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Wavelet scattering is a recent time-frequency transform that shares the convolutional architecture 
with convolutional neural networks, but it allows for a faster training and it often requires smaller 
training sets. It consists of a multistage non-linear transform that allows us to compute the 
deep spectrum of a signal by cascading convolution, non-linear operator and pooling at each 
stage, resulting a powerful tool for signal classification when embedded in machine learning 
architectures. One of the most delicate parameters in convolutional architectures is the temporal 
sampling that strongly affects the computational load as well as the classification rate. In this paper 
the role of sampling in the wavelet scattering transform is studied for signal classification purposes. 
In particular, the role of subdivision schemes in properly compensating the information lost when 
using sampling at each stage of the transform is investigated. Preliminary experimental results 
show that, starting from coarse grids, interpolatory subdivision schemes reproduce copies of the 
original scattering coefficients at a fixed full grid that still represent distinctive features for signal 
classes. In fact, thanks to the ability of the scheme in reproducing similar fractal properties of the 
transform through an efficient iterative refinement procedure, the reproduced coefficients enable 
to obtain classification rates similar to those provided by the native wavelet scattering transform. 
The relationships between the tension parameter of the scheme and the fractal dimension of its 
limit curve are also investigated.

1. Introduction

Signal classification is assuming greater importance thanks to the increasing development of acquisition devices and the plethora of 
application fields that are based on signal processing [1–4]. Some examples are: i) scene recognition or air traffic control from acoustic 
signals in security and control systems; ii) arm motion recognition from electromyographic signals and heart anomalies recognition 
from ECG signals in medical applications; iii) human activity, spoken digit or music genre recognition as apps for smartphones — 
see Fig. 1. Signal classification mainly consists of two main steps: feature extraction and model selection. Feature extraction aims at 
selecting those relevant characteristics of the signal that make its class uniquely identified. Model selection consists in selecting the 
functions and the algorithms to use for discriminating and separating the features of signals belonging to different classes. Wavelet-

inspired feature extraction methods are well suited for this task thanks to the nice and powerful function representation properties 
of the wavelet transform that made it a useful tool in a wider range of tasks and applications [5–11].
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Fig. 1. Brief sketch of the signal classification process and some of related applications.

Wavelet Scattering Transform (WST) [12,13] is one of the most powerful tools [14,15] designed to emphasize signal features. Its 
basic scheme arises from the MEL spectrum decomposition, usually adopted to process audio/speech signals [16–18], and it has been 
successively generalized to higher dimensions, keeping the 1D time-frequency scattering properties [19].

Based on a recursive scheme, WST mainly consists of: i) a first stage of convolutions with wavelet kernels having constant-Q 
factor, ii) a pointwise non linear operator i.e., the absolute value of the output coefficients of the first phase, and iii) a further 
convolution step through a smoothing kernel — that mainly resembles a moving average applied to the output of the second step. It 
is worth highlighting that the algorithmic structure of WST is very similar to the well-known Convolutional Neural Networks [14], 
with the great advantage that convolution kernels do not need to be learnt from data. It turns out that its computation is very fast, 
avoiding the whole training process that usually is very time-consuming. Additional interesting properties of WST are temporal and 
frequency shift invariance, good frequency resolution and robustness to (moderate) deformations. It can also be proved [12,13] that 
WST is a contractive operator that leads to energy concentration in its first layers — especially the first one. However, despite the 
nice mathematical and computational properties of the transform, filters placement yields some redundancy of the transform so that 
suitable sampling is required for effective and feasible signal classification, especially when using a machine learning framework. 
In fact, in this context too little information leads to poor classification performance, so does too much information. The selection 
of the optimal number of coefficients that help the classifier to work correctly is then an open and delicate issue to be addressed, 
even for WST. The approaches related to this topic mainly exploit the non-expansion property of WST. In particular, they studied 
the correlation between WST layers to reduce its redundancy, as for instance in [12,20,21]. Other approaches have exploited more 
traditional tools suitably designed for this purpose [22–25]. More oriented approaches can be found in [21,26,27], where techniques 
like Principal Component Analysis (PCA), MultiDimensional Scaling (MDS) and Random Sampling have been adapted to lighten WST 
structure. All these approaches guarantee good classification results paying the price of an a priori tuning of the number of features to 
be preserved. An automatic scattering feature selection method has been presented in [28], where the Minimum Description Length 
principle is applied to reach a tradeoff between number of features and classification rate. However, due to the complexity and 
variability of the data and tasks, the problem still remains open.

As already outlined, feature reduction usually leads to an increasing and moderate loss in performance till an optimal point 
beyond which any further reduction gives definitively worst classification results — w.r.t. the application at hand. This ‘optimal 
features cardinality’ seems to be an insurmountable limitation for any classification process. In fact, if on one hand this choice leads 
to great savings in memory/processing/transmission for big data problems, on the other hand it pays the price of a sensible reduction 
in terms of classification accuracy [29,30]. In this paper we then try to address the problem of compensating for any severe feature 
reduction. In particular, we gave empirical evidence that a suitable interpolation of the reduced features can provide additional, 
data-driven and distinctive information which contributes to enhance the discrimination capabilities of a given machine-learning 
classifier, thus increasing the classification accuracy. It is worth observing that this result offers an additional advantage in terms of 
storage resources, as it paves the way to an optimal information storage with a few coefficients that can be conveniently ‘expanded’ 
whenever needed — a previous attempt in this sense can be found in [31]. Due to the variety of signals and types of features, in this 
paper we investigate the problem of WST-based classification of specific classes of signals, such as audio signals, that can be naturally 
represented in the time-frequency domain and are characterized by non-smooth components and rapid oscillations that make their 
compact representation a difficult task [32,33]. In fact, even their deep spectrum, which is provided by the WST, produces highly 
variable coefficients, making their sampling a delicate task, especially when defining a suitable input for classification tools, such as 
Support Vector Machine (SVM), and so on.

Based on these considerations, the first contribution of this paper is then to exploit the complexity of the deep spectrum of audio 
signals for guiding the feature expansion process. To this aim the fractal dimension of the wavelet scattering coefficients is evaluated 
2

bandwise. Fig. 2 shows a preliminary illustrative evidence of this statement, where the fractal dimension is measured through the 
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Fig. 2. Distribution of the fractal dimension of each band of the WST of four distinct audio signals from GTZAN [56] dataset. The fractal dimension has been measured 
using the Higuchi method, it falls in the interval (1, 2) and it is greater than 1, as expected for 1D fractal functions.

Higuchi method [34]. As can be observed, the fractal dimension of scattering coefficients of audio signals is far from being equal to 
1, unlike what would be expected for any conventional 1D signal.

Both theoretical and experimental analyses are then conducted to answer the following questions:

• Is it possible to interpolate critically sampled WST coefficients, having fractal nature, to the desired temporal grid while preserv-

ing/recovering the native fractal roughness?

• Which interpolation scheme is suitable for this purpose?

• Are the interpolated WST coefficients able to achieve the same classification rates of the original data on that grid?

Preliminary answers to these issues are mainly related to the already mentioned fractal nature of WST representations and have some 
innovative elements. Numerical evaluations will show that coefficients can be critically subsampled and successively ‘recovered’ 
by interpolation, preserving classification capabilities even for complicated signals. To this aim, suitable interpolation tools are 
subdivision schemes that converge to fractal curves; on the contrary, subdivision schemes converging to smooth curves often lead to 
worst classification results. In particular, the well known four-points subdivision scheme [35] is adopted in this paper since it allows 
us to interpolate WST coefficients, even in a fractal context (see [36]), through a simple parameter tuning, resulting computationally 
efficient.

In addition, bounds for the fractal dimension of the limit curve of the scheme are provided, highlighting an explicit dependence 
on the tension parameter of the scheme. The latter result represents a step forward toward the automatic selection of the best setting 
of the scheme parameters, depending on the range of the expected values for the fractal dimension to be reproduced. Apart from the 
literature related to the analysis of fractal or multifractal signals by means of the canonical wavelet transform [32,37,38], to the best 
of the authors’ knowledge, this work is the first attempt to deal with wavelet scattering transform by adopting a methodology that 
is based on the properties of fractals. In addition, it represents a first step toward effective embeddings of subdivision schemes in 
machine learning processes.

The remainder of the paper is organized as follows. Next section provides a short overview of Wavelet Scattering Transform (WST) 
and classical four-points subdivision schemes (4SS). Section 3 presents the operational details of the proposed methodology in which 
WST and 4SS are combined to achieve an adequate signal representation that promotes good classification performance of a standard 
SVM classifier. Section 4 provides some experimental results and evaluation studies with respect to different tuning of the involved 
tools. Finally, Section 5 draws the conclusions and provides some guidelines for future work.

2. Mathematical background

In this section, a very short description of the two main elements of the proposed model will be offered: the Wavelet Scattering 
Transform [12] and the Subdivision Schemes (the reader may refer to [39], [40], [41] and references therein for a comprehensive 
treatment of univariate subdivision schemes). This will help the reader to better understand the sequel of this paper.

2.1. Wavelet scattering transform

Wavelet Scattering Transform (WST) [12] is a multi-layer non-linear time-frequency transform that allows us to compute the 
3

“deep spectrum” of a signal by cascading convolutional, non-linear and pooling operators at each layer except for the zero-th order 
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Fig. 3. Tree structure of the Wavelet Scattering Transform — green dots denote the output of each layer. (For interpretation of the colors in the figure(s), the reader 
is referred to the web version of this article.)

layer. In particular, the transform is characterized by the tree structure represented in Fig. 3, where the 0-th layer consists of the 
convolution product of the original input signal 𝑓 with a scaling function 𝜙 [32] that acts as a low pass filter. The successive 𝑚-th 
order wavelet scattering layers are defined by applying the regularizing function 𝜙 to the bands of a special constant-Q factor wavelet 
decomposition where each convolution with a band-pass filter is followed by the absolute value operator, that acts as a pointwise 
non-linear activation function.

More formally, let 𝑓 (𝑡) with 𝑡 ∈ Ω𝑡 be a time-dependent signal defined in temporal interval Ω𝑡 ⊂ ℝ; and let 𝜙(𝑡) be a scaling 
function, {𝑄𝑚}𝑚=1,...,𝐿 a sequence of integer 𝑄-factors, and {𝜓𝑚,𝑘(𝑡)}𝑘∈ℤ the constant 𝑄𝑚-factor wavelet filter bank generated by the 
mother wavelet 𝜓(𝑡). 𝑄𝑚 represents the number of wavelets per octave, while

𝜓𝑚,𝑘(𝑡) =
√
𝜆𝑚,𝑘𝜓(𝜆𝑚,𝑘 𝑡), (1)

where 𝜆𝑚,𝑘 = 2
𝑘

𝑄𝑚 is the dilation parameter and 𝑘 ∈ℤ.

The 0-th order wavelet scattering layer 𝑆0𝑓 is defined as

𝑆0𝑓 (𝑡) = 𝑓 ∗ 𝜙(𝑡), (2)

where ∗ denotes the convolution product along the temporal axis. Similarly, by denoting with 𝐼𝑚 the set of admissible values for the 
parameter 𝑘 at the 𝑚-th layer, the 1-st order wavelet scattering layer is

S1𝑓 = [𝑆1,𝑘(𝑡)]𝑘∈𝐼1⊂ℤ, (3)

where [⋅] stands for the collection [𝑆1,1(𝑡), 𝑆1,2(𝑡), ...], with

𝑆1,𝑘(𝑡) =𝑈1,𝑘 ∗ 𝜙(𝑡),

and

𝑈1,𝑘(𝑡) = |𝑓 ∗ 𝜓1,𝑘(𝑡)|.
Accordingly, the 𝑚-th layer is defined as

S𝑚𝑓 = [𝑆𝑚,𝑘(𝑡)]𝑘∈𝐼𝑚⊂ℤ, (4)

where

𝑆𝑚,𝑘(𝑡) =𝑈𝑚,𝑘 ∗ 𝜙(𝑡),

with

𝑈𝑚,𝑘(𝑡) = |U𝑚−1𝑓 ∗ 𝜓𝑚,𝑘(𝑡)|,
where

U𝑚−1𝑓 = [𝑈𝑚−1,𝑘(𝑡)]𝑘∈𝐼𝑚−1⊂ℤ.

Definition 2.1. The Wavelet Scattering Transform (WST) S of the signal 𝑓 is the collection of the 𝐿 + 1 layers, i.e.,

S𝑓 = {𝑆0𝑓,S1𝑓,… ,S𝐿𝑓}, (5)
4

with 𝑆0𝑓 as defined in eq. (2), and S1𝑓, … , S𝐿𝑓 as defined in eq. (4) with 𝑚 = 1, ..., 𝐿,
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S𝑓 has a matrix form whose dimension depends on the properties of the constant Q-factor wavelet transform. In particular, the 
temporal dimension (columns) depends on the critical sampling that the transform allows to apply; the frequency dimension (rows) 
mainly depends on the number of octaves used in the transform at each layer. The redundancy of the transform thus depends on the 
set {𝑄𝑚}𝑚=1,...,𝐿 of Q-factors selected at each layer.

WST has some nice properties that mainly inherits from the wavelet-based cascaded scheme [12,42]; they hold for 𝑓 ∈𝐿2(ℝ) and 
are listed below — the complete proofs can be found in [42], respectively Prop 2.9, Prop. 2.5 and Theorem 2.6.

Proposition 2.1 (Time warping stability). Let denote 𝑓𝜏 (𝑡) = 𝑓 (𝑡 − 𝜏(𝑡)) and let 𝑇 be the support of the scaling function 𝜙, then ∃ a constant 
𝐶 > 0 such that ∀ 𝜏(𝑡) such that 𝑠𝑢𝑝𝑡|𝜏(𝑡)| << 𝑇 and |𝜏′(𝑡)| < 1 it holds

‖𝐒𝑓𝜏 − 𝐒𝑓‖ ≤ 𝐶 𝑠𝑢𝑝𝑡|𝜏| ‖𝑓‖.
This property assures the stability of the transform to small deformations and variations 𝜏(𝑡) in the input signal 𝑓 . This means 

that even when the input signal is distorted slightly, the scattering coefficients remain relatively unchanged. This property is valuable 
for tasks like object recognition or speech processing, where robustness to variations is essential. The property implies translation 
invariance as a particular case.

Proposition 2.2 (Contraction). ∀ 𝑓 (𝑡), 𝑔(𝑡) ∈𝐿2(ℝ), it holds

‖𝐒𝑓 − 𝐒𝑔‖ ≤ ‖𝑓 − 𝑔‖.
This property provides a non expansive transform that is stable to additive noise.

Proposition 2.3 (Energy preservation). If each constant Q-factor wavelet transform, defined by the family {𝜓𝑚,𝑘(𝑡)}𝑘∈ℤ as in eq. (1), is a 
tight frame, then

‖𝑓‖2 = ‖𝐒𝑓‖2 + ‖𝐔𝐿+1𝑓‖2.
This property assures the preservation of the energy of the signal. In addition, under appropriate assumptions on the mother 

wavelet 𝜓 , the high frequency component of the scheme, that is U𝐿+1, goes to zero as the depth of the transform (𝐿) increases. In 
fact, the modulus operator computes a smooth envelope, and pushes energy towards lower frequencies. Since the scattering transform 
is iterated on wavelet modulus operators U𝑚𝑓 (not on the output of the preceding layer S𝑚−1𝑓 ), it propagates all the energy of the 
signal towards lower frequencies, which is captured by the lowpass filter of scattering coefficients. Therefore, WST preserves signal 
energy and its depth can be reduced, since most of the signal energy is concentrated in the very first layers.

For the implementation details of the transform, refer to [12].

2.2. 4-point subdivision schemes

Subdivision schemes, introduced in 1970s (see [43–45] for the pioneer ideas and [39–41] for an exhaustive reading), are efficient 
tools for computer-aided curve and surface design. The basic idea is to define a curve or a surface out of an initial control polygon 
or control mesh by recursively subdividing them according to some refining rules. Due to its efficiency and convenience, subdivision 
is now an important tool in many applications in fields including Computer Graphics, Computer Aided Geometric Design, computer 
animation, surgical simulation and medical image processing.

According to whether the initial control points will be interpolated or not, subdivision schemes can be classified into two categories: 
interpolatory and approximate subdivision schemes. In general, approximating schemes give smoother curves or surfaces, but in the 
present we will focus on the interpolatory schemes to preserve the given data. The first and most popular interpolatory scheme is the 
called 4-point interpolatory scheme (4SS), introduced by Dyn, Levin and Gregory in [35]. The recursive steps are based on a 4-point 
rule, as it follows.

Given the set of initial control points P0 = {P0
𝑗
∈ ℝ𝑑}𝑛+1

𝑗=−2, let P𝑘 = {P𝑘
𝑗
∈ ℝ𝑑}2𝑘𝑛+1

𝑗=−2 be the set of control points at level 𝑘 (𝑘 ≥

0, 𝑘 ∈ℤ), defines {P𝑘+1
𝑗

∈ℝ𝑑}2𝑘+1𝑛+1
𝑗=−2 recursively by the following 2 rules (binary scheme):

⎧⎪⎨⎪⎩
P𝑘+12𝑗 = P𝑘

𝑗
, −1 ≤ 𝑗 ≤ 2𝑘𝑛+ 1,

P𝑘+12𝑗+1 =
(
1
2 +𝑤

)(
P𝑘
𝑗
+ P𝑘

𝑗+1

)
−𝑤

(
P𝑘
𝑗−1 + P𝑘

𝑗+2

)
, −1 ≤ 𝑗 ≤ 2𝑘𝑛,

(6)

where 𝑤 is a tension (shape) parameter. Each iteration of the binary scheme defined in eq. (6), can be rewritten as follows

𝐏𝑘+1 =𝐴𝐏𝑘,
5

where 𝐴 ∈ℝ2𝑘+1𝑛+4×2𝑘𝑛+4 is the subdivision matrix and has the following structure
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Fig. 4. Curves obtained after 6 steps of the subdivision scheme (6) on the initial points (black dots) for different values of the tension parameter 𝑤 = 0, 0.05, 0.1, 0.2, 0.3.

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

... ... ... ... ... ... ... ...

0 1 0 0 0 0 0 ...

−𝑤 1
2 +𝑤

1
2 +𝑤 −𝑤 0 0 0 ...

... 0 1 0 0 0 0 ...

0 −𝑤 1
2 +𝑤

1
2 +𝑤 −𝑤 0 0 ...

... 0 0 1 0 0 0 ...

... 0 −𝑤 1
2 +𝑤

1
2 +𝑤 −𝑤 0 ...

... 0 0 0 1 0 0 ...

... 0 0 −𝑤 1
2 +𝑤

1
2 +𝑤 −𝑤 ...

... ... ... ... ... ... ... ...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7)

It is worth observing that in literature there exist subdivision schemes with general 𝑚-arity, where 𝑚 denotes the number of rules 
used to built new points and coincides with the factor by which the number of points is multiplied in each step (see [46] for ternary 
and [47] for quaternary schemes). For our approach we limit to binary scheme since it duplicates the number of control points, and 
thus it is in perfect matching with the upsampling/downsampling of a multiresolution setting.

By letting 𝑘 tend to infinity, this process defines an infinite set of points in ℝ𝑑 whose smoothness properties depend on the values of 
the parameter 𝑤. In particular, it is proved that the 4-point interpolatory scheme is 𝐶0 -continuous for −1

4 <𝑤 < 1
4 and 𝐶1-continuous 

for 0 <𝑤 <
√
5−1
8 (see [35,48,49]). The 4-point scheme generates the piecewise linear interpolant in the initial control polygon for the 

trivial value 𝑤 = 0, whereas, for 𝑤 = 1
16 , the limit curve has the best possible Hölder regularity (i.e., it is almost 𝐶2 with 𝑅𝐻 = 2 − 𝜀). 

Some example of continuous curves obtained with the scheme (6) can be observed in Fig. 4 for 𝑤 = 0, 0.05, 0.1, 0.2.

The subdivision scheme method is not only an important tool for the fast generation of smooth geometric objects from initial 
control nets, but also an efficient tool for the fast generation of fractals. Actually the limit curve of the 4-point binary can be fractal 
for some special values of the corresponding parameters, as it is stated in the following theorem (see [36] for details).

Theorem 2.1. For −1
2 <𝑤 < 0 or 14 ≤𝑤 < 1

2 , the limit curve of the 4-point scheme (6) is a fractal curve.

An example of the fractal behavior of a 4-point subdivision scheme is shown in Fig. 4 for 𝑤 = 0.3.

In particular, it can be proved that fractal limit curve of the scheme is the unique attractor of a specific Iterated Functions System 
(IFS) [50,51]. The 𝑖-th function of the IFS is

𝑓𝑖(𝑋) =𝑋𝑃−1𝐴𝑖𝑃 , 𝑖 = 1, ..., 𝑑 (8)

where the matrix 𝐴𝑖 is obtained by breaking the subdivision matrix 𝐴 into multiple square matrices, while 𝑃 is the matrix of the 
initial control points suitably lifted to guarantee the equivalence with the scheme — hence, some of the rows of the matrices 𝐴𝑖 may 
overlap (for more detail see [50,51]).

3. The proposed model

The proposed model deals with the 𝐿 + 1-layers WST, as defined in eq. (5), of an audio signal 𝑓 . In order to make more readable 
6

the following formalism, the matrix form of the transform is considered. Therefore the WST S𝑓 of the signal 𝑓 is denoted by 𝑆𝑀,𝑁
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in the sequel, where 𝑆 is a rectangular matrix with (original) size 𝑀 ×𝑁 : the rows denote the frequency bands of the wavelets used 
in the transform, while the columns are related to the time samples. As already outlined, 𝑆𝑀,𝑁 is strongly redundant both on time 
axis and along scales. Hence, reduction is necessary. For an approach oriented to reduce information along rows, the reader can refer 
to [28]. Conversely, in this section we will deal with temporal sampling. The reduction problem for classification purposes can be 
formalized as follows.

Problem statement 1: wavelet scattering feature reduction for classification Let  be a suitable classification operator, 
 be the corresponding success score (classification accuracy and/or computational load— the higher the score the better the per-

formance/efficiency of task) and let 𝑆𝑀,𝑁 be the WST of a signal 𝑓 . Define a suitable sampling operator 𝑁1 ∶ 𝑆𝑀,𝑁1 =
 (𝑆𝑀,𝑁 ), with 𝑁1 <<𝑁 such that

[ (𝑆𝑀,𝑁 )] ≤[ (𝑆𝑀,𝑁1)].

As mentioned in the introduction, 𝑆𝑀,𝑁1 can be achieved using proper feature reduction methods, or restricting the type of 
sampling (e.g. uniform sampling) and using a ‘trial and test’ procedure: for each subsampling, the accuracy obtained with a pre-

defined classification tool is evaluated. The procedure stops when the ‘optimal’ value 𝑁1 is found i.e., when 𝑆
𝑀,𝑁1 leads to the best 

(acceptable) classification score; more formally,

𝑁1 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑁1≤𝑁[ (𝑆𝑀,𝑁1)], with 𝑆𝑀,𝑁1 = 𝑁1(𝑆𝑀,𝑁 ). (9)

In this paper 𝑁1 is assumed to be known. In fact, independently of the procedure used for getting 𝑁1, we are interested in whether 
there exists a coarser sub-sampling of 𝑆𝑀,𝑁 that can guarantee the same optimal classification rate, as in eq. (9), whenever it is 
suitably interpolated to the finer 𝑁1-points grid. More formally, the issue we are interested to address is the following.

Problem statement 2: wavelet scattering interpolation for classification Let 𝑁1 be defined as in eq. (9) and 𝐺
𝑁1 the corre-

sponding nodes grid, 𝑆𝑀,𝑁2 = 𝑁2(𝑆𝑀,𝑁 ), with 𝑁2 <<𝑁1 and 𝐺𝑁2 ⊂𝐺
𝑁1, a coarser sub-sampled version of 𝑆𝑀,𝑁 , and let 𝑆̂𝑁2

𝑀,𝑁1
be a properly interpolated version of 𝑆𝑀,𝑁2 to the finer grid 𝐺

𝑁1. Find 𝑁2 such that

[ (𝑆̂𝑁2
𝑀,𝑁1

)] ≈[ (𝑆
𝑀,𝑁1)]. (10)

Solving the last problem requires answering two main questions:

• Question 1 which property or constraint must be satisfied by the interpolated data;

• Question 2 which interpolation procedure ensures that the constraint is met.

In fact, the rationale is to apply proper interpolatory schemes able to reproduce some of distinctive geometrical properties of the 
data rather than the data itself, even when a severe sampling has been applied to the original data.

Regarding Question 1, as already observed in the introduction, considering the nature of the analyzed signals, fractal dimension 
is considered as the feature to be reproduced. Fractal dimension has been introduced by Mandelbrot in 1967 [52–54] and provides a 
rational index of signal complexity that represents how its behavior changes along scales — signals having the same fractal dimension 
scale accordingly. It is usually computed via the Hausdorff-Besicovitch dimension. However, from a numerical point of view it is more 
convenient to consider the capacity dimension, which will be described in the sequel.

Let 𝑉 be a bounded set in ℝ𝑑 . Intuitively, one can measure 𝑉 by means of the minimum number of balls 𝐵𝑉 (𝑠), with radius 𝑠, 
required to completely cover 𝑉 itself. Hence,

Definition 3.1. [32] Let 𝑉 be a bounded set in ℝ𝑑 and let 𝐵𝑉 (𝑠) denote the minimum number of balls with radius 𝑠 covering 𝑉 . The 
capacity dimension 𝐷𝑉 of the set 𝑉 is

𝐷𝑉 = −lim inf
𝑠→0

𝑙𝑜𝑔𝐵𝑉 (𝑠)
𝑙𝑜𝑔 𝑠

, (11)

and the measure 𝑉 of 𝑉 can be approximated as

𝑉 = −limsup
𝑠→0

𝐵𝑉 (𝑠)𝑠𝐷𝑉 . (12)

Definition 3.1 introduces a measure 𝑉 that can be finite or not and approximates the Hausdorff distance. Hence, the exponent 
𝐷𝑉 , as defined in eq. (11), will be considered as the fractal dimension of 𝑉 in the sequel of paper.

It is worth observing that the fractal dimension of a feature set can be thought as a measure of the complexity, or equivalently 
the space-filling capacity of the data. In machine learning, this relates to the intrinsic dimensionality of the data set, which can 
be indicative of the complexity and variability within the data. Therefore, replicating the fractal dimension implies creating a new 
feature set that preserves the same intrinsic complexity as the original features. This does not necessarily mean having the same 
values, but the transformed features should have the same geometrical or topological properties in terms of their distribution.

Regarding the interpolation operator able to synthesize the missing WST information while reproducing the fractal nature of the 
7

data (Question 2), a subdivision scheme can be adopted with the shape parameter 𝑤 suitably tuned, according to Theorem 2.1. The 
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subdivision scheme should be applied by starting from a 𝑁2-points regular grid and iterated in order to interpolate 𝑆𝑀,𝑁2 row-wise 
and to achieve 𝑆̂𝑁2

𝑀,𝑁1
meeting the condition in eq. (10). However, since  has some internal optimization schemes that are hard to 

be formalized, in the next subsection we are interested in formally evaluating the ability of the subdivision scheme in reproducing 
the fractal nature of the original data, that is expected to reflect the complexity of the signal. In the section of experimental results we 
will then empirically prove that, thanks to the preserved complexity, scattering coefficients having the same fractal nature provide 
nearly the same clusters, i.e. the same separating hyperplanes in the case of Support Vector Machine (SVM).

3.1. Fractal dimension and tension parameter

To provide insights on the relationship between the fractal dimension of the limit curve and the tension parameter 𝑤 of the 4-point 
subdivision scheme in eq. (6), we must recall the following property of fractals [55].

Theorem 3.1. Let {𝑓1, 𝑓2, ..., 𝑓𝑑} be an Iterated Function System (IFS) on ℝ𝑁 with the attractor  such that every function 𝑓𝑖 has a 
contraction constant 𝜌𝑖. If the IFS is totally disconnected or just-touching, then the fractal dimension 𝐷 of the attractor  is the unique 
positive and finite solution of the following equation

𝑑∑
𝑖=1

𝜌
𝐷

𝑖
= 1

If the IFS is overlapping, then 𝐷 ≤ 𝐷̃, where 𝐷̃ ∈ [0, +∞) is the solution of

𝑑∑
𝑖=1

𝜌𝐷̃
𝑖
= 1 (13)

It is worth observing for planar curves it is expected that 1 ≤𝐷 ≤ 2 whenever  is a row of the scattering matrix 𝑆
𝑀,𝑁1.

Hence, using Theorem 3.1 and the matrix representation of the subdivision scheme in eq. (7), the following Proposition holds 
true.

Proposition 3.1. Let  be the limit curve of the 4-point subdivision scheme in eq. (6) with tension parameter 𝑤 ∈
(
−1

2 ,0
)
∪
[
1
4 ,

1
2

)
, 

let {𝑓𝑖}𝑖=1,...,𝑑 be the associated Iterated Functions System, as defined in eq. (8), and let 𝐷 be the fractal dimension of , according to 
Definition 3.1, then

(2 − 𝜀) + 𝑙𝑜𝑔2(𝜌) ≤𝐷 ≤ −
𝑙𝑜𝑔2(𝑑)
𝑙𝑜𝑔2(𝜌)

(14)

where 𝜌 =
⎧⎪⎨⎪⎩

2𝑤 𝑤 ∈
[
1
4 ,

1
2

)
1
4 (1 +

√
1 − 16𝑤) 𝑤 ∈

(
−1

2 ,0
) and 𝜀 is a proper positive constant.

The proof is in the Appendix.

Proposition 3.1 provides bounds for the fractal dimension of the limit curve of the 4-point subdivision scheme. It is then expected 
that a given fractal dimension 𝐷 ∈ [1, 2] can be reached, with high accuracy, by the limit curve generated by the 4-point subdivision 
scheme for proper choices of the shape parameter 𝑤 ∈

(
−1

2 ,0
)
∪
[
1
4 ,

1
2

)
.

Remark 1 It is worth observing that, under proper assumptions, there exists a tension parameter able to approximate the fractal 
dimension of the expected function better than the one of the linearly interpolated data. Specifically, let 𝑆̂𝑁2

𝑀,𝑁1
(𝑤) be the interpolated 

𝑆𝑀,𝑁2, where the dependence on the shape parameter 𝑤 of the 4SS has been made explicit, and let define

𝑤̄ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑤∈

(
− 1

2 ,0
)
∪
[
1
4 ,

1
2

)|𝐷𝑆
𝑀,𝑁1

−𝐷
𝑆̂𝑁2
𝑀,𝑁1

(𝑤)|
with 𝑤̄ ∶ 2 − 𝜀 + 𝑙𝑜𝑔2𝜌(𝑤̄) ≤𝐷

𝑆̂𝑁2
𝑀,𝑁1

(𝑤̄), then

|𝐷𝑆
𝑀,𝑁1

−𝐷
𝑆̂𝑁2
𝑀,𝑁1

(𝑤̄)| ≤ |𝐷𝑆
𝑀,𝑁1

−𝐷𝑆𝑀,𝑁2
|. (15)

In fact, it is sufficient to observe that the planar curve defined by 𝑆𝑀,𝑁2 is 𝑆̂𝑀,𝑁2(0), i.e. the piecewise linear function that is 
obtained from the subsampled scattering matrix 𝑆𝑀,𝑁2 using the 4SS with shape parameter 𝑤 = 0. The limit curve is expected to 
have dimension 1, as derives from Proposition 3.1.

Remark 2 The numerical evaluation of the fractal dimension of a sequence requires the use of proper estimators, like the Higuchi 
estimator which provides reasonable estimations of the fractal dimension [34]. It depends on a free parameter 𝑘𝑚𝑎𝑥 whose value 
8

is greater than 2. In the case of 1D sequences, 𝑘𝑚𝑎𝑥 denotes the value of the maximum allowed sampling step. More precisely, let 
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Fig. 5. Average fractal dimension of WST coefficients of 800 audio signals: different subsampling steps have been used for the WST matrix: fractal dimension decreases 
as subsampling step grows.

𝑋𝑖 ∶ 𝑖 ∈ {1, ..., 𝑁} be the values of a given function computed over a uniform grid of knots (for example, a row of the scattering 
matrix 𝑆𝑀,𝑁 ). Hence, ∀ 𝑘 ∈ {1, .., 𝑘𝑚𝑎𝑥} and 𝑚 ∈ {1, .., 𝑘}, it is possible to define the following lengths

𝐿𝑚(𝑘) =
𝑁 − 1⌊𝑁−𝑚
𝑘

⌋𝑘2
⌊𝑁−𝑚

𝑘
⌋∑

𝑖=1
|𝑋𝑚+𝑖𝑘 −𝑋𝑚+(𝑖−1)𝑘|

and their averages with respect to 𝑚, i.e.,

𝐿(𝑘) = 1
𝑘

𝑘∑
𝑚=1

𝐿𝑚(𝑘).

According to eq. (11), 𝐿(𝑘) is expected to satisfy a negative power law with respect to its argument 𝑘, whose exponent represents the 
fractal dimension 𝐷{𝑋𝑖} of the sequence {𝑋𝑖}1≤𝑖≤𝑁 . A simple linear regression of the set of data 

{(
log 1

𝑘
, log𝐿(𝑘)

)}
𝑘=1,...,𝑘𝑚𝑎𝑥

then 

provides an estimate of 𝐷{𝑋𝑖} as the slope of the fitted linear function. The latter will be adopted in the experimental results to give 
evidence of the fractal nature of WST coefficients.

4. Experimental results

The proposed approach has been tested on the well-known dataset GTZAN [56]. The latter is usually adopted for machine learning 
applications and involves different music genre signals. Specifically, it is composed of 10 genres, where each one contains 100 clips 
of 30 seconds and sampled at 22050 Hz. The original set of 1000 signals has been split into 800 (80%) signals for the training set and 
200 (20%) signals for the test set. Obviously, both subsets are composed of signals randomly selected from the whole initial dataset, 
where classes are equally represented. All simulations have been performed in Matlab environment. A two-layer WST (𝐿 = 2) but 
using different couples of Q factors has been employed in all tests. Most of the results presented in this section refers to the couple 
of Q-factors (𝑄1, 𝑄2), with 𝑄1 = 8 and 𝑄2 = 1. With these settings, WST provides the matrix 𝑆𝑀,𝑁 = 𝑆334,256 for each signal in the 
training set; hence, our starting data have size 334 × 256 ×800 (800 will be omitted in order to make easier the notation), where 334 
are the WST bands, 256 are the time samples of each band and 800 are the number of training set signals. An increasing and uniform 
subsampling has been performed on 𝑆334,256 along the original time dimension (256 samples): from 𝑁 = 256 to 𝑁2 = 32 samples.

Test 1 The first test aims at showing that WST of audio signals have a fractal nature that becomes weaker as time sampling becomes 
more severe, as expected. Fig. 5 shows the results related to signals in the training set. As can be observed, increasing subsampling 
factors lead to different behaviors in the fractal dimension with respect to the parameter 𝑘𝑚𝑎𝑥 employed in the Higuchi method. The 
fractal dimension deviates from its original one as much as the subsampling increases. In particular, the stronger subsampling leads 
to the matrix 𝑆334,32 that loses most of the fractal data information.

Test 2 The second test sets 𝑁1 =𝑁 = 256 and aims at verifying the condition in Problem statement 2, with decreasing values of 
𝑁2 starting from 𝑁2 =𝑁1 to 𝑁2 = 32. Hence, the sequence of sampled WST i.e., 𝑆̂𝑁2

𝑀,𝑁1
, with 𝑁2 = 256, 128, 64, 32, have been 

generated and then interpolated to get the sequence of WST matrices 𝑆̂𝑁2
𝑀,𝑁1

, with 𝑁2 = 256, 128, 64, 32, each having the starting 
9

𝑁1 =𝑁 = 256 temporal samples. The interpolated matrices have been used as input for a classifier and classification accuracy has 
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Table 1

Classification accuracy, measured in terms of percentage (%) of correct assignment, achieved by subsam-

pling (𝑁2 = 32) and then interpolating a (8,1)-twolayer WST using a 4-point subdivision scheme with 
different values for the shape parameter 𝑤. Accuracies equal to or greater than the one achieved by using 
the original WST matrix 𝑆334,256 (last column) are in bold.

𝑆̂32
334,256 𝑆334,256

𝑤 -0.5 -0.25 -0.1 0 0.1 0.2 0.25 0.3 0.4 0.5

% 86.5 87 87.5 87.5 87.5 87.5 87.5 88.5 88 88.5 88.5

Table 2

Classification accuracy (measured as percentage of correct assignments) achieved by subsampling (𝑁2 = 32) 
and then interpolating a twolayer WSTs with different couples of Q factors (in the brackets) using a 4-point 
interpolatory subdivision scheme with different values of the shape parameter 𝑤. The last column contains the 
accuracy achieved using the original WST matrix 𝑆𝑀,𝑁1. Accuracies equal to or greater than the one achieved 
using 𝑆

𝑀,𝑁1 are in bold.

𝑆̂𝑁2
𝑀,𝑁1

𝑆
𝑀,𝑁1

𝑤 -0.5 -0.25 -0.1 0 0.1 0.2 0.25 0.3 0.4 0.5

(𝑄1,𝑄2)

(4,3) 89.5 88.5 89.0 89.5 88.5 89.5 89.5 89.5 90.5 90.0 90.0

(4,2) 89.0 88.0 88.5 88.0 89.5 89.0 87.5 89.0 90.0 90.0 90.5

(3,2) 88.5 88.0 88.0 87.0 88.5 88.5 87.0 87.5 87.0 86.0 89.0

Table 3

Fractal dimension of the original matrix of WST coefficients 
(average on 800 training set signals), its subsampled version, 
the interpolated version via the subdivision scheme with 𝑤 =
0.3 and the interpolated version via the subdivision scheme 
with 𝑤 = 0.5.

𝑆334,256 𝑆334,32 𝑆̂32
334,256(0.3) 𝑆̂32

334,256(0.5)

FD 1.8352 1.6229 1.7317 1.8163

been evaluated. As mentioned in the previous section, the 4-point interpolatory scheme in [35] has been adopted as a representative 
stationary subdivision scheme that is able to reproduce fractal curves; however, it is expected that any subdivision scheme working 
in fractal modality can be effectively adopted to interpolate the above dataset — or similar datasets containing complicated signals. 
With regard to the classifier, a classical SVM with polynomial kernel has been employed for simplicity.

Some results are in Table 1, where different values of the shape parameter 𝑤 of the subdivision scheme have been considered. The 
values of 𝑤 fall in the range of values for which the convergence of the subdivision scheme is guaranteed. In particular, Table 1 refers 
to 𝑁2 = 32 and reports the classification accuracy provided by 𝑆̂32

334,256 using different shape parameters of the adopted interpolatory 
scheme. The last column contains the classification accuracy using the original 𝑆334,256 as input of the classifier. As it can be observed, 
the interpolated WST matrices that provide the same classification score of the original WST matrix are those generated using 𝑤 values 
in the range that guarantees convergence to fractal curves (in particular, [.25 .5)). This result confirms that it is possible to store just a 
subset of data information, even for complicated signals, from which recovering a proper input for a classifier by adopting a suitable 
interpolation scheme. The interpolated data guarantee the same classification rate of the original data, even though they do not exactly 
reproduce them, as clearly shown in Fig. 6, but just some specific properties. Fig. 7 compares the fractal dimensions of the original 
data (𝑆334,256), the subsampled ones (𝑆334,32) along with the interpolated ones 𝑆̂32

334,256 with two values of the shape parameter 𝑤: 
0.3 and 0.5. As can be observed, the synthesized signals have a fractal dimension very close to that of the original coefficients.

To empirically show that inequality in eq. (15) is satisfied, the fractal dimension of the original matrix of WST coefficients 𝑆334,256 , 
its subsampled version 𝑆334,256, the interpolated version 𝑆̂32

334,256(0.3) via the subdivision scheme with 𝑤 = 0.3 and the interpolated 
version 𝑆̂32

334,256(0.5) via the subdivision scheme with 𝑤 = 0.5 has been computed and reported in Table 3. As can be observed,

|𝐷(𝑆334,256) −𝐷(𝑆̂32
334,256(.3))| = 0.1035< |𝐷(𝑆334,256) −𝐷(𝑆334,32)| = 0.2123|𝐷(𝑆334,256) −𝐷(𝑆̂32
334,256(.5))| = 0.0189< |𝐷(𝑆334,256) −𝐷(𝑆334,32)| = 0.2123

and shape parameters 𝑤 > .3 provides consistent replicates of the fractal dimension of the original data.

Test 3 This test aims at studying the dependency of the results on WST parameters settings. In particular, Table 2 contains the 
classification accuracy achieved using different couples of Q-factors. Comments similar to those made for the couple (8, 1) still hold. 
However, it is worth observing that similar accuracies can be obtained also using shape parameters 𝑤 not belonging to the fractal 
range. It is more evident when using smaller Q-factors whose wavelet kernels induce increased smoothness, causing the loss of the 
10

fractal nature of WST.
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Fig. 6. Detail of original 𝑆334,256 coefficients and synthesized 𝑆̂32
334,256 via the adopted subdivision scheme with 𝑤 = .3 (top) and 𝑤 = .5 (bottom).

Fig. 7. Average fractal dimension of WST coefficients of audio signals in the training set versus the parameter 𝑘𝑚𝑎𝑥 of the Higuchi method (the larger 𝐾𝑚𝑎𝑥 the better 
11

the estimation of the fractal dimension of the curves): Original (𝑆334,256), subsampled by 8 (𝑆334,32) and interpolated (𝑆̂32
334,256) with 𝑤 = .3 and 𝑤 = .5.
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Fig. 8. Classification accuracy (%) for the GTZAN dataset using interpolated (8,1)-wavelet scattering coefficients by the generalized Chaikin corner-cutting subdivision 
scheme — different arbitrary corner-cutting parameters (𝛼, 𝛽) assuring convergence to fractal curves have been considered; the dashed line indicates the expected 
reference classification accuracy.

Test 4 This test aims at evaluating the performance of an approximate subdivision scheme. The generalized Chaikin corner-cutting 
subdivision scheme with two arbitrary parameters [57] has been selected. Given the set of initial control points P0 = {P0

𝑗
∈ℝ𝑑}𝑛+1

𝑗=0 , 

let P𝑘 = {P𝑘
𝑗
∈ℝ𝑑}2𝑘𝑛+1

𝑗=0 be the set of control points at level 𝑘 (𝑘 ≥ 0, 𝑘 ∈ ℤ), the scheme defines {P𝑘+1
𝑗

∈ℝ𝑑}2𝑘+1𝑛+1
𝑗=0 recursively by 

the following rule:

⎧⎪⎨⎪⎩
P𝑘+12𝑗 = 𝛼P𝑘

𝑗
+ (1 − 𝛼)P𝑘

𝑗+1, 0 ≤ 𝑗 ≤ 2𝑘𝑛,

P𝑘+12𝑗+1 = 𝛽P𝑘
𝑗
+ (1 − 𝛽)P𝑘

𝑗+1, −1 ≤ 𝑗 ≤ 2𝑘𝑛,

where 𝛼 and 𝛽 are two arbitrary corner-cutting parameters. In particular, if (𝛼, 𝛽) ∶ 𝛽 < 0, (𝛼 − 𝛽) < 1, (𝛼 + 𝛽) > 0, the scheme 
converges to a fractal curve.

Fig. 8 shows the classification results achieved using different couples of corner-cutting parameters satisfying previous constraints. 
As can be observed, the classification accuracy ranges from 85.5% to 86.5%. These values are far from the expected classification 
accuracy (88.5%). This result highlights that interpolation condition plays a crucial role in the feature expansion process and in the 
reproduction of the expected fractal dimension, thanks to the preservation of original information of the data, although severely 
sampled. On the contrary, approximation schemes, leaving the expansion method less constrained, can cause the reproduction of 
similar shapes for classes of signals that can be more easily confused.

Even though future research will be devoted to investigate further this topic, these results definitively show that a 4-point in-

terpolatory subdivision scheme is able to effectively interpolate WST coefficients having a fractal nature and paves the way to new 
machine learning approaches based on subdivision schemes. Based on these considerations, non-stationary schemes [58–60] will be 
investigated in future research; in fact, thanks to their level-dependent refinement rule, they exhibit flexibility and easier adaptation 
to the data and the specific task, while maintaining parametric representations. In addition, an in-depth study will be conducted 
on the optimal parameters setting, such as the sequence of Q-factors of the WST and the optimal interpolation grid, depending of 
the specific task and signal types, while also providing tighter bounds for the fractal dimension of the limit curve of the subdivision 
scheme. The latter study will have a twofold benefit: it will enable us to define an automatic and flexible tool for signal classification; 
it will contribute to providing insights into the fractal properties of subdivision schemes and related applications.

5. Conclusions

In this paper a first study concerning the joint use of sampling and interpolation of time-frequency features for signal classification 
purposes has been presented. To this aim wavelet scattering transform and subdivision schemes have been considered. In particular, 
the role of subdivision schemes in properly compensating the information lost when using sampling at each stage of the transform 
has been investigated. The results of the study can be summarized in a twofold contribution. First, it has been shown that, for specific 
signals and sequences of Q-factors, WST coefficients can have a fractal nature. This consideration is completely new and paves the 
way to novel approaches that deal with this kind of signals. Secondly, it has been shown that a classical 4-point subdivision scheme 
can be used to interpolate strongly undersampled versions of signal WST; the latter can be then used as input to a standard classifier, 
achieving classification accuracy comparable to that of the original data. Obviously, the value of the shape parameter 𝑤 of the 4-point 
12

subdivision scheme must be such that the scheme converges to curves of fractal type. This result is relatively important as it connects 
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the subdivision world to the machine learning one and opens up several ways for combining them into effective future applications. 
Future research will be oriented to theoretically exploring the aforementioned link, in order to formalize and generalize some existing 
theoretical results on subdivision schemes. Specifically, non-stationary schemes will be studied due to their level dependent refinement 
rule and parametric representation.
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Appendix A. Proof of Proposition 3.1

Convergent subdivision schemes define IFSs whose attractor is  and having contractive functions 𝑓𝑖(𝑋) =𝑋𝑃−1𝐴𝑖𝑃 , 𝑖 = 1, ..., 𝑑
[51]. The matrices 𝐴𝑖 have eigenvalues of the form 1 ≥ 𝜆1 ≥ 𝜆2...., where 1 corresponds to the translational component of the 
transformation matrix, while

𝜆2 =
1
2
, 𝜆3 = 2𝑤, 𝜆4 =

1
4
(1 +

√
1 − 16𝑤), 𝜆5 =

1
4
(1 −

√
1 − 16𝑤).

In addition, the eigenvalues of 𝑃−1𝐴𝑖𝑃 are equal to the eigenvalues of 𝐴𝑖 . As a result, each 𝑓𝑖 is contractive with contractive constant 
equal to the spectral radius 𝜌𝑖 of the matrix 𝐴𝑖. In particular, the maximum non unitary eigenvalue of 𝐴𝑖 is

𝜌𝑖 =

{
𝜆3 if

1
4 ≤𝑤<

1
2

𝜆4 if − 1
2 ≤𝑤< 0.

Since the subdivision matrix 𝐴 can be partitioned into 𝑑 overlapping matrices that have the same eigenvalues by construction, 
i.e. 𝜌1 = 𝜌2 = ... = 𝜌𝑑 , then eq. (13) holds. As a result, 𝐷 ≤ 𝐷̃, with

𝑑∑
𝑖=1

𝜌𝐷̃
𝑖
= 1 ⇔ 𝑑 𝜌𝐷̃1 = 1 ⇔ 𝐷̃ = −

𝑙𝑜𝑔2(𝑑)
𝑙𝑜𝑔2(𝜌1)

.

To prove the lower bound, let consider the explicit form of the small edge vectors 𝐄𝑘
𝑗
= 𝐏𝑘

𝑗
− 𝐏𝑘

𝑗−1 generated at the 𝑘-th iteration 
of the 4SS between two initial points, as proved in [31]. In particular,

𝐄𝑘
𝑗
=

⎧⎪⎪⎨⎪⎪⎩
𝐚1𝑗𝛾 ′𝑘1 + 𝐚2𝑗𝛾 ′𝑘2 + 𝐚3𝑗 (2𝑤)𝑘 + 𝐚4𝑗

(
1
2

)𝑘
𝑤 ∈

(
−1

2 ,0
)

𝐛1𝑗𝛾 ′′𝑘1 + 𝐛2𝑗𝛾 ′′𝑘2 + 𝐛3𝑗 (2𝑤)𝑘 + 𝐛4𝑗
(
1
2

)𝑘
𝑤 ∈

(
1
4 ,

1
2

)
𝐜1𝑗𝛾 ′′′𝑘1 + 𝐜2𝑗𝛾 ′′′𝑘2 + 𝐜3𝑗

(
1
2

)𝑘
+ 𝐜4𝑗𝑘

(
1
2

)𝑘
𝑤 = 1

4

where 𝐚𝑙𝑗 , 𝐛𝑙𝑗 and 𝐜𝑙𝑗 , 𝑙 = 1, ...4 are non-zero and independent of 𝑘, while depend on the tension parameter 𝑤 and the initial control 
points. Moreover,

⎧⎪⎨⎪⎩
𝛾 ′1,2 =

1
4 (1 ±

√
1 − 16𝑤), 1

2 < 𝛾 ′2 < 1, |𝛾 ′1| < |𝛾 ′2|, |𝛾 ′2| > |2𝑤|
𝛾 ′′1,2 =

1
4 (1 ± 𝑖

√
1 − 16𝑤), |𝛾 ′′1 | < 2𝑤 |𝛾 ′′2 | < 2𝑤|𝛾1′′′| = |𝛾 ′′′2 | = 1
2

It is worth observing that |𝐄𝑘
𝑗
| can be rewritten in the form |𝐄𝑘

𝑗
| = 𝛼𝑘|𝐄̃𝑘

𝑗
|, i.e.,

|𝐄𝑘
𝑗
| =

⎧⎪⎪⎪⎨⎪⎪
|𝛾 ′2|𝑘 |||||𝐚1𝑗 𝛾

′𝑘
1
𝛾′𝑘2

+ 𝐚2𝑗 + 𝐚3𝑗
(2𝑤)𝑘

𝛾′𝑘2
+ 𝐚4𝑗

(
1
2𝛾′2

)𝑘||||| 𝑤 ∈
(
−1

2 ,0
)

|2𝑤|𝑘 |||||𝐛1𝑗
(

𝛾′′1
2𝑤

)𝑘

+ 𝐛2𝑗
(

𝛾′′2
2𝑤

)𝑘

+ 𝐛3𝑗 + 𝐛4𝑗
(

1
4𝑤

)𝑘||||| 𝑤 ∈
(
1
4 ,

1
2

)
(
1
)𝑘 | | 1
13

⎪⎩ 2 ||𝐜1𝑗 (2𝛾 ′′′1 )𝑘 + 𝐜2𝑗 (2𝛾 ′′′2 )𝑘 + 𝐜3𝑗 + 𝐜4𝑗𝑘|| 𝑤 = 4
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The proof follows by observing that the number of boxes 𝐵(𝑠), with 𝑠 = 1
2𝑘 , needed to recover the graph of the attractor  of 

the IFS (limit curve generated by the 4SS) is such that

𝐵

( 1
2𝑘

)
≥ 2𝑘

2𝑘𝑛∑
𝑗=1

|𝐄𝑘
𝑗
|

where for simplicity 𝐄𝑘
𝑗

stands for the edge vector generated between all the initial control points. Hence

lim
𝑘→+∞

−
𝑙𝑜𝑔2𝐵

(
1
2𝑘

)
𝑙𝑜𝑔2

(
1
2𝑘

) ≥ lim
𝑘→+∞

𝑙𝑜𝑔2(22𝑘𝑛𝑛𝑘 |𝛼|𝑘min𝑗 𝐄̃𝑘𝑗 )
𝑘

→ (2 − 𝜀𝑘) + 𝑙𝑜𝑔2|𝛼|,
where 𝜀 = lim𝑘→+∞

𝑛𝑘

𝑘
accounts for eventual zero-length edge vectors (𝑛 ⋅ 𝑛𝑘 is the number of non-zero edge vectors). ∙
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