between the consecutive projected joints are summed, leading
to the following cost function:

Fl(q) =

n−1∑
i=1

√
(x̂i+1 − x̂i)2 + (ŷi+1 − ŷi)2.

In a more practical interpretation, this method minimizes the
lengths of the link projections, encouraging the links to be
oriented along the direction in which the camera is pointing.

C. Function #2: Dispersion-Based Method

The second proposed function computes the dispersion of
the projected joint positions. The generalized variance is used
as a metric, that is a one-dimensional measure of a multi-
dimensional vector variable evaluated as the determinant of
its covariance matrix [20].

The function is defined as:

Fd(q) = |Σ|

being X̂ and Ŷ ∈ Rn the vectors containing the coordinates
x̂ and ŷ of the robot joints, | · | the determinant operator, and
Σ ∈ R2×2 the covariance matrix of the two vectors X̂ and
Ŷ having mean µX̂ and µŶ , respectively. The covariance
matrix is computed as:

Σ =

[
σ2,0 σ1,1

σ1,1 σ0,2

]
where

σi,j =
∑
X̂,Ŷ

(X̂ − µX̂)i(Ŷ − µŶ )j .

In other words, the objective of this second approach is to
minimize the spatial footprint of the manipulator with respect
to the camera by prompting the robot to adopt compact poses
(i.e., with low dispersion of joints). A graphical representation
of the two approximation methods is reported in Fig. 2.

D. Candidate Cost Functions

The functions described in Sect. II-B and Sect. II-C lead to
the definition of two corresponding candidate cost functions
Cl(q) and Cd(q) as:

Cl(q) = αlFl(q) + βL(q)

Cd(q) = αdFd(q) + βL(q)

where αl, αd, and β are scaling factors that appropriately
weigh each contribution to the overall cost. The term L(q) is
added to the cost function to prevent the robot from reaching
the joint limits during its movement, and it is defined as:

L(q) =

n∑
i=1

(
1

wM − w(qi)
− 1

wM

)
.

Following the approach described in [19], we can define the
normalized distance from the mechanical joint limits as:

w(qi) =

(
qi − q̄i

qiM − qim

)2

(1)

where qiM and qim represent the upper and lower joint limits,
respectively, while q̄i denotes the midpoint of the joint range.
The term wM = 1

4 is the maximum value that Eq. (1) can
assume. Consequently, maximizing the distance of the joints
from the limits guarantees that the robot motion is feasible.

The resulting cost of Cl and Cd are meant to be differen-
tiable functions that approximate the characteristics of the
projected robot area, while also adjusting potential joint limit
violations.



Algorithm 1: Pseudocode for computing q̇t+1

Input :
qt: joint values at time instant t;
ṙdt : desired end-effector velocity at time instant t;
et: end-effector position error at time instant t;
T : sample time;
Output :
q̇t+1: desired joint velocities at time instant t+T ;
Variables :
k: current iteration step of the loop;
qk: joint values at step k;

Variable initialization:
q̇0 ← 07×1;
qk ← qt;
k ← 0;
while loop time < T ∧ joints velocity within limits do

q̇0k ← −∇qC(qk);
qk+1 ← qk + (I − J(qt)

†J(qt))q̇0k )T ;
if C(qk+1) < C(qk) then

q̇0 ← q̇0 + q̇0k ;
else

loop exit;
end
k ← k + 1;

end
q̇t+1 ← J†(qt)(ṙdt +Ket) + (I − J†(qt)J(qt))q̇0;

For the gradient method to work properly, it is essential to
take small steps toward the direction of the optimum. This
ensures that the algorithm approaches the minimum without
causing the cost function to increase and without surpassing
the joint velocity limits. Hence, a small step size is employed
in the optimization loop, and the projected joint velocities are
continuously updated making sure that they are consistently
moved in the descending direction until the command need
to be transmitted to the robot, preventing the generation of
delay or latency. The detailed description of the robot control
algorithm is reported in Alg. 1.

III. EXPERIMENTAL EVALUATION

A. Correlation Analysis

As a first step, we experimentally assessed if the cost
functions proposed in Sect. II are suitable for approximating
the area of the robot projected onto the camera image plane.
To this end, we performed a correlation analysis to determine
whether there exists a monotonic relation between the output
of the candidate functions Fl(q) and Fd(q) and the area of
the robot silhouette in the framing (expressed as number of
pixels).

A virtual environment, created with Unity Graphic Engine
(Unity Technologies Inc., US), was used to collect data
for the correlation analysis. The virtual scene comprised
a digital Franka Emika Research 3 Robot and a virtual
camera. We tested the correlation by collecting data from
three different points of view. In what follows, we refer to
the three perspectives as Camera 1, Camera 2, and Camera 3.
For each camera, the resolution in terms of pixels was fixed
to 640 × 480. In Fig. 3, we show the camera poses with

Camera 1 Camera 2 Camera 3
Position

[2,−0.5, 0.5] [0,−2, 0.5] [2, 0, 2]
(x,y,z) [m]

Orientation [
−π

2
, 0, π

2

] [
−π

2
, 0, 0

] [
− 2π

3
, 0, π

2

]
(r,p,y) [rad]

Focal Length
3.67

f [mm]

TABLE I: Camera parameters used for the experimental
evaluation.

Configuration ρ p−value

Camera 1 0.743 < 0.001

Camera 2 0.763 < 0.001

Camera 3 0.643 < 0.001

TABLE II: Correlation analysis results for the link-based
method. Correlation coefficients (ρ) and corresponding levels
of statistical significance (p-value) are reported for each
camera configuration.

respect to the robot, while the values of the camera positions
and orientations, along with the focal length, are reported
in Tab. I.

For each condition, we moved the robot in approximately
1.2× 107 different poses2, and, for each pose, we computed
the number of pixels projected onto the camera image plane
following the methodology described in [2], where an image
segmentation algorithm [21] is applied. The latter determines
whether a pixel in the image plane contains a portion of
the robot based on whether its RGBα values all fall within
specific thresholds.

The end-effector was not considered in this assessment,
as we assumed that tasks within a R6 space represent the
most comprehensive and broadly applicable scenario. Indeed,
in most typical tasks such as pick-and-place or pouring,
which demand a precise end-effector pose, it is not possible
to modify its orientation to reduce the robot visible area.
Acquisitions of the three virtual cameras were separately
analyzed. For each camera perspective, a preliminary analysis
showed the aforementioned relationship to be monotonic
for the link-based method Fl(q) and not monotonic for
the dispersion-based method Fd(q), as assessed by visual
inspection of the relative scatterplots (see Fig. 4). Therefore,
the cost function related to the dispersion-based method was
not considered for the subsequent analyses.

For each virtual camera, a Spearman’s rank-order correla-
tion test was run to assess the relationship between number of
pixels of the robot on the camera image plane and the output
of the objective function Fl(q). Resulting correlation factors
(ρ) and significance levels (p-value) are reported in Tab. II,
showing a strong correlation for Camera 1 and Camera 2, and
a moderate correlation for Camera 3, in accordance with [22].

2This value was obtained moving each of the 7 joints, within their specified
limits, with a step of 0.4 radians.



Fig. 3: The three perspectives used in the experimental
evaluation. From left to right, the configurations of Camera 1,
Camera 2, and Camera 3 with respect to the robot.

B. Minimization Analysis

Given the results of the correlation analysis, we decided
to proceed the experimental evaluation considering only the
link-based method.

To test the effectiveness of the control algorithm that
minimizes the robot silhouette in the framing by exploiting the
cost function based on the link-based method, we simulated
four different trajectories using Gazebo and ROS. More
precisely, the four trajectories (depicted in Fig. 5) are:

T1: Planar Lissajous Path in the x-y plane with a duration
of 20 seconds.

T2: Planar Lissajous Path in the x-y plane with a duration
of 30 seconds.

T3: Pouring Trajectory with a duration of 23 seconds.
T4: Pick and Place Trajectory with a duration of 14

seconds.
The first two trajectories delineate paths challenging to be
followed due to the differences in curvature and velocity at
every point [23], while the latter two trajectories were selected
to exemplify tasks of a teleoperation scenario. While T1 and
T2 were artificially generated starting from their mathematical
equation, T3 and T4 were recorded teleoperating a robot for
performing a pouring and a pick-and-place task, respectively.
Each trajectory was executed in Gazebo recording the scene
from the three different points of view utilized in Sect. III-A,
i.e., Camera 1, Camera 2, and Camera 3.

The four trajectories were performed both with and without
the minimization action. The robot control constant parame-
ters were fine-tuned through empirical methods, resulting
in the following values: β = 0.003, αs = 0.1,K =
diag{10, · · ·, 10}. The robot control loop was run at 1 kHz.
The difference in the number of pixels containing robot
portions in both cases was used to quantify the actual
reduction of robot appearance in each camera framing. In
Tab. III, area reductions are reported for each trajectory and
for each point of view, while the corresponding end-effector
position and orientation errors are in Tab. IV. In Fig. 6, a
plot showing the area with and without the action of the
minimization algorithm is depicted.

Results and Discussion: Outcomes of the experiments
reveal an average reduction of 4.67% in the robot area
visible from the camera, with significant variability contingent
upon the camera configuration. Specifically, we observe an
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Fig. 4: Two representative scatterplots for number of pixels
of the robot in the image plane captured by Camera 2. In
(a), real area values versus values estimated with the link-
based method. In (b), real area values versus values estimated
with the dispersion-based method. Data are normalized for a
comparison purpose.

Camera 1 Camera 2 Camera 3
Trajectory

Mean
T1 -5.73% -0.31% -3.59% -3.21%

T2 -6.38% -0.26% -5.99% -4.21%

T3 -3.48% 0.16% -10.98% -4.77%

T4 -1.25% -3.58% -14.66% -6.50%

Camera
Mean

-4.21% -1.00% -8.80% -4.67%

TABLE III: Minimization analysis results. Area reductions
obtained with the robot control algorithm based on the link-
based method are given for each trajectory and each point of
view as percentage of the area covered by the robot when
no optimization was applied.

average reduction of 4.21%, 1.00%, and 8.8% considering
the Camera 1, Camera 2, and Camera 3 points of view,
respectively. Concerning the first two trajectories T1 and
T2, it is worth noting how, on average, T2 presents a more
substantial reduction, even though T1 and T2 describe the
same path. This is attributed to the longer duration of T2,
which gives the robot ample time for reconfiguration into a
more advantageous pose.

The influence of the camera configuration on the mini-
mization performance can be attributed to a combination
of factors, including the robot task space location and the
extrinsic camera parameters. For instance, Camera 2 was
positioned laterally and orthogonally to the task space of
the robot. Hence, its pose made the achievement of effective
minimization along the trajectory challenging. Furthermore,
in such configuration, the link section dimensions could also
be less negligible.

In the specific case T3 with Camera 2, we observed a
negligible average increase in the exposed robot area (+0.16%)
compared to the baseline. This lack of improvement can
be attributed to the nature of the algorithm as an online
optimization method, which tries to optimize the robot pose
in a real-time manner without knowledge of future desired
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Fig. 5: In (a), (b), and (c), the desired end-effector trajectories T2, T3, and T4 used for the minimization analysis. It is worth
noticing that T1 and T2 have the same path, but with different time duration.

Position Orientation
[m× 10−3] [rad× 10−3]

∥·∥2 roll pitch yaw

Baseline 0.74 0.7 1.8 0.6
Camera 1 0.87 1.47 1.58 1.03
Camera 2 0.96 1.21 1.59 1.26
Camera 3 0.62 0.82 1.48 0.72

TABLE IV: Average end-effector position and orientation
errors among the trajectories for each camera compared to
the baseline without the minimization algorithm. Values are
calculated as the root mean square error (RMSE) of the
Euclidean distance for position, and as RMSE of roll, pitch,
and yaw components for orientation.

positions. Consequently, it initiated a reconfiguration that
minimized the area during the first time intervals. However,
this subsequently resulted in the robot assuming a less
advantageous posture, followed by a conservative strategy
with no further improvements. Additionally, the method
discourages the robot from operating too close to its joint
limits. Therefore, in scenarios where the desired trajectory
approaches these limits, the algorithm encourages the robot
to exploit its null space to move away from the limits rather
than prioritizing the reduction of the robot area.

IV. CONCLUSIONS AND FUTURE WORK

We presented a novel methodology aimed at minimizing
the visual footprint of a robotic arm as captured by a camera.
This approach holds significant implications, not only for
enhancing realism within the Physical Metaverse, but also in
critical domains such as teleoperation and telemanipulation.
Indeed, users often face occlusion problems when manipulat-
ing robots, due to the spatial arrangement of the environment
or the presence of the robot body obstructing the user field
of view. This issue is especially pertinent for individuals with
disabilities who rely on robots to mitigate their limitations,
as they may face difficulties in adjusting their own position
or that of the robot.

Here, we adopted an online control solution based on the
local optimization of an objective function in the null space of
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Fig. 6: Representative trial from the minimization analysis.
The red and blue lines report the number of pixels containing
portions of the robot obtained with and without the action of
the robot control algorithm based on the link-based method,
respectively. The robot is moving along T4 and the scene is
recorded from Camera 3.

the Jacobian matrix. The cost function estimates the number
of pixels of the robot projection on the camera image plane,
approximating the area of the robot to the sum of the lengths
of the segmented and projected links.

In contrast to approaches based on multiple or controllable
cameras, the proposed method only relies on the kinematic
control of the robotic arm, thus it can be easily adapted to
various setups and scenarios. For instance, other cameras or
different robotic manipulators can be used simply by updating
the corresponding parameters. Additionally, the cost function
explicitly depends on the camera pose, which allows for
minimization of the robot area visible from the point of view
even when the latter is not fixed and may change during the
execution of the trajectory.

The experimental evaluation revealed the effectiveness
of our control algorithm and some limitations that will
be addressed in future work. In forthcoming studies, we
intend to explore an objective function that incorporates the
three-dimensional characteristics of the links and considers
the boundaries of the image plane, possibly conducting an
experimental validation on a real robot. Additionally, we
will focus on selecting regions or objects within the image
that should experience minimal occlusion. This approach
will achieve a more precise and effective minimization,
strategically positioning the robot to partially exit the camera
field of view.
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