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The Stroop test evaluates the ability to inhibit cognitive interference. This interference
occurs when the processing of one stimulus characteristic affects the simultaneous
processing of another attribute of the same stimulus. Eye movements are an indicator
of the individual attention load required for inhibiting cognitive interference. We used an
eye tracker to collect eye movements data from more than 60 subjects each performing
four different but similar tasks (some with cognitive interference and some without).
After the extraction of features related to fixations, saccades and gaze trajectory, we
trained different Machine Learning models to recognize tasks performed in the different
conditions (i.e., with interference, without interference). The models achieved good
classification performances when distinguishing between similar tasks performed with
or without cognitive interference. This suggests the presence of characterizing patterns
common among subjects, which can be captured by machine learning algorithms
despite the individual variability of visual behavior.

Keywords: eye-tracking, machine learning, Stroop test, classification, attention load, cognitive interference

INTRODUCTION

Viewing is a complex activity, involving cognitive aspects, conscious and unconscious. It manifests
itself through motor behavior aimed at acquiring salient information in the form of light
radiation. When observing static images, this attentive activity exhibits rapid eye movements called
saccades, occurring between the so-called fixations. During fixations, the eye remains still and the
information is sampled. It is well known that the cognitive load of individual tasks may influence
eye movements statistics (Connor et al., 2004; McMains and Kastner, 2009; Mathôt, 2018), and in
particular some variables like average fixation duration, saccade length or saccade velocity, among
others. For this reason, it seems reasonable to define techniques based on eye-tracking data in order
to recognize recurring patterns related to the visual attention and identify the task that the subject
is performing (Klingner, 2010; Zagermann et al., 2016). Indeed, it has already been observed that
the variation of the attentive load within different tasks affects the eye movements (Castelhano
et al., 2009; Tanaka et al., 2019). Previous study show that simple eye-tracking based parameters,
such as fixation count, can be used as a reliable and objective measure to characterize the cognitive
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load during information detection tasks (Debue and Van
De Leemput, 2014) or during inquiry-based learning with
multimedia scaffolds (Kastaun et al., 2021). However, current
approaches focus on standard fixation-based parameters (as in
[1] and [2]) and provide little insights about the influence of
cognitive load on the dynamics of visual exploration, which could
be better described by saccades and, especially, by higher order
correlations in visual behavior.

In this work we analyzed the vision behavior of subjects
involved in a Stroop test (Stroop, 1935) while performing two
different visual tasks, naming and reading, in order to explore
possible effects on human attention on such behavior. The
exploratory patterns are expressed through variables related
to eye fixations and saccadic movements, since they are both
influenced by processing difficulty (Pollatsek et al., 1986).

The execution of each task requires different attention loads
to the subject: reading is performed as a fast and automatic
process, while naming the color of a word is a slow conscious
activity, especially when written with an ink color mismatching
its semantics (Kahneman, 2011). The delay in naming colors
of words reporting unmatched names of the colors has been
described as a cognitive interference. This phenomenon is well-
known in experimental psychology and several methods have
been developed to test and measure it (Jensen, 1965; Dalrymple-
Alford and Budayr, 1966; Bench et al., 1993; Scarpina and Tagini,
2017). To this aim, we set up a visual version of the Stroop test
during which we recorded the eye movements of 64 subjects,
following the experimental protocol defined in Megherbi et al.
(2018). The experiment involves two different tasks, defined as
Naming and Reading, and two conditions, defined as ”With
Interference” and ”Without Interference.”

The research questions we tried to address in our study are: (1)
Is there evidence of the presence of recurrent visual behavioral
patterns for different tasks (naming vs. reading) and conditions
(with interference vs. without interference)? (2) Is it possible to
generate machine learning models which are able to identify in
which task or condition the subject is currently involved? And,
in the affirmative case, which kind of algorithm will produce the
more reliable model?

The paper is organized as follows. The section ”Materials and
Methods” describes the experimental protocol set up for stimuli
presentation and data collection. In the section ”Experiments”
we provide a detailed description of the data pre-processing,
Machine Learning techniques and metrics for evaluation of the
results. Finally, in the ”Conclusion” we discuss results and suggest
possible directions for future works.

MATERIALS AND METHODS

Participants
We recorded eye movements from 64 subjects (32 female and
32 male, average age = 30,2 ± 11,72). They were informed
about the procedure and purpose of the study and signed an
informed consent. Experimental procedures conformed to the
Declaration of Helsinki and the Italian national for conducting
psychological experiments. All subjects were students at the

University of Siena and reported normal or corrected-to-
normal vision.

Task and Stimuli
During the test, the participants had to perform two main
tasks: Naming and Reading. These tasks were both divided
into two conditions: one ”With Interference” and one ”Without
Interference”; following the experimental protocol defined in
Megherbi et al. (2018). The images representing the four stimuli
were created by modifying and translating in Italian the ones
originally proposed in Megherbi et al. (2018). Stimuli were
presented as 1,024 × 768 pixels images, divided in an equally
spaced 4 × 4 grid to generate 16 identical cells, representing
interest areas. A single word was placed in the center of each cell.
The four generated stimuli were composed by:

• Reading Without Interference (RWoI) - Participants had
to read the words on screen. The words ”ROSSO” (”red”),
”GIALLO” (”yellow”), ”VERDE” (”green”) and ”BLU”
(”blue”) were all colored black (see Figure 1).

• Reading With Interferences (RWI) - Participants had to
read the words on screen. The words ”BLU,” ”ROSSO,”
”VERDE,” ”GIALLO.” etc., were colored red, blue, yellow,
green, etc. with a mismatching between the shade used and
the meaning of the word (e.g., ”ROSSO” was never colored
in red) (see Figure 2).

• Naming Without Interference (NWoI) - Participants had
to name the color of the words on screen. In this case, the
Latin letters were replaced by pseudo-letters constructed to
match the real letters’ physical properties (height, number
of pixels, and contiguous pixels) by reconfiguring their
original characteristics (Megherbi et al., 2018). The pseudo-
words were colored red, green, yellow and blue (see
Figure 3).

FIGURE 1 | Reading Without Interference (RWoI).

FIGURE 2 | Reading With Interferences (RWI).
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FIGURE 3 | Naming Without Interference (NWoI).

FIGURE 4 | Naming With Interference (NWI).

• Naming With Interference (NWI) - Participants had to
name the color of the words on screen. The composition
of the screen followed the same principles used for the
construction of the Reading With Interference (RWI)
condition (see Figure 4).

Procedure
Each of the 64 subjects joined all the four experimental
conditions. The presentation order of the conditions were
randomized balancing the set of possibilities among participants.
Eye movements were recorded by an EyeLink Portable Duo1
(2022) set to 500 Hz sampling rate and in Head-Free mode.
Images were presented on a 17 inches display (1920 × 1080
pixels), placed perpendicularly in front of the participant at
a distance from the eyes ranging in 46-52 cm. The light in
the room and ambient noise were under control so to keep
such parameters constant along all the experimental sessions,
Written instructions were first presented to the participants,
followed by an oral brief aimed at assessing the proper
understanding of the test and the associated procedure. The
experiment was preceded by an initial unrecorded trial and
a standard 5-point calibration. Between the instructions and
the stimulus screens, a white screen containing a circular
trigger located at the top-left corner of the task image was
presented. Each trial began when the participant fixated the
trigger for at least 100 ms. The trial was completed when
the participant pressed the “space” key. During the execution,
the experimenter annotated on an Excel spreadsheet any
relevant information regarding the experience of the subject
and possible technical issues (e.g., if the first calibration
failed). Three participants unable to correctly read words
and instructions on the screen were discarded. All the
subjects performed accurately in the four tasks, with few
errors only in the Naming with Interference conditions. The
experimental session was concluded by a debrief session where

the participants reported their subjective impressions about
the task performed.

Eye Tracking Features
The Eye Tracking features adopted as Dependent variables (e.g.,
Fixation position, fixation time, etc.) about eye movements were
extracted from two of the reports generated by the software
released with the eye-tracker device (The EyeLink Data Viewer).
The first report used was the one about fixations, listing, for
each trial, the list of fixations computed by the software together
with correspondent time point, xy position, duration and area
of interest (a rectangle around each one of the words. The
second one listed all the recorded saccades during each trial,
reporting xy starting and ending point, amplitude, velocity,
direction and duration. The two reports are used to compute
statistical features about fixations and saccades. However, we
found that a fine-tuning process was necessary to improve
the data quality. Fixations that fall well outside of the areas
of interest were discarded, since they could be either due to
an instrumental artifact or to a subject’s activity not related
to the task. Gaze data referring to the head and tail of the
experiment were also discarded. We refer to the head of a
trial as the time until the trigger was activated. Indeed, the
trigger dot was actually introduced to ensure similar initial
conditions among subjects. In an analogous way, we refer to
the tail of a trial as the time between the observation of
the last word (the bottom right one) and the push of the
”space” key, which concludes each trial. We empirically found
that removing the last five fixations guarantees a good noise
cleaning without filtering out any relevant fixations. A fixation
threshold was used to discard fixations which are too short
or too long, which could be due to noisy gaze points reads
or to approximation errors introduced by the software. It is
well known that meaningful fixations during reading tasks
are within the range 100-400 ms (Liversedge and Findlay,
2000; McConkie and Dyre, 2000; Majaranta and Räihä, 2002).
Because of the specific tasks under investigation, we adopted
a more specific method to select fixations of interest. Since
fixations of interest for reading tasks are considered around
200-250 ms, we dropped fixations below 200 ms. For the
longest ones, we applied an outlier detection method, to select
those samples with z-score (Devlin et al., 1975) lower than
3. This approach appeared to be empirically valid, since it
allowed us to keep the maximum fixation duration in the
interval of 800-1200 ms within subjects and experiments. This
range is sensibly higher than the ones proposed in literature,
but we avoided the use of a constant threshold in order to
guarantee an additional degree of freedom so as to include the
maximum duration of the fixations in a trial as one of the
variables of interest.

For each subject, and for each condition (NWI, NWoI,
RWI, RWoI), a set of features related to eye movements were
extracted. All of them were considered as dependent variables
in respect to the four experimental conditions. Seven dependent
variables were related to the fixation of the glance, instead other
22 dependent variables were related to the movement of the
glance (saccade).
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FIGURE 5 | Classification performances in terms of Accuracy. (A) Naming without Interference vs Reading with Interference. (B) Reading with Interference vs
Reading without Interference. (C) Naming with Interference vs Naming without Interference. Each plot represents a different binary classification task, indicated in the
title. Bars indicate the average Accuracy on a 5-fold cross validation setting, while the confidence interval represented by black lines on the top of each bar indicates
the standard deviation. Each group of contiguous bars refers to the performance achieved by the same classifier: RF, Logistic, ANN and SVM. Bar’s color indicates
the set of features fed as input to the classifier: Fix (features related to fixations), Saccades (features related to saccades), Fix + Saccades (features related to
fixations and saccades), Fix + Saccades-norm (features related to fixations and saccades with subject-wise normalization). The dashed red line sets the reference of
the random baseline 0.5.
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The 7 dependent variables related to the fixation of the gaze:

• Number of fixations: total number of fixations (n_fix).
• Average fixation length: the average of the duration among

all the fixations (fix_max, fix_mean).
• Maximum fixation length: the maximum of the duration

among all the fixations (norm_fix_max, norm_fix_mean).
• Horizontal/Vertical regressions: the number of times that

the eyes step backward in their horizontal/vertical path
(assumed left to right and up to down, respectively),
excluding the changes of line in the horizontal counting
(x_regressions, y_regressions).

The 22 dependent variables related to the movement of the
gaze (saccade):

• Up/Down/Left/Right Frequency: the counting of
saccadic movements in each direction, normalized by
the total number of saccades (up_freq, down_freq,
left_freq, right_freq).

• Minimum/Average/Maximum saccade duration: statistics
about the duration of each saccade (min_duration,
avg_duration, max_duration).

• Minimum/Average/Maximum saccade velocity: statistics
about the estimated velocity of each saccade (min_vel,
avg_vel, max_vel).

• Minimum/Average/Maximum saccade amplitude: statistics
about the amplitude of each saccade - in degrees of visual
angle (min_ampl, avg_ampl, max_ampl).

• Minimum/Average/Maximum saccade angle: angle
between the horizontal plane and the direction of the next
saccade (min_angle, ave_angle, max_angle).

• Minimum/Average/Maximum saccade distance: statistics
about the distance of each saccade - in degrees of visual
angle (min_distance, avg_distance, max_distance).

• Minimum/Average/Maximum saccade slope: statistics
about the slope of each saccade with respect to the
horizontal axis (min_slope, avg_slope, max_slope).

All the scripts and functions used to process the data are
implemented in Python v3.7.5 (Van Rossum and Drake, 2009),
using Pandas v0.25.3 (McKinney, 2010), Scikit-learn v0.21.3
(Pedregosa et al., 2011) and SciPy v1.3.1 (Virtanen et al., 2020).

RESULTS

The results are reported into two separated branches. The first
concerns the traditional inferential analysis carried out through
a comparison between conditions by means of an Analysis of
Variance. The second concerns an analysis of the data carried
out with a selection of Machine Learning algorithms aimed at
developing models that could predict the specific experimental
conditions starting from the data collected.

Statistical Analysis
All 29 dependent variables were used to make a comparison
between: (1) Naming vs. Reading in condition of Not Interference
(i.e., NWoI vs. RWoI); (2) Naming Without Interference vs.

Naming With Interference (i.e., NWoI vs. NWI); and (3) Reading
Without Interference vs. Reading With Interference (i.e., RWoI
vs. RWI) by means of a standard one-way ANOVA (Fisher, 1992)
using the SciPy implementation (Virtanen et al., 2020) in Python
v3.7.5 (Van Rossum and Drake, 2009). Since the difference
between Naming and Reading tasks is well documented in
literature (e.g., Kahneman, 2011), the first test was considered
a control condition for the whole experiment. Furthermore, we
made the comparison between Naming and Reading both for the
condition without interference (see column NWoI vs. RWoI in
Table 1) and by putting together the conditions with interference
with those without interference (see column Naming vs. Reading
in Table 1) in order to see if the trend of results is consistent as
it appear to be.

The second and third comparisons are the focus of the
presented work, carried out in order to assess if different attention
levels, required to perform the two different tasks (Naming and
Reading), can be caught by variables related to eye movements.
In Table 1 we report the significance values p obtained for in
each comparison involving the variables about fixations. As we
can see, the differences between Naming and Reading tasks are
well represented by statistics about the duration of fixations
(both average and maximum). In the second test, the effects of
interference in Naming is highly expressed by the number of
fixations and the eye regressions in both axes.

A different pattern of results is obtained taking into
consideration the variables related to saccadic movements.
Looking at Table 2, it is possible to observe produced a much
less clear pattern of results. Indeed, a high level of significance
(p = 0.005) was achieved only by the variables Average and
Maximum Saccades Duration when comparing NWI vs. NWoI,
and in a few other cases we obtained a significant difference.

Machine Learning Analysis
Given these results, none of the variables produce, by itself,
a satisfactory task characterization. Moreover, this kind of
statistics does not directly provide a predictive model with
good generalization performances when we need to infer new
knowledge on unseen data. Indeed, a threshold model achieves
poor performances, probably because of the high inter-subjects
variability. Our claim is that more complex behaviors involving
the dynamics of the attentive process or task specific gaze
strategies can be captured by more complex (non-linear) models.
Such models can take into account non-linear interactions
among variables, possibly represented by means of hidden
representations, partially overcoming the high variability. In
the context of hypothesis testing, we applied Machine Learning
techniques to assess statistical significance through a dual
approach in which we evaluated the performances of selected
learning models in classification tasks between two populations
that we assume to be distinct (Mjolsness and DeCoste, 2001;
Oquendo et al., 2012; Vu et al., 2018). We applied four different
machine learning techniques and evaluated the performances
achieved on the collected dataset. Our goal is to assess if the
cognitive interferences that affect the gaze dynamics can be
detected by machine learning algorithms exploiting eye-related
features. Eventually, we would like to find out that classification
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performances are consistently better than a random baseline in
order to support the hypothesis that the two populations are
intrinsically distinct. Our aim is not to find the best machine
learning techniques but to observe how four of the basic learning
algorithms behave in their classification task.

Since the four stimuli are presented to each subject, our dataset
consists of 64 examples per class, which could be too small to
capture complex dynamics. However, to partially address this
inter-subject variability, we exploited an ad hoc normalization
technique. For each subject, we computed the mean of each
variable within the four tasks, and subtracted it to the original
values. This mitigates individual effects on each task, and
improves the final representativeness of the variables. We are
aware that the sample size is limited for a machine learning study
and therefore limited the complexity of the chosen methods.
Indeed, more advanced machine learning methods, such as deep
learning, can allow modeling of more complex phenomena, but
they are notably data hungry and are not suitable for the current
study. However, with respect to the machine learning algorithm
adopted, we claim that the reliability of the results is based on
cross validation, which guarantees unbiased estimation of the
models’ performance on unobserved data.

We repeated the same tests investigated within the statistical
analysis by setting up three separated binary classification tests:
NWoI vs. RWoI, NWI vs. NWoI, and RWI vs. RWoI. We avoid a
global 4-class test since the dynamics of the tasks are too complex
to be modeled by such a small number of samples. We exploited
the Scikit-learn (Pedregosa et al., 2011). Python software package
to test the four different classifiers (Bishop, 2006):

(i). Random Forests (RF) are an ensemble of decision trees
based on bootstrapping. Different models are trained on
a subset of samples and the final decision is taken by
majority voting.

(ii). Logistic Regression (Logistic) is a statistical model that in
its basic form uses a logistic function, applied to a weighted
average of the input features, to model a binary dependent
variable (the model prediction).

(iii). Artificial Neural Networks (ANN) are a well known class
of learning algorithms inspired by the biological neural
networks; they are based on a collection of units or

nodes, called artificial neurons, connected by edges which
represent the flow of information; edges are in fact numbers
and represent the parameters of the model, typ- ically
learned by the back-propagation of an error signal with
respect to the target.

(iv). SupportVectorMachines(SVM) are supervised learning
models used for binary classification. SVMs can learn
non-linear separation surfaces by means of the so-called
kernel trick, implicitly mapping their inputs into high-
dimensional features space.

We performed a 5-fold Cross- Validation for each classifier
and computed the average of achieved Accuracy (see Figure 5)
and F1-scores (see Figure 7). This should guarantee that results
do not depend on the choice of the test set, even if the relatively
high variability presented depends on the small size of the test
(one single sample which is not classified correctly heavily affects
the results). All the tests were implemented in Python v3.7.5
(Van Rossum and Drake, 2009) using the Scikit-learn v0.21.3
(Pedregosa et al., 2011) implementation of Cross-validation and
of the tested Machine Learning algorithms. Plots have been
generated in Seaborn v0.9.0 (Waskom, 2021).

To improve the performances of Machine Learning
algorithms, features were normalized in [0,1] (we found
this method to slightly outperform z-normalization in our
case). In addition, to investigate more in depth the information
expressed by the features, we generated four sets of variables that
we tested independently.

• Fix. It was composed by the variables extracted from
fixations, when filtering out fixations shorter than 200 ms.

• Saccades. It was composed of variables extracted from
saccades, aimed at capturing gaze dynamics and visual ex-
ploration schemes.

• Fix + Saccades. It is composed both from fixations and
saccades features.

• Fix + Saccades-norm. Since variables related to eye-
movements are characterized by a strong inter-subject
variability, for each subject we computed and subtracted the
mean of each variable through the different experiments.
This process aimed at shifting the mean of the distribution
of each variable around zero for each subject with the idea

TABLE 1 | P-values generated by the one-way ANOVA on fixations variables when comparing three pairs of tasks: NWoI vs. RWoI, NWI vs. NWoI, and RWI vs. RWoI.

Variables related to fixation of the gaze

Variable Naming VS. Reading NWoI VS. RWoI NWI VS. RWI NWoI VS. NWI RWoI VS. RWI

n_fix 0,0000 0,0000 0,0001 0,2854 0,0887

fix_max 0,0007 0,0351 0,0044 0,0006 0,0081

fix_mean 0,0000 0,0274 0,0001 0,0001 0,0157

norm_fix_max 0,0004 0,0236 0,0033 0,0002 0,0036

norm_fix_mean 0,0000 0,0012 0,0000 0,0000 0,0001

x_regressions 0,0000 0,0000 0,0002 0,0791 0,1446

y_regressions 0,0000 0,0000 0,0002 0,6327 0,2148

Significative with p-value < 0,05 Significative with p-value < 0,01 Significative with p-value < 0,001

The first column reports a comparison between Naming and Reading merging conditions with and without interference and works as a reference for the other comparison.
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of simplifying the comparison of the different conditions
among different subjects.

DISCUSSION

The results obtained considering as dependent measure the
features related to the fixation of the glance appear to be
in agreement with the literature, since saccades regressions
(see x_regressions, y_regressions in Table 1) are found to be
more frequent and larger when the reader encounters some
difficulties (Pollatsek et al., 1986; Murray and Kennedy, 1988).
The results in these first two tests were also confirmed by the
subject’s report in the debrief session, in which they admitted
to perceive the Naming task as counterintuitive, especially in
presence of interference. On the other hand, they confirmed to
perceive the Reading task as trivial, with little additional difficulty
introduced by interference. This perception is also in agreement
with our results, since the p-values for the RWI vs. RWoI are
in general higher with respect to the other tests. Each of 7
features related to the fixation of the glance appear to be a good
indicator for distinguishing between Naming vs. Reading task.

Instead only the features related to the Average fixation length
(fix_max, fix_mean) and that related to the Maximum fixation
length (norm_fix_max, norm_fix_mean) showed a significant
difference between the two tasks (Naming and Reading) with and
without interference. Thus the features associated to the fixation
of the glance appear to be good indicators of the different task.
And the information associated with fixation length is crucial to
distinguish a situation with cognitive conflict from one without
conflict. This provides an answer to our first research question,
namely: the presence of recurrent visual behavioral patterns
for different tasks (naming vs. reading) and conditions (with
interference vs. without interference).

Instead the features related to the movement of the glance
presents a different scenario. That is, there are no dependent
variables that consistently allow us to distinguish between Tasks
or Conditions. According to this kind of analysis it seems
that the movements of the eye (in respect to the fixation of
the eye) are not a potential indicator of the task, nor of the
cognitive conflict. These results corroborated the hypothesis
that attention level influences gaze behavior but, apparently,
only for what concerns fixations related variables. Indeed,
previous study focuses on standard fixation-based parameters

TABLE 2 | P-values generated by the one-way ANOVA on saccade related variables when comparing three pairs of tasks: NWoI vs. RWoI, NWI vs. NWoI, and RWI vs.
RWoI.

Variables related to the movement of the gaze (saccade)

Variable Naming VS. Reading NWoI VS. RWoI NWI VS. RWI NWoI VS. NWI RWoI VS. RWI

up_freq 0,6412 0,3191 0,6947 0,3230 0,6859

down_freq 0,9797 0,5191 0,6640 0,2220 0,8322

left_freq 0,6514 0,6561 0,8463 0,3570 0,1858

right_freq 0,9041 0,6032 0,5379 0,0498 0,2828

n_blink 0,0659 0,3658 0,0981 0,0738 0,3195

min_blink 0,4437 0,4151 0,1613 0,0679 0,7547

avg_blink 0,3741 0,2443 0,0005 0,0059 0,1125

max_blink 0,4711 0,2891 0,0008 0,0103 0,1406

min_duration 0,3404 0,4166 0,6176 0,4082 0,2769

avg_duration 0,9816 0,1838 0,0163 0,0050 0,2489

max_duration 0,5212 0,2767 0,0009 0,0096 0,1472

min_vel 0,0186 0,3353 0,0096 0,0039 0,2250

avg_vel 0,0001 0,0025 0,0070 0,4786 0,4645

max_vel 0,4867 0,7622 0,5278 0,2676 0,3421

min_ampl 0,0043 0,1551 0,0051 0,0937 0,6963

avg_ampl 0,0008 0,0073 0,0394 0,9142 0,7833

max_ampl 0,1278 0,3234 0,2259 0,0307 0,0481

min_angle 0,0152 0,1035 0,0729 0,7397 0,6816

avg_angle 0,1744 0,0708 0,8539 0,2578 0,6800

max_angle 0,9355 0,8863 0,9876 0,9592 0,9242

min_distance 0,0327 0,3107 0,0358 0,2175 0,7992

avg_distance 0,0009 0,0076 0,0453 0,9080 0,7032

max_distance 0,2201 0,9909 0,1330 0,0885 0,8394

min_slope 0,2517 0,1933 0,6962 0,2154 0,5790

avg_slope 0,0763 0,2107 0,1948 0,2422 0,3093

max_slope 0,1202 0,4764 0,1666 0,5610 0,2921

Significative with p-value < 0,05 significative with p-value < 0,01 significative with p-value < 0,001

The first column reports a comparison between Naming and Reading merging conditions with and without interference and works as a reference for the other comparison.
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FIGURE 6 | Classification performances in terms of F1-score. (A) Naming without Interference vs Reading with Interference. (B) Reading with Interference vs
Reading without Interference. (C) Naming with Interference vs Naming without Interference. Each plot represents a different binary classification task, indicated in the
title. Bars indicate the average F1-score on a 5-fold cross validation setting, while the confidence interval represented by black lines on the top of each bar indicates
the standard deviation. Each group of contiguous bars refers to the performance achieved by the same classifier: SVM, RF, ANN, and Logistic. Bar’s color indicates
the set of features fed as input to the classifier: Fix (features related to fixations), Saccades (features related to saccades), Fix + Saccades (features related to
fixations and saccades), Fix + Saccades-norm (features related to fixations and saccades with subject-wise normalization). The dashed red line sets the reference of
the random baseline.For both parameters (Accuracy and F1 -score) all the classifiers and features pairs are significantly above the random baseline 0.5, and in best
cases above 0.8, with a similar but not identical pattern of results between Accuracy and F1-score.
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(e.g., Debue and Van De Leemput, 2014; Kastaun et al., 2021) and
provides not much insights about the influence of cognitive load
on the dynamics of visual exploration, which could be better
described by saccades and higher order correlations in visual
behavior (see below).

Considering our second research question, if it is possible
to generate machine learning models able to identify in which
task or condition the subject is currently involved, it seems that
such connections can be captured by an automatic classifier even
at a small scale (i.e., with few training samples). Interestingly,
a global trend is observed while considering different sets of
input features. Combining features about fixations and saccades
brings an improvement on the performances of each classifier,
compared with the case in which separated features are exploited
(see the results associated with saccade’s parameters in the
ANOVA tests). This result also connects the attentive load to
different exploration strategies of the visual scene. As already
noticed, information about backward saccades, are connected to
more complex types of reasoning, typical of attentive processes,
which are led by a need re-analysis or re-sampling already
visited portions of the scene (Pollatsek et al., 1986; Murray and
Kennedy, 1988). Moreover, a strong improvement is achieved
by applying a subject-wise normalization. This confirms that the
analyzed scenario is highly affected by personal behaviors, but we
showed that these effects can be mitigated by the application of
standard statistical techniques. Finally, we could observe that the
Random Forests achieved performances which are considerably
worse with respect to the other algorithms, sometimes even
close to the random baseline. This could be due to the fact
that the decision tree is unable to extract high-level correlations
among variables, but most of all that the random sub-sampling
negatively emphasizes the inter-subject variability.

CONCLUSION

The experimental results supported the hypothesis) that different
attentive loads present recurrent visual behaviors that can be
characterized by a statistical analysis of variables related to
eye fixations. Furthermore, these patterns can be modeled
(hypothesis 2) by data-driven Machine Learning algorithms
which are able to identify, with reasonable accuracy, the different
conditions in which individuals are involved. We show that
situations of cognitive conflict are captured by the gaze data
and the related statistical analysis. It is worthwhile to note
that the combining of features related to both fixations and
saccades increases the accuracy of the classifiers while the features
related to the saccades alone are not enough to distinguish
the condition with cognitive interference from that without
interference. This suggests that subjects, among different tasks,
use to implement task-specific schemes to regulate their gaze
dynamics. We found that the exploited normalization techniques
are useful when addressing wide inter-subject variability to
improve the comparison among different individuals. However,
these issues could be addressed more effectively by a large
scale data collection to obtain more versatile Machine Learning
models and more reliable results. At the same time it would

be worthwhile to compare the gaze behavior in the Stroop task
with the gaze behavior of other tasks that produce cognitive
conflict such as the Simon task (Lu and Proctor, 1995; Dolk
et al., 2014). The investigation carried out with machine learning
models could contribute to the debate if the interference effects
occur at different processing stages and are or not attributable
to different mechanisms (Scerrati et al., 2017). In particular
it could shed some light on the role of a motor component,
namely glance behavior, that is non-considered in the debate
between the Perceptual account and the Decision account of
cognitive conflicts. Besides this, future research directions could
include the integration in the analysis data related to pupillary
response, since they are already proven to be connected to
attentive and cognitive load (Klingner, 2010; Mathôt, 2018). This
could help to explain more in depth connections among visual
attention and eye movements, but also to develop more robust
practical scenarios. Indeed, similar analysis turn out to be useful
in applications such as monitoring attentive state of drivers
(Palinko et al., 2010) or understanding truth telling and deception
(Wang et al., 2010).
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