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We consider a generic classical many particle system described by an autonomous Hamiltonian
H(x1 , . . . , xN+2) which, in addition, has a conserved quantity V (x1 , . . . , xN+2) = v, so that the
Poisson bracket {H,V } vanishes. We derive in detail the microcanonical expressions for entropy
and temperature. We show that both of these quantities depend on multidimensional integrals over
sub-manifolds given by the intersection of the constant energy hyper-surfaces with those defined by
V (x1 , . . . , xN+2) = v. We show that temperature and higher order derivatives of entropy are micro-
canonical observable that, under the hypothesis of ergodicity, can be calculated as time averages of
suitable functions. We derive the explicit expression of the function that gives the temperature.
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For an isolated many-body classical system, the ergod-
icity makes equivalent thermodynamics and dynamics.
Thus, in these cases, one can measure thermodynamic
quantities, like temperature and specific heat, as tem-
poral averages of suitable functions along almost each
trajectory of a given system, or, equivalently, as an inte-
gral over its phase space. The opportunity to pass from
the dynamics to the microcanonical-thermodynamics and
vice versa, gives the possibility to choose the smarter way
to measure a given quantity. Very often the calculation
of thermodynamic quantities in the microcanonical en-
semble is an impracticable issue, thus one is forced to
recur to the canonical ensemble, where these measures
are more easily performed by resorting to numeric simula-
tions, e.g. by Monte Carlo method. Of course, for a given
system this step is performable only if there is equiva-
lence between canonical and microcanonical ensembles in
the thermodynamic limit. Furthermore, it is worth men-
tioning that in many cases, the convergence of thermo-
dynamic quantities to their asymptotic values, is much
faster if the averages are computed along the dynam-
ics, rather than by an important sampling of the canonic
phase-space. For these cases therefore, the dynamics is
preferred respect to statistics. Furthermore, only for sys-
tems described by stable and temperated inter-particle
interaction potentials is guaranteed the equivalence of the
statistical ensembles in the thermodynamic limit. Nowa-
days, several of the most intriguing challenge for modern
science, deals with systems of size intermediate between
the macroscopic and the microscopic scales. Systems like
polymers, DNA-helix, proteins, nanosystems, are large
enough to allow a statistical treatment, but are abso-
lutely far from the thermodynamic limit. Thus, for these
systems, ensemble equivalence is hardly verified and one
has no option but performing dynamical averages.

It is in this same spirit that Rugh, in [1], has presented
a dynamical approach for measuring the temperature of

a Hamiltonian system in the microcanonical ensemble.
He has shown that for an ergodic classical system, which
has only one conserved quantity, i.e. the energy, the in-
verse temperature 1/T , can be calculated as a tempo-
ral average of a suitable functional along the dynamics.
The Rugh’s seminal work has stimulated several papers
[2–4] which have aroused widespread interest, especially
among those who simulate the properties of liquids [5].
The calculation given by Rugh in Ref. [1] provides a
microcanonical definition of temperature that allows its
measure also in systems with nonstandard Hamiltonians.
Nevertheless, this calculation works for systems with only
one conserved quantity, i.e. the total energy. In the
present paper we extend the calculation of entropy and
of microcanonical temperature to the case of Hamiltonian
systems with two first integrals of motion.

In the present paper we consider a classical system of
(N + 2) degrees of freedom (with N > 0), which is de-
scribed by an autonomous Hamiltonian H , and which
has a further independent conserved quantity V , such
that {H,V } = 0. We derive in detail the microcanon-
ical expressions for entropy, i.e. the expression of the
microcanonical invariant measure, and the temperature,
moreover we give a formula to derive, recursively, all
order of derivatives of the entropy. We show that en-
tropy and temperature depend on multidimensional in-
tegrals over sub-manifolds given by the intersection of
the constant energy hyper-surfaces with those defined
by V (x1 , . . . , xN+2) = v. In particular, we show that
temperature and higher order derivatives of entropy are
microcanonical observable that, under the hypothesis of
ergodicity, can be calculated as time averages of suitable
functions. In Ref. [6] it has been studied the microcanon-
ical ensemble of a classical system, whose Hamiltonian is
parameter dependent and in presence of other first inte-
grals and it has been showed a method, alternative to the
present one, that allows one to obtain the first derivative
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of entropy respect to the conserved quantities. The aim
of the present paper is to derive explicitly the functional
by means of which the temperature can be calculated as a
microcanonical average, in the case of a generic classical
system, described by a many-body Hamiltonian with one
further conserved quantity. Furthermore, our method al-
lowed us to derive an iterative formula that gives the
derivatives of S(E) of all orders, for this class of systems.
By this formula, one can measure more general quantities
like, e.g. the specific heat.
Let H(x, xN+1 , xN+2) be a classical Hamiltonian de-

scribing an autonomous many-body system whose co-
ordinates and canonical momenta (q1, p1, . . . ) are repre-
sented as (N + 2)-component vectors (x, xN+1 , xN+2) ∈
RN+2, and let V (x, xN+1 , xN+2) be a further conserved
quantity which is in involution with H . We shall
assume that V is a smooth function of the coordi-
nates. The system’s motion takes place on the mani-
folds M = ΣE ∩ Vu, where the ΣE = {(x, xN+1 , xN+2) ∈
RN+2|H(x, xN+1 , xN+2) = E} are energy level sets and
Vu = {(x, xN+1, xN+2) ∈ RN+2|V (x, xN+1 , xN+2) = u} are
subsets of RN+2 where V is constant. Among the equiv-
alent expressions allowed for the microcanonical entropy
S(E), the surface entropy [7]

S(E) = ln

∫

dNxdxN+1dxN+2δ(H(x, xN+1 , xN+2)−E)×

δ(V (x, xN+1 , xN+2)− u) (1)

has an interesting and useful geometric interpretation
that we shall derive, following the calculation shown in
the chapter on the theory of surfaces of Ref. [8]. Con-
sistently with Ref. [8], we shall assume the level sets of
H and V to be non-singular hyper-surfaces. Even if the
energy level surfaces (or the level sets of V ) in general
constitute a singular foliation, thus for some values of E
(or u) the energy surface (or Vu) is not a differential man-
ifold, for generic values of E (or u) this is not an issue.
For a generic point x0 ∈ M of a non-singular level-set
of H and V , ∇H(x0) 6= 0 and ∇V (x0) 6= 0. Further-
more, sinceH and V are in involution, almost everywhere
∇H(x0) and ∇V (x0) are independent vectors. Thus, in
a neighborhood of x0 we can suppose of reorder the coor-
dinate indices in such a way that ∂H/∂xN+1∂V /∂xN+2 −
∂V /∂xN+1∂H/∂xN+2 6= 0 for each x of the neighbor-
hood. Now, each non-singular manifold M, can be par-
titioned by a family F of not overlapping subsets [15].
With the further condition that, in each subset we can
reorder the coordinate indices, as said above, so that
∂H/∂xN+1∂V /∂xN+2 − ∂V /∂xN+1∂H/∂xN+2 6= 0 every-
where in the subset. Now, by using the first N co-
ordinates we give a parametric description of the same
subset. Thus, in each of the subsets of F we can choose
fα = id for α = 1, . . . , N , and let us set g(y) := fN+1(y)
and h(y) := fN+2(y), where y ∈ RN . The metric induced
by RN+2 on M results

ηµν = δµν + ∂µg∂νg + ∂µh∂νh , (2)

where ∂α• = ∂ • /∂xα, whereas the its determinant can
be derived by straightforward calculations and it results

η = 1 +

N
∑

α=1

[

(∂αg)
2
+ (∂αh)

2
]

+

N
∑

µ,ν=1

µ<ν

(∂µg∂νh− ∂µh∂νg)
2 . (3)

The derivatives ∂αg, ∂αh, can be expressed as follows

∂αg = [∂N+2V ∂αH − ∂N+2H∂αV ] /D (4)

∂αh = [∂N+1H∂αV − ∂N+1V ∂αH ] /D , (5)

where D =∂
N+1

H∂
N+2

V − ∂
N+1

V ∂
N+2

H [16]. From the
expression above we derive the sub-manifold volume form

dτ = dNx
√
η = dNx

W

D
, (6)

where

W =







N+2
∑

µ,ν=1

µ<ν

(

∂H

∂xµ
∂V

∂xν
− ∂H

∂xν
∂V

∂xµ

)2







1/2

. (7)

On the other hand, expression (1) can be cast in the
following form. For each point x we can introduce the
following variables change

y1 = h1
x
(xN+1 , xN+2) , y2 = h2

x
(xN+1 , xN+2) , (8)

with the inverse transformations

xN+1 = G1
x
(y1, y2) , xN+2 = G2

x
(y1, y2) , (9)

where h1
x
(xN+1 , xN+2) = H(x, xN+1 , xN+2) − E,

h2
x
(xN+1 , xN+2) = V (x, xN+1 , xN+2)−u, and G1

x
(y, z) and

G2
x
(y, z) are the respective inverse transformations. From

now on we will suppress the sub-index x. After these def-
initions Eq. (1) can be expressed as follows

S(E) = ln

∫

dNxdy1dy2δ(y1)δ(y2)|J(y1, y2)| ,

where |J(y1, y2)| is the determinant of the Jacobian ma-
trix ∂(xN+1, xN+2)/∂(y1, y2). The inverse of the Jacobian
matrix can be derived by Eqs. (8)-(9) and it results

∂1G
1 = −∂2h2/D = −∂N+2V /D , (10)

∂1G
2 = ∂1h

2/D = ∂N+1V /D , (11)

∂2G
1 = ∂2h

1/D = ∂N+2H/D , (12)

∂2G
2 = −∂1h1/D = −∂N+2H/D . (13)

Thus, the microcanonical entropy [17] results

S(E) = ln

∫

M

dNx
1

D
= ln

∫

M

dτ

W
. (14)
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It is worth emphasizing that the invariant measure is in-
dependent from the partition of M, since W is invariant
under exchange of the indices of the coordinates.
In order to derive the temperature in the micro-

canonical ensemble, according to the definition T (E) =
(∂S(E)/∂E)−1, we shall use the following generaliza-
tion [18] of the Federer-Laurence derivation formula [9–
13]. The flux Φξ with a non-vanishing component in
the direction orthogonal to the constant energy hyper-
surfaces, but tangent to the level hyper-surfaces of V ,
can be defined by the vector ξ = nH − (nH · nV )nV ,
where nH = ▽H/‖ ▽H‖ and nV = ▽V /‖ ▽ V ‖. Let us
define nξ = ξ/‖ξ‖, so the generalized derivation formula
results

∂k

∂Ek

∫

M

dτψ =

∫

M

dτAk (ψ) , (15)

where [19]

A(•) = 1

▽H · nξ
[▽ (nξ•)− •nV · (nV · ▽)(nξ)] . (16)

The proof of the extention of the Federer-Laurence theo-
rem to varieties of codimension two, is rather complicated
and lengthy. Furthermore it is outside of the main mo-
tivation of the present paper, thus it will be given in a
further paper [14]. After Eqs. (17) and (18), we obtain
that the inverse temperature is given by

1

T (E, V )
= 〈Φ(x)〉µc , (17)

where

Φ(x)=
W

▽H · nξ

[

▽
(

nξ

W

)

− (nV · ▽) (nξ)

W
· nV

]

, (18)

and 〈〉µc stands for the microcanonical average.

When (RN+2, H) is ergodic with respect to the Liou-
ville measure dτ/W restricted to a nonsingular manifold
M for almost every initial condition x(0) ∈ M one has

1

T (E, V )
= lim

s→∞

1

s

∫ s

0

ds′ [Φ(x(s′))] . (19)

Simple geometric applications.
i) As a simple application we shall derive the invariant
metric η in the case of a simple form for H as that one
of a four-dimensional hypersphere H = x2+ y2+ z2+w2

of unit radius, and with a condition given by the hyper-
plain V = z + w = 0. By direct calculations we derive
∂xH = 2x, ∂yH = 2y, ∂zH = 2z, ∂wH = 2w, thus it
results D = ∂zH∂wV − ∂zV ∂wH = 2(z − w). With the
notations introduced above, Eqs. (4) and (5) become
∂xg = x/(z − w), ∂yg = y/(z − w), ∂xh = −x/(z − w),
and ∂yh = −y/(z − w), thus the invariant metric results

η = 1 + 2

[

(

x

z − w

)2

+

(

y

z − w

)2
]

, (20)

and is defined for D 6= 0 (z 6= w) that is on the subsets

{(x, y,±
√

1− x2 − y2

2
,∓

√

1− x2 − y2

2
)|x2 + y2 < 1}.

The sum of the integrals of
√
η upon these subsets brings

to the result 4π which is the right hyper-surface vol-
ume. This solution can be checked noting that in the
original problem the condition V = z + w = 0 can be
lifted by a suitable change of variables. Let us intro-
duce the variables s = (z − w)/

√
2 and t = (z + w)/

√
2.

H and V can be expressed in the new variables as
H = x2 + y2+ s2+ t2 = 1 and V = t = 0. Thus the met-
ric η is that one of the three-dimensional unitary sphere
x2 + y2 + s2 = 1 that is (see [8]) η = 1+ (x/s)2 +(y/s)2.
This indeed is the expression (20). The sum of the inte-
grals of

√
η upon the two hemispheres, s > 0 and s < 0,

gives the right value 4π.

ii) Let us now consider a simple case where all the ge-
ometric quantities can be explicitly calculated in order
to check the Eqs. (15) and (16). We shall consider

H = x21 + x22 + x23 = E, a sphere of radius
√
E in three

dimensions and V = x3/
√

x21 + x22 = u, that is a cone
with an angle arctan(u) at the vertex. In this case M is

a circle of radius a =
√

E/(1 + u2).

If we choose ψ = 1, we get easly

∂

∂E

∫

M

dτ =
∂

∂E
2πa =

πa

E
.

The terms that appear in Eq. (16) result▽H ·nξ = 2
√
E,

▽nξ = 2/
√
E and nV · (nV · ▽)(nξ) = 1/

√
E. Thus

A(1) = 1/(2E) and consequently
∫

M
dτA (1) = πa/E.

By choosing ψ = 1/W we get W = 2E/a2, and

∂

∂E

∫

M

dτ

W
=

∂

∂E

a2

2E
2πa =

π

2(1 + u2)3/2
√
E
. (21)

Again, Eq. (16) contains ▽H · nξ = 2
√
E, ▽(nξ/W ) =

a2/E3/2 and nV · (nV · ▽)(nξ)/W = a2/(2E3/2). Thus
A(1/W ) = a2/(4E2) and consequently

∫

M
dτA (1/W ) =

πa3/(2E2) which indeed coincides with result (21).

Dynamical system.
Let us now consider a lattice system described by the
Hamiltonian

H =
ν

8

∑

m

(p2m + q2m)2 −
∑

m

(pmpm+1 + qmqm+1) (22)

and the usual Poisson brackets {qm, pn} = δm,n for
n,m = 1, . . . ,M , with periodic boundary conditions.
The dynamics generated by this Hamiltonian conserves
the quantity N =

∑

m(q2m + p2m)/2, thus the Eqs. (17)
and (18) are in order to calculate the microcanonical tem-
perature. The ground-state is achieved by solving the
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equation δ(H −χN) = 0 in which the Lagrangian multi-
plier χ has been introduced to take in account the conser-
vation of N . By direct calculations, we got the solution
q0m =

√

2N/M := q0, p0m = 0 and χ = νN/M − 2
[20]. Small fluctuations around this ground-state cor-
respond to T & 0, in the following we show that this
prevision is verified by Eq. (17) and (18), whereas the
formula for 1/T given in [1], that holds in the case of
systems with only one first integral (energy), does not
work. The reason of this comparison is to show that
the equation derived in [1], which is valid in the case
of system with only one first integral, cannot be used
in the case of systems with more than one first inte-
grals In Ref. [6] has been derived an equation sim-
ilar to Eqs. (17) and (18). The inverse temperature
1/T can be derived by Eqs. (12) and (17) of Ref. [6]
after having found two vectors, X0 and X1, such that
dH(X0) = 1, dH(X1) = 0, dV (X0) = 0 and dV (X1) =
1. One can use X0 = cV V ∇H/d − cV H∇V/d and
X1 = −cVH∇H/d + cHH∇V/d, where cHH = ‖∇H‖2,
cV V = ‖∇V ‖2, cV H = ∇V∇H , and d = cHHcV V − c2VH .
Thus it results 1/T = 〈∇ ·X0〉µc. The latter expression

seems inequivalent to Eqs. (17) (18). Indeed, it does not
contain 1/W which is related to the invariant measure.
It is worth emphasizing that an analogous term 1/‖H‖,
which is related to the microcanonical measure of a sys-

tem with one first integral, indeed appears in the formula
for 1/T derived in [1]. In any case a comparison between
these two equations, would require a numerical simula-
tion, but this is out of the aim of the present paper. By
expanding H in terms of the displacements Qn and Pn

from the minimum points qn = q0 and pn = 0, and by cal-
culating the terms appearing in (17) and (18) in the limit
Qn, Pn → 0, after some boring algebra we got the correct
low-energy temperature, being 1/T = 〈Φ〉µc → ∞.

It is worth emphasizing that by using the formula de-
rived in Ref. [1] 1/T =

〈

∇
(

∇H/‖∇H‖2
)〉

µc
, which is

correct for systems with only one first integral, one ob-

tains the erroneous result: T =
[(

ν
2
q20 − 2

)

q0
]2
/(2νq20).

In conclusion, we have presented a dynamical approach
for measuring the temperature of a Hamiltonian system
with two first integrals in the microcanonical ensemble.
The formula we have derived allows one to measure the
inverse temperature as a time-average, instead of as an
average over the phase-space, also in the case of systems
with two first integrals. Furthermore, by Eq. (15) higher
orders of derivatives of S(E) can be obtained. Therefore
the method here presented allows one to measure g.e. the
specific-heat.

I’m indebted with Prof. M. Pettini, Prof. G. Vezzosi
and Prof. R. Livi for the usefull discussions.
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