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1 Introduction

Evaluation of an asset depends on expectations of prospective yields but this
long-term expectation, as Keynes claims, is based ”partly on existing facts which
we can assume to be known more or less for certain, and partially on future
events which can only be forecasted with more or less confidence” (p.133). Cru-
cially relevant facts at the base of individual expectation are often very uncer-
tain, even if Keynes makes clear that ”by very uncertain I do not mean the same
thing as improbable” and in so doing he establishes a direct relation between
the notion of confidence in the General Theory and the weight of arguments in
the Treatise on Probability (Note 1, p. 133). Keynes thinks that professional
investors and speculators in the stock exchange are forced to predict the mass
psychology of the market, that is to inform and foresee ”changes in the conven-
tional basis of valuation a short time ahead of the general public” (Keynes 1936,
p. 134). Keynes observes that ”knowledge of the factors which will govern the
yield of an investment some years hence is very slight and often negligible” (p.
134). Different from heroic times, when, according to Keynes, investment ”was
partly a lottery, though with the ultimate result largely governed by whether
the abilities and character of the managers were above or below the average”
(p. 134), if the separation between ownership and management prevails, then
”certain classes of investment are governed by the average expectation of those
who deal on the Stock Exchange as revealed in the price of shares, rather than
by the genuine expectations of the professional entrepreneur” (Keynes 1936, p.
136).

Keynes condenses the process that induces to anticipate the change of con-
vention in the famous metaphor of financial markets as a newspaper beauty
contest1. Keynes maintains that an investor does not have to anticipate what
will be the fundamental value of a firm in the future, but rather should estimate
other investors’ valuation. The individual assessed value is different from ”the
outcome of a weighted average of quantitative benefits multiplied by quantita-
tive probabilities” (p. 145). In fact, as Keynes argues, to make an investment
decision, ”we are assuming, in effect, that the existing market valuation, however
arrived at, is uniquely correct in relation to our existing knowledge of the facts
which will influence the yield of the investment, and that it will only change
in proportion to changes in this knowledge; though, philosophically speaking
it cannot be uniquely correct, since our existing knowledge does not provide

1Beauty contest explains the activity of professional investors that are forced to anticipate
the change of conventional valuation by the following methaphor: ”Professional investment
may be likened to those newspaper competitions in which the competitors have to pick out
the six prettiest faces from a hundred photographs, the prize being awarded to the competitor
whose choice most nearly corresponds to the average preferences of the competitors as a whole;
so that each competitor has to pick, not those faces which he himself finds prettiest, but those
which he thinks likeliest to catch the fancy of the other competitors, all of whom are looking at
the problem from the same point of view. It is not a case of choosing those which, to the best
of one’s judgment, are really the prettiest, nor even those which average opinion genuinely
thinks the prettiest. We have reached the third degree where we devote our intelligences to
anticipating what average opinion expects the average opinion to be. And there are some, I
believe, who practise the fourth, fifth and higher degrees.” (1936, p. 140)
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a sufficient basis for a calculated mathematical expectation. In point of fact,
all sorts of considerations enter into the market valuation and are in no way
relevant to the prospective yield” (p. 137).

We define a general functional to represent Keynes’s long-term expectation
and following a recent paper (Basili and Chateauneuf, 2016) we also set up the
way to represent how a speculator anticipates changes of conventional judgment.
Section 2 defines long-term expectation in an epsilon contamination approach
incorporating the decision maker’s attitude about insufficient and vague infor-
mation. Section 3 sets up an aggregation scheme of opinions expressed through
different probability distributions. Facing the set of all probability distributions
attached by agents to possible events, the speculator is assumed to consider the
weighted probability distribution of agents’cores, that is the weighted probabil-
ity distribution of the intersection of all the investors’ probability distributions.
Such a weighted probability distribution is the Steiner point of the convex ca-
pacity that emerges from the aggregation of agents’ opinions that represents
the conventional judgment. Gajdos et al. (2008) show that in the case of a
finite state space, the Steiner point always exists and can be valued through the
Shapley value. On the contrary, in the case of an infinite countable state space,
since the Steiner point is defined with respect to the outer angle or curvature,
the Steiner point has no continuous extension to all convex bodies in infinite
dimensional Hilbert space (i.e. Vitale 1985, p. 247). Section 3 approximates the
Steiner point at the limit. The idea, that to the best of our knowledge has never
been considered before, is very intuitive and straightforward: it is assumed that
each agent has an interval of probabilities on each state and that intervals are
distributed as a Fisher-Tippet distribution, that is a general distribution for ex-
tremes that includes Weibull, Gumbel, and Frechet distributions. By attaching
an extreme distribution to intervals, convergence holds: the more extreme are
events, the lower are the probabilities and the closer is the interval. Section 4
defines the professional investor long-term expectation that is the result of ‘the
average expectation of those who deal on the Stock Exchange as revealed in
the price of shares” and the competence ”to anticipate what average opinion
expects the average opinion to be” (Keynes 1936, p. 139). Section 5 points
out comprehensive examples of how agents form long-term expectations and
speculators anticipate the change of conventional judgements, by updating the
Steiner point w.r.t. a real event, Section 6 concludes.

2 Uncertainty, multiple-priors and epsilon-conta-
mination approach

In The General Theory Keynes clarifies that ”the state of long-term expecta-
tion, upon which our decisions are based, does not solely depend, on the most
probable forecast we can make. It also depends on the confidence with which
we make this forecast - on how highly we rate the likelihood of our best fore-
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cast turning out quite wrong” (p. 133). In this perspective of uncertainty2,
we shall assume that each investor does not have a unique prior on states of
the World, but rather a finite set of probability distributions (multiple priors),
none of which is considered sufficiently reliable. To represent the individual
state of confidence3, that depends on ”the actual observation of the markets
and business psychology” (p. 134), we assume that each agent’s preferences can
be represented by the epsilon contamination (ε− contamination, henceforth) of
some probability measure4:Eichberger and Kelsey, 1999; Nishimura and Ozaki,
2002; Asano, 2008; Gajdos et al., 2008; Kopylov, 2009; Cerreia et al., 2013.

2.1 Framework

Let Ω = {ω1, ω2..., ωn} be the set of states of the World, P(Ω) the sigma-
algebra of all the subsets of Ω and P the set of probability measures, such that
P = {p : p is a probability measure on Ω}.

Let E = {s1, ....sk, ..} be a finite or countable set of agents. Suppose every
agent has got an opinion, formally an opinion of an agent si is a convex set
Ci, contained in P. Under no-arbitrage condition, in frictionless and complete
financial market, the price of any asset (or security), that is a tradable financial
instrument that has a positive or negative cash flow of money, is given by its
(discounted) expected value with respect to a unique risk neutral probability,
or by a linear pricing rule. If there are incompleteness or trade frictions but
arbitrage-free condition holds, an asset price can be evaluated by the Choquet
integral with respect to a non-additive probability (capacity) of its payoffs. If
the capacity is concave, then the pricing rule is sublinear.

Formally, let Ω = {ω1, . . . ωn} be a non-empty finite sets of states of the
world and let P(Ω) be the σ−algebra of all the events (the power set). A
function ν : P(Ω) → [0, 1] is a capacity if )i ν(∅) = 0; ii) ν(Ω) = 1; iii) for all
A,B ∈ P(Ω) such that B ⊂ A, ν(B) ≤ ν(A).

A capacity ν is said to be concave (sub-additive as well) if iv) for all A,B ∈
P(Ω) we have ν(A ∪B) ≤ ν(A) + ν(B)− ν(A ∩B).

The Choquet integral (Chochet, 1954) of a function f : Ω→ R with respect

to a capacity ν is defined as
∫
fdv :=

∫ +∞
0

ν({ω ∈ Ω|f(ω) ≥ t})dt+
∫ 0

−∞[ν({ω ∈
Ω|f(ω) ≥ t})− 1]dt. Finally, given a capacity ν we define its core as core(ν) =
{p | p is a probability measure on P(Ω), p(A) ≥ ν(A) for all A ∈ P(Ω}.

2Because of continuity with Keynes terminology we call uncertainty what in current deci-
sion theory is named ambiguity.

3Under uncertainty, individual state of confidence represents reliability of the probability
distribution. In literature reliability of a probability distribution can be represented by: a
capacity (Choquet expected theory), a distorted probability (Cumulative Prospect Theory,
Prospect Theory, Rank Dependent Theory), a belief function or a fuzzy measure and a simi-
larity function (Case-based Theory).

4The ε − contamination emerges as a robust Bayesian method to quantify, in terms of
a class of possible distributions, how partial and incomplete is the subjective information
encompassed in a single prior distribution. In fact, ”quantification of prior beliefs can never
be done without error, and hence that one is left at the end of the elicitation process with a
set Γ of prior distributions which reflect true prior belief; i.e., πT is an unknown element of
Γ” (Berger 1984, p. 73). Details are in Moreno and Cano (1991).
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The core represents the set of all the agent’s opinions coherent with the
market information5. Following Chateauneuf et al (Theorem 1.1, 1996), Jouini
(2000), Jouini and Kallal (2001), Castagnoli et al. (2002), Araujo et al. (2012;
2018), for any asset f ∈ F there exists a financial pricing rule D : RΩ → R, that
is a function over future payoffs contingenty to state space Ω = {ω1, ω2..., ωn}.
Such a pricing rule D is subadditive, arbitrage free, positive homogeneous, mono-
tonic and constant additive6. Araujo et al. (2012) point out (Theorem 2) that
for a given pricing rule D : RΩ → R , there exists a unique closed and convex set
K ⊂ P of probability measures, where at least one element is strictly positive,
such that for any asset f : D(f) = max

k∈K
Ek(f), where Ek(.) is the standard

expectation with respect to k.

2.2 Individual long-term expectation

The ε−contamination approch allows to consider the agent’s asset evaluation as
the combination of D, the asset price observed in the market and the confidence
in his most reliable forecast. Because of uncertainty every agent forms his long-
term expectation by distorting asset price with his confidence and combining
it with his own most reliable, or any other motivated probability distribution
such as the probability distribution that induces minimum expected utility that
solves the Ellsberg Paradox, evaluation of that asset.

Then agent’s long-term expectation can be summarized by the following
criterion

Criterion 1 Agent’s long term expectation can formally be defined by

γi(f) = [εD(f) + (1− ε)Di(f)] (2.1)

where pi ∈ Ci ⊂ P , ε ∈ [0, 1] and Di(f) is the expectation of f with respect to
pi.

Agent’s long-term expectation reveals that he is ε×100% confident that the
uncertainty he faces is summarized by the market price, but at the same time,
he is aware that with (1 − ε) × 100% uncertainty could be better represented
by another probability distribution in the set Ci of all reasonable evaluations.
In sum, the ε− contamination interpretation of agent’s long-term expectation
allows describing imprecision of knowledge and behavioral effects of its aware-
ness.

3 Main motivation

As noted before, Keynes assumes a convention influences investment decisions
and such a general evaluation is ”the outcome of the mass psychology of a

5Chateauneuf et al (1996) first studied and characterized the sub-additive Choquet pricing
rule and showed that if the non-additive probability is a concave capacity, the set of the agent’s
probability distributions is unique and coincides with the core.

6Details are in Araujo et al. 2012.
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large number of ignorant individuals” (1936, p. 138). A way to define the
mass psychology is by aggregating agents’ opinions, expressed by probability
distributions on future states of the World7. An aggregation of agents’ opinions
is that of choosing a particular set of agents E, at most countable, each one
giving a range of probability distributions; every such an agent si, as Ω is
the space of states, has a family of probabilities Ci on it, which he considers
reasonable. An adequate way to do all this is, for every such an individual, to
associate with him a convex subset Ci of the probabilities on Ω . Let K be the
family of all convex sets in P . An opinion multifunction is every O : E → K,
si → Ci. Finally, given an opinion O, the prevailing opinion OE is defined as:⋂
i Ci. In the finite dimensional case, i.d. if Ω is finite and under the hypothesis

that
⋂
i Ci is not the empty set 8, the idea is that the properly balanced opinion

has got to be the Steiner point of
⋂
i Ci: the conventional judgement9. If the

number of the events is not finite yet countable, some difficulties occur: so in
Section 3 we define a suitable aggregation of agents’ opinion10.

3.1 Preliminaries

Let (X, d) be a metric space. In what follows B(x; r) ⊂ X is the usual ball
centered on x and with radius r. If X = Rd with its usual Euclidean norm, we
set Sd−1 the unit hypersphere centered on the origin. If H is a Hilbert space, we
denote with 〈·, ·〉 its standard inner product and ‖·‖ the induced Hilbert norm.

Definition 1 Let (X, d) be a metric space. For every couple C1,C2 of bounded
closed subsets of X we define their Hausdorff distance as:
dH,X(C1, C2). = {inf ρ > 0 : C2 ⊂ C1 +B(0, ρ), C1 ⊂ C2 +B(0, ρ)}.

Let now X be a Banach space. We denote with C(H) the family of all the
closed sets of H and let K(X) be the family of its compact and convex subsets.
Let also CF (H) be the family of all the finite-dimensional elements of C(H), that
is the family of those contained in some finite-dimensional affine subspace of H
and let KF (H) := CF (H) ∩ K(X) be the set of finite-dimensional compact and
convex sets of X. Finally, for a C ∈ CF (H) define dim(C) := min{dim(L) :
C ⊂ L,L a finite-dimensional affine subspace of H}.

It is a well-known result (Castaing and Valadier 1977, Theorem II-14, p. 47)
that:

7Opinion as a distribution is a usual assumption, e.g. de Finetti.
8∩Ci can be considered the agents common information set (opinions), that is their sub-

jectively elaborated and evaluated information about market asset evaluation.
9The Steiner point or curvature centroid of smooth convex bodies is additive, uniformly

continuous and satisfies an invariance property with respect to isometries.
10The Bayesian axiomatic approach to consensus distribution would not appear satisfying,

not even in the sophisticated versions (copula models) and elicitation based on behavioral
combination methods (e.g., DeGroot and Montera, 1991). If investors’ opinions are not all
independent and equally likely, each investor has to cope with ambiguity and stochastically
dependent evaluations. As a consequence, each investor could calibrate the aggregation of
investors’ opinions through her confidence or degree of belief by pooling methods based on
Dempster’s rule of combination or theory of evidence, combination rules based on possibility
distributions and fuzzy measures, or aggregation based on multiple priors or capacity.
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Proposition 1 (K(X), dH,X) is a complete metric space.

Next, we recall the definition of the classical Steiner point for a d-dimensional
convex body (see e.g. Schneider 1993). Let H be a Hilbert space.

Definition 2 Let C ∈ K(H) and C ⊂ L where L is a d-dimensional linear
subspace of H. Then its Steiner point s(C) is defined as

s(C) := d

∫
SH∩L

uhC(u)dσ(u),

where hC(u) := sup {〈u, x〉 : x ∈ C} is the support function of C, SH denotes the
unit hypersphere in H centered on the origin and σ is the normalized Lebesgue
measure on SH ∩ L.

The Steiner point is independent of the choice of the finite-dimensional Eu-
clidean subspace L containing C, so that the previous definition makes sense; it
only depends on the inner product.

Let first analyze the case of Ω = {w1, ..., wn} a finite set of states of the
World; so to set our ideas in a simpler situation. We shall treat the countable
case further.

Given the sigma-algebra P(Ω) of all the subsets of Ω , we identify iso-
metrically the convex set P (Ω) = {π : π is a probability measure on Ω} =
{π : Ω −→ [0, 1] such that

∑n
j=1 π(j) = 1}, with [0, 1]n ∩ {(π(1), . . . , π(n) ∈

Rn|
∑n
j=1 π(j) = 1}.

Finally, we consider every euclidean space Rn naturally continuosly im-
mersed in l2 or in l1 by (x1, . . . , xn) 7→ (x1, . . . , xn, 0, . . . 0, . . . ).

A reasonable way to investigate these events is simply to choose a certain
number of agents E to give an opinion, or a range of opinions as follows: every
such an agent si is asked to give to Ω a probability or, in more uncertain situa-
tions, a possible set of probabilities Ci.Thus, with the previous identifications,
for every agent si, Ci is contained in a linear set of dimension less or equal
to n − 1, and the common opinion is a convex set contained in a linear set of
dimension less or equal to n− 1.

For every agent chain E = {s1, ....sk, ..} a reasonable way to have an aggre-
gation of agents opinions, as remarked in a recent paper Basili and Chateauneuf
(2016) is to choose the Steiner point of the common opinion OE . In that paper
an opinion was chosen this way: for every agent si a range of possible values for
every adimissable value π(j) is chosen such that aij(j) ≤ π(j) ≤ bij , 1 ≤ j ≤ n.

So, Ci = ([ai1, bi1]× ...× [ain, bin]) ∩
{∑n

j=1 π(j) = 1
}

.

The following inportant result is an Hilbert space adapted situation of clas-
sical results (See Shvartsman 2004, Theorem 1.2, with the Lipschitz constant
asymptotic evaluation due to Vitale (1985, Appendix)).

Proposition 2 Let H be a Hilbert space. Then the mapping s : (KF (H), dH,H)→
H which associates to every element of KF (H) its Steiner point is such that, for
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every C1, C2 ∈ KF (H), and setting d = dim(C1 ∪ C2),

‖s(C2)− s(C1)‖ ≤ l(d)dH,H(C2, C1),

where

l(d) =
Γ(d/2 + 1)√
πΓ(d/2 + 1/2)

∼
√
d/2 + 1,

as d→ +∞, with Γ the standard Euler Gamma function.
Furthermore, l(d) is the minimal possible constant fulfilling the previous in-

equality.

We finally remark that if the opinions are chosen as in Basili and Chateauneuf
(2016), then we actually restrict our Steiner selector to the set of compact convex
sets of P (Ω) contained in a linear space whose dimension does not exceeds n−1,
having thus the possibility of a unique Lipschitz constant. The stability with
respect to the Hausdorff metric is at its best in such a situation.

3.2 Steiner point with countable states of the World

Unfortunately, there is no way to define a suitable generalization of the notion
of Steiner point to general convex bodies not contained in a finite dimensional
subspace of a Banach or even a Hilbert space This is because, e.g. in the
Hilbert case, the Lipschitz constant l in Proposition 2 increases as

√
d when the

dimension d increases, not permitting, in general, any approximation argument
by means of finite dimensional convex bodies11. So, in general, when the set
Ω is a countable set there is no way to proceed. As a matter of fact, some
reasonable possibility arises when there is a natural way to create an ordering
of Ω, when the tail of Ω is considered constituted by extreme events, for example.
In situations like this, it usually happens that the way the Lipschitz constant
l behaves as d goes to +∞ is compensated the right way by the distribution
itself. Crucially, to the best of our knowledge, this is the first approach which
allows to approximate the Steiner point at the limit.

To proceed with this way of analysis, let now consider the more general
case of a countable set of states of the World Ω = {w1, ..., wn, ...} and a finite
number of agents E = {s1, ....sk} (the case of a countable number of agents
can be analogously treated, with minor changes in notation and no difference
in methods, even if it is not realistic in our economical analysis). This case we

shall use the Hilbert space l2 =
{

(x1, x2, ...) :
∑+∞
j=1 x

2
j <∞

}
and the Banach

space l1 =
{

(x1, x2, ...) :
∑+∞
j=1 |xj | <∞

}
.

We recall that l1 is the dual space of the separable Banach space c =
{(x1, x2, ...) : limj→∞ xjexists and is finite}. Thus the unit ball of l1 centered in
the null sequence is sequentially weakly star compact. Given the sigma-algebra
P(Ω) of all the subsets of Ω, we shall identify the set of all the probability

measures P (Ω) on Ω with
{

(xj) : 0 ≤ xj ≤ 1,
∑+∞
j=1 xj = 1

}
⊂ l1(Ω) ⊂ l2(Ω).

11See R. A. Vitale (1985) for more discussion and details.
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Assume further ∆n
i = [ai1, bi1] × ... × [ain, bin] where, with a little abuse of

notation, we also suppose the possibility that for some i and j, aij = bij , so that
in this case whe set [aij , bij ] := {aij} = {bij}. Set ∆n = ∩ki=1∆n

i , which is either
the empty set or it is a possibly degenerate n-rectangle [αn1, βn1]×...×[αnn, βnn],
where also in this case with a little abuse of notation, we consider the possibility
that, for some j, αj = βj , with [αi, βj ] := {αj} = {βj}. Finally, consider
OnE = ∆n ∩ P (Ω). Using the previously introduced notation, we now state the
following

Hypotheses 1
i) there exists an event j0 such that for every agent si, aij = 0 if j ≥ j

0
;

suppone furthermore that Oj0E 6= ∅;
ii) there exists a sequence (ζi) of non-negative real numbers such that, for

every agent i, for all possible event j, bij ≤ ζi; furthermore let
∑+∞
j=1 ζj < +∞.

iii) Suppose
∑+∞
j=1 ζj l(j) < +∞, with l(j) as in Proposition 2.

Note that i) can be interpreted as that there exists some elementary event
after which any agent can reasonably give no lower bound for the probabilities:
only (possibly very decreasing) upper bounds can be given for all elementary
events. Furthermore, to ii) to be fulfilled, one should choose for (ζi) a suitable
extreme events distribution, for example.

Remark 1 if i) is fulfilled, (OnE) is a sequence of strongly compact convex sets
of l2 which, for n ≥ jo, is not-decreasing with respect to set inclusion and not
identically equal to the empty set; if also ii) is fullfilled, βn ≤ ζn. Furthermore,∑+∞
j=1 βj is convergent. If also iii) is fullfilled, then

∑+∞
j=1 βj l(j) is convergent.

We next need the following

Lemma 1 Suppose i) is fulfilled. Then, for n ≥ j0, dH,l2(On+1
E , OnE) ≤

√
2βn+1.

Proof. Let x̄ = (x̄1, .., x̄n, x̄n+1) ∈ On+1
E . Then, setting πn the projection

of the whole l2 onto Rn, isometrically identified with its subspace having zero
components after the n-th, we get: πn(x̄) = (x̄1, .., x̄n) ∈ ∆n, so that: αj ≤
x̄j ≤ βj , j ≤ n and, furtermore, 0 ≤ x̄n+1 ≤ βn+1, which implies

∑n
1 x̄j =

1− x̄n+1 ≤ 1. Next, remark that, because ∆n 6= ∅ we have
∑n

1 βn ≥ 1.
Set φx̄ : [x̄1, β1]× ..× [x̄n, βn]→ R, (y1, .., yn) 7→

∑n
1 yj .

By the intermediate value theorem there exists a ȳ such that φx̄(ȳ) =∑n
1 ȳj = 1. Then ȳ ∈ OnE . Notice that, for j ≤ n, ȳj ≥ x̄j and

∑n
1 |ȳj − x̄j | =∑n

1 ȳj − x̄j = x̄n+1 ≤ βn+1. So ‖ȳ − πn(x̄)‖ ≤ βn+1. Because ‖πn(x̄) − x̄‖ =
x̄n+1 ≤ βn+1, by the orthogonality between ȳ− πn(x̄) and πn(x̄)− x̄ and using
Pythagoras theorem we get that ‖ȳ− x̄‖ ≤

√
2βn+1; because OnE ⊂ O

n+1
E this is

enough to get the thesis.

Theorem 1 Suppose Hypotheses 1 are fulfilled. Then

i) there exists a strongly compact convex set O ⊂ l2 such that (OnE) converges
to O in the Hausdorff metric dH,l2 ;
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ii) the sequence (s(OnE)) of the corresponding Steiner points converges to a
point s̄(O) = (s̄j) strongly in l2 and weakly star in l1. In particular∑+∞
j=1 s̄j = 1, with s̄j ≥ 0 for all j, so that s̄(O) ∈ P (Ω).

Proof. By Lemma 1 and Remark 1 (OnE) is a Cauchy sequence in (K(l2), dH,l2);
so, by Proposition 1, i) is proved.

In order to prove ii), notice that by Proposition 2 and Remark 1 (s(OnE))

is a Cauchy sequence in l2 such that ‖s(OnE)‖l1 =
∑+∞
j=1 s(O

n
E)j = 1, so it is

strongly convergent in l2 and, because the unit ball in l1 is sequentially weakly
star compact, it is weakly star convergent in l1; finally, because the sequence
(1) which is constantly equal to 1 is in c and every s(OnE)j ≥ 0, we get that∑+∞
j=1 s̄(OE)j = ‖s̄(OE)‖l1 = 1.

4 Conventional judgement and confidence in mar-
ket asset price: a professional investor’s be-
havior

Keynes considers the stock exchange populated by professional investors and
speculators who are forced to anticipate the mass psychology of the market.
As a consequence, the behavior of professional investors and speculators is the
result of two different components: ”the average expectation of those who deal
on the Stock Exchange as revealed in the price of shares” and the competence
”to anticipate what average opinion expects the average opinion to be” (Keynes
1936, p. 140). Then we obtain our primary result:

Criterion 2 The professional investor’s or speculator’s long-term expectation
I(f) can be formally defined by

I(f) = [µD(f) + (1− µ)s(N(f))] (4.1)

where µ ∈ [0, 1] is the confidence of a professional investor in the asset price
and s(N(f)) is the expected value with respect to the Steiner point, that is what
he considers conventional judgement, times future returns.

Crucially (1−µ) is the weight attached to what Keynes considers the average
opinion expects the average opinion to be.

Then (4.1) precisely summarized the competitor’s behavior in the newspaper
beauty contest suggested by Keynes. Then, the previous expectation is the so-
lution of the problem and accurately explains how skilled Keynesian individuals
that are long term investors, or speculators should solve the newspaper beauty
contest. Confronting (2.1) and (4.1) it is clear that speculators and professional
investors differ from ordinary agents through the ability or superior knowledge
in trying to estimate the conventional valuation.

10



4.1 Updating

When an uncertain event occurs, people may change their long-term expecta-
tion. In fact the ”conventional valuation which is established as the outcome of
the mass psychology of a vast number of ignorant individuals is liable to change
violently as the result of a sudden fluctuation of opinion due to factors which
do not really make much difference to the prospective yield” (Keynes 1936, p.
138).

The investor has to anticipate this change, but because of dynamic consis-
tency, he can not update the Steiner point only, since it could induce an order
that is not coherent with his preference. A very simple way to update multi-
ple priors models12 is to apply the Bayes rule for each probability distribution
(prior-by-prior) in P and then re-evaluate the Steiner point. This method can
guarantee dynamic consistency but is strenuous. It is possible to reduce the
number of the probability distributions that need to be updated to calculate
the new Steiner point after a given non-null even Ξ occurred.

Araujo et al (2016) point out how news modify the asset price. Araujo et
al. characterize a new approach to updating the pricing rule that satisfies above
conditions and the property called Dynamic Consistency to Certainty13

It follows that NΞ(f), i.e. the conditional (f) w.r.t. an event Ξ, is the
updated pricing rule such that pΞ ∈ P , and for any asset f and real number h,
N(fΞ

h ) ≥ h if and only if NΞ(f) ≥ h, that is if the unconditional price of f is
at least equal to h, then its conditional price must also be at least equal to h.

So doing the investor anticipates the change in the conventional judgment
and includes this anticipation, so that

I(f)Ξ = [µD(f) + (1− µ)s(NΞ(f))], (4.2)

where µ ∈ [0, 1].
Interesting enough the conditional Steiner point is elicited by the simple full

Bayesian updating rule and it represents an appropriate ’averange opinion’ that
can be considered as a preferred rule with respect to every non bayesian rule
unconditionally (de Finetti 1954).

The long-term expectation [4.2] represents the solution of the ”battle of wits
to anticipate the basis of conventional valuation a few months” (Keynes 1936,
p.139). In fact, as Keynes argues, ”it happens, however, that the energies and
skill of the professional investor and speculator are mainly occupied otherwise.
For most of these persons are, in fact, largely concerned, not with making supe-
rior long-term forecasts of the probable yield of an investment over its whole life,
but with foreseeing changes in the conventional basis of valuation a short time
ahead of the general public. They are concerned, not with what an investment

12Different solutions are: rectangularity, menu dependence, change of subjective perception
etc.

13Given an event Ξ ⊂ P(Ω) and the pricing rule D, Ξ is relevant if −N(−Ξ∗) > 0, then
p(Ξ) > 0, for all p ∈ N and kΞ : {p(Ξ) ∈ P |k ∈ K} is the set of conditional probabilities. The
updated pricing rule NΞ is the unique pricing rule that satisfies the Full Bayes Rule (Araujo
et al 2016).
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is really worth to a man who buys it “for keeps”, but with what the market
will value it at, under the influence of mass psychology, three months or a year
hence” (Keynes 1936, p. 139).

5 Example: portfolio choice

In this section we apply the model of Section 4 (CHECK) to the case of stock
returns. In particular, we consider a professional investor who needs to compute
the expected returns of risky assets to decide her optimal portfolio strategy.

Uncertainty and investment opportunities. Consider a discrete-time
model with 2 periods (0, 1) and three states. There are 2 investment opportu-
nities: a risk-less asset with initial price 1 and final value 1 + r and a risky asset
with initial price S0. At time 1 the price of the risky asset can change by a
factor u, m or d corresponding to the three state of the world. As a result the
time-1 payoff of the risky asset is S0u (probability pu), S0m (probability pm) or
S0d (probability pd) with d < m < d and d < 1+r < u. The investor is endowed
with initial wealth w0 = 1 and selects the fraction of w0 (say 0 ≤ φ ≤ 1) to be
invested in the risky asset. We assume that the risky asset is represented by the
S&P500 and that r = 0.02.

Preferences. We consider two investors (experts): one equipped with lin-
ear utility function (risk neutral) and a second investor equipped mean-variance
utility and risk aversion parameter γ. Standard results imply that the optimal
portfolios are given by

φ =

{
0, if Ẽ[R] ≤ 1 + r;

1, if Ẽ[R] > 1 + r.
(5.1)

for the risk-neutral investor and

φ =


0, if Ẽ[R] ≤ 1 + r;
Ẽ[R]−(1+r)
w0γσ2 , if 0 < Ẽ[R]−(1+r)

w0γσ2 < 1

1, if Ẽ[R]−(1+r)
w0γσ2 > 1.

where Ẽ[R] is the expectation of the risky asset return computed by the expert
and σ the standard deviation. Ẽ[R] is computed using two sources of informa-
tion: market-based information (e.g., observed prices) and other agents (e.g.,
forecasters) opinion about the probability distribution of the asset’s payoff. The
latter piece of information has to be aggregated to compute the consensus dis-
tribution of the asset’s payoff.

Expected returns from market data. To compute the market-based
expected payoff (return in this example) of investment the investors use observed
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returns using data14 from 2013−01−18 to 2023−01−17. Let R̄ be the average
annual return then the probability of payoffs are selected in such a way that
phu+ pmm+ pdd = R̄ and ph + pm + pd = 1 (see the Appendix for details).

Aggregation of agents’ opinions and the consensus distribution.
Assume that investors also obtain information from N agents, indexed with i,
which provide an estimation on the upper (bi) and lower (ai) bounds of ph, pm
and pd. We consider two cases. Case 1: The investor has access to the opinion
of three agents (N = 3). We assume that upper-lower bounds are given by

a1 =

(
15

84
,

23

84
,

24

84

)
, b1 =

(
36

84
,

26

84
,

40

84

)
a2 =

(
12

84
,

30

84
,

30

84

)
, b2 =

(
27

84
,

30

84
,

39

84

)
a3 =

(
23

84
,

18

84
,

32

84

)
, b3 =

(
26

84
,

27

84
,

42

84

)
.

Case 2: the investor forms her opinion about ai and bi using information from
the Federal Reserve Bank of Minneapolis which provides a time-varying estima-
tion of the probability of 20% increase or a 20% decrease in the S&P500 index
over a 1 year index15. Thus, in this case N = 1, u = 1.2, d = .8 and we set
m = R̄. Upper an lower bounds of probabilities are estimated as maximum and
minimum of the time series of these probabilities16 (Figure 1). In this case we
obtain

a1 = (0.016, 0.352, 0.053) , b1 = (0.361, 0.907, 0.351) .

The opinion on upper/lower bounds obtained from different agents have to
be aggregated to compute the consensus distribution (Π = [Πu,Πm,Πd]) of
stock returns for the two cases described above. The consensus distribution is
computed using the Shapley’s value (see Basili and Chateauneuf (2020) and the
Appendix for details). The corresponding expected return (the conventional
judgment) is then R̄c = Πuu+ Πmm+ Πdd.

Investors can also update the consensus distribution using information on
relevant events. Assume for instance that investors evaluate the possibility of
tight/loose (T and L respectively) monetary policy. Let

P (T | R = u) = .6, P (T | R = m) = 0.5, P (T | R = d) = 0.4

14https://fred.stlouisfed.org/series/SP500Link
15https://www.minneapolisfed.org/banking/current-and-historical-market–based-

probabilitiesLink
16Note that this is just an example to illustrate how an investors could obtain information

about the probability of stock returns. Clearly other methods, possibly more complicated,
can be used to estimate such probabilities. our point here is not the exact estimation of the
probability of a given event. Instead, we want to illustrate how different sources of information
can be aggregate into the consensus distribution os stock returns and then applied to a portfolio
choice problem.

13



01/01/2010 01/01/2015 01/01/2020
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Prob 20% drop

Prob 20% increase

Figure 1: Market based probabilities of large changes in the S&P500.

The consensus distribution can then be updated using the Bayes rule. The
updated distribution Πb (assuming we observe a tight monetary policy) is given
by

Πb
u =

P (T | R = u)Πu

P (T | R = m)Πm + P (T | R = d)Πd

Πb
m =

P (T | R = m)Πm

P (T | R = m)Πm + P (T | R = d)Πd

Πb
d =

P (T | R = d)Πd

P (T | R = m)Πm + P (T | R = d)Πd

The corresponding expected value (i.e., Bayes-updated conventional judgment)
is R̄b = Πb

uu+ Πb
mm+ Πb

dd. Finally, the subjective expected return needed for

portfolio choice is computed as Ẽ[R] = µR̄+ (1− µ)R̄i where i is either c or b.
Results are summarized in Table 1. The consensus distribution of Case 1 gives
more weight to the state with negative returns as compared with the consensus
distribution obtained in Case 2. As a result the expected return computed using
the former (latter) distribution is lower (bigger) than the risk-free rate (Figure
3 upper panel). Moreover, in both cases the expected return computed using
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Table 1: Objective and consensus distribution of the S&P500

ph pm pd Expected Ret
Market-based prob. 0.378 0.500 0.121 10.31%

Case 1 0.297 0.297 0.404 0.92%

Case 2 0.181 0.622 0.195 6.14%

Case 1 (Bayesian update) 0.364 0.304 0.330 3.81%

Case 2 (Bayesian update) 0.218 0.624 0.156 7.67%

Table 2: The table describes probabilities of the 3 states computed i) using
market returns (first row) 2) the example in Case 1 and iii) probabilities from
the Federal Reserve Bank of Minneapolis described in Case 2 (second row) iii)
Bayesian updates (third and fourth rows).

consensus probability is lower than the expected return computed using histor-
ical market data (first row of Table 1). In other words, in our examples (Case
1-2) the consensus distribution produces a more prudent estimation of expected
returns as compared with historical market data. In both cases the Bayesian
update increases the probability of high returns (because, by assumption, the
tight monetary policy is more likely to occur in the high-return state) and, thus,
the corresponding expected returns.

Portfolio choice. According to Eq 5 the risk-neutral investor selects φ =
1 when Ẽ[R] > 1 + r and φ = 0 otherwise. From Table 1 we notice that
R̄ > 1 + r, R̄b > 1 + r (Case 1 and Case 2), R̄e < (>)1 + r in Case 1 (2).
As a result the risk-neutral investor invests 100% of wealth in the risky asset
when subjective returns equal market-based expected returns (µ = 1) or when
computed as a weighted average between market-based returns and the Bayes-
updated conventional judgment (R̄b). When subjective returns are given by the
average between market-based returns and the conventional judgment (R̄c) the
short selling constraint binds for low µ (i.e., µ ≤ 0.1) and the optimal portfolio
is φ = 0. For larger µ the optimal choice is φ = 1. The unconstrained optimal
portfolio of the mean-variance investor depends on the Sharpe ratio scaled by her
risk aversion. As a result, the short selling constraint binds when Ẽ[R] < 1 + r
(i.e., µ ≤ 0.1) and then increases monotonically in µ and coincides with the
optimal portfolio of the investors which ignores the consensus probability when
µ → 1. The optimal portfolio compute using the Bayes-updated conventional
judgment (R̄b) lies in between these two extremes.

When the consensus distribution is computed as in Case 2, the the conven-
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Figure 2: Portfolio choice when the consensus distribution is obtained from
Basili and Chateauneuf (2020). w0 = 1, γ = 10, σ = 17.6%.

tional judgments (R̄c and R̄b) exceed the risk-free rate. As a result the subjective
return is above 1 + r for any µ and the constraint of the risk-neutral investor
(φ ≤ 1) is always binding, that is φ = 1. Differently, the optimal portfolio of the
mean-variance investor in this case lies between zero and 1 and increases with
µ for any assumption about subjective returns.

6 Concluding remarks

This paper proposes a different interpretation of Keynes’s theory of long-term
expectation and agents’ ambiguity based on the ε− contamination approach
of probability distributions. The ε− contamination interpretation of Keynes’s
long-term expectation theory makes direct and explicit the relationship between
his long-term expectation notion and contemporary decision theory originated
by the Ellsberg Paradox. The paper introduces a new representation of con-
ventional judgement based on the Steiner point of the set of common opinions
among agents. This work can give a formal description of the process by which
professional investors try to anticipate the change in conventional judgment.
The new representation of long-term expectation is also coherent with the be-
havior of competitors in the Keynes’s beauty contest. Remarkably, this new
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Figure 3: Portfolio choice when the consensus distribution is obtained from the
Federal Reserve Bank of Minneapolis. w0 = 1, γ = 10, σ = 17.6%.

representation of long-term expectation sheds light on Keynes’s view of stock
exchanges like casino, where speculators make the market by anticipating the
change of conventional judgment.

7 Appendix

7.1 Computation of probabilities using historical market
returns

Assume that the average annualized return of the market is R̄. The investor
need to find ph, pm and pd such that

phu+ pmm+ pdd = R̄

ph + pm + pd = 1

with the additional constraint 0 ≤ pi ≤ 1, i = h,m, d. The system above must
be solved for given u,m, d. To stay consistent with the data from the Federal
reserve bank of Minneapolis we set u = 1.2, d = 0.8 and we set m = R̄. The
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solution of the previous system is

ph =
R− d− (m− d)pm

u− d

pd =
u−R− (u−m)pm

u− d
where 0 ≤ pm ≤ 1 must be selected in such a way that 0 ≤ ph ≤ 1 and
0 ≤ pd ≤ 1which implies 0 ≤ pm ≤ u−R

u−m . Therefore the set of probabilities is
defined by

pm = α
U −R
u−m

ph =
R− d
u− d

− α (u−R)(m− d)

(u−m)(m− d)

pd = (1− α)
u−R
u− d

for α ∈ (0, 1). For any α probabilities above are such that phu+pmm+pdd = R̄
and, thus, the choice of α is irrelevant for expected returns and portfolio choice
(probabilities of Table 1 are computed for α = 0.5.).

7.2 Computation of ”probability interval” capacity and
Shapley value

We show here the computations needed to compute the Shapley value for Case
2. Computations for Case 1 can be found in Basili and Chateauneuf (2020). Let
the 3 states be s1, s2 and s3 (good, intermediate and bad state respectively).
The Shapley value is defined by

Table 3: ”Probability interval” capacity

A {s1} {s2} {s3} {s1, s2} {s1, s3} {s2, s3} S
υ(A) 0.016 0.352 0.053 0.648 0.092 0.638 1

∀i ∈ [1, N ] Πi =
∑
i

(| A | −1)!(N− | A |)!
N !

[υ(A)− υ(A\{i})]

and we obtain Π = [0.181, 0.622, 0.195].
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