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Generative Adversarial Network (GAN) models are nowadays able to generate synthetic
images which are visually indistinguishable from the real ones, thus raising serious
concerns about the spread of fake news and the need to develop tools to distinguish
fake and real images in order to preserve the trustworthiness of digital images. The most
powerful current detection methods are based on Deep Learning (DL) technology. While
these methods get excellent performance when tested under conditions similar to those
considered for training, they often suffer from a lack of robustness and generalization
ability, as they fail to detect fake images that are generated by “unseen” GAN models. A
possibility to overcome this problem is to develop tools that rely on the semantic attributes
of the image. In this paper, we propose a semantic-based method for distinguishing GAN-
generated from real faces, that relies on the analysis of inter-eye symmetries and
inconsistencies. The method resorts to the superior capabilities of similarity learning of
extracting representative and robust features. More specifically, a Siamese Neural Network
(SNN) is utilized to extract high-level features characterizing the inter-eye similarity, that can
be used to discriminate between real and synthetic pairs of eyes. We carried out extensive
experiments to assess the performance of the proposed method in both matched and
mismatched conditions pertaining to the GAN type used to generate the synthetic images
and the robustness of the method in presence of post-processing. The results we got are
comparable, and in some cases superior, to those achieved by the best performing state-
of-the-art method leveraging on the analysis of the entire face image.

Keywords: deep learning for forensics, semantic analysis, siamese networks, synthetic media detection, generative
adversarial networks, image forensics

1 INTRODUCTION

Since the emergence of Generative Adversarial Networks (GANs) (Goodfellow et al., 2020), research
on image manipulation using GANs had seen tremendous advances (Creswell et al., 2018). The
generated images have become extremely realistic, very high quality, and can easily deceive a human
observer. Furthermore, building a fake image is nowadays an easy task, hence very realistic fakes can
be generated by non-expert users. In addition to image editing, modification of attributes and style
transfer, GANs are used to create completely synthetic images from scratch. A website called This
person does not exist (link: http://thispersondoesnotexist/) allows anyone to generate a synthetic face
image in very few seconds. Alongside benign uses of this technology, the possible misuse of the
synthetic contents generated by GANs represents a serious threat calling for the development of
image forensic techniques capable to distinguish between real and fake (GAN-generated) images.
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Several methods have been proposed in the forensic literature
to reveal whether an image has been generated by a GAN or it is a
natural one. Most recent methods are based on Deep Learning
(DL), which can significantly outperform feature-based methods
(Verdoliva, 2020). Despite the excellent performance of these
methods when tested under conditions that are similar to those
considered for training, they fail to generalize to images that are
generated by different unseen models (Gragnaniello et al., 2021).
Inmany cases, the robustness against processing is also poor. This
problem is exacerbated by the fact that DL-based solutions often
lack interpretability, so a clear understanding of what the network
is seeing and a solid explanation of why decisions are made is not
possible.

Relying on semantic attributes of the image can help to devise
more general, robust and explainable tools. As pertains to the
specific task of GAN face image detection, the eyes can provide
relevant clues. Recent literature has shown that some artifacts,
like the color difference between the two eyes (Matern et al., 2019)
and the inconsistencies of the corneal specular highlights (Hu
et al., 2021) can be a spot to reveal the GAN nature of the face
images. Besides these simple artifacts, there can be more
sophisticated forensic traces that can be revealed through eyes
inspection, e.g., in the iris pattern, which can lead to the
development of a more general and robust GAN face detector.

In this paper we propose a semantic-based method for GAN-
generated face image detection that relies on the analysis of inter-
eye symmetries and inconsistencies and resorts to the superior
capabilities of similarity learning of extracting robust features
from the images. The proposed method relies on the underlying
assumption that GANs are not perfect in reconstructing
symmetries between the eyes and then it is possible to look at
the presence of inconsistencies between the patterns in the left
and right eyes to detect if the image is real or fake. In the proposed
architecture, two identical branches of Siamese Neural Networks
(SNN) are fed with the right and left eye. The purpose of these two
branches is to extract high-level features, characterizing the inter-
eye similarity, that permit to discriminate between real and
synthetic pairs of eyes. A modified version of the XceptionNet
architecture is used as the backbone network for the two
branches.

We carried out an extensive experimental campaign to assess
the performance of the proposed method, both in matched and
mismatched conditions pertaining to the GAN type used to
generate the synthetic images. We also carried out robustness
tests to assess the performance of the method in presence of
global post-processing and local manipulations. The robustness
performance of the tool is also assessed in the challenging
scenario of rebroadcast attacks. Given that rebroadcast attacks
are very effective in hiding any type of forensic trace from the
image, addressing the capability of our tool of discriminating
between re-acquired GAN and real images allows getting insights
into the degree of robustness of the method.

Our experiments reveal that, by relying on semantic-related
features, the proposed method achieves not only very good
performance on StyleGAN2, that is, the same generation
method used for training, but also very good generalization
capability, when the fake is obtained using a different GAN

architecture, namely, the ProGAN (Karras et al., 2018) and the
new StyleGAN3 (Karras et al., 2021) model. In particular, the
performance we got is comparable to those achieved by the best
performing state-of-the-art method in (Gragnaniello et al., 2021),
which relies on the analysis of the entire image, with our method
having overall better generalization capability to unseen GAN
models and better robustness against the rebroadcast attack.
Moreover, the characteristic of relying on the analysis of a
semantic attribute of the image, and not the entire image,
makes our method naturally more robust against local
manipulation compared to (Gragnaniello et al., 2021).

The paper is organized as follows: after an overview of the
state-of-the-art in Section 2, in Section 3 we ddsludsescribe the
proposed method. Then, Section 4 details the methodology that
we followed for the experiments, whose results are reported in
Section 5. We conclude the paper with some final remarks in
Section 6.

2 RELATED WORK

In this section, we review the most relevant approaches for GAN
face synthesis. Then, we discuss the methods that have been
developed in the literature for the detection of GAN-
generated faces.

2.1 Synthetic Face Generation
In the past recent years, many GAN models have been developed
for face image generation and manipulation. Face editing models
modify the attributes of a face such as the colour of the hair or the
skin, gender, and age, see for instance IcGAN (Perarnau et al.,
2016) and attGAN (He et al., 2019). Besides face editing, a line of
research focuses on the development of GAN models for face to
face translation. This is the case of StarGAN (Choi et al., 2018),
where a scalable approach is implemented to get high quality
translated face images. Another line of research focuses on
generating face images from random noise. In this case, the
face images are synthesized from scratch.

While early attempts could only generate high quality low
resolution images (Radford et al., 2016; Zhao et al., 2017;
Berthelot et al., 2017), more recent models have been
proposed that can generate realistic high quality large
resolution images, up to 1,024 × 1,024. In particular, ProGAN
(Karras et al., 2018) was the first generative model able to
synthesize high resolution (1,024 × 1,024) images by exploiting
a progressive training approach. StyleGAN (Karras et al., 2019)
further improved the quality of the generated high resolution
images by utilizing an alternative generator architecture,
borrowed from style transfer literature. In addition to
progressively increasing the resolution of the generated images,
StyleGAN incorporates ‘style’ features in the generative process.
The quality of StyleGAN images has been further improved by
the StyleGAN2 model (Karras et al., 2020), that redesigns the
normalization used in the generator.

Very recently - just a few months ago - a new GAN
architecture was released by NVIDIA, named StyleGAN3
(Karras et al., 2021), which solves the problem of “texture
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sticking” (a.k.a, aliasing) in the images generated by StyleGAN2,
performing architectural changes that guarantee that unwanted
information does not leak into the hierarchical synthesis process.
StyleGAN3 impressively improves the quality of synthetic
images, paving the way for generative models better suited for
video and animation. Despite the similar name, the StyleGAN3
architecture is very different from StyleGAN2 (which is similar to
the original StyleGAN), and, in fact, the two architectures have
been shown to learn different internal representations (Karras
et al., 2021).

2.2 GAN Face Detection
Several methods have been proposed in the literature to
discriminate between GAN generated faces and real ones.
Some early approaches exploited very specific facial traces, e.g.,
irises color or borders of face, that are left behind by the earlier
GAN architectures (Matern et al., 2019). In Yang et al. (2019), the
authors showed that it is possible to reveal whether a face image is
GAN generated or not by considering the locations of facial
landmark points and using them to train an SVM. A line of
research exploits color information to reveal GAN contents
(McCloskey and Albright, 2019; Li et al., 2020). In McCloskey
and Albright (2019), two metrics based on the correlation
between color channels and saturation are defined and
considered for the detection. The approach in Li et al. (2020),
instead, combines color channel analysis and Subtractive Pixel
Adjacency Matrix (SPAM)-like features to perform GAN image
detection. In particular, co-occurrences are extracted from color
channels and combined into a feature vector used to train an
SVM. Leveraging on the superior performance of Convolutional
Neural Networks (CNNs), in Nataraj et al. (2019) the authors
have shown that improved performance can be achieved by
feeding a CNN with co-occurrence matrices computed directly
on the input image. The work has been extended in Barni et al.
(2020), where cross-band co-occurrence matrices have also been
considered as input to the CNN.

Besides the methods in Nataraj et al. (2019) and Barni et al.
(2020), a wide variety of techniques based on CNNs have been
proposed (Marra et al., 2018; Marra et al., 2019; Hsu et al., 2020;
Hulzebosch et al., 2020), that achieved improved performance
compared to previous methods based on standard machine
learning and hand-crafted features. Most of these methods are
fully supervised approaches. Notably, in Marra et al. (2018), off-
the-shelf very deep modern networks, like Xception, Inception
and DenseNet, pre-trained on ImageNet, are shown to achieve
excellent performance for GAN detection, by directly training on
the pixel image.

The fully supervised approaches are all very effective under
matched conditions between training and testing, and in
particular when the test GAN images are from the same
model considered during training. However, they often fail to
generalize to images generated by different, unseen, GAN types.
In Liu et al. (2020), the authors presented a new CNN-based
detector, called Gram-Net, that leverages global image texture
representations to improve the generalization and the robustness
of GAN image detection. An approach that relies on semantic
segmentation and perform detection based on multiple semantic

fragments getting remarkable generalization capability has been
recently presented in Chen and Yang (2021). A different solution
to improve generalization is proposed in Xuan et al. (2019): the
idea is to carry out augmentation by Gaussian blurring so as to
force the discriminator to learn more general features. A similar
approach is followed in Wang et al. (2020), wherein a standard
pre-trained model, namely ResNet50, is further trained with a
strong augmentation based on compression and blurring.
Experiments show that, by training on a single GAN
architecture, the learned features can generalize to unseen
architectures, datasets, and training methods. The
generalization performance is further improved by the method
in Gragnaniello et al. (2021), where successful augmentation and
training strategies, as well as key architectural design choices
(among them, in particular, the insertion of an initial layer for
residual extraction and the removal of the down-sampling
operation in the first layers), are identified.

3 THE PROPOSED EYES-BASED
GAN-GENERATED FACE IMAGE
DETECTOR
In this section we describe the proposed Eyes-based GAN-
generated face detector. As we mentioned, the goal of our
method is to distinguish GAN images from real images by
exploiting dissimilarities and inconsistencies between the eyes
in GAN synthesized faces, that are not present in real faces. To
address this binary decision problem, we decided to resort to an
SNN architecture and exploit the excellent capabilities of these
structures in finding similarities between paired inputs. SNNs
have been widely used in the related fields, e.g. in the field of face
verification (Hu et al., 2014; Guo et al., 2021), person re-
identification (Varior et al., 2016; Fang et al., 2019), and even
object tracking (Bertinetto et al., 2016; Son et al., 2017) with very
good results.

In addition, it is known that, by relying on the similarity
learning paradigm, in many cases, SNN can improve the
generalization capability of the models on unseen data, since
they tend to learn more robust features (Krishnagopal et al., 2018;
Roth et al., 2020; Agarwal et al., 2021; Zhou et al., 2021; Fonseca
and Guidetti, 2022).

The scheme of the proposed Siamese Eyes-based detector of
GAN-generated faces is provided in Figure 1. The detector
consists of three modules: a pre-processing module, the feature
extraction module and the final classifier (these two last modules
building the SNN). The purpose of the pre-processing module is
to localize the eyes within the face and extract the two bounding
boxes of the eyes that constitute the paired input of the SNN.
More specifically, the Dlib (King, 2009) face detector is used to
locate the face, followed by a landmark predictor that outputs 12
landmark points (6 feature points per eye) whose coordinates
indicate the locations of the left and right eyes. The bounding
boxes (BB) of the left eye El and right eye Er are cropped
exploiting the coordinates of feature points for each eye. Then,
the BBs are paired and fed to the two branches of the feature
extraction module, after resizing them to the same fixed size
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(the input network size). We denote with X = (El, Er) the input of
the SNN.

The feature extractor is based on a modified version of the
XceptionNet architecture (Chollet, 2017). XceptionNet is a
particular version of Inception network (Szegedy et al., 2016),
that relies on a modified depthwise separable convolution. Such a
network has been proved to achieve great performance for the
deepfake detection (Rossler et al., 2019). Inspired by the work in
(Barni et al., 2018), in order to retain as much spatial information
as possible (which is especially relevant in the presence of strong
processing and JPEG compression), we remove the sampling
operation in the first convolutional layer of the network, setting
the stride parameter to 1. In addition, following (Basha et al.,
2020), we replaced the 1000-dim FC layer in the original network
with an FC layer of size 512. Then, the FC layer takes as input the
2048-dim feature vector obtained by the final Global Average
Pooling (GAP) layer of the convolutional part and outputs a 512-
dim feature vector. The parameters of the two modified
XceptionNet branches extracting the features from the left and
right eye respectively are shared.

The two 512-dim feature vectors from the two
branches, namely f (El) and f (Er), are then concatenated to

get a 1024-D feature vector f′. Then, f′ = CAT(f (El)f (Er)), where
CAT denote the concatenation operation. To reduce the
overfitting, the concatenation is followed by a dropout layer,
where the nodes are dropped out with a probability of 0.5. The
output of the dropout layer goes as input to another FC layer, with
2 output nodes, namely, the number of classes. Finally, a softmax
layer is applied to the output of the FC f″, in order to get the
output probability vector, characterizing the probability of the
output being real and GAN respectively. We denote with p the
probability that the input is GAN: the input is deemed GAN if p >
0.5, pristine otherwise. Then, the two output probability scores
are p0 = 1 − p and p1 = p, where we use the convention label 0 for
pristine and label 1 for GAN. Without loss of generality, in the
following, we refer to the GAN class as the positive class and to
the real class as the negative class.

It is proper to mention that the idea behind the proposed
method of exploiting eyes clues to perform GAN detection is not
totally new, and has already been considered in the literature, see
(Hu et al., 2021). The technique in (Hu et al., 2021) is based on
statistical hand-crafted features manually extracted from the eyes,
and relies on an estimation of the corneal region. However, due to
the limitations inherent in the process of estimation, the method

FIGURE 1 | The proposed Siamese Eyes-based detector of GAN-generated face images.

FIGURE 2 | Feature space distribution for each dataset using T-SNE and UMAP reduction methods. 2,000 images per each dataset have been considered.
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lacks robustness and generality, and eye localization can be
successfully achieved only in not-so-difficult cases (high
contrast and good illumination conditions in the eyes region).
By resorting to a simple bounding-box extraction procedure and
exploiting the superior capabilities of SNNs to learn
discriminative features, the proposed method is instead very
general and can get robustness and generalization results that
are comparable and, in some cases, superior, to the state-of-the-
art for GAN-generated face image detection.

4 METHODOLOGY

In this section, we discuss the datasets used for the experiments
and report the setting of the training of our Eyes-based GAN
detectionmodel. The state-of-the-art GAN detectionmethod that
we considered as the baseline for the comparison is also
presented. Finally, we discuss the metrics used for evaluating
the performance.

4.1 Datasets
The datasets used for our experiments are described in the
following.

To create the synthetic images, we considered several
generative models. Training is performed considering only the
StyleGAN2 model (Karras et al., 2020), while the ProGAN
(Karras et al., 2018) and StyleGAN3 (Karras et al., 2021) are
considered, in addition to StyleGAN2, to generate the images
used for the tests.

As we pointed out in Section 2.2, despite the similar name, the
architecture of StyleGAN3 is very different from the architecture
of StyleGAN2 (which is similar to the original version of the
StyleGAN model), thus making non-trivial the generalization of
StyleGAN2 detectors to the case of synthetic images generated by
StyleGAN3. More in detail, the following datasets of faces are
considered in our experiments.

• A collection of 100,000 real face images: 30,000 images are
taken from the CelebA-HQ dataset (Karras et al., 2017)
while the remaining 70,000 images come from the FFHQ
dataset (Karras et al., 2019)1. Then, 90,000 images are used
for training (5,000 of those are left for validation), and
10,000 images for the tests. The same 3:7 proportion of
CelebA-HQ and FFHQ images are considered in training
and test datasets. Therefore, among the images in the
training set, 27,000 images come from CelebA-HQ and
63,000 from FFHQ, while the test set consists of the
remaining 3,000 CelebA-HQ and 7,000 FFHQ images.

• A dataset of StyleGAN2 fake images consists of 100,000
images in total, where 90,000 images are used to train the
model (85,000 training and 5,000 validation), and 10,000
images are used for the tests. We use the official released
code2 to generate synthetic faces with different generation

parameters in order to increase the diversity of the dataset.
More specifically, we considered several values of the
truncation parameter of the network and generated
10,000 StyleGAN2 (Karras et al., 2020) faces for each
value in the set \{0.3, 0.4, 0.5, 0.6, 0.65, 0.7, 0.75, 0.8, 0.9,
1\}. Both the training and test sets contain images generated
with all the truncation parameters in equal proportions.

• A collection of 10,000 images generated by ProGAN and
10,000 images generated by StyleGAN3, was used for
the tests.

• A large-scale dataset of printed and scanned pristine and
GAN images, called VIPPrint (Ferreira et al., 2021),
consisting of 10.000 recaptured real (from the FFHQ
dataset) and 10.000 recaptured GAN (StyleGAN2)
images, obtained by printing the digital images and then
scanning them. More details can be found in Ferreira et al.
(2021). The printing and scanning operation can be used to
hide the traces of image manipulation, then, arguably, also
the synthetic nature of images. In the following, we refer to
this dataset as Print&Scan image dataset.

A summary of the datasets used in our experiments is
provided in Table 1.

4.2 Training Setting
The input size of the two branches of the SSN is set to 66 × 100 ×
3. Rescaling is performed as a pre-processing step to the bounding
boxes of the eyes, in order to resize them to the input size. The
same rescaling is also applied to the images during testing.

The network was trained using the cross entropy loss function,
with the Adam optimizer (Kingma and Ba, 2014), with default
parameters (β1 = 0.9 and β2 = 0.999). The batch size was set to 64.
Training is performed with a constant learning rate of 0.0001 for
10 epochs.

A strong level of augmentation is considered during training
in the attempt to enhance the robustness of the model, including
JPEG compression - with quality factors ranging from 40 to 100,
flipping, scaling - with the scale factors in [0.8,1.3], contrast and
brightness adjustment, and Gaussian blurring. The above
processing operations are applied with probabilities 0.8, 0.1,
0.8, 0.8, and 0.2, respectively for JPEG compression, flipping,
scaling, contrast adjustment and Gaussian blur. The parameters
of the convolutional neural networks in the two branches are
initialized using the solution pre-trained on ImageNet dataset.

The framework is implemented in the Python3 environment
using Tensorflow library. An NVIDIA GTX2080Ti GPU was
utilized for model training and testing.

4.3 Comparison With the State-of-the-Art
In order to demonstrate the effectiveness of our method,
comparison is carried out with the current best performing
method for GAN detection from the state-of-the-art, that is
the method in Gragnaniello et al. (2021). The method
implements a series of strategies that are experimentally
proven to be effective to enforce learning of features that can
generalize better to unseen GAN types. Among the most relevant
strategies implemented by the method: 1) an initial layer is added

1https://github.com/NVlabs/ffhq-dataset
2https://github.com/NVlabs/stylegan2
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for residual extraction; 2) down-sampling and pooling in the first
layers are removed; and 3) a specific chain of augmentations is
implemented that includes Gaussian noise addition, geometric
transformations, brightness and contrast changes. Notably, in the
proposed structure, the first layer is an adaptive layer, that
automatically adapts to the size of the input. In this way, the
image is entirely fed as input to the network, without performing
any resizing. The best results are achieved using ResNet50 as the
backbone network. For the details of the training, we refer to
(Gragnaniello et al., 2021). The method improves previous
methods, e.g., the method in Marra et al. (2018) and Wang
et al. (2020). We used the model released by the author3 to carry
out the tests. In the following, we refer to this method as
ResNet50-NoDown.

As mentioned in Section 2.2, a GAN detection technique that
has close ties with the proposed approach is the method in (Hu
et al., 2021), which, similarly to the proposed method, exploits
eyes clues to perform GAN detection. The method relies on
statistical hand-crafted features. Given that the performance of
this detector are much lower than those achieved by ResNet50-
NoDown, the results of these methods are not reported for
comparison in Section 5. In particular, the method in Hu
et al. (2021) suffers from the poor performance of the
estimation of the corneal region, which does not provide
accurate localization of the eye region in many cases. With
reference to the datasets used in our experiments, accurate
localization can be achieved only in 29% of the CelebA-HQ
test images, 48% of the FFHQ, and 55% of the StyleGAN2. The
development of a robust method for corneal extraction is in fact
still an open research problem.

4.4 Metrics
With regard to the metrics used for evaluating the performance,
we consider the True Positive Rate (TPR) and True Negative Rate
(TNR) of the decision made by the SNN network (0 when p < 0.5,
1 otherwise), where the positive event refers to the output being
GAN (label 1) while the negative event refers to the output being
real (label 0). Since we always consider balanced sets, the accuracy
can be measured as ACC = (TPR + TNR)/2. We also report the
Area Under Curve (AUC) of the Receiver Operating Curve
(ROC) of the classification, measuring the discrimination
capabilities of the method and providing an indication of the
best performance that can be achieved on the test set by adjusting
the decision threshold. A more practical measure is evaluated by
measuring the probability of correct detection at a fixed False
Positive Rate (FPR) of 5%, indicated as Pd@5%. Specifically, we

use the pristine images in the validation set (5,000 images) to set
the threshold of the SNN-based detector, by fixing the false
positive error of the decision at 5%. The detection
performance are then evaluated on the test set using this
threshold. Both raw (uncompressed) and JPEG compressed
images are considered to determine the threshold, to get a
general operating point for the detector. More specifically, the
5,000 images in the pristine validation set are compressed with
quality factors \{70, 80, 90,100\}, for a total of 25,000 images used
to set the threshold.

5 EXPERIMENTAL RESULTS

We conducted several experiments to assess the performance of
the proposed Eyes-based GAN-generated facial image detector,
particularly in terms of robustness and generalization. The
experiments confirm that, thanks to the use of semantic-
related features and the similarity learning paradigm, robust
and general features are learned by the network.

5.1 Performance Analysis, Generalization
and Robustness
The results of the proposed method in matched and mismatched
conditions, that is, when the fake images generated with the same
and different GAN models, are reported in Table 2, where the
TNR/TPR, the AUC, and the Pd@5% are reported for both the
proposed and baseline method. For the Pd@5%, the FPR
measured on the test set is also reported among brackets.
Since the TNR refers to the pristine class, the TNR values are
the same in all the columns.

Both methods achieve perfect detection results on StyleGAN2
(TPR = 100%). Our method is the one that can achieve the best
overall generalization results. In particular, without threshold
adjustment, it achieves TPR = 84.4% on StyleGAN3 and TPR =
87.2% on ProGAN. For the ResNet50-NoDown, the method can
get perfect results on ProGAN (with a gain of 12.8% in the TPR
with respect to our method), however, it can not generalize to
StyleGAN3, in which case TPR = 1.1%, even if the AUC is good.
The Pd@5% is also poor, being equal to 28.0%. These results
indicate that the ResNet50-NoDown method can not work on
StyleGAN3 without re-calibrating the tool on the same
StyleGAN3 images used for testing.

In Figure 2, we visualize the distribution in the feature space for
each image dataset for our method. Dimensionality reduction is
performed to a 2-dim space bymeans of T-SNE (Van derMaaten and
Hinton, 2008) and UMAP (Mclnnes et al., 2018) technique, shown
respectively in the left and right plot. The separability of the pristine

TABLE 1 | Datasets used for training and testing.

Datasets CelebA_HQ FFHQ StyleGAN2 ProGAN StyleGAN3 Print&Scan

Class Pristine Pristine GAN GAN GAN Pristine,GAN
Training 63,000 27,000 90,000 — — —

Test 3,000 7,000 10,000 10,000 10,000 10,000, 10,000

3https://github.com/grip-unina/GANimageDetection

Frontiers in Signal Processing | www.frontiersin.org July 2022 | Volume 2 | Article 9187256

Wang et al. Eyes-Based GAN Face Detection

https://github.com/grip-unina/GANimageDetection
https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles


and GAN classes is good, with only some overlap between pristine
and the StyleGAN3 images, not considered for training. Interestingly,
StyleGAN2 and StyleGAN3 images get clustered separately both with

the t-SNE and UMAP reduction techniques, while the distribution of
ProGAN overlaps with them. As expected, the pristine images from
FFHQ and CelebA-HQ gets clustered together.

TABLE 2 | TPR/TNR (%), AUC (%) and Pd@5% (%) of the proposed method and the baseline on unprocessed images. Tests are carried out in matched (StyleGAN2) and
mismatched (ProGAN and StyleGAN3) conditions.

Processing type ResNet50-NoDown Ours

TPR/TNR AUC Pd@5% (FPR) TPR/TNR AUC Pd@5% (FPR)

StyleGAN2 100/100 100 100 (0) 100/100 100 100 (2.7)
ProGAN 100/100 100 100 (0) 87.2/100 99.7 97.2 (2.7)
StyleGAN3 1.1/100 100 28.0 (0) 84.4/100 99.6 96.7 (2.7)

FIGURE 3 | GradCAM visualization for the proposed detector. From top to bottom row: FFHQ, CelebA-HQ, StyleGAN2, ProGAN and StyleGAN3. In each row, 3
sample pairs are visualized (left and right eyes).

TABLE 3 | TPR/TNR (%) and AUC (%) of the proposed method and the baseline under various image processing operations. Tests are carried out in matched (StyleGAN2)
and mismatched (ProGAN and StyleGAN3) conditions.

Processing
type

StyleGAN2 ProGAN StyleGAN3

ResNet50-
NoDown

Ours ResNet50-
NoDown

Ours ResNet50-
NoDown

Ours

TPR/TNR AUC TPR/TNR AUC TPR/TNR AUC TPR/TNR AUC TPR/TNR AUC TPR/TNR AUC

JPEG100 100/100 100 100/100 100 100/100 100 82.0/100 99.6 1.9/100 100 79.3/100 99.5
JPEG90 100/100 100 100/100 100 99.4/100 100 69.1/100 98.7 2.1/100 100 69.0/100 98.8
JPEG80 100/100 100 100/100 100 94.3/100 100 55.8/100 97.0 10.0/100 99.6 61.1/100 97.7
JPEG70 100/100 100 100/100 100 92.1/100 100 47.4/100 94.6 10.1/100 97.6 55.2/100 96.3

Gaussian Noise 70.2/74.0 70.8 41.1/90.0 84.6 71.3/74.0 80.4 14.0/90.0 69.9 55.1/74.0 70.8 8/90.0 46.6
Resize- 2 100/100 99.8 99.3/100 100 100/100 100 85.4/100 99.6 1/100 99.8 84.2/100 99.9
Resize- 1.3 100/100 99.8 100/100 100 100/100 100 85.8/100 99.7 1/100 99.8 83.3/100 99.6
Resize - 0.5 92.1/100 97.0 100/99.2 100 100/100 100 85.4/99.2 99.4 3.1/100 97.0 71.2/99.2 98.3
Gaussian blur- 3 × 3 100/100 99.9 100/99.3 100 100/100 100 72.2/99.3 98.6 5.4/100 99.9 73.3/99.3 98.6
Gaussian blur -5 × 5 100/100 99.9 100/99.3 100 100/100 100 63.1/99.3 96.9 8.9/100 99.9 65.0/99.3 97.2
Median filter -3 × 3 88.1/100 65.0 99.0/99.1 100 99.1/100 100 74.4/99.1 97.9 9.3/100 84.0 35.2/99.1 91.4
Contrast enhancement 99.9/100 100 96.1/98.4 99.7 100/80.4 100 60.4/98.4 96.5 0.01/100 94.3 53.7/98.4 94.7
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Figure 3 shows some examples of attention maps obtained for
our method with the GradCAM algorithm (Selvaraju et al., 2017).
The activation maps reveal that our Siamese network indeed
looks the eyes region of the bounding-boxes to take the decision,
confirming the explainability and the semantic nature of the tool.
In particular, we see that the attention is focused on the iris region
of the eyes.

The performance in the presence of processing, that is, when
the real and fake images are subject to post-processing operations,
are reported in Table 3, in terms of TNR/TPR and AUC, and in
Table 4, in terms of Pd@5%, for several types of processing and
processing strength. For the case of Gaussian noise addition, the
parameter we report in the table is the variance of the noise. For
the resize, the scale factor is reported. For the case of Gaussian
blurring, the parameters refer to the size of the Gaussian kernel,
while for the median filtering, it refers to the window size. Finally,
for the contrast enhancement, the image contrast is increased by a
factor of 1.5. All these processing operations correspond to global
manipulations of the image since they affect all the pixels of the
image. A local manipulation is considered in Section 5.2.1.

Looking at the AUC results and at the Pd@5%we see that both
the proposed method and the ResNet50-NoDown show good
robustness against processing, and in particular JPEG
compression, resizing, filtering, blurring and contrast
adjustment. In particular, these experiments confirm the same
trend, with the baseline that outperforms our method on
ProGAN, with an improvement of a few percent in many
cases (and less than 10% in all the cases), but can not
generalize to StyleGAN3, where our methods largely
outperform ResNet50-NoDown. Both methods suffer from
Gaussian noise addition. Given that noise addition has been
considered among the augmentations during the training of
ResNet50-NoDown, but not for the training of our method, it
is not surprising that the performance with respect to this type of
processing for our method is lower.

5.2 Other Results
5.2.1 Performance in the Presence of GAN Splicing
A noticeable strength of the proposed Eyes-based GAN detection
method is that relies on semantic information for the

discrimination. This is not the case with the ResNet50-
NoDown method, which bases the decision on features
automatically extracted by the network from the entire image.
Figure 4 (top row) shows some examples of attention maps
obtained with the GradCAM algorithm (Selvaraju et al., 2017) for
ResNet50-NoDown. As it is often the case with self-learned CNN
architectures, the regions highlighted by the maps - that mostly
affect the decision - are many and spread over the whole image,
lying also in the background, confirming that the method in
Gragnaniello et al. (2021) also suffers from well-known drawback
of poor explainability of CNN-based solutions.

Due to this behavior of the baseline method, we then expect an
advantage of our tool based on semantic features under local
manipulations, e.g., in the GAN splicing scenario, when the GAN
object (the face, in this case) is pasted on a real background.

To run some tests in the image spicing scenario, we generated
a number of forged images for the case of real and synthetic faces,
by cutting the foreground person from the image and pasting it
on a real background. A total of 30 GAN spliced images for each
GAN type (StyleGAN2, ProGAN and StyleGAN3) and 30 real
spliced images are obtained in this way. An example of a local
GAN spliced image is illustrated in Figure 5. Some examples of
attention maps for ResNet50-NoDown obtained by running the
GradCAM algorithm on the spliced images are provided in
Figure 4 (bottom row).

The results of the tests are provided in Table 5, where we
report the Pd@5% obtained using the same threshold as before,
set on the validation set. Obviously, the performance of our
method is not affected by the splicing operations, given that the
eyes region remains the same. Regarding the performance of the
baseline, we observe that, although the evidence that can be found
in the foreground is enough for the method to perform correct
discrimination in the StyleGAN2 case (that is when the pasted
foreground corresponds to a StyleGAN2 face), the presence of the
real background affects the performance of generalization. In the
case of StyleGAN3, where the performance was already poor in
the non splicing case, the method gets Pd@5% = 3% on the GAN
spliced images (i.e., the GAN spliced images are detected as real
with a probability of 97%). In the ProGAN case, the Pd@5%
decreases by 10%.

TABLE 4 | Pd@5% (FPR) for the proposed method and the baseline under various image processing operations. The FPR (%) measured on the test set is reported among
brackets. Tests are carried out in matched (StyleGAN2) and mismatched (ProGAN and StyleGAN3) conditions.

Processing type StyleGAN2 ProGAN StyleGAN3

ResNet50-NoDown Ours ResNet50-NoDown Ours ResNet50-NoDown Ours

JPEG100 100 (0) 100 (2.7) 100 (0) 96.3 (2.7) 14.0 (0) 96.1 (2.7)
JPEG90 100 (0) 100 (3.6) 100 (0) 92.0 (3.6) 96.2 (0) 93.3 (3.6)
JPEG80 100 (4.1) 100 (5.9) 100 (4.1) 85.4 (5.9) 98.1 (4.1) 89.4 (5.9)
JPEG70 100 (18.7) 100 (8.0) 100 (18.7) 79.1 (8.0) 100 (18.7) 87.4 (8.0)
Gaussian Noise 0.01 94.2 (54.7) 61.1 (12.8) 93.4 (54/7) 25.2 (12.8) 88.2 (54.7) 2 (12.8)
Resize - 2 100 (0) 100 (3.0) 100 (0) 97.3 (3.0) 26.0 (0) 97.2 (3.0)
Resize - 1.3 100 (0) 100 (2.6) 100 (0) 97.2 (2.6) 23.0 (0) 97.3 (2.6)
Resize - 0.5 99.2 (0) 100 (6.1) 99.2 (0) 98.3 (6.1) 25.0 (0) 94.4 (6.1)
Gaussian blur- 3 × 3 100 (0) 100 (6.0) 100 (0) 93.3 (6.0) 55.4 (0) 94.3 (6.0)
Gaussian blur - 5 × 5 100 (0) 100 (9.0) 100 (0) 90.1 (9.0) 67.3 (0) 92.2 (9.0)
Median filter - 3 × 3 100 (21.1) 100 (9.3) 100 (21.1) 93.1 (9.3) 79.3 (21.1) 72.3 (9.3)
Contrast enhancement - 1.5 100 (0) 100 (13.8) 100 (0) 93.2 (13.8) 10.0 (0) 89.2 (13.8)
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5.2.2 Performance on Print&Scan Images
We also run some tests on the Print&Scan dataset in order to
investigate the robustness of the proposed method to the
rebroadcast operation and assess whether the features the
detectors look at to reveal the GAN nature of the image
survive recapturing. Being our method based on semantic
attributes (eyes clues), we expect a better robustness against
recapturing compared to the state-of-the-art method based on
features automatically learnt from the full image. Some examples
of recaptured GAN and real images, alongside the original digital
versions, from the Print&Scan dataset are reported in Figure 6.
We can see a noticeable quality degradation in the recaptured
images. In particular, noisy textures are visible and the colors are
changed.

The ROC curve of the proposed Eyes-based GAN-generated
facial image detector and the baseline method on the
Print&Scan image dataset are reported in Figure 7. We see

that our method can achieve some noticeable discrimination
capability. In particular, using the same threshold fixed on the
validation set for digital images we get Pd@5% = 76% with a
FPR = 22%, that is relevant results given the significant
difference in the test image domain in this case. Adjusting
the threshold on recaptured data helps improve the
performance of the detector by 4% in the Pd@5% for the
same FAR. Given that the Print&Scan dataset (Ferreira et al.,
2021) is very challenging and recapturing attacks are very
strong attacks, the results achieved by our method are good
ones. From Figure 6 (right), we see that the recapturing
operation completely destroys the (weak) features that the
ResNet50-NoDown method looks at, and no discrimination
between real and fake can be obtained using this network, the
AUC being around 61.6%.

5.3 Ablation Study
In Table 6, we report the performance of the Eyes-based GAN-
generated facial image detector when different network
architectures are considered to implement the two branches
of the SNN. The performance achieved by training a standard
XceptionNet on the entire image (Marra et al., 2018) is also
reported for completeness. This table shows that the SNN with

FIGURE 4 | GradCAM visualization for ResNet50-NoDown (Gragnaniello et al., 2021) before (top) and after (bottom) image splicing.

FIGURE 5 | Example of splicing operation in FFHQ dataset. From left to right: original image, real background, spliced image.

TABLE 5 | Results in terms of Pd@5% (FAR) achieved on spliced images.

Datasets StyleGAN2 ProGAN StyleGAN3

ResNet50-NoDown 100 (0) 90 (0) 3 (0)
Ours 100 (0) 97 (0) 100 (0)
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the modified XceptionNet corresponds to the best choice,
getting better results than the standard XceptionNet.
Moreover, better results are achieved using XceptionNet as
the backbone, with respect to ResNet50, that is the network
considered in Gragnaniello et al. (2021). Interestingly, all the
models get a TPR of 100% on StyleGAN2 images (the TNR is
also 100%), and the difference among the trained models relies
on the results with ProGAN and StyleGAN3 images, that is, in
the generalization performance. In particular, the SNN with
the modified version of XceptionNet (best choice) can
improve the generalization on ProGAN and StyleGAN3
images by 39 and 64% in the TPR, respectively, with

respect to the standard XceptionNet model trained on the
entire image. These results justify our choice of the modified
XceptionNet as the backbone network for the two
convolutional branches of the SNN.

6 CONCLUSION

We proposed a semantic-based method for GAN-generated
face images detection that reveals the synthetic nature of a
face image based on the analysis of eye clues, exploiting the
similarity learning paradigm and Siamese Neural Networks

FIGURE 6 | Examples of images from the Print&Scan image dataset (Ferreira et al., 2021) (top), and corresponding digital image (bottom). From left to right, the first
3 images are real, the last 3 are GAN.

FIGURE 7 | Performance (AUC) on the Print&Scan image dataset: the proposed SNN-modifiedXceptionNet (A) and ResNet50-NoDown (B).

TABLE 6 | Performance comparison among different network architectures.

Architectures StyleGAN2 ProGAN StyleGAN3

TNR/TPR AUC TNR/TPR AUC TNR/TPR AUC

Xception Marra et al. (2018) 100/100 100 100/21.0 93.0 100/16.0 85.8
SNN-Xception 100/100 100 100/43.0 96.0 100/73.0 99.0
SNN-modifiedXception 100/100 100 100/62.0 98.7 100/80.0 99.3
SNN-modifiedResNet50 90.2/100 100 90.2/30.1 69.0 90.2/90.0 96.5
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(SNNs). The method relies on the underlying assumption
that GANs are not perfect in reconstructing inter-eye
symmetries between the two eyes. The SNN is
implemented by considering a modified XceptionNet as
backbone network. Our experiments showed the good
performance of the method both in terms of robustness
against processing and generalization to unseen GAN
architectures. In particular, the method can achieve
comparable results to the best performing state-of-the-art
method for GAN detection that works on the entire image,
with the generalization and robustness performance being
even superior in some cases.

Similarly to what has already been done for the detectors
working full image (Bondi et al., 2020; Wang et al., 2020;
Gragnaniello et al., 2021), it would be interesting to study the
impact of the augmentation strategy on the performance of the
method and see experimentally if there is an optimized chain
of augmentations that allow to get better robustness and
generality.

Future work will try to further improve the generalization and
robustness capability of the detector by performing fusion with
other detectors resorting to semantic analysis, that is, looking at
other semantic facial attributes [e.g., the mouth (Suwajanakorn
et al., 2017; Haliassos et al., 2021), or the nose (Chen and Yang,
2021)]. The existence of inconsistencies in symmetries that might
come from other facial attributes, e.g., eyebrows or mouths
shapes, is also worth investigation. Such inconsistencies could
be exploited using an architecture based on Siamese Networks
similar to the one used in this paper to get facial attributes-based
detectors with improved robustness, thanks to the similarity-
learning paradigm.

Finally, the behavior of the proposed network, obtained by
inspecting activation maps, suggests that an algorithm could
also be designed that looks specifically at the inconsistencies
between the irises region by means of a Siamese Network
architecture similar to the one proposed in this paper. To that
purpose, the development of a method for the estimation of the
(internal and external) circular corneal region, possibly
resorting to the superior capabilities of CNNs for iris
segmentation, is a necessary first step and also an
interesting future research.
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