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Real-Time HAP-Assisted Vehicular Edge
Computing for Rural Areas
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Giovanni Giambene, Senior Member, IEEE, Michele Zorzi, Fellow, IEEE

Abstract—Non-Terrestrial Networks (NTNs) are expected to
be a key component of 6th generation (6G) networks to sup-
port broadband seamless Internet connectivity and expand the
coverage even in rural and remote areas. In this context, High
Altitude Platforms (HAPs) can act as edge servers to process
computational tasks offloaded by energy-constrained terrestrial
devices such as Internet of Things (IoT) sensors and ground
vehicles (GVs). In this paper, we analyze the opportunity to
support Vehicular Edge Computing (VEC) via HAP in a rural
scenario where GVs can decide whether to process data onboard
or offload them to a HAP. We characterize the system as a
set of queues in which computational tasks arrive according
to a Poisson arrival process. Then, we assess the optimal VEC
offloading factor to maximize the probability of real-time service,
given latency and computational capacity constraints.

Index Terms—6G, non-terrestrial networks (NTNs), HAP, ve-
hicular edge computing (VEC), optimization.

I. INTRODUCTION

One of the grand objectives of 6th generation (6G) wireless
networks [1] is to enhance broadband Internet coverage in
remote areas [2]. The main issues towards this goal are the
high costs of terrestrial deployments (especially for fiber-optic
backhaul roll-out) as well as the lack of power sources and
transport connectivity in rural regions. To overcome these
problems, 6G will promote Non-Terrestrial Networks (NTNs)
with Unmanned Aerial Vehicles (UAVs), High Altitude Plat-
forms (HAPs), and satellites to provide fast connectivity
thanks to their flexibility and inherent support for large cov-
erage [3]. For example, in 2020 a network of HAPs was
deployed by Loon to bring Internet connectivity to unserved
regions in Kenya. Similarly, in 2021, Airbus has proved the
suitability of the solar-powered Zephyr HAP to provide direct-
to-device connectivity in the rural areas of Arizona, US.

Besides providing connectivity, NTNs can also host edge
servers for processing, caching, and/or storing data generated
from power-constrained Internet of Things (IoT) devices,
thereby supporting the transition of remote areas towards smart
cities [4]. Similarly, air/space-borne platforms can support
Vehicular Edge Computing (VEC), where ground vehicles
(GVs) offload computationally-intensive autonomous driving
tasks like object detection and recognition, tracking/trajectory
prediction, and/or semantic segmentation [5]. Processing these
tasks onboard certain vehicles may be infeasible due to the
limited autonomy and to the small capacity of their batteries.
While in urban areas GVs can delegate the burden of data
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processing to roadside units [6], NTNs may represent a valid
alternative to serve computational requests in poorly connected
rural areas. One of the main requirements of VEC systems is
the support for real-time latency to guarantee safe autonomous
driving as specified by the standards [7]. While satellites incur
large round-trip times, UAVs offer limited computational ca-
pacity and short-lived connectivity [8]. Instead, HAPs provide
large coverage, and are deployed in the stratosphere at an
altitude of 20 km, which helps reduce the propagation delay
to less than 1 ms. The effectiveness of HAPs in Mobile Edge
Cloud (MEC) networks was studied in [9], where the authors
addressed the problems of partial offloading and bandwidth
allocation in remote areas without the coverage of ground
infrastructure. However the benefit of HAPs for VEC is still
an open question, that we will analyze in this work.

Based on the above introduction, in this paper we present an
optimization problem for real-time VEC in a rural scenario, in
which multiple GVs can decide whether to process perception
data (generated in the form of video frames) onboard or
offload them to a HAP. We consider wireless transmissions
in the millimeter wave (mmWave) band [10] With respect to
our previous work [11], we develop a more accurate model
to characterize both GVs’ and HAP’s queuing systems, and
determine a closed-form expression for the average waiting
time experienced by computing tasks. We show that it is
convenient to offload some VEC processing tasks from GVs
to the HAP under common assumptions for the processing
capacity and load of the nodes.

II. SYSTEM MODEL

A. Problem Formulation

We analyze a vast remote region where n GVs are dis-
tributed within an Area of Interest (AoI) of size A. Each
GV generates sensory perceptions in the form of video frames
of size nUL according to a Poisson process with arrival
rate r, as considered in some reference papers to model
autonomous driving data [12]. Each frame requires a constant
computational load C (e.g., for object detection [13]), which
has to be executed fast enough to provide real-time services,
i.e., at least at the frame rate of the sensor.

We consider that the GVs can offload a subset η of their
computational load to a HAP providing VEC functionalities.
According to the split property of the Poisson processes, we
can distinguish two independent Poisson processes, namely
for frames that are offloaded to the HAP at a rate ηr, and
for frames that are processed onboard at a rate (1 − η)r. On
one side, local processing may involve long delays, given the
limited computational capacity CGV of low-budget car models.
On the other side, the HAP can count on a higher computing
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power CHAP than available onboard a vehicle, i.e., CHAP ≥
CGV, thus processing data faster, at the expense of a non-
negligible communication delay for offloading data to the HAP
server and for the processed data to be returned to the end
users. We will investigate the optimized selection of η ∈ [0, 1].

B. Delay Model

This section introduces our delay model for each data frame
for both onboard and HAP-assisted processing.

a) Onboard processing: Each GV is modeled as an
M/D/1 queue, and the average delay is equal to

t̄GV = W̄q(M/D/1) +
(
C/CGV

)
, (1)

where W̄q(M/D/1) is the average waiting time (see Sec. II-D),
while C/CGV is the frame processing time onboard the GV.

b) HAP-assisted processing: Since the HAP has less
severe space and energy constraints than a GV, it is modeled
as an M/D/c queue, where c servers can process up to c frames
in parallel. The average delay for processing tasks can be
expressed as

t̄HAP = 2τp + tUL + tDL + W̄q(M/D/c) +
(
C/CHAP

)
, (2)

where W̄q(M/D/c) is the average waiting time (see Sec. II-D),
τp = d/cl is the propagation delay (where d is the distance
between the generic GV and the HAP, and cl is the speed of
light), and tUL and tDL are the times to transmit data to and
from the HAP, respectively (see Sec. II-C).

C. HAP-to-Ground Channel Model

According to the 3GPP specifications [14], HAPs may
operate through highly directional links at mmWaves, where
the large bandwidth available at these frequencies offers the
potential for ultra-fast connectivity [10]. With the assumption
of an interference-free environment considering transmissions
over orthogonal bands, the Signal to Noise Ratio (SNR)
between transmitter i and receiver j can be calculated as:

γij =
EIRPi · (G/T )j

PLij · k ·B
(3)

where EIRPi is the effective isotropic radiated power,
(G/T )j is the receiver antenna-gain-to-noise-temperature, PL
is the path loss, k is the Boltzmann constant, and B is the
bandwidth. The path loss depends on the frequency (here
mmWaves) and on the distance between i and j, and accounts
for additional atmospheric attenuations as described in [15].

Based on the SNR in Eq. (3), we introduce the median
ergodic capacity R between the generic GV and the HAP as
R = B log2(1+γij). Then, the transmission times tUL and tDL

in Eq. (2), for each data frame, are given by tℓ = nℓ/Rℓ, ℓ ∈
{UL,DL}, where nℓ is the size of the transmitted data.

D. Queuing Model

Sensory frames are generated at rate r, and are queued and
eventually processed at the GVs and HAP according to a Pois-
son process of rate λ, equal to (1−η)r and ηrn, respectively;
we follow a first-come-first-served (FCFS) discipline. Notably,

GVs operate via an M/D/1 queue, while HAPs via an M/D/c
queue. Following the analysis made in [16], the M/D/c state
probability pj for state j, i.e., the probability that the queue
at the HAP has j frames, can be computed by observing that
any frame in the system at time t + 1/µ (where 1/µ is the
constant processing time) is either waiting in the queue at time
t or has arrived in [t, t+1/µ]. Thus, given that the number of
arrivals in an interval of duration 1/µ is Poisson distributed
with mean λ/µ, the state probability pj is:

pj = e−GGj

j!

c∑
k=0

pk + e−G

c+j∑
k=c+1

pk
Gj−k+c

(j − k + c)!
, (4)

where G = λ/µ is the offered traffic, and µ is the service
rate at the HAP and GVs, i.e., CHAP/C and CGV/C, re-
spectively. Eq. (4), combined with the normalization condition(∑+∞

j=0 pj = 1
)

, generates an infinite system of linear equa-
tions that describe the state probabilities of the queue. We
adopted the geometric tail approximation proposed in [16] to
find a closed-form expression for this system of equations.
Therefore, we can write

pj = pMτ−(j−M), j ≥ M, (5)

where τ is a constant depending on the server utilization, and
M is a threshold state; we refer the interested reader to [16]
to clarify how to compute these values. Based on Eq. (5), the
infinite system in Eq. (4) can be reduced to a finite system of
M + 1 linear equations that can be solved easily.

Lemma 1. Based on Eq. (5), an empirical closed-form ex-
pression for the average waiting time of an M/D/c queue with
arrival rate λ and service rate µ is given by

W̄q(M/D/c) =

∑M−1
k=c pk(k − c) + pM

[
M−c+ 1

1− 1
τ

−1

1− 1
τ

]
λ

, (6)

where a relatively small value of M can already provide an
accurate approximation of W̄q(M/D/c).

Proof. See Appendix. ■

III. OPTIMAL OFFLOADING FOR HAP-ASSISTED VEC

In our scenario, we require that autonomous driving tasks,
especially object detection on the video frames, be executed
at least at the same rate at which new frames are generated,
i.e., tmax = 1/r. We model this aspect through the probability
of real-time service PRT, given by

PRT(η) = ηP (tHAP ≤ tmax) + (1− η)P (tGV ≤ tmax), (7)

where tmax is the maximum tolerable latency, and tGV and tHAP
have been defined in Eqs. (1) and (2), respectively. Given the
rural scenario, we assume that all GVs experience the same
channel condition. Thus, we assume they follow the same
policy, and offload data frames with the same probability η
(shared offloading factor). The value of P (tHAP ≤ tmax) in
Eq. (7) can be expressed by computing the maximum number
of frames in the system that ensure real-time processing, that is

fHAP
max = c

⌊
tmax − tUL − tDL − 2τp

C/CHAP

⌋
. (8)
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However, real-time processing is also possible when new
offloading requests find the queue at full capacity, but some
processing tasks are already in service and will leave the
system soon. We define as ∆HAP

t the percentage of in-service
tasks that ensure real-time processing even if more than fHAP

max
requests are in the system. We have

∆HAP
t = Γ

(
tmax − tUL − tDL − 2τp

C/CHAP

)
, (9)

where Γ(x) = x−⌊x⌋. Similarly, we can solve P (tGV ≤ tmax)
in Eq. (7) by introducing fGV

max and ∆GV
t for the GV:

fGV
max =

⌊
tmax

C/CGV

⌋
, ∆GV

t = Γ

(
tmax

C/CGV

)
. (10)

Eq. (7) depends on the queuing state probability of both
GVs and HAP, based on the model in Sec. II-D. Using the
Poisson Arrivals See Time Averages (PASTA) property, and
the probability distribution described in Eqs. (4) and (5), the
real-time probability for the HAP can be expressed as

P (tHAP ≤ tmax) =

c∑
k=1

pbin(k, c,∆
HAP
t )

k−1∑
j=0

pfHAP
max +j +

fHAP
max −1∑
i=0

pi,
(11)

where pbin(k, c,∆
HAP
t ) =

(
c
k

) (
∆HAP

t

)k (
1−∆HAP

t

)c−k
de-

scribes the probability that k offloading requests have been
processed by at least a fraction ∆HAP

t , and probabilities pi are
as in Eq. (4). Similarly, for the GV we have

P (tGV ≤ tmax) =

fGV
max−1∑
i=0

pi +∆GV
t pfGV

max
. (12)

The objective of our optimization problem is to choose the
optimal offloading factor η, i.e., η∗, that maximizes PRT, i.e.,

argmax
η

PRT(η), (13a)

subject to GHAP < c, GGV < 1 (13b)
η ∈ [0, 1], (13c)

where GHAP = ηrCn/CHAP and GGV = (1 − η)rC/CGV

are the offered traffic at the HAP and the GVs, respectively,
while Eq. (13b) sets a constraint on η to keep the system stable.
Therefore, the optimization problem can be rewritten as

argmax
η

PRT(η), (14a)

subject to η ∈ [ηmin, ηmax], (14b)

where ηmin = max(0, 1 − CGV/(rC)) and ηmax =
min(1, cCHAP/(rnC)). Notably, CGV (CHAP) set a limit
to the lower (upper) bound of η. Given that PRT(η) is a
continuous function defined on a closed interval [ηmin, ηmax],
there exists a solution to the optimization problem in Eq. (14)
according to Weierstrass’ theorem. Then, the problem is solved
numerically using the Brent solver [17].

We can analyze the average time it takes for a GV, which
may offload computational tasks to the HAP, to process each
video frame. Since, on average, each GV processes a frame in

t̄GV, and the latency for an offloaded frame is t̄HAP, then the
average latency is evaluated as

t̄(η) = η∗t̄HAP + (1− η∗)t̄GV, (15)

where η∗ is the optimal offloading probability from Eq. (14).

IV. PERFORMANCE EVALUATION

In Sec. IV-A below, we introduce our simulator and its
parameters, while numerical results are provided in Sec. IV-B.

A. Simulation Setup and Parameters

We analyze a rural/remote scenario with n ∈ {1, ..., 200}
GVs, uniformly distributed over a large AoI of 1000 km2.
The coverage area of the HAP is large enough to ensure that
GVs are always and continuously under coverage in the AoI,
even in case of mobility Each GV generates video frames of
size nUL ∈ [1, 3] Mb from its camera sensor at an average
rate r = 10 fps. Object detection on these frames requires a
constant computational load of C = 60 GFLOP per frame,
which is computed as the average between the computational
performance of two popular object detectors, namely Gaussian
YOLO and SqueezeDet+ [18]. If frames are offloaded to the
HAP (with probability η∗), eventually the processed output
(i.e., the bounding boxes of the detected objects) is returned
to the GVs in a packet of a much smaller size than the original
frame, i.e., nDL = 100 kb, which implies that tDL ≪ tUL.

In the simulations, we compare a fully-local scheme in
which all data frames are processed onboard (i.e., η = 0)
and the optimal offloading policy (where η = η∗) based on
the solution of Eq. (14) with tmax = 1/r. GVs have a compu-
tational capacity of CGV ∈ {200, 600, 800, 1000} GFLOPS,
whereas the HAP operates via c = 15 parallel servers,
each of which offers a computational capacity of CHAP ∈
{3000, 4000, 5000} GFLOPS, so as to simulate different
computing conditions. These values are consistent with the
capacity of off-the-shelf computing units: for example, the
Nvidia GeForce RTX 3080 Mobile CPU (GeForce GTX 1080
GPU), which is compatible with the space/power constraints
onboard GVs (HAP), offers a capacity of 300 (9000) GFLOPS.

All devices operate at a carrier frequency of fc = 38 GHz
(mmWave) and with a bandwidth B = 400 MHz, while for
a complete description of the channel parameters in Sec. II-C
we refer the interested reader to [11, Table 1].

B. Numerical Results

a) Number of users (GVs): In Fig. 1a, we evaluate the
impact of the number of GVs in terms of VEC performance.
We can see that, on average, fully local processing onboard
the GVs, with CGV = 800 GFLOPS, requires about 200 ms
for each video frame, regardless of the value of n, which
is not compatible with real-time services. As expected, the
average latency for processing data via the HAP grows with n,
due to the more frequent offloading requests and the resulting
populated queues as the number of GVs increases. In any case,
HAP-assisted VEC with powerful processing can reduce the
average latency compared to the fully local scenario (up to
almost 5 times when n = 50 GVs), despite the communication
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(a) CGV = 800 GFLOPS.
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(b) n = 90 GVs.

Fig. 1: Optimal offloading factor η∗ (right axis) and average latency t̄(η) (left axis) vs. n and CGV, for r = 10 fps and nUL = 3 Mb. Striped bars are
interrupted to represent the case of unstable queues where the latency increases indefinitely in the long term.
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(a) Real-time probability at the optimal offloading factor η∗.
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(b) Statistics of the average latency for r = 10 fps.

Fig. 2: Real-time probability (left) and average latency (right) vs. CHAP and r, when CGV = 800 GFLOPS, n = 100 GVs and nUL = 1 Mb. Dash-dot
lines and black striped bars refer to a baseline offloading scheme which balances the load of the HAP and of the GVs equally.

delay for uploading data frames to the HAP servers and for
delivering the processed output to the end nodes.

Interestingly, the optimal offloading probability η∗ decreases
with the number of GVs. When n < 150, the best choice is to
offload data with probability η∗ > 0.7. This approach allows
to achieve, on average, real-time data processing at the frame
rate of the sensors, i.e., t̄(η) < tmax. On the other hand, when
n ≥ 150, the average latency t̄(η) to/from the HAP alone
exceeds the latency constraint, i.e., P (tHAP ≤ tmax) = 0. This
is due to the fact that the more populated system may overload
the available channel bandwidth, thus resulting in longer
transmission delays, which makes fully local processing an
increasingly desirable option: in these conditions, the optimal
offloading factor is as low as η∗ = 0.25.

b) GV’s computational capacity: We let CGV vary from
200 to 1000 GFLOPS, as considered in [11], in a scenario
with n = 90 GVs, and plot the optimal offloading factor
η∗ in Fig. 1b. We see that η∗ decreases as CGV increases,
specifically from 0.81 (200 GFLOPS) to 0.64 (1000 GFLOPS).
Fully local processing becomes increasingly more attractive
as vehicles incorporate more powerful processing hardware,
to avoid additional delays for data offloading. Still, for the
values of capacity in Fig. 1b, HAP-assisted VEC remains
a more convenient choice to achieve real-time performance,
even though the gap in terms of average latency compared
to the fully local scenario is only 17% when CGV = 1000
GFLOPS. Notably, Fig. 1b shows that fully local processing

leads to queue instability if CGV ≤ 600 GFLOPS, which
further motivates the need for offloading to HAP.

c) Frame rate: In Fig. 2a, we study the real-time proba-
bility at the optimal offloading factor η∗, as a function of the
frame rate r and the computational capacity of the HAP. In
general, increasing r allows the sensor to capture data at better
resolution, which leads to more accurate autonomous driving
perception, at the cost of a higher data rate and complexity.
As expected, PRT(η

∗) is a decreasing function of r: for
CHAP = 5000 GFLOPS, PRT ranges from 1 at r = 10 fps to
0.41 at r = 20 fps. For CHAP < 5000 GFLOPS, the system is
constrained by the capacity of the queues at the HAP servers;
in particular, the system becomes unstable as r ≥ 20 fps.
Moreover, for the fully local configurations, PRT > 0.95 only
with r = 5 fps and CGV = 800 GFLOPS, an indication that
the limited computational capacity at the GVs is not enough
to support automotive tasks at the frame rate of the sensors.

For comparison, we considered a simple baseline offloading
scheme that balances the load of the HAP and the GVs using
an offloading factor ηbl given by

ηbl =

(
n · CGV

c · CHAP
+ 1

)−1

, (16)

which guarantees GHAP(ηbl)/c = GGV(ηbl). Results
in Fig. 2a show that this baseline can support real-time
processing with a probability higher than 0.85 as long as the
frame rate is less than 10 fps, otherwise the system becomes
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unstable. On the other hand, our proposed framework is able
to regulate the offloading factor based on the actual capacity
of the network, and can offer real-time performance even in
more congested scenarios.

In Fig. 2b, we plot the Cumulative Distribution Function
(CDF) of the average latency for r = 10 fps. HAP-assisted
VEC, even with CHAP = 3000 GFLOPs, achieves real-time
processing (i.e., t̄(η) ≤ 1/r = 100 ms) with a probability
higher than 0.94, vs. 0.34 for fully local processing. The CDF
of the baseline shows a trend similar to the fully local scheme,
but with a constant gain from 0.44 to 0.54 which depends
on CHAP. From Fig. 2b, it is clear that the CDF shows two
steps: the first step (at t̄(η) ≃ 50 ms) corresponds to the
minimum processing time for HAP-assisted VEC, i.e., the time
for downlink and uplink transmissions, and the processing time
at the HAP; the second step (at t̄(η) ≃ 75 ms) corresponds to
the minimum processing time for fully-local processing, i.e.,
C/CGV ≃ 75 ms.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we analyzed a rural scenario where au-
tonomous GVs capture sensory data to perform real-time ob-
ject detection, and addressed the following research question:
“Is it feasible to offload and process self-driving-related tasks
to HAPs?” For this purpose, we described both the GVs and
the HAP as queues that receive sensory data, and determined
a closed-form expression for the average waiting time of data
in those queues. We then formalized a VEC optimization
problem and compared the case in which data processing
is performed onboard the GVs (fully local scenario) vs. the
case in which a fraction of the processing load is offloaded
to HAP servers. Simulation results showed that the limited
computational capacity of GVs is generally not compatible
with real-time operations, while an optimal offloading factor
exists to minimize the processing time. In particular, real-time
performance requires a computational capacity at the HAP
higher than 3000 GFLOPS for a frame rate r ≤ 10 fps.

In future work, we will extend our offloading optimization
problem by incorporating the impact of power consumption.

APPENDIX: PROOF OF LEMMA 1
Let us consider an M/D/c queue with arrival rate λ and ser-

vice rate µ. The state probability distribution fulfills Eq. (4).
The average length of the queue E[Lq] can be written as

E[Lq] =

M−1∑
k=c

pk(k − c) +

+∞∑
k=M

pk(k − c). (17)

Using the approximation in Eq. (5), the second summation in
Eq. (17) can be rewritten as

+∞∑
k=M

pk(k − c) =

+∞∑
k=M

pMτ−(k−M)(k − c) (18)

= pM

+∞∑
j=0

τ−jj +

+∞∑
j=0

τ−j(M − c)

 (19)

= pM

+∞∑
j=0

τ−jj +
M − c

1− 1
τ

 . (20)

The summation in Eq. (20) is equal to
+∞∑
j=0

τ−jj =

+∞∑
k=1

+∞∑
j=k

τ−j =

+∞∑
k=1

τ−k
+∞∑
j=0

τ−j (21)

=

+∞∑
k=1

+∞∑
j=0

τ−j −
k−1∑
j=0

τ−j

 (22)

=

+∞∑
k=1

[ (
1
τ

)k
1 − 1

τ

]
=

1
1− 1

τ

− 1

1 − 1
τ

. (23)

Finally, E[Lq] can be written from (17), (20), and (23) as

E[Lq]=

M−1∑
k=c

pk(k−c)+pM

[
M−c+ 1

1− 1
τ

−1

1− 1
τ

]
. (24)

where p0, p1, ..., pM are computed by a linear system, as
explained in Section II-D. The average waiting time in the
queue, E[Wq], is derived from Little’s Law, i.e., E[Wq] =
E[Lq]/λ, so that we obtain the expression in Eq. (6).
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