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VERIFICATION RESULTS FOR AGE-STRUCTURED MODELS
OF ECONOMIC-EPIDEMICS DYNAMICS

GIORGIO FABBRI, FAUSTO GOZZI, AND GIOVANNI ZANCO

ABSTRACT. In this paper we propose a macro-dynamic age-structured set-up for
the analysis of epidemics/economic dynamics in continuous time.

The resulting optimal control problem is reformulated in an infinite dimen-
sional Hilbert space framework where we perform the basic steps of dynamic
programming approach.

Our main result is a verification theorem which allows to guess the feedback
form of optimal strategies. This will be a departure point to discuss the behavior
of the models of the family we introduce and their policy implications.

Keywords:  COVID-19, macro-dynamic models, epidemiological dynamics,
Hilbert spaces, verification theorem.

JEL Classification: E60, 110, C61.

1. INTRODUCTION

The outbreak of the COVID-19 pandemic represents, in addition to an epidemio-
logical historical event, an exceptional economic shock. Data from the OECD (2020)
suggest that in many countries the loss of GDP due to the presence of the virus and
the consequent containment measures will be at least 10%. For this reason, together
with the obvious upsurge in medical scientific production on the subject, the phe-
nomenon has had great echo in the economic literature with a strong pressure to
merge economic and epidemiological models.

A specific effort has been made to integrate epidemiological compartmental mod-
els (SIR, SEIR, SEL...) into a macroeconomic dynamic context, see for example
the contributions of Alvarez et al., (2020), Eichenbaum et al., (2020), Jones et al.,
(2020) and Krueger et al.(2020).

These articles focus on a series of questions essential to health and economic pol-
icy and they look, often numerically, at the trade-off between measures capable of
containing contagion and those capable of avoiding economic collapse. However,
they model the spread of the epidemic with age homogeneous epidemiological com-

partmental models so they cannot take into account one of the characteristic traits
1
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of the current epidemic, i.e. the great difference in the effects of the disease among
people of different ages'.

In order to address this limitation Acemoglu et al. (2020), Gollier (2020) and
Favero et al. (2020) introduce models where the population is divided into a finite
number of homogeneous “risk groups” and they study joint economic and epidemi-
ological effects of introducing group-specific policies. Nonetheless in their formula-
tions there is no possibility to move from one group to another and then this kind
of approach can take into account the different effects of the disease on different age
groups only if it is assumed that the duration of the epidemic is negligible compared
to the age range contained in each group. However, this hypothesis is not very likely
in the case of an epidemic lasting several years and it is inadequate in the case of
diseases that become endemic in the population?.

Instead of using age-homogeneous epidemiological compartmental models or epi-
demiological compartmental models with closed risk groups, it is possible, as we
do in the present work, to describe more accurately the joint dynamics of the epi-
demic and of the age structure of the population by using explicit age-structured
compartmental models, i.e. age-specific epidemiological models with ageing process
modeled ¢ la Mc Kendrick (1925). This type of models was initially introduced
by Anderson and May (1985) and Dietz and Schenzle (1985) and later adapted to
numerous contexts and applications, see the books by Tannelli (1995), Iannelli and
Milner (2017) and Martcheva (2015) for a structured and modern description of the
matter.

The more accurate description of the ageing-epidemics diffusion dynamics comes
at a price and, indeed, one of the features of the continuous time compartmental
age-structured models is to describe the epidemiological dynamics through transport
type partial differential equations (PDEs). This means that, if one wants to study
an associated optimal control problem through dynamic programming, its dynamics
needs to be formulated in an infinite-dimensional set-up.

In this, paper whose main aim is methodological, we initially present a class of
macro-dynamic models (partly already introduced in the literature) that incorpo-
rates an epidemiological dynamics which generalizes the benchmark age-structured
SIR model. Then we provide a general framework to study such optimal control

"n fact, the probability of aggravation of COVID-19 infection and mortality varies very signifi-
cantly with age. Salje et al. (2020) find for example that less than 1% of people under 40 years of
age who contract the disease need hospital care against more than 10% of people over 70 years of
age and that mortality in the two groups is respectively less than 0.02% and more than 2%.

2These limitations are obviously justified by the need to produce policy indications in a short
time in order to contrast the spread of the current pandemic.
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problems through the dynamic programming approach; finally we present verifica-
tion type results that hold for the whole class of problems.

The class of models that we study in the abstract form is rather general and is
able, in the context of the epidemiological dynamic described by an age-structured
SIR, to reproduce as special cases several of the settings proposed by the recent
articles mentioned above (more details can be found in Section 2). Specific traits of
the model are:

- The epidemiological model is general and can be set with a wide variety
of age-dependent parameters: mortality rate (due to epidemics and also
to other causes), chance of being hospitalized if infected, birth rate and
probability of contagion among cohorts. Moreover, the age-specific mortality
rate can take into account the saturation of hospitals and health systems, a
phenomenon that has been repeatedly observed in the areas most affected
by COVID-19 (see for instance Moghadas, 2020)

- The planner has two different policy levers: on the one hand, as in most of
the models mentioned, she can reduce the mobility of people and partially
stop the economic activity (lock-down), on the other hand she can implement
some costly action to reduce the diffusion of the virus, for instance by testing
the population extensively to try to quarantine individuals fast once they
have contracted the virus. Both policies can be age-specific (in particular
targeted lock-downs suggested by Acemoglu et al., 2020 are among possible
policies)

- The time horizon can be either infinite (as in benchmark growth models) or
finite if it is considered (e.g. Gollier, 2020) that the spread of the virus stops
at some point due to the discovery of a vaccine or a cure

- Labor productivity is age-specific (this fact is important for policies: tar-
geted lock-downs for less productive people impact less the production).
The production function (as a function of aggregated labor and capital) is
general as well as the optimal social function that can be specified to take
into account cost-benefit analysis, strictly humanitarian or economic targets,
standard (Benthamite and Millian for instance) social welfare functionals.

Since our results are proven for the abstract model they hold for any possible spec-
ification. Somehow related papers are Richard et al. (2020) and Colombo et al.
(2020) (which also contains a spatial spread modeling of the virus diffusion) where
the authors present models with a complete age structure but with a simple cost
structure and no factor accumulation.

We also mention some works in the mathematical economic literature which study
optimal control problems where the state equations are, as in the present work, of
age-structured type: Barucci and Gozzi (1998 and 2001), Anita (2000), Ainseba et
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al (2002), Feichtinger et al (2003, 2004 and 2006), Hritonenko and Yatsenko (2005),
Veliov (2008), Boucekkine et al (2013), Skritek and Veliov (2015).

The contribution of this work is (i) to propose a general fully age-structured
macro-dynamic set-up in continuous time for analysis of epidemics and economic
dynamic (Section 2); (ii) to provide a suitable Hilbert space environment where
one can rewrite the problem and perform dynamic programming (Section 3); (iii)
to prove verification type results (Section 5), see in particular Theorem 5.2 and
Corollaries 5.3 and 5.4.

We must be clear on the fact that we do not solve the problem explicitly, nor
numerically. Here our main goal is to provide a general ground which can be the
departure point to attack special cases of our general model. In particular our main
contribution is the proof of the verification type results of Section 5. These are
nontrivial to obtain in our general infinite dimensional setting and they are crucial
to find the optimal policies in a closed-loop form depending on the derivatives of
the value function. These type of theorems are the object of various papers (see
e.g. Faggian and Gozzi (2010), Fabbri et al. (2010)) or of book chapters (e.g.
Chapter 5 of Yong and Zhou, 1999 or Chapter 4 of Li and Yong, 1995) but none
of them applies to our case. The main reasons are the following. First, due to the
age-structured nature of the problem and the presence of the mortality forces, we
have to work with semigroups in weighted infinite dimensional spaces which do not
have regularizing properties (which are very useful and which are usually true when
the state equation is of (nondegenerate) second order). Second, the presence of the
nonlinear equation for capital rules out the standard regularity assumptions that
are used e.g. in Chapter 4 of Li and Yong (1995) and that we treat using ad-hoc
arguments. Third, in our case we have state constraints, which makes much more
difficult to deal with the problem. We use the approach of weakening the constraints
which has been used, up to now, only in case when explicit solutions of the HJB
equation are available (see e.g. Fabbri and Gozzi, 2008, Boucekkine et al., 2019).

The paper is organized as follows. In Section 2 we introduce the structure of the
model: epidemiological dynamics, policies, structure of the economy and welfare
functional. In Section 3 we show how to reformulate the model and the related
optimal control problem in a suitable Hilbert space setting. Section 4 is devoted to
dynamic programming while in Section 5 we provide the verification results. Section
6 concludes.

2. THE MODEL

2.1. Epidemics dynamics. We denote by s(a,t) the density of susceptible indi-
viduals of age a € [0,a] (being @ > 0 the maximum age) at time ¢ > 0. Similarly



VERIFICATION RESULTS FOR AGE-STRUCTURED MODELS... 5

i(a,t) (respectively r(a,t)) denotes the density of infected/infectious individuals
(respectively recovered individuals) of age a at time ¢. Hence the total numbers of
susceptible, infected, and recovered individuals at time ¢ are

S(t) = / s(at)da,  I(t) = / i(a,t)da,  R(t) = / r(a, t)da.
0 0 0
The age-dependent density of the total population n(a,t) is then given by
n(a,t) = s(a,t) +i(a,t) +r(a,t)

and the total population at time ¢ is
N(t) = / n(a, t)da = S(t) + I(t) + R(1).
0

In modeling the mortality we generalize the standard age-structure SIR framework
(see Martcheva, 2015, Chapter 12). First we define

(t) := /Oa i(a,t)é(a)da

the number of people at time ¢ in “critical conditions” i.e. people who have to use
the services of hospital /healthcare facilities to treat themselves at the risk of satu-
rating them. In the case of the COVID-19 epidemic, the emphasis is, for example,
on people needing to be hospitalized in an ICU (see for instance Moghadas, 2020).
=(t) depends on the number of sick people per cohort multiplied by the prevalence

[1]

£(a) of people in need of specific care for each age group®. In a context of saturation
of hospital services, the mortality of the infected will be increased. Let us therefore
assume that the mortality rate for infected individual p; is not only a function of the
age of the individuals but it also an increasing function of Z. We use then the nota-
tion ur(a,Z(t)). We suppose, for simplicity, that the (age-specific) mortality rates of
susceptible and recovered individuals, respectively us(a) and pr(a) do not depend®
on Z(t). Finally v(a) and (a) denote respectively the (age-specific) recovery and
birth rates.

The age-specific force of infection A(a,t) depends on the distribution of infected
individuals as follows

(1) Ma,t) = Nl(t)/oam(a,f)i(f, Pdr.

In this expression the joint-distribution m(a, 7) measures the different probability of
contagion between cohorts (for instance virus diffusion can be easier among children

3In the case of COVID-19 for example, in the data of Salje (2020), 2.9% of infected individuals
are hospitalized ranging from 0.1% in people under 20 years to approximately 30% in individuals
with 80 years of age or older.

4ndeed it is possible to incorporate this dependence in the model without big problems.
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for childhood diseases). It is the continuous version of the social contact matrix
across age classes used by Gollier (2020).

All in all, the laissez faire benchmark population dynamics, that is the epidemics
dynamics without policy intervention (omitting the initial conditions at time ¢t = 0)
is the following:

elat) | Oslad) — _\(a,t)s(a,t) — ps(a)s(a,t),
fﬁ(at) n dZW) = Ma, t)s(a,t) — (pr(a, E(t)) +v(a))i(a, t),
r(at) i 8r<a H_ 7( )i(a,t) — pr(a)r(a,t)

fo n(a,t)da
Z(O,t) =0
r(0,t) = 0.

This system is the standard age-structure SIR model (see Martcheva, 2015, Chap-
ter 12) except for the fact that p; depends on =. In the particular case where
wur(a,=(t)) = fir(a) we are exactly in the standard setting. Note that, since A\ and
= depend linearly on ¢, system (2) is non linear in the variables (s, i, 7).

We now introduce two of the three policy levers that the planner has in our model
(the third is the choice of consumption and will be described in the next subsection).
We suppose that the planner can deal with the epidemic in two ways:

(i) partially stopping economic activity and people mobility then reducing the
contagion frequency among individual (lockdown);

(ii) implementing some costly action to reduce the diffusion of the virus, for in-
stance by testing the population extensively to try to quarantine individuals
faster once they have contracted the virus.

More precisely

(i) We suppose that the planner can reduce mobility, thus the probability of
infecting and being infected of cohort a at time ¢, by a factor 6(a,t) € [0, 1]
at the cost of reducing the contribution of the concerned individuals to work
or of reducing their work productivity (for example resorting to teleworking).
This is the type of intervention which is modeled in almost all the macro-
dynamic models we mentioned in the introduction, for instance in Alvarez et
al., (2020) and Eichenbaum et al., (2020) where, by the way, age-structure
policies are not possible since there is no age structure of the population.
Taking different values of 6 for different a correspond to targeted lock-downs
of Acemoglu et al. (2020).

(ii) We suppose, as in some of the mentioned papers, that the planner can reduce
by a factor n(a,t) € [0, 1] the probability that infected individuals of cohort
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a at time t contaminate other people. This is done at the cost

3) D)= D [ (1= n(ast)iCes)eta)da).

where e(a) is an age-specific relative cost and D is a concave (as, for instance
in Piguillem and Shi, 2020) or linear (as in Gollier, 2020) function which rep-
resents some form of congestion (e.g. shortage of tests on the international
market or shortage of suitable medical personnel to administer the tests).

The evolution of the epidemics is then again described by (2) but, instead of
A(a, t) written in (1) we have now the following age-specific force

1 a
(4) NN (a,t) = / m(a, 7)0(, t)n(r,t)i(r,t)dr.
N(t) Jo
Hence we get the following state equation (still omitting the initial conditions at
time ¢ = 0):

Bs(a) | Oslat) _ _\0m(q, t)s(a,t) — ps(a)s(art),

at) 4 8z(at) =\ (a,t)s(a,t) — (ur(a, Z(t)) + v(a))i(a,t),
r(a 0 ar(a ) _ V(G) i(a,t) — pr(a)r(a,t)

81(

fo n(a,t)da
z(O7 ) =0
r(0,t) = 0.

This is the dynamics we will consider in the paper. Of course if the authority fixes
0(a,t) =1, n(a,t) =1 we find again the free diffusion dynamics (2).

2.2. Production and capital accumulation. We suppose that labor supply is
perfectly inelastic to wage, that infected people do not work and that labor produc-
tivity is age-specific® and proportional to a certain parameter a(a) (we can specify
for instance a(a) = 0 for children or for individuals older than a fixed retirement
age). Total labor supply in efficiency units in the laissez faire benchmark is then
given by foa(s(a, t) + r(a,t))a(a)da. In the controlled case we suppose that getting
a factor 6(a,t) € [0,1] in the expression of the age-specific force of diffusion impacts
the productivity of cohort a reducing the productivity to ¢(0(a,t)) so that total

SWe abstract from other reasons of productivity heterogeneity among population and from het-
erogeneity of tasks.
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labor supply in efficiency units® is now

(6) L(t) = /Oa(s(a, t) + r(a,t))a(a)p(b(a,t))da.

We suppose that ¢: [0,1] — [0, 1] is an increasing function with ¢(1) = 1.

As for the production we stick to the standard structure of neoclassical growth
models and we suppose that the total production at time ¢ is described by an
aggregated production function F of the two factors: labor L(t) and capital K (t):

Y (t) = F(K(t), L(t)).

This formulation is more general than the one used by other macro-dynamic papers
we mentioned. Indeed in all of them except Favero et al. (2020) which uses a Cobb-
Douglas production function, the authors use production functions which are linear
function of labor (or effective labor) or they even do not model production.

We abstract from international trade (closed economy) and from governmental
expenditure so the planner can choose at any time ¢t > 0 how to allocate the national
total production Y (¢) among total investment M (), consumption of various cohorts
and costs for testing people, which is defined in (3) above. If we denote by c(a,t)
the per-capita consumption of individuals of age a at time ¢t we get the following
budget constraint:

Y(t) = M(t) + C(t) + Dy(t) :=

M(t) + /0 c(a,t)n(a,t)da + D (/Oau — n(a,1))i(a, t)e(a)da> .

Supposing to have an exponential capital depreciation ¢ la Jorgenson we get the
dynamic accumulation law for capital:

(7) ) ]
K(t) = F(K(t),L(t))/O c(a,t)n(a,t)da —6K(t)—D (/0 (1-— n(a,t))i(a,t)e(a)da) .

where 0 > 0 is the constant depreciation rate.

2.3. Choosing the target. In the literature there are several interesting choices for
the functional to maximize. It is not easy to include all of them in an abstract form
that leaves the problem tractable, so in this section we introduce several functionals
that will be discussed later in the article.

The first functional we introduce is a standard welfare functional. Observe that,
even if the model we study here is not directly an endogenous fertility model, the
fact of having an endogenous mortality (depending on the choice of §) makes it de
facto an endogenous population size model. Therefore we have to choose carefully

6A similar approach is considered for instance by Jones et al. (2020) which introduce an “effective
labor supply”.
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the structure of the social utility that we describe. We implicitly fix the utility of
dead people (and non-born people through the initial condition foa B(a)n(a,t)da)
equal to 0 and we consider the following social utility functional:

(8) /0 /0 e 'n"(a,t)u(c(a,t),0(a,t)) dadt.

To assure, for the same per capita (age-dependent) consumption, the instantaneous
utility to be increasing in the number of living people and therefore the planner being
averse to death of agents, the per-capita utility function u needs to be positive. Still
observe that in this model formulation there is room for a dilution effect: the larger
the population the lower the percapita consumption so the instantaneous utility
does not need to always be increasing in the population size.

The per-capita utility function u depends both on the individual consumption
and on the mobility freedom 6. We suppose that u is (positive and) an increasing
function in both the variables. The dependence of utility on 6 is not standard but the
relevance of this choice can easily be argued by looking at the various side effects of
lock down (see for example Clemens, 2020). In any case, as a special case, of course
one can specify u so that it does not depend on theta.

The form of this first functional is the age-structured version of a standard func-
tional often appearing in the optimal population literature. The parameter v which
appears in its expression measures the degree of altruism towards individuals of fu-
ture cohorts (see Palivos and Yip, 1993). The case v = 1 corresponds to the classical
total utilitaristic (or “Benthamite”) case where the planner target is to maximize
the sum of individuals’ utility.

The functional (8) is infinite horizon and implicitly suggests that no exogenous
element impedes the spread of the virus. Another possibility, as suggested by Gollier
(2020), is to consider a final time 7" at which an event (a cure or more probably the
discovery of a vaccine) stops the epidemics. We describe some possible targets in
this context.

The trade-off of virus containment policies is: reducing the number of deaths VS
economic losses. Some of the functional aspects can be dwelt on only one of these
aspects. For instance one can decide to focus on economic activity and to maximize
the final production capacity:

9) F(K(T), L(T))

where L(T) is defined as

(10) L(T) = /Oa n(a, T)a(a)da
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(once the vaccine is in and the outbreak is over, everyone is cured and everyone is
productive) or even more simply, to maximize final capital level

(11) K(T)

or to maximize the flow of production

(12) /O o e PlY (t)dt.

or its finite-horizon counterpart

(13) /0 oy (b,

Conversely, in the spirit of Acemoglu et al. (2020), one can include humanitarian
aspects by minimizing the weighted sum of number of deaths due to the virus and
of the opposite of the total discounted output:

(14) X /0 ' /O (@ 2(0)ia, t)da - /0 ooy (1.

where x > 0 is the relative weight of deaths.

3. INFINITE DIMENSIONAL FORMULATION OF THE MODEL

In this section we introduce a convenient infinite-dimensional formulation for
system (5) coupled with equation (7) and for the control problem of maximizing
the target given in (8) (or in (12), (9), (11), (13)). Since this section is somehow
technical we add, where possible, explanations on the technical notation we use.

We make the following set of assumptions, which also includes those already
stated in the previous sections. These assumptions will always be in force in the
remainder of the paper, without recalling them.

Hypothesis 3.1
(i) ps and pg are positive, belong to Ll (0,a)” and

loc

/Oa ps(a)da = /Oa pr(a)da = 4o0;

(i) pr: [0,a] x R — Ry is measurable. Moreoves it is Lipschitz continuous in
the second wvariable, uniformly with respect to the first one. Finally it is
increasing in the second variable and

/ wr(a, k)da = 400, Vi € R;
0

7L110C(a, b) is the vector space of functions f that are Lebesgue-integrable on every [a’, '] C (a, b).
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(i4i) F(-,L) is Lipschitz for every L € Ry, with Lipschitz constants uniformly
bounded in L8;
(iv) ¢:[0,1] — [0,1] is increasing and (1) = 1;
(v) a,B,7,e,&: [0,a] — Ry are in L2(0,a)?;
(vi) D : R — R is positive and concave;
(vii) 6 >0, v e [0,1];
)

(viii) u: R x [0,1] = R s positive, continuous and increasing in both variables;

We now start rewriting the system (5) but first we introduce an important nota-
tional standard.

Notation 3.2 In system (5) the three state trajectories, s(-,-), i(-,-), r(-,-) are
seen as functions of two variables, i.e.

(s,,7)(+,+) : [0, +00) x [0,a] — Ri, (t,a) — (s(t,a),i(t,a),r(t,a))

However now it is convenient to see such trajectories as functions from ¢ € R, to a
suitable infinite dimensional Hilbert space H of functions in the variable a € [0, a]
with values in R3. H can be seen also as the product of three Hilbert spaces of
functions with values in R and its generic element will be denoted by h = (h1, he, h3)
or, if no confusion arises, by (s,4,7). To avoid misunderstandings we will denote the
H-valued state trajectories putting a hat over the original name, i.e.

(3,3,7):Re = H ¢ (g(t),%(t),f(t))

Sometimes we will write h for (3,7,7) and, when we want to underline that they
are functions, we write A(-) or ((-),i(-),7(-)). Now observe that, for every t > 0,
5(t),i(t), #(t) are functions of a. We will denote their value at any given a € [0, a] by
3(t)[a], 1(t)[a], #(t)[a] so to emphasize the different role of the two variables. Clearly
we have

5(t)[a] = s(t,a), %(t)[a] =i(t,a), 7(t)a] =r(t, a).

The same will be done for the controls strategies c(-,-), (-, -), n(-, -). More precisely,
we will fix a control space Z of functions in the variable a € [0,a] with values in R3.
Also Z can be seen as the product of three Hilbert spaces of functions with values
in R and its generic element will be denoted by z = (21, 22, 23) or, if no confusion
is possible, by (¢,0,n). Also here, to avoid misunderstandings, we will denote the
control trajectories putting a hat over the original name, i.e. we call ¢, é,ﬁ the

Smeaning that for every L € R4 there exists xr > 0 such that for every K;, Ky €
Ry [F(K1, L) — F(K2, L| < kr |[K1 — K| and suppep, k1 < +o0.

9L2(a b) is the Hilbert space of square-Lebesgue—integrable functions on (a,b), endowed with
the inner product (f, g) f f(z
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functions
(0.0 Ry > 2t (&(),00), (1))
such that
&(t)lal = e(t, a), 0(t)[a] = 0(t,a), 0(t)[a] = n(t,a).
Sometimes we write Z for (¢,6 ﬁ) and, when we want to underline that they are
functions we write 2(-) or (¢(+),0(-),7n(+)).

We are now ready to introduce the spaces H, Z, and the space Zj of basic control
strategies (this is not the space of admissible control strategies which will have to
take into account the state constraints that we will introduce below).

Define the probability of surviving to age a for a susceptible individual as

s(o) = exp (- [ stryar)

and, similarly, define the probability of surviving to age a for a recovered individual

mh(a) = exp ( / ' uRmdr) .

h h
“L € 12(0,a), hy € L*(0,a), — € L2(o,a)} .
s TR

H is a Hilbert space when endowed with the inner product

h h
(hog)ir = (= ) 1o + (ha, go)pa + (=2, 22) 1
TS TS TR TR
=: (h1,91)rg + (h2,92) 12 + (h3,93) 7y -

Remark 3.3 The choice of the space H is different from the standard one made,
e.g., in Tannelli and Martcheva, 2003. Indeed it would be standard to put the weight
also on the second component. however this is not possible since, in our model, we

Consider the set

= {h e L*(0,a;R3):

have the new and important feature that the mortality force us is state dependent.
With our choice the space H is bigger than the usual one. We finally observe that
this choice will reflect also in the form of the adjoint operator in Proposition 3.4.

It is useful for later purposes to introduce the positive cone in H as follows
Hy={he€e H:h;>0ae. in[0,a]} C H.
The control space Z is given as:
Z={z=(21,22,23): z € L*(0,a),i=1,2,3;
z1(a) > 0, z2(a), z3(a) € [0,1], Va € [0,&]} .
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Z is a Hilbert space when endowed with the inner product
(z,w)z = (z1,w1) 12 + (22, wa) 12 + (23, w3) 2.

Finally the space Zj of all basic control strategies is, coherently with the require-
ments of Section 2, a space of functions from Ry to Z and is chosen as

2y := L*(Ry; Z);

For coherence with Notation 3.2 we will denote by z = (¢, 0,7n) the points of Z and
by 2 = (¢,0,7) the points of Zj.

Now we reformulate system (5) providing also existence and uniqueness of the
solution. We need to introduce some operators which originate from the various
term of the system.

First we introduce the unbounded linear operator A : D(A) C H — H defined as

i)

—3a — Ms 0 0
A= 0 —% - 0
0 v =& —ur
with domain
h h
D(A) = {h € H: L hy, =2 e WH2(0,a),
TS TR

a
hl(O) = / B(a)(hl + ho + hg)(a)da,hz((]) = hg(O) = 0} 10 ,
0
corresponding to the linear part of system (5). It can be shown as in Tannelli and
Martcheva (2003) that A generates a strongly continuous semigroup!'T'(t) on H
such that T'(t)(Hy) C (Hy) for every ¢ > 0.

Second we define linear functional = which reformulates the function Z given in

Section 2.
(15) Z:H—R
(16) S(h) = /0 " ha(a)é(a)da.

Lp semigroup of operators on H is a family of operators 7'(t) on H indexed by ¢ > 0 such
that T'(t) + T'(s) = T(t + s) and T'(0) is the identity; a semigroup T'(t) is strongly continuous if
IT(t)h — h||lg — 0 as t — O for every h € H.
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For every control point z = (¢, 0,7n) € Z we define the nonlinear operators (depend-
ing only on the components € and 7 of the control point)

A% H\ {0} — L(0,a)"2,
1

9, a) = —= am a, T T T T)art
A = s [ ma e

and
B H \ {0} > H,

— A1) (a)hs (a)
B (h) (a) = | A%(h)ha(a) — s (a, Z(h))ha(a)
0

Now by Hypothesis 3.1(ii) and by the fact that we have 6,7 € L*°(0,a) (see the
definition of Z), the operator B" is Lipschitz continuous on H \ {0} and there
exists a positive constant a such that aB?(h) + h € H, for every h € H, (see
Tannelli and Martcheva, 2003).

We can consequently write system (5) as the evolution equation for the unknown
h: [0,400) — D(A) with control strategies  and #:

(17) %ﬁ(t) — Ah(t) + BIOAO (1))

Given control strategies 0(-),7(-) and an initial condition ho € Hy we look for mild
solutions of the above systems in H, i.e., for functions [0,+0c0) > ¢t — h(t) € H4
that satisfy

h(t) = T(t)ho + /O t T(t — )BY®) ((s))ds

Thanks to the fact that A generates a strongly continuous semigroup that leaves
H invariant and thanks to the properties of B, there exists (see e.g. Bensoussan
et al. (2007)) a unique function A(-) that satisfies (17) and such that h(0) = hy and
iL(t) € Hy for every t € [0,+00). Such solution will be denoted by posho o by
h#iho.

We now add the equation for K to the system, see (7). For control points z =
(c,0,m) € Z we define the functionals on H

°(h) = /0 " (ha(a) + ha(a)) a(a)p(6(a))da,

Ce(h) = /0 " (@) (1 + s + hy)(a)da,

D'(h) = D (/Oau - n(a))fn(a)e(a)da) |
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For any control strategy 2(-) € Zy, any hy € Hy and any Ky € R we are then
considering the Cauchy problem

W(t) = Ah(t) + BIOAO (1))
K'(t) = =0K + F (K1), LYO((t))) = 4O (h(t)) — DY (h(1)),
h(0) = ho,
K(0) = K.

(18)

Observe that the first equation does not depend on K. Hence, once we know the
mild solution h%"0 of the first equation we can plug it into the second one. Since
F is Lipschitz in K, uniformly in the second variable!®, we know that the second

ho (that depends also on hg since the trajectory h

equation has a solution KZ%HKo:
appears in the second equation). We then conclude that, for every 2 = (¢,6,n) € 2y
the above system admits a unique solution (hé?ho, K é5K0’h°) such that A% is the
mild solution of the first equation with initial datum hg and h(t) € Hy for every

t > 0. We can write system (18) in a more compact way as

(19) S F)() = Alh(n), K1) + B0 (h(t). K (1), ¢ >0
(h,K)(0) = (ho,Ko) € Hy xR

where A: D(A) x R — H x R is the linear operator defined by

A(h,K) = (Ah,—6K)
and, for z = (c,0,n) € Z, B = B%1: H x R — H x R is given by

B*(h, K) = (Be’n(h), F(E,L(h)) — C°(h) — D"(h)) .

The following proposition follows from basic material in lannelli and Martcheva
(2003), Iannelli (1995), Bensoussan et al. (2007).

Proposition 3.4 The linear operator A generates a strongly continuous semigroup
T(t) on H X R that leaves Hy X R invariant, while the operator B* is Lipschitz.
The Cauchy problem (19) admits a unique mild solution, that coincides with that of

(18).

The adjoint operator of A with respect to the inner product
((h, K), (P, Q) xr := (h.p)r + KQ,

is the linear operator A*: (D(A*) x R) — H x R given by

13The fact the two equations are not fully coupled can be exploited to cover also the case when
F' is a Cobb-Douglas function by using a Bernoulli-type change of variable.
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where
% + U 0 0
A* = 0 2y =
0 0 6% + UR
and
* b1 _
D(AY) = {p = (p1,p2ps): 2 p, B2 e W2(0,a),
TS 7rR
P1 _ 3, _
—(a) = pa(a) = —(a) = p1(0) = 0} )
s TR

Now we are in position to define precisely the set of admissible control strategies
and to rewrite the target functionals. First of all, due to the presence of positivity
constraints both on & and K the set of admissible control strategies depends on the
initial data and is the set
(20)

Zaa(ho, Ko) = {2(-) cZz: (hé%hO,Kf;KOth) (t) € Hy x R, for ae. t € [0, +oo)} .

We now rewrite the target functionals beginning with (8). Define the function

Ji:Hy xR x Zy — R,

(21)  Ji(ho, Ko; 2)
/ et / (R 1) la] + B3 (1)la] + 5" (1)]a]) " (e(0)fa]. 6(4) o] ) dad.

Then for every given initial datum (hg, K¢) € Hy x R4 the problem of maximizing
(8) in Section 2 translates precisely in maximization of the function Ji(hg, Ko;-)
given by (21) over the set Z,4(ho, Ko). It will be useful, as a shorthand, to define
the function U: Hy x Z — R,

(22) Ui(h; z) = Ui(h;c,0) = /Oa(hl(a) + ha(a) + hs(a)) u(c(a),b(a)) da ,

so that
(23 I (ho Kos2) = [ et (e ete). ) .
0

The other infinite horizon problem of Section 2 have the same set of admissible
strategies, hence to define it precisely it is enough the rewrite the corresponding
target functional. To do this we simply have to change the function J;. The target
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(12) can be rewritten defining the functional J; in the form (23) simply substituting
U from (22) with Uy defined as (recall the definition of L(-) given in (6))

(24) Us(h,K;0)=F (K,/ (h1(a) + hg(a))a(a)gp(ﬁ(a))da) .
0
The value functions of the two maximization problems described above are defined
as
(25) Vi(h,K): = sup J;i(h,K;2), 1=1,2.

2ezad(h7K)

The other four functionals of Section 2.3 are taken with finite horizon 7" > 0. It
is useful, to apply the dynamic programming approach, to let also the initial time
vary. Hence, when studying these targets the initial condition of the state equation
(19) is taken at a generic time ¢y € [0, 7] and the state equation itself takes the form

oo EBIOO = AbO. K@) + B (he). K@)t fo.T)
(il,, K)(to) = (ho,K@) € H+ X R;

its solution (which exists and is unique thanks to Proposition 3.4) is denoted by
(hi;to’ho, K é?tO’KO’hO). The set of admissible control consequently becomes

(27)  Zaa(to, ho, Ko)
_ {z«(-) €z (hf;tO’hO,Kﬁ%tOvKoth) (1) € Hy x Ry for ae. t € [to,T]} .

For the same reason also the lower limit of the integral in the target is set at a
generic time tg € [0,7]. Therefore both the the target functional and the value
function depend also on tg.

To rewrite target (9) we define

(28)  J3(to, ho, Ko; 2) =

F ( FcFtoho Ko (), /0 . (ilf;to,ho (T)a] + &M (T)[a] + B3N (T) [a]> a(a)da>

Target (11) can be rewritten as
(29) Ja(to, ho, Ko; 2) = K=0hoRo(T),

While the above two targets only contain a final reward, the next two contain
only a current reward. To rewrite target (13) we set

T
(30) Js (ho, Ko: 5) = /0 e, (hé?ho(t),Ké?tO’KO’hO(t);9(t)> dt.
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where Us is defined in (24). Eventually to rewrite target (14) we define
(31)  Js(to, ho, Ko; 2) / / pr (a, 2 Zto’ho(t))> hZtom (1) [a] dadt
to

- / ety (W0 (1), K540 500 (1): (1)) dr.
0

or simply
T A~ ~ A
Jo(to, ho, Ko: 5) = / Us (t, hz?ho(t),Kz?tO’KO’hO(t);«9(t)> dt,
to
where
(32)  Us(th K:0) = x / 11 (a,2(he)) ha(a)da — e=P'Us (h, K 0) -
0

Note that here above = : L?(0,a) — R is the linear functional given by Z(hg) =
Jo h2(a)é(a)da, as in (15). The value functions in the above four finite horizon cases
are defined as:

Vi(t,h,K): = sup  Ji(t,h,K;2), i =3,4,5,6.
2ezad(t7h7K)

4. DYNAMIC PROGRAMMING AND HJB EQUATIONS

The starting point of the dynamic programming approach to the problems of
this paper is the Dynamic Programming Principle, which we call DPP from now
on, (see e.g. Theorem 1.1, p. 224 of Li and Yong, 1995, for a statement and a
proof which apply to the present case) which is a functional equation for the value
function. Once DPP is established the standard path is to write the differential form
of DPP, the HJB equation, find a solution v of it, and prove a Verification Theorem
i.e. a sufficient condition for optimality in terms of the function v (which can be
then proved to be the value function) and its derivatives. Both steps may be very
complicated, depending on the features of the problem; this is particularly true when
one deals with problems in infinite dimension. Indeed, while for finite dimensional
problems the theory of HJB equations and of the corresponding verification results
is quite well established with many regularity results, this is not the case for infinite
dimensional problems. Indeed only few results are available and each case must be
treated ad hoc. One can see, for example, Theorem 5.5, p.263 of Li and Yong (1995)
and the papers Faggian and Gozzi (2010), Fabbri et al. (2010).

Here we abstract away from the existence and uniqueness of regular solutions of
the HJB equation (which is a challenging subject and which will be next step of our
work) and we concentrate on Verification Theorems and their consequences.
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Since we formulated various different problems with different targets, here we
concentrate on targets (8) and (14); the results can be easily extended to the other
cases.

Consider first the problem, given any initial datum (ho, Ko) € Hy x Ry, of
maximizing target (8) over all 2 € Z,4(ho, Ko). Formally, the Hamilton-Jacobi-
Bellman (HJB) equation associated to such control problem is (the unknown here
isv: Hf xRy - R)

(33) pv(h, K) = supHev (h, K, Dpv(h, K), Dgv(h, K); z)
2€Z

where the so-called Current Value Hamiltonian is defined as

Hey: (D(A)NHL) x R) x (H xR) x Z — R.

(34) Hev (h, K, p,Q; 2) = (A(h, K), (0, Q)) tixr + (B*(h, K), (p, Q)) rrxcr + U1 (h; 2)

However this form of the HJB equation is not very convenient for two main reasons.

e First of all the unknown is defined only in H; x R, because U; is defined
in H;. This is a serious problem since the set H; has empty interior in H
and this yields issues when defining properly the Fréchet derivative Dpv. To
overcome this difficulty we observe that the formula defininf U; makes sense
as long as hi 4+ ho + hg > 0. Therefore we can extend U; to the half space

(35) HY :={heH: (h1)>0}

(here 1 is the function with constant value (1,1,1) on H). Indeed the interior
part of this set in H is simply

Int Hy :={h€ H: (h,1) > 0}.

Note that in this way we are enlarging the positivity constraint on the vari-
ables (s,i,7) so the resulting equation is associated to a different problem
with a possibly larger value function which we call Vi. However, as ex-
plained, e.g., in the appendix of Boucekkine et al. (2019), this would allow
to solve also the original one if the resulting optimal strategy satisfies the
original constraints (i.e. the corresponding state trajectory h stays in Hy).

e Second, the term ﬁ(h, K) has the problem of requiring h € D(A), a property
in general not satisfied by the mild solution h of equation (17). Thus it is
conveninet to bring the operator A on the other side of the inner product.
The drawback is that we need to require additional regularity for the solution
v, that Dpv belong to D(A*) (see Definition 4.1 below).
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We then consider the unknown v defined on H} x R, and modify the Current
Value Hamiltonian as follows (we let it keep the same name since we will be using
only the following one from now on)

Hey: (HL xR) x (D(A*) xR) x Z = R,

Hev (b, K,p,Q; 2) = ((h, K), A*(p, Q) rixr + (B*(h, K), (p,Q)) rxr + Ur(h; 2)
= (ha, % +uspr)rz + (ha, % —p2 + %p:s)m + (has, % +URT3)L2
—0KQ — (Ae’"(h)hlaplﬁas + (AP ()b, pa) 2 — (pr (- E(R)) ha, pa) 2
+ F(K, L°(h)Q = C*(h)Q — D"(h)Q + {(h1 + ha + h3)" (), u(z(-))) 2.
We denote by chv the part of the Hamiltonian that depends on the controls, i.e.
Hey (h, K, p, Q3 2) = —<A0’n(h)h1,p1>Lgs + (A%(h)hy, pa) 2 + F(K, L (h)Q
— C(h)Q — D"(h)Q + ((h1 + ha + h3)" (-), u(z("))) 12,
and set
(36) H° =Hcy — Hy,

o1 Op2 ol Ops3
= (h1, Da + MSPl)L%rS + (ha, a0 Yp2 + 71_7173>L2 + (h3, Da + MR7T3>L§R

R
—0KQ — (1 (-,E(h)) h2,p2) 12
so that

SuIZ)HCV(hv Kapa Qa Z) = Ho(h’? K’p7 Q) + SugHéV(ha Kvpa Q, Z) .
zE€ ze

Finally we set
Hl(ha Kvpa Q) = SupH})’V(hv K,p,Q;Z)
z€Z

so that the HJB equation (33) writes
(37) pu(h, K) = H'(h, K, p,Q) + H' (h, K, p, Q).

Now we give the definition of classical solution of (37) in the interior of our
enlarged state space Hi x R. Here we abstract away from the boundary conditions
as they will not be crucial for our purposes. Clearly they will become a key point
when we want to prove results on existence/uniqueness/regularity of solutions of

(37).
Definition 4.1 We say that a function
v: Int H} x (0,+00) — R
is a classical solution of the HJB equation (33) if
(i) v is continuously Fréchet differentiable in Int H} x (0,400);
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(ii) the derivative Dypv(h,K) belongs do D(A*) for every (h,K) € Int Hi x
(0,+00) and A*Dpv is continuous in Int Hi x (0,400);
(iii) v satisfies equation (33) for every (H, k) € Int HY x (0, +00).
We have the following result, which generalizes, e.g., Proposition 1.2, p. 225 of
Li and Yong (1995).

Theorem 4.2 Consider the problem of optimizing the target functional (21) over
the set of control strategies

(38)

2L (ho, Ko) = {2(.) €z (hf%hO,Ké?KOth) () € HL xRy for ace. t €0, +oo)} :

where H}L is defined as in (35). Suppose that the value function Vi' of this “en-
larged” problem is continuously Fréchet differentiable in Int H}r x (0,+00) and that
DV (h,K) € D(A*) for every (h,K) € Int HL x (0,+00). Then V is a classical
solution of the Hamilton-Jacobi-Bellman equation (33) in Int H x (0,+00) .

Proof. For simplicity, in this proof, we will write V for Vi! VV for the vector
(DLV, D VY. By Theorem 1.1, p. 224 of Li and Yong (1995) V satisfies the
dynamic programming principle, that is, for every (hg, Ko) € Int HL x (0,+00) and
every t > 0

(39)  V(ho, Ko)
= sup ) {/Ot e Pl (ﬁé;ho(s), A(s)) ds +e PV <ﬁi;h° (t), K #ho. Ko (t))}

2€Z! (ho,Ko

From now on for simplicity we will write h*(t) for (iﬁ;ho (), K Zho Ko (t)) Using the
chain rule for mild solutions (see for example Proposition 5.5 Li and Yong, 1995) we
have, for every (ho, Ko) € Int HX x (0, +00), every 2 = (&,0,1) e 2!,(ho, Ko) and
every t > 0,

v (ﬁﬁ(tv — V(ho, Ko) = /0t<h2(3)ag*vv(hé(s)»Hdes

" / (B2 (B (5)), YV (13())) s
0
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Therefore, using also (39),

- /Ot =P UL (hEM0 (5); é(s), B(s))ds + e PV (ﬁﬁ(t)) — PV (ho, Ko)
+ (e_pt — 1)V(h0,K{))

t R t . R
:/ e_psUl(h’g;'“’(S);6(8),9(5))618+6_pt/ (07 (), A"VV (h*(s))) rrxwrds
0 0

" /ot@é(hé(s)), TV (B2 (5))) prxrds + (e — 1)V (ho, Ko).

Now, since we are in an open set we know that the control strategies can be taken
constant (so 2(t) = £(0) for ¢t > 0) for a while. We divide both sides of the inequality
by t and take the limit as ¢ — 0; finding

(40) 0 > U(ho; &(0),0(0)) + ((ho, Ko), A*VV (ho, Ko)) rrxr
+ (B™(ho, Ko), VV (ho, Ko)) srxr — pV (ho, Ko).
Therefore we obtain

0> SUEHCV(hm Ko, DV (ho, Ko), DV (ho, Ko); 2) — pV (ho, Ko).
ze

To prove the reverse inequality we fix again (hg, Ko) € Int H} x (0, +00); by def-
inition of the value function, for any positive ¢ and any positive ¢ we can find an
admissible control 2¢(-) € Z!,(ho, Ko) such that

s [ (B R 8) ds eV 0) — Vil Ko)
Using the equation satisfied by h** we get
—et <e Pt (V(h’%e (t) — V(ho, K0)>
n /0 L, (hée;hO(s); & (s), ée(s)) ds + (=Pt — 1)V (ho, Ko)
= e "NT(t)(ho, Ko) — (ho, Ko), VV (ho, Ko)) irxr

+e P /O t T(t — s)B™ (W™ (s)), VV (ho, Ko)) irxrds

+ /0 ", (héf;hO(s); &(s), ée(s)) ds + o(t) + (=7 — 1)V (ho, Ko)
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We can then find a continuous function o : [0,400] — [0,400] such that o(0) = 0
and

o(e) < %e’pt((f(t) —1d)(ho, Ko), VV (ho, Ko), Y i xr

1 [t~ .
+ t/ (B™ (ho, Ko), VV (ho, Ko)) pxrds
0
1 [t . -t _ 1
+ t/ e=Pal; (ho;ée(s),96(3)> ds + o(1) + %V(ho,m})
0
efpt —_

1
< Sug Hev (ho, Ko, DV (ho, Ko), DV (ho, Ko); 2) + Tv(h()?KO) +o(1),
zE

which implies, taking the limit as t — 0,
o(e) < Sup Hey (ho, Ko, DV (ho, Ko), DV (ho, Ko); 2) — pV (ho, Ko).
ze

Letting now € go to 0 we get the result. O

Remark 4.3 The above Theorem (4.2) holds in a completely analogous way for
the other problems where the target is changed. Of course, in case of finite horizon
problems the HJB equation is different; for example, in the case of target (29), it is
ov(t,h, K _
SOE) _ By (1 h, K, Dyo(h, )., Dio(h, K): 2
z€Z
for t € [0,T], (h,K) € Int H} x (0,+00) and with final condition v(T,h,K) = K.
Note that here Hey is defined exactly as Hey in (34), substituting U; with Us

as given in (32). Note finally that in all such cases we would take the enlarged
constraint » € H1 instead of h € Hy.

5. VERIFICATION THEOREMS

We first recall the definition of optimal strategy for our starting problem and for
the “enlarged” one.
Definition 5.1 For (hg,Ko) € Hy x Ry (respectively (ho, Ko) € Int H} x
(0,400)), an admissible control strategy z* € Zgq(ho, Ko) (respectively z* €
2Z1.(ho, Ko)) is called optimal at (hg, Ko) if

Vi(ho, Ko) = Ji1(ho, Ko; 2°(+)) (respectively Vit (ho, Ko) = J1(ho, Ko; 5*()))7

that is, if it is a mazimizer for J. The corresponding solution (™ ho K™ KoY of
(19) is called an optimal state trajectory.

The following result is the so-called Verification Theorem which provides sufficient
optimality conditions.
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Theorem 5.2 Let v be a classical solution of the HJB equation (33), with the
additional property that for every 2 € Z,(ho, Ko)

(41) Jlim eTy (o (), K505 (1) ) = 0

then Vit(ho, Ko) < v(ho, Ko) for every (ho, Ko) € Int HY x (0,+00). Moreover, if
an admissible control Z* € Zid(ho, Ky) is such that

(42) Sup Hov (B (t), Vo(h* (1)), z) = Hov (h* (1), Vo(B* (1)), 2*(1))

then 2* is optimal at (ho, Ko) and Vit (ho, Ko) = v(ho, Ko)-

Proof. We write Vv for (Dpv, Dgv). Moreover, as in the proof of Theorem 4.2 we
write for simplicity h*(t) in place of (h#ho(t), K#ho-Ko(t)). We first prove that, for
every 2 € Z;d(ho, Ky) we have the fundamental identity

(43) wv(ho, Ko) = J1(ho, Ko; 2(+))

+ /000 e [SuPHcv(hé(t)yVv(hé(t))7z)

z€Z

~Hov (B (1), Vol (1)), 2(1))] dt.

Indeed, differentiating the function ¢ — e~P'v(h*(t)) and integrating on [0, 7] we
find

~ T ~
o(ho, Ko) = e *Tu(BE(T)) + / e pu(E (1)) dt
0
T
- /0 PR (1)), AV ol (1)) prxcrdt

T
. /0 e PUBHO (W (1)), Vo(h (6))) .

We can then add and subtract the term fOT e P Uy (R*M0(t), 2(t))dt on the right hand
side and use the fact that v solves the HJB equation (33) to obtain

T
v(ho, Ko) = ePTo(h*(T)) + /O Us (R0 (t), 2(t))dt

T R .
N / [sup Hey (1 (), Vo(hE(1)): 2(2)
0 z€Z

~Hov (¥ (1), Vo(h*(1); 2(1))] dt.

The fundamental identity then follows taking the limit as 7' — oo and using (41).
Since the last integral is always non-negative, and eventually taking the supremum
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over all admissible controls on the right hand side, we get the first claim. The second
one follows observing that for such 2* we have, thanks to (43) and the first claim,

Vi (ho, Ko) < v(ho, Ko) = J1(ho, Ko; £%)
which implies that Vi' (ho, Ko) = v(ho, Ko) = J1(ho, Ko; %), thus the claim. O

Corollary 5.3 Let v be a classical solution of the HJB equation (33) and assume
that the set valued map
(h, K) = argmax Hey (h, K, Vu(h, K); z)
z€Z
admits a measurable selection G : Int Hi x (0,+00) — Z. Let (ho, Ko) € Int H} x
(0, +00) and assume that the closed loop equation

4 K)(E) = A(h(t), K(t)) + BEROK®) (ﬁ(t), K(t)) , t>0

(44) t
h,K)(0) = (ho, Ko),

admits a solution (iLGmO, K GhoKo) sych that the control strategy
(1) = G (hOT0 (1), KGMo-Ro p))
belongs to Z},(ho, Ko). Then 2* is optimal.

Proof. The result immediately follows from the previous Theorem 5.2 and from the
fundamental identity (43). O

Corollary 5.4 Suppose that the value function Vi' is a classical solution of the
Hamilton-Jacobi-Bellman equation (33), that 2* € Z1,(ho, Ko) is optimal at (ho, Ko)
and that

Jim e TV (BT ), KT () =0

Then z* satisifes (42).

Proof. Proceeding as in the proof of Theorem 5.2 we can show that the value function
V satisfies the fundamental identity (43). Since 2*(-) is optimal the integral term
on the right hand side of (43) must be 0, and the claim follows. D

Remark 5.5 The above results allow, if we can find V;!, at least numerically, to
solve the problems with the enlarged constraints. To pass to our initial control
problem we have to show that, for some (hg, Ko) € Hy x Ry, the optimal control
of the enlarged problem is admissible for the initial problem as well. This has been
done e.g. in Boucekkine et al (2019) and the same idea may work in some special
cases of our set-up.
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6. CONCLUSION

Given the strong differences in the effects of some epidemics (and particularly that
of COVID-19) as individuals vary in age, it is important, in trying to understand
the economic impact of the contagion and in evaluating the policies to combat it,
to model it as precisely as possible.

In the previous contributions which integrate the epidemiological dynamics in
macro-dynamic models, the stratification by age of population is often absent and,
when introduced, it is modeled using a finite number of groups with no possibility
to move from one group to another.

In this paper we propose a general fully age-structured time continuous set-up for
the macro analysis of epidemics and economic dynamics.

After rewriting the problem using a suitable Hilbert space reformulation of the
associated infinite dimensional optimal control problem, we develop the dynamic
programming approach providing verification type results which, given our general
infinite dimensional setting, cannot be derived from previous results in the literature.
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To professors Boucekkine, Chakraborty and Goenka
editors of the special issue on the Economics of Epidemics
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November 12, 2020

Object: Revision of the paper JME-D-20-00380 : Verification results for age-
structured models of economic-epidemics dynamics by Giorgio Fabbri, Fausto
Gozzi and Giovanni Zanco

Dear professors,

Please find enclosed the second revision of our paper Verification results for age-
structured models of economic-epidemics dynamics (G. Fabbri, F. Gozzi and G.

Zanco), JME-D-20-00380.

First of all we would like to thank you for the fast and competent review process
and for the opportunity of submitting a revision of the paper. We tried to
answer the questions and to implement the suggestions (yours and the ones of
the referees) at our best. We hope you and the referees will appreciate the result
of this revision job.

In the following we briefly explain how we modified the paper in order to address
the comments contained in your letter and in Reviewer 1’s report. Further
details are contained in the letter addressed to Reviewer 1. In italics we quote
some parts of your letter.

- We have received two referee reports on your paper. The two referees are
top experts in the analysis of age structured populations. Reviewer 2, a
pure mathematician, recommends accepting the current version. Reviewer
1, who is also an expert in mathematical biology and epidemiology, requires
a magjor revision. Her/his detailed report outlines the heterogeneity of the
contributions, the top quality of the methodological one but also a specifica-
tion mistake. She/he ends up recommending a major revision principally
on the basis that your verification theorem is a highly significant contribu-



tion to the literature of age structured models. We concur with the views
expressed by Reviewer 1. We therefore recommend to the Editor-in-chief
of the JME to give you the opportunity to revise and resubmit the paper.

As outlined in the first referee report, the main contribution of your work
is methodological. The paper has a very clear and innovative contribution
with respect to all the related Covid-related papers (Acemoglu et al. or
Gollier, for example, both cited) attempting to account for age structures.
As correctly pointed out in your introduction, the treatment in Acemoglu
et al. 1is partial. Gollier only runs scenarios (no optimization). It would
be nice to be more accurate in your introduction to make even clearer your
methodological contributions. The literature a la Kermac-McKendrick is
not that old and disseminated in economic theory, it’s important to show
precisely what you add to the recent wave of related papers.

We agree with this point. The introduction has been focused on the method-
ological aspects of our contribution. We added some references on the literature
a la Kermac-McKendrick and we pointed out in a precise way what is our ad-
dition to such literature: the development of a general setting for the Dynamic
programming approach and the proof of the verification theorem in such general
setting.

- Section 3 is the essential part of the paper. It’s also the most difficult part
(formulation of the problem in an abstract infinite-dimensional setting).
It’s therefore of utmost importance that you make it clear enough and
accessible to the casual reader of the JME (which is not granted for this
current version). In particular, all the functional spaces should be carefully
defined, even the most elementary (for example in separate footnotes when
needed). Also please avoid digressions not supported by tangible arguments
and/or references. For example, your footnote 7, page 11, is confusing.
The target is to have a Section 8 rewritten in such way that the paper is
self-contained and clear enough to the casual reader. The appendiz can be
used for further clarifications if needed.

We have modified Section 3 to make it more clear to the casual reader. In
particular we added definitions for all the functional spaces we use and we cut
the footnote 7 at p.11 since it was confusing.

- Last but not least, we urge you to address the remark of Reviewer 1 on
your quadratic specification of the incidence rates. The related discussion
will anyway strengthen the microfoundations of your model. Moving from
quadratic to linear would not be a big deal for you, we do not foresee any
crucial degeneracy problem.

Following your indication we modified the formula for lambda (which is now
linear) and corrected consistently the whole article.
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To conclude we would like to thank again for inputs and suggestions and for the
opportunity to submit a revised version of the paper. We hope we met all your
requests.

Kind regards,

Giorgio Fabbri
Fausto Gozzi

Giovanni Zanco
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Dear Reviewer,

Please find enclosed a revised version of our paper Verification results for
age-structured models of economic-epidemics dynamics (G. Fabbri, F. Gozzi
and G. Zanco).

Firstly, we would like to thank you for your work and for your comments.
You actually found some true “bugs” in the first version of the paper, so your
suggestions significantly helped us improving the quality of the manuscript.
We implemented all of them in the attached revised version. We hope you
will like the result of our work.

In this letter we describe how we revised the manuscript in order to respond
to your comments and suggestions. In the following we present answers to
specific points (in italics).

Comments that may be taken into account in a potential revision

- Optimal control of age-structured (or age- and duration-structured) epi-
demiological models is an established area, although the authors ignore

1



mentioning the existing literature.

Thank you for point out this lack. In the revised version we include some
important references on control of age-structured (and in particular epidemi-
ological) models. Most of the 10 new references included in the appendix are
on this subject.

- One can include social distancing and testing policies in various ways,
out of which the authors have made their choice. The economic com-
ponent of the model is standard. Also combining the two components
of the model is straightforward, although various choices are possible.
The authors say that as far as they know “this is the first paper ...
on COVID-19... where capital accumulation is explicitly taken into
account”. This might be true, but this reviewer is aware of submitted
papers that propose age-structured models including macroeconomic dy-
namics of similar kinds (also in a more or less straightforward way).
Therefore, I think the model is not a major contribution of this paper.

Thank you for the indication. In the revised version we have changed the
sentence. We have searched again with attention, we found the paper by
Richard et al., (2020) that we added in the reference list and in the text (if
you have in mind some more other reference we will gladly add it).

- Important: The incidence rate \>" in (}) depends “quadratically” on
0. This does not seem to be true. If the authors look more carefully
at the micro-foundation of (5), they will see that the dependence on 6
should be linear. This mistake should be corrected with all the conse-
quences allover the paper.

Following your suggestion, we modified the expression for lambda and changed
consistently the whole article.

Some additional remarks

- The cost of testing is involved in the model, although this cost is less
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than 1% of the total economic losses due to COVID-19 in most coun-
tries. On the other hand, the cost of lost labor hours due the epidemic
(even if no contact restrictions are undertaken) is not included (since
o(1) = 1). The latter cost is larger than the cost of testing (at least
$ 130 billion in the USA due to influenza; for COVID-19 it will be
higher).

It is true that ¢(1) =1 (so that when measures of type “lockdown” are not
put into effect there is not a decrease of productivity of the active persons). It
is also true however that the infected persons are not counted in the integral
that defines the offer of job (in efficiency units) and therefore it seems to us
that the cost of lost labor hours due the epidemic is included in the model.

Conversely it is true that the cost of testing people has not been so far ex-
tremely high but some arguments can mitigate this evidence. First, the cost
it is not completely negligible. For instance in France, at the current level,
the cost of testing is around 5 billions of euros® per year but the number of
tests remains probably insufficient (knowing that the positivity rate is, this
week, around 12%?) and this data do not take into account preventive quar-
antine social costs. Second, other, much more massive testing policies could
be implemented, and choosing the best testing policy is among the questions
that one can try to answer using models. For instance UK apparently studied
a possible plan to massively increase the number of tests expanding testing
to 10 million a day at a cost of 100bn of pounds?.

- More about the cost of testing: no testing means n = 1, full testing
means n = 0. Maybe I misunderstand something, but if the integral in
(8) represents cost, then 1 —n should appear there instead of n.

In France things are simpler than in US since all the tests are completely
paid by the public wealth service. A larger test campaign only started some
weeks ago, and the total projected cost for 2020 is around 2.2 billions of
euros (https://www.leparisien.fr/economie/depistage-du-covid-19-la-lourde-facture-des-
tests-francais-16-09-2020-8386251.php), meaning that at the current level of testing the
yearly cost could be around 5 billions of euros.

2https://www.santepubliquefrance.fr/maladies-et-traumatismes /maladies-et-infections-
respiratoires/infection-a-coronavirus/documents/bulletin-national /covid-19-point-
epidemiologique-du-15-octobre-2020

3https:/ /www.bmj.com/content/370/bmj.m3520.
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We thank you very much for pointing out this mistake. We corrected it in
the integral you mentioned and everywhere in the sequel.

- One of the two objective functions considered in Section 4 is (14). If I
do not overlook something, this objective function does not depend on
the economic component at all. Moreover, the solution with respect to
0 seems to be obvious: 6 = 0.

You are completely right. We corrected it.

- The authors prove a verification result for the solution of the HIB equa-
tion, but do not give any consequences of this result that provide qualita-
tive or quantitative information about the original problem. The paper
seems to be fully theoretical.

We agree with you. Indeed the purpose of the paper, as we tried to emphasize
more in this revised version, is to provide a precise theoretical framework for
applying dynamic programming to the family of infinite dimensional prob-
lems mentioned in Section 2. This is already a nontrivial task which, to our
knowledge, has not yet been done in the literature.

Additional statement

- I cannot judge how understandable the paper will be for the majority of
the JMFE readers, but the dissemination of the used methodology should
be encouraged.

In the revised version we have taken into account your concerns (and those
of the editors) about the readability of the paper for casual readers of JME.

Indeed:

e we modified the introduction making more clear the contribution of the
paper and adding more references;

e we modified Section 3 to make it more readable and self-contained,
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adding explanations for the abstract notations we use.

We hope that we have addressed all your requests in a satisfactory way, and
that you appreciate the revised version of the manuscript.

Kind regards,

Giorgio Fabbri
Fausto Gozzi

Giovanni Zanco



Declaration of interest

Giorgio Fabbri
CNRS - Grenoble Applied Economics Lab
address: GAEL - CS 40700

38058 Grenoble CEDEX 9, France
email: giorgio.fabbri@Quniv-grenoble-alpes.fr
Tel.: +33 4 76 92 54 23
Web: sites.google.com/site/giorgiofabbril979

Professor Carvajal

University of California Davis, US

FGV, Rio de Janeiro, Brazil

Editor In Chief of the Journal of
Mathematical Economics

Grenoble, August 17, 2020

Object: Declaration of interest for the article Verification results for age-structured models of
economic-epidemics dynamics

Dear Professor Carvajal,

We wish to confirm that there are no known conflicts of interest associated with this publication
and there has been no significant financial support for this work that could have influenced its
outcome.

We confirm that the manuscript has been read and approved by all named authors and that there
are no other persons who satisfied the criteria for authorship but are not listed.

We further confirm that the order of authors listed in the manuscript has been approved by all of
us.

We confirm that we have given due consideration to the protection of intellectual property asso-
ciated with this work and that there are no impediments to publication, including the timing of
publication, with respect to intellectual property. In so doing we confirm that we have followed
the regulations of our institutions concerning intellectual property.

We understand that the Corresponding Author is the sole contact for the Editorial process (in-
cluding Editorial Manager and direct communications with the office). He/she is responsible for
communicating with the other authors about progress, submissions of revisions and final approval
of proofs.

We confirm that we have provided a current, correct email address which is accessible by the
Corresponding Author.

Sincerely,

Giorgio Fabbri
Fausto Gozzi
Giovanni Zanco



