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Abstract: Real-time estimation of the in-cylinder pressure of combustion engines is crucial to detect
failures and improve the performance of the engine control system. A new estimation scheme is
proposed based on the Extended Kalman Filter, which exploits measurements of the engine rotational
speed provided by a standard phonic wheel sensor. The main novelty lies in a parameterization of
the combustion pressure, which is generated by averaging experimental data collected in different
operating points. The proposed approach is validated on real data from a turbocharged compression
ignition engine, including both nominal and off-nominal working conditions. The experimental
results show that the proposed technique accurately reconstructs the pressure profile, featuring a fit
performance index exceeding 90% most of the time. Moreover, it can track changes in the engine
operating conditions as well as detect the presence of cylinder-to-cylinder variations.

Keywords: in-cylinder pressure estimation; Kalman filter; internal combustion engine

1. Introduction

The estimation of the in-cylinder pressure of internal combustion engines plays a key
role within monitoring and control systems to ensure operation efficiency, regulate emis-
sions and detect possible engine malfunctioning [1–5]. Direct measurements provided by
dynamic pressure sensors are clearly a possible solution; see, for example, [6–9]. However,
this is usually avoided in production engines for both technological reasons (difficult cali-
bration, long-term reliability issues) and cost limitations. Hence, several indirect methods
for reconstructing the pressure profile have been considered in the literature. They differ for
the estimation techniques adopted as well as for the measured quantity, including vibration
signals [10], acoustic emissions [11], and mechanical stress [12].

Most of the proposed methods have in common the use of measurements of the engine
speed and the reconstruction of the in-cylinder pressure from an estimate of the indicated
torque. The first seminal works in this respect are based on frequency domain signal
processing [13,14]. In [13], a model for the dynamics of an internal combustion engine is
proposed, in which the input is given by the cylinder pressure and the outputs correspond
to crankshaft angular acceleration and crankshaft torque. In [14], a deconvolution method
for the estimation of the mean torque produced by each cylinder during each stroke,
from a measurement of crankshaft angular velocity, is proposed. In [15], the authors
estimate a linear correlation between the in-cylinder pressure and the engine speed by
using frequency response functions.

An alternative line of research is that of model-based estimation methods. In [16,17],
the authors combine the speed signal with the measurement of the pressure in one key
cylinder to reconstruct the indicated torque and hence the pressure in every cylinder.
A drawback of this approach is to require the presence of a pressure sensor in at least one
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cylinder, thus, involving more expensive and invasive solutions, as well as a higher deteri-
oration risk. Estimation methods based on sliding observers have been proposed in [18,19].
Nonlinear models, such as NARX, recurrent neural networks, and Chebishev polynomial
expansions, have been also considered [20–23]. An approach based on the combined use of
crankshaft speed measurements and a zero-dimensional (0D) thermodynamic model has
been recently presented in [24].

Another family of approaches for pressure estimation is based on Kalman filtering.
Such techniques require a state-space model representation of the overall system, in which
the state vector may include both variables of interest and model parameters to be estimated.
The works [25–27] share a common framework in which the indicated torque is estimated
from measurements of the engine speed, and the squared engine speed is chosen as a state
variable. In [25], the authors choose directly the net torque as an additional state variable,
modeling its dynamics as a discrete low pass filter excited by a white process. The in-
cylinder pressure is then reconstructed from the net torque estimate provided by a Kalman
filter. A similar approach is taken in [26], in which the periodicity of the system is exploited
to set up a time-varying Kalman filter. In [27], the indicated torque is decomposed in
two terms, due, respectively, to the compression and combustion pressure, both provided
by a 0D cylinder pressure model. The compression term is assumed to be equal for all
cylinders, while the shape of the combustion torque of each cylinder is scaled and shifted
in the crank angle domain to increase the flexibility in modeling the combustion pressure.
This approach is further enhanced in [28], where the shape of the combustion pressure
is provided by a sensor mounted on the first cylinder. A mass-spring-damper model is
also added to consider torsional and friction effects. In [20], an extended Kalman filter
is employed to train a nonlinear model of the crank kinematics, described by a NARX
neural network. Other approaches based on Kalman filtering exploit different sensor
measurements. In [29], a Kalman filter is used to smooth the pressure measurements
provided by an in-cylinder sensor using a thermodynamic pressure model. Measurements
of the engine structural vibrations, provided by an accelerometer on the engine block, are
exploited in [30]. In-cylinder pressure estimation based on the mechanical stress measured
by a strain washer installed on an engine head screw has been proposed in [31]. Finally, it is
worth recalling that there is a vast literature on the estimation of the indicated torque from
speed or acceleration measurements; see, for example, [32–34], which is closely related to
the pressure estimation problem.

In this paper, a method for estimating the in-cylinder pressure from measurements of
the crankshaft rotational speed based on an Extended Kalman Filter (EKF) is presented.
As in [27], the pressure contributions due to the compression and combustion phases
are considered separately. The main novelty of the proposed approach is that the 0D
combustion pressure model is replaced by an experimental parameterization, obtained by
averaging pressure profiles from a set of different operating points. This approach permits
better capture of the specific behavior of the engine during the combustion phase in the
desired range of operating conditions. Once the parameterization has been established,
no in-cylinder pressure sensor is required for online operations. The EKF is employed
to estimate the amplitude and phase shift of each cylinder pressure profile. Plugging the
estimated parameters into the combustion pressure model, one can finally reconstruct the
overall pressure signal. The procedure is validated on real data collected from a Yanmar
4-cylinder 2100cc turbocharged CI Diesel engine. The results of the experimental campaign
demonstrate that the proposed technique effectively tracks changes in the engine working
conditions. Moreover, it allows one to detect anomalies leading, for example, to cylinder-
to-cylinder variations.

The rest of the paper is organized as follows. Section 2 introduces the dynamic model
of the engine. In Section 3, the pressure estimation approach based on the EKF is presented.
The results of the experimental tests are reported in Section 4, while some concluding
remarks are given in Section 5.
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2. In-Cylinder Pressure Model

In this section, the dynamic model of the engine speed and the parameterization of
the pressure signal are detailed.

2.1. Engine Speed Dynamics

The net torque at the crankshaft T(ϕ) is decomposed into three terms as

T(ϕ) = Tind(ϕ)− Tload(ϕ)− Tdist(ϕ), (1)

where Tind is the indicated (or gas) torque, Tload is the load torque, Tdist is the disturbance
torque, whose major component is due to friction, and ϕ is the crank angle. The net torque
is responsible for variations of the kinetic energy, according to the dynamic model [27]

T(ϕ) = θ(ϕ)
dϕ̇

dϕ
ϕ̇ +

1
2

dθ(ϕ)

dϕ
ϕ̇2, (2)

where θ(ϕ) is the moment of inertia of the crank slider, which depends on the crank angle
ϕ. Notice that θ(ϕ) and its derivative are known from the geometry and the masses of
the pistons.

Equation (2) can be exploited to derive the relationship between the angular speed
and the net torque. In fact, inverting (2) and considering the square of the engine speed,
one gets

dϕ̇2

dϕ
= 2ϕ̇

dϕ̇

dϕ
=

2
θ(ϕ)

(
−1

2
dθ(ϕ)

dϕ
ϕ̇2 + T(ϕ)

)
. (3)

Let us write the torque as
T = T̄ + [T]∼ (4)

where T̄ is the mean torque over one cycle and [T]∼ denotes the alternating component of
the torque. At steady state the mean T̄ is zero, i.e.,

T̄ = T̄ind − T̄load − T̄dist = 0. (5)

The alternating part of the load torque is negligible over an engine cycle, i.e.,

[Tload]∼ ' 0. (6)

From (1), (4), (5) and (6), one obtains

T = [T]∼ = [Tind]∼ − [Tdist]∼. (7)

Exploiting (7), the square engine speed dynamics (3) reads

dϕ̇2

dϕ
=

2
θ(ϕ)

(
−1

2
dθ(ϕ)

dϕ
ϕ̇2 + [Tind(ϕ)]∼ − [Tdist(ϕ)]∼

)
. (8)

The indicated torque is further decomposed by considering separately the effect of the
pressure caused by the compression and the combustion strokes, which will be denoted by
pcomp(ϕ) and pcmb(ϕ), respectively. This leads to

Tind(ϕ) = Tcomp(ϕ) + Tcmb(ϕ). (9)

The combustion torque of each cylinder is related to the combustion pressure as

Tcmb,l(ϕ) = pcmb(ϕl)Sh(ϕl) (10)
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where l = 1, . . . , 4 is the cylinder index (in firing order), ϕl = ϕ− (l − 1)π is the shifted
crank angle of cylinder l, S is the section of the piston and h(ϕ) is the crank lever. At this
point, the total combustion torque component is given by

Tcmb(ϕ) =
4

∑
l=1

Tcmb,l(ϕ). (11)

Similarly, the compression torque is equal to

Tcomp(ϕ) =
4

∑
l=1

Tcomp,l(ϕ), (12)

where
Tcomp,l(ϕ) = pcomp(ϕl)Sh(ϕl). (13)

2.2. Pressure Parameterization

Let us now introduce the parameterization of the in-cylinder pressure to be estimated.
As mentioned, the pressure components due to the compression and combustion strokes
are treated separately. As in [27], the former is provided by a 0D pressure model without
imposed combustion, hereafter denoted by p̂comp. Since this term depends essentially on
the intake manifold pressure, it can be safely assumed to be equal for all cylinders during
one engine cycle. Hence, by including (13) into (12), the estimation of the compression
torque is

T̂comp(ϕ) =
4

∑
l=1

p̂comp(ϕl)Sh(ϕl). (14)

Conversely, this assumption does not apply to the combustion torque of each cylinder
l, which may depend on different timing and amount of fuel injected. Consequently,
an estimate T̂cmb,l of the combustion torque of each cylinder is obtained by replacing pcmb
in (10) with a shifted and scaled version of a combustion pressure basis function p̂cmb(ϕ).
This leads to

T̂cmb,l(ϕ, αl) = α1,l p̂cmb(ϕl − α2,l)Sh(ϕl) (15)

where αl = [α1,l , α2,l ]
T , and α1,l α2,l denote the scaling and shifting parameters of the l-th

cylinder, respectively.
In this work, the combustion pressure basis function p̂cmb is constructed from real-data

of the in-cylinder pressure, directly acquired through an experimental campaign by four
Kistler 6125C11 piezoelectric sensors triggered by the angular position registered by an AVL
365C optical encoder keyed on the crankshaft. The pressure trace has been measured in
different working conditions of the engine, featuring different loads and rotating speeds,
and then averaged by means of a moving window of 70 consecutive acquisition cycles to
remove the main noise components. The number of analyzed working points is denoted
by Nwp. It is worth stressing that such data acquisition is performed only once for a given
engine, and no pressure sensors are required during normal engine operations. Let us
denote by pi

re f ,l the reference indicated pressure obtained from direct measurements of the
pressure in cylinder l, with the engine operating in working condition i. The combustion
pressure basis function is obtained by computing the difference between the reference
indicated pressure pi

re f ,l and the corresponding 0D compression pressure p̂i
comp,l . Then,

these signals are averaged over all cylinders and working points, thus, obtaining the
combustion pressure basis function

p̂cmb(ϕ) =
1

4Nwp

Nwp

∑
i=1

4

∑
l=1

[
pi

re f ,l(ϕ)− p̂i
comp,l(ϕ)

]
. (16)
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Figure 1 displays the average combustion pressure profile, along with the profiles of
each working point, resulting from the experimental tests described in Section 4. Note
that each combustion pressure profile depicted in Figure 1 (blue curves) is obtained by
subtracting the compression profile provided by the 0D model from the measured total
in-cylinder pressure. Hence, odd behaviors showing up in some profiles are due to poor
estimates of the compression profile by the 0D model.

Figure 1. Mean combustion pressure profile p̂cmb(ϕ) (red), computed according to (16) from Nwp = 25
standard condition working points (blue).

3. Extended Kalman Filter for In-Cylinder Pressure Estimation

In this section, the EKF-based estimation scheme is presented.
The square of the engine speed is set as the first state-space variable of the dynamic

model of the EKF, namely x1 = ϕ̇2. By using Euler’s method, Equation (8) is discretized
with angular step ∆ϕ0, corresponding to the resolution of the toothed flywheel of the
angular speed sensor. For ease of notation, let us denote by k the discretized angle k∆ϕ0,
with k = 0, 1, 2, . . .. Then, one gets the equation

x1(k + 1) = A1(k)x1(k) + A2(k)T(k) (17)

where

A1(k) = 1 + ∆ϕ0

[
− 1

θ(ϕ)

dθ(ϕ)

dϕ

]
ϕ=k∆ϕ0

, (18)

A2(k) = ∆ϕ0

[
2

θ(ϕ)

]
ϕ=k∆ϕ0

. (19)

By plugging the parametric model of the indicated torque (9)–(15) into (17) and includ-
ing the parameter vector α =

[
αT

1 , . . . , αT
4
]T in the state variables, one gets the extended

state space dynamics
x(k + 1) = f (x(k), T̂comp(k)) + w(k), (20)

where x(k) =
[
x1(k), αT(k)

]T is the augmented state vector, the state vector field is given by

f (x(k), T̂comp(k)) =
(

A1(k)x1(k) + A2(k)
([

T̂cmb(k, α(k))
]
∼ +

[
T̂comp(k)

]
∼
)

α(k)

)
(21)
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and
[
T̂comp(k)

]
∼ is treated as a known external input. The disturbance process w(k) ∈ R9 is

modeled as a zero-mean white process with covariance matrix Q, whose choice is a tuning
parameter of the filter. The first element w1(k) accounts for all unmodeled effects in the
speed dynamics, including the alternate component of the disturbance load [Tdist(k)]∼. The
remaining components wi(k), i = 2, . . . , 9 are used to tune the bias-variance trade-off in the
estimate of the parameters α.

The alternating part of T̂comp(k) is computed by simply subtracting the mean value,
averaged on an entire engine cycle. This is possible because the knowledge of the com-
pression pressure coming from the 0D model is always available online during the engine
cycle. For the combustion torque, at each filtering step k, the mean component is computed
through the model (11)–(15) with the current estimate of the parameter vector α̂(k), thus

T̄cmb(α̂(k)) =
1

Ns

Ns−1

∑
k=0

4

∑
l=1

T̂cmb,l(ϕ, α̂(k)), (22)

where Ns = 720
∆ϕ0

is the number of samples in a single engine cycle. At this point, the
oscillating combustion torque reads[

T̂cmb(k, α̂(k))
]
∼ = T̂cmb(k, α̂(k))− T̄cmb(α̂(k)). (23)

It can be observed that the state dynamics (20) is not linear due to the presence of the
phase shift α2,l in the combustion pressure profile p̂cmb in (15). This is the reason why the
EKF is adopted to estimate the state x(k) by using measurements of the squared engine
speed. Once the parameter estimates α̂l , l = 1, . . . , 4, are available, an estimate of the
in-cylinder pressure for cylinder l can be obtained as

p̂l(ϕ, α̂l) = p̂comp(ϕl) + α̂1,l p̂cmb(ϕl − α̂2,l). (24)

Instantaneous engine speed measurements

y(k) = h(x(k)) + v(k) =
√

x1(k) + v(k) (25)

are fed to the EKF. The measurement error, denoted by v(k) in (25), is modeled as a zero-
mean white process with variance R.

Let x̂(k|k) denote the estimate of the state x at time k based on the observations y(h)
of the output, for h = 0, . . . , k and P(k|k) be its covariance matrix. Then, the standard
equations of the EKF prediction step are [35]

x̂(k + 1|k) = f (x̂(k|k), T̂comp(k)) (26)

P(k + 1|k) = F(k)P(k|k)F(k)T + Q (27)

while those of the correction step are

x̂(k + 1|k + 1) = x̂(k + 1|k) + K(k + 1)[y(k + 1)− h(x̂(k + 1|k))] (28)

P(k + 1|k + 1) = P(k + 1|k)
[
I−HT(k + 1)KT(k + 1)

]
(29)

where

K(k + 1) = P(k + 1|k)HT(k + 1)
[
H(k + 1)P(k + 1|k)HT(k + 1) + R

]−1
(30)

is the Kalman gain. The Jacobian matrix of the vector field in (20) is given by

F(k) =
[

A1(k) F1,α(k)
08×1 I8×8

]
α=α̂(k)

, (31)
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where

F1,α(k) =
[

∂ f1

∂α1,l
(k),

∂ f1

∂α2,l
(k)
]

l=1, ..., 4
∈ R1×8, (32)

with

∂ f1

∂α1,l
(k) = A2(k)[pcmb(ϕ− (l − 1)π − α2,l)Sh(ϕ− (l − 1)π)]ϕ=k∆ϕ0

, (33)

∂ f1

∂α2,l
(k) = −A2(k)

[
α1,l p′cmb(ϕ− (l − 1)π − α2,l)Sh(ϕ− (l − 1)π)

]
ϕ=k∆ϕ0

, (34)

and p′cmb(ϕ) =
∂pcmb(ϕ)

∂ϕ
. The Jacobian of the measurement equation is given by

H(k + 1) =
[

1
2
√

x1
, 01×8

]
x1=x̂1(k+1|k)

. (35)

The scheme of the overall proposed estimation procedure is outlined in Figure 2. The
data about intake and exhaust pressure and temperature, which are usually acquired by
the Engine Control Unit (ECU), are employed as boundary conditions in the 0D model
integration for obtaining the compression pressure. The raw engine speed measurements,
coming directly from the pickup sensor, are suitably pre-processed to compensate for the
main torsional effects.

EKF

Prediction

Correction

p̂comp(ϕ)0D Model

Sensors

Intake P and T

Exhaust P and T

Engine speed

α̂

Combustion Pressure

Parameterization

FINAL PRESSURE

ESTIMATE

Pre-Processing

Speed

p̂cmb

y(k)

p̂(ϕ, α̂)

Figure 2. Scheme of the proposed estimation procedure.

4. Experimental Results

In this section, the proposed pressure estimation technique is validated on real engine
speed data and indicated pressure collected within the experimental test-bed described
in [36]. Experimental data have been acquired in a number of working points of a Yanmar
4-cylinder 2100cc turbocharged compression ignition Diesel engine. In particular, such
working points feature different loads and speeds. Some tests have been also run under
non-standard engine conditions, such as fuel injection anomalies. The different working
points are identified by a simple nomenclature. Three different load levels, denoted by L1,
L2, and L3, correspond to 10% (low), 50% (medium), and 100% (high) of the maximum
engine load, respectively. The engine speed in expressed rpm. The presence of a fuel
injection anomaly is indicated by either the letter “n” or “p” plus a number indicating the
percentage of under- or over-injection of fuel in the cylinder, respectively. For instance,



Sensors 2023, 23, 4326 8 of 14

L1 1300 n5p5p0p0 means that the data are acquired with the engine loaded at minimum,
running at a steady state engine speed of 1300 rpm, 5% less fuel is injected in cylinder 1,
and 5% more fuel is injected in cylinder 2. All the working points analyzed in both standard
and non-standard conditions are displayed in Figure 3. It is worth stressing that they also
include working points that were not among those used to construct the basis function
p̂cmb, as described in Section 2.

The results reported hereafter have been obtained by running the proposed method
in the Matlab environment on a standard laptop. Moreover, the estimation architecture
shown in Figure 2 has been implemented in the ECU of the engine under evaluation,
demonstrating that the proposed technique is feasible for real-time operation.

Figure 3. Operating points employed in the experimental campaign expressed in load-rpm coordi-
nates. The working points analyzed only in standard conditions are marked by ∗, while the ones run
also in perturbed engine conditions are flagged with an additional triangular marker.

4.1. Validation of the Pressure Parameterization

The first set of results concerns the validation of the proposed parameterization of
the combustion pressure p̂cmb. To this aim, a nonlinear least squares error (NLSE) estimate
of the optimal parameter pairs α∗l =

[
α∗1,l , α∗2,l

]
for each cylinder l, has been computed.

This amounts to minimize the error between the estimated pressure (24) and the reference
pressure pre f ,l , hence

α∗l = arg min
α
|| p̂l(ϕ, α)− pre f ,l ||2, (36)

where the norm operator indicates the signal L2-norm. This method has been applied for
both the parameterization p̂cmb proposed in this paper and for the combustion pressure
profile obtained by the 0D model with imposed combustion, namely p̂cmb,0D, which is used
in [27].

Let us define the FIT as a pressure estimation performance index as follows:

FIT =
1
4

4

∑
l=1

FITl (37)

with

FITl = 100

(
1−

||pre f ,l − p̂l ||
||pre f ,l − p̄re f ,l ||

)
, (38)
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where p̄re f ,l is the sample mean of the reference pressure in cylinder l. The average FIT
among the cylinders of each selected working point is used as a benchmark for comparison.
As shown in Figure 4, the mean FIT of the in-cylinders pressure obtained by the proposed
experimental parameterization is always higher than the one relying on the combustion
pressure returned by the 0D model. Although these results have been obtained offline, they
suggest that the proposed parameterization is promising for combustion pressure fitting
and, thus, for indicated pressure estimation.

Figure 4. Comparison of the mean FIT, computed as in (37) and (38), of NLSE estimates obtained
using the proposed parameterization p̂cmb (blue) and the 0D model parameterization p̂cmb,0D (red) in
problem (36).

4.2. EKF Pressure Estimation

The engine speed has been measured by a phonic wheel sensor with 60-2 teeth. The dis-
cretization has been enhanced using cubic spline interpolation, providing 1440 points per
cycle from the original 116. This corresponds to a sampling angular step of ∆ϕ0 = 0.5 CAD.
A moving average filter then smoothes this signal to reduce the measurement noise. The
main torsional effects are compensated by an additional pre-stored correction vector and
then further corrected in the frequency domain exploiting a 0D engine model with imposed
combustion, as detailed in [36]. Such processed measurements are then fed to the EKF
presented in Section 3. The filter is run for 300 consecutive engine cycles, which have been
observed to be fully sufficient to achieve convergence of the parameter estimates.

The process disturbance covariance matrix and the covariance of noise v are chosen
after a trial and error tuning approach and set equal to Q = diag{1.6× 105, 5× 10−9, 1×
10−6, . . . , 5× 10−9, 1× 10−6} and R = 1, respectively. The initial state estimate and its
covariance matrix for the filter iteration are set equal to x̂(0| − 1) =

[
20002, 1, 0, . . . 1, 0

]T

and P(0| − 1) = diag{2.5× 107, 2× 10−2, 1× 10−2, . . . 2× 10−2, 1× 10−2}.
The results in terms of FIT of the steady state EKF estimate of the indicated pressure

for all tested points are reported in Figures 5 and 6, together with the ones obtained by
using p̂cmb,0D as basis function, according to what done in [27]. First, it can be seen that the
FIT reached by the proposed EKF scheme is very high, meaning that the estimated pressure
profiles fit the reference indicated pressure with very good accuracy. Moreover, the pro-
posed parameterization yields better results than the one based on p̂cmb,0D, except for very
few working points. On average, the new parameterization provides a FIT improvement of
2% (considering both standard and non-standard working points). An example of such
improvement is shown in Figure 7, which depicts the pressure estimates of the EKF with
both the proposed parameterization p̂cmb and p̂cmb,0D together with the measured indicated
pressure of the first cylinder, i.e., pre f ,1, of the standard working point L1 1100.
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Figure 5. Comparison of the mean FIT of EKF estimates obtained using the proposed parameterization
p̂cmb (blue) and the 0D model parameterization p̂cmb,0D (red), for standard working points.

Figure 6. Comparison of the mean FIT of EKF estimates obtained using the proposed parameterization
p̂cmb (blue) and the 0D model parameterization p̂cmb,0D (red), for non-standard working points.

Similar results have also been achieved in terms of IMEP. Table 1 shows some statistics
about the IMEP estimation error using the two parameterizations under discussion, with
respect to the one computed on the reference pressure pre f . It can be seen that, even though
the proposed methodology is not specifically designed for this specific performance index,
it achieves good accuracy also as an IMEP estimator.

Table 1. Statistical results on the IMEP error obtained using the EKF with the proposed parameteriza-
tion p̂cmb and the 0D model parameterization p̂cmb,0D, for the analyzed standard working points.

IMEP Error (%)

p̂cmb p̂cmb,0D

Average 14.8 18.4
Standard Deviation 15.7 21.0

In Figure 8, the estimates of the parameters α are reported together with their 3σ-
confidence intervals, for the same working point. It can be observed that all parameters
converge to a steady state value in approximately 100 cycles, corresponding to a few
seconds. Notice that the scaling parameters α1 have a much faster convergence than
the shifting ones α2. Moreover, the four cylinders show little differences among such
parameters since the analyzed working point is run in standard engine conditions.
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Figure 7. Comparison between the estimates of the total pressure profile, obtained with the param-
eterizations p̂cmb (blue) and p̂cmb,0D (red), versus the measured indicated pressure (dashed black),
for the first cylinder in the working point L1 1100.

Figure 8. EKF estimates of parameters α1 (top) and α2 (bottom) of all cylinders for working point L1
1100 with confidence intervals.
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To validate the behavior of the EKF also during transient engine operations, the
working point L2 1500 has been run for 150 cycles, after which a 5% excess of fuel has been
injected in the first cylinder, thus, turning the operating conditions into the non-standard
working point L2 1500 p5p0p0p0. The evolution of the scaling parameters estimates of
this experiment are reported in Figure 9. It can be seen that the parameter α1,1 jumps to
a higher value, with respect to the other parameters, in less than 50 cycles. This result
highlights the adaptability of the proposed approach to engine condition changes and,
in particular, the possibility to detect cylinder-to-cylinder variations. Furthermore, by
comparing Figures 8 (top) and 9, it can be observed that different loads and engine speeds
correspond to different steady-state values of parameter α1. For example, the value of
parameters α1 for the L1 cases is in the order of 0.5, meaning that the combustion pressure
profile is a shrunk version of the one used in the proposed parameterization p̂cmb.

Figure 9. EKF estimates of parameters α1 of all cylinders for working point L2 1500 with confidence
intervals. After 150 engine cycles, a 5% excess of fuel is injected in the first cylinder so that the new
working point is L2 1500 p5p0p0p0.

5. Conclusions

In this paper, the problem of estimating the in-cylinder pressure of an internal com-
bustion engine from instantaneous engine speed measurements has been addressed. The
proposed approach leverages a novel combustion pressure parameterization obtained from
experimental data and employs an Extended Kalman Filter to estimate online the pressure
parameters. A major advantage of the proposed technique is that direct pressure measure-
ments are used only to construct the data-based parameterization and only a standard
phonic wheel speed sensor is employed during normal engine operations.

Extensive experimental validation, covering a wide range of operating points has
shown that the proposed approach provides accurate pressure estimates, both in nominal
and off-nominal conditions. Overall, it was observed that the novel parameterization is
able to better reconstruct the pressure profile. This results in improved fitting performance,
when compared to similar techniques relying exclusively on 0D pressure parameterization.
A precise reconstruction of the pressure profile turned out to be beneficial also in terms of
IMEP estimation. Summing up, the adoption of an Extended Kalman Filter for estimation
purposes allow one to automatically adapt the parameter estimates when variations in the
operating conditions occur and detects the presence of cylinder-to-cylinder variations at
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steady-state. The design of filters tailored to the estimation of specific performance indexes
(such as IMEP, MFB, etc.) is the subject of ongoing research.
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