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Abstract
We introduce a methodology based on averaging similarity matrices with the aim of integrating the
layers of a multiplex network into a single monoplex network. Multiplex networks are adopted for
modelling a wide variety of real-world frameworks, such as multi-type relations in social,
economic and biological structures. More specifically, multiplex networks are used when relations
of different nature (layers) arise between a set of elements from a given population (nodes). A
possible approach for analyzing multiplex similarity networks consists in aggregating the different
layers in a single network (monoplex) which is a valid representation—in some sense—of all the
layers. In order to obtain such an aggregated network, we propose a theoretical approach—along
with its practical implementation—which stems on the concept of similarity matrix average. This
methodology is finally applied to a multiplex similarity network of statistical journals, where the
three considered layers express the similarity of the journals based on co-citations, common
authors and common editors, respectively.

1. Introduction

Multilayer networks constitute an increasing active research topic with applications in many different
disciplines, such as social or biological sciences. A multilayer network is a collection of individual
networks—referred to as layers—each containing its own nodes and edges, with additional edges between
the various layers. For more details on multilayer networks, see the recent monographs by Bianconi (2018),
De Domenico (2022) and Dickison et al (2016), or the survey paper by Kivelä et al (2014).

A noteworthy special case of multilayer network is the so-called multiplex network, which is
characterized by the same set of nodes in each layer (see e.g. Newman 2018, section 6.7). Indeed, in multiplex
networks a unique node type is present, while different edge types may occur. In such a case, the linking
edges between the various layers trivially connect replicas of the same node in the different layers, even if
such edges (interlayers) are omitted in practice for simplicity. Characteristic examples of multiplex networks
are social networks, where the nodes are the individuals in a well-defined community with different types of
relational ties between them (such as friendship, family or co-worker connections). Each type of relation is
represented as a separate layer—see Bianconi (2018) for real examples of social, on-line social, economic and
financial multiplex networks. A multiplex structure often emerges when studying relations among a fixed
population of n objects which are described bym different sets of features. This setting can be modelled as an
m-layered network, where each layer is a bipartite (two-mode) network and one set of the bipartition (the set
of n objects) is common to all the layers, while the other varies between layers (each of them sets of features).
Thus, one can consider the one-mode projections on the common set of nodes on each layer, or a suitable
similarity score between the objects for each type of feature. This framework produces a multiplex
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(similarity) network, where the nodes represent the set of n objects. A multiplex network illustration in the
field of scientometrics is provided by Baccini et al (2022). Specifically, these authors consider multiplex
networks of journals in different disciplines constituted by three layers based on co-citations, common
authors, and common editors (see also Baccini et al 2020). A further instance of multiplex network modelling
can be found in the field of epigenetics, as shown by Baccini et al (2022). Indeed, Baccini et al (2022)
consider a multiplex network of blood cell phenotypes, where the layers are based on different epigenetic
modifications. In both the examples, the multiplex is obtained after the computation of a similarity score
starting from a multilayer network with bipartite networks on each layer, as previously described.

A tool for investigating the structure of multiplex networks is based on the ‘aggregation’ (in some
appropriate way) of the different layers in order to obtain a suitable monoplex network, i.e. a single layer. The
integration of the information contained in multilayer networks, including the special case of multiplex
networks, is motivated by the need of facilitating the visualization and the analysis of the global structure of a
set of interacting entities. Indeed, if the aggregated network is a suitable representation of the global
structure, it can reveal properties that are hardly detectable from the multi-layered structure (Wang et al
2014). This research direction is particularly relevant in genetic and biology, where several methods have
been developed to integrate multi-omics data (see, for instance, Argelaguet et al 2018, 2020, Huizing et al
2023). Moreover, the resulting monoplex network is useful to interpret the strong connections between
nodes and—eventually—to implement a cluster analysis for searching cohesive groups in the original
multiplex network. In addition, the analysis of the correlation between the monoplex and the single layers
may be helpful to detect the global community structure.

In such a setting, the target is focused on how to aggregate the different layers. A straightforward
procedure for implementing an aggregated network may be based on a weighted average of the adjacency
matrices corresponding to the layers (see e.g. Kivelä et al 2014, and references therein). Even if this strategy
actually produces a single weighted adjacency matrix which characterizes the monoplex, it is prone to some
drawbacks, since some layers may be over-represented. Moreover, the choice of the weights is subjective
(Kivelä et al 2014). A more proper approach would be to consider similarity matrices—with suitable
features—obtained from the adjacency matrices corresponding to the single layers, and then carry out an
‘average’ of these similarity matrices according to well-defined mathematical properties. Subsequently, by
means of an appropriate similarity matrix average, the aggregated network is obtained.

In the present paper, we consider some recent advances in the theory of barycenters of objects lying in
abstract spaces finalized to the concept of average for positive definite matrices (Bhatia 2009, Álvarez-Esteban
et al 2016). More precisely, starting from two-mode multilayer networks, we first show that the
corresponding similarity matrices based on the commonly-adopted similarity measures—such as the
Jaccard, the cosine, and the SimRank similarity—belong to the space of completely positive matrices, which
is a subspace of positive definite matrices. The space of completely positive matrices is the very natural space
for similarity matrices, since its elements are the symmetric positive definite matrices with nonnegative
entries. Subsequently, in order to aggregate multiplex networks, we consider the Fréchet mean criterion (see
e.g. Bacák 2014) with three different metric choices—i.e. the classical Frobenius metric, the Riemannian
metric, and the Wasserstein metric—to achieve appropriate definitions of average for positive definite
matrices. In addition, we remark the properties of the averages obtained with the three metrics. We also
discuss the choice of the weights to be adopted in the Fréchet criterion. Finally, we illustrate the theoretical
findings with an application to the aforementioned multiplex networks considered by Baccini et al (2022) in
the field of scientometrics.

The paper is organized as follows. Section 2 contains some preliminaries and notation. In section 3 we
show that similarity matrices based on Jaccard, cosine and SimRank similarity are completely positive. In
section 4 we present the theoretical framework to compute the averages of the similarity matrices connected
to the multiplex networks. In section 5 we propose some choices for the weights involved in the averages.
Section 6 presents the details of the code implementation for the practical computation of the averages.
Section 7 presents the application to the multiplex network involving statistical journals. Finally, section 8
draws some conclusions.

2. Some notations and preliminaries

Let us assume that Pn is the space of symmetric positive semidefinite matrices of order n, i.e.

Pn = {X ∈ Rn×n : X= XT,X⪰ 0},

where X⪰ 0 denotes that the eigenvalues of X are nonnegative. The space Pn is a differentiable manifold in
the set of Hermitian matrices (for more details on this class of matrices, see Bhatia 2009, chapter 6). The

2



J. Phys. Complex. 4 (2023) 025017 F Baccini et al

Frobenius inner product on Pn is defined by ⟨X,Y⟩F = tr(XTY) for X,Y ∈ Pn, and the associated Frobenius
norm is given by ∥X∥F = tr(XTX)1/2. If X ∈ Pn, X

1/2 denotes the unique positive definite matrix such that
X= X1/2X1/2, while the corresponding normalized matrix is given by λ1(X)−1X, where λ1(X)> 0 represents
the largest eigenvalue of X. Finally, if X= (xij) is a square matrix of order n, we assume that diag(X) = (δijxij),
while if x= (x1, . . . ,xn)T is a vector then diag(x) = (δijxi), where δij represents the Kronecker delta.

Let us consider the subspace CPn ⊂ Pn of completely positive matrices, i.e.

CPn = {X ∈ Rn×n : X= YTY,∃Y ∈ Rp×n,Y⩾ 0},

where X⩾ 0 denotes that the entries of X are nonnegative. For the properties of this class of matrices, see the
monographs by Berman and Shaked-Monderer (2003), Shaked-Monderer and Berman (2021) and Johnson
et al (2020). A necessary condition for a matrix X to be completely positive is that X⪰ 0 and X⩾ 0, even
if—contrary to intuition—this condition is not generally sufficient (Berman and Shaked-Monderer 2003). In
addition, Berman and Shaked-Monderer (2003) show that CPn is a closed convex cone in the class of
Hermitian matrices—and hence in Pn. The following proposition provides some results on completely
positive matrices which will be helpful in the following sections.

Proposition 2.1. By assuming that X,Y ∈ CPn, it holds:

(i) X+Y ∈ CPn;
(ii) X⊙Y ∈ CPn, where the symbol⊙ denotes the Hadamard product;
(iii) ZTXZ ∈ CPn if Z is a square matrix of order n such that Z⩾ 0.

Proof. See corollary 2.1, 2.2 and proposition 2.2 by Berman and Shaked-Monderer (2003).

3. Completely positive similarity matrices from two-mode networks

In the present section we discuss the emergence of similarity matrices from the one-mode projection of a
two-mode network. In particular, we show that the resulting matrices are completely positive. Let us consider
two-mode (bipartite) networks, i.e. networks displaying two types of nodes where edges solely tie nodes of
different type (for more details on bipartite networks, see e.g. Newman 2018, chapter 6). This kind of
networks is commonly adopted to describe the membership of a set of p items to n groups. The items are
represented by the first set of nodes, while the groups are represented by the second set of nodes—and the
edges connect the items to the groups they belong to. A bipartite network captures exactly the same
information as a hypergraph, even if for most purposes bipartite networks are more convenient (Battiston
et al 2020). Indeed, many social and biological networks belong to this family. For instance, in social sciences,
bipartite graphs are suitable to model the membership of individuals to groups of variable size, or to describe
a collaboration of authors to scientific papers. In biology, a protein-protein interaction network can be seen
as a two-mode network where proteins are linked to the protein complexes they belong to (for more
examples of real-world bipartite networks see e.g. Wasserman and Faust 1994 and Pavlopoulos et al 2018).

A two-mode network can be characterized by an incidence matrix B= (bij) of order (p× n), where

bij =

{
1 if item i belongs to group j

0 otherwise .

To avoid triviality, we assume that there exist i ∈ {1, . . . ,p} such that bij = 1 for each j = 1, . . . ,n, i.e. there is
at least one item for each group. Obviously, it holds that B⩾ 0. In order to provide a practical illustration in
the scientometric setting, the network of journals and editors in a given discipline may be considered as an
example of a two-mode bipartite network with p editors as items and n journals as groups. In such a case, bij
constitutes the indicator variable for the membership of the ith editor to the jth journal. On the basis of the
incidence matrix B, the one-mode projection with respect to groups of the two-mode bipartite network can
be considered. Hence, if G= (gij) is the matrix of order (n× n) such that G= BTB, it holds that
gij =

∑p
k=1 bkibkj, i.e. the entry g ij gives the total number of items which are in both the ith group and the jth

group for i, j = 1, . . . ,n. Consequently, g ii gives the number of items in the ith group. As an example, in the
network of journals and editors, gij provides the number of editors belonging to the board of both the ith
journal and the jth journal, while g ii is the number of editors in the board of the ith journal. This definition
of G implies that G ∈ CPn.
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The weighted adjacency matrix Z= (zij) of order (n× n) corresponding to the weighted one-mode
projection is defined as Z= G− diag(G). Thus, zij denotes the weight of the edge between the ith group node
and the jth group node. The corresponding unweighted adjacency matrix A= (aij) of order (n× n) is such
that aij = 1{zij>0} for i, j = 1, . . . ,n, where 1E is the indicator function of the set E. Hence, aij is
binary-valued, as it assumes value 1 if there is an edge between the ith group node and the jth group node, 0
otherwise. As an example, in the network of journals and editors, aij = 1 if the ith journal and the jth journal
share at least one editor, and aij = 0, otherwise. It is clear that Z⩾ 0 and A⩾ 0. Finally, we consider the
matrix F= ( fij) given by F= ATA= A2. Thus, since fij =

∑n
k=1 akiakj, the entry f ij gives the total number of

common neighbors between the ith group node and the jth group node for i, j = 1, . . . ,n. Moreover, since
a2ij = aij for i, j = 1, . . . ,n, the entry f ii gives the degree corresponding to the ith group node. On the basis of
its definition, it is also follows that F ∈ CPn.

The introduction of the matrices G, Z and F permits to analyze some common choices of similarity
measures that allow to build one-mode networks. Our aim is to show that the commonly adopted similarity
matrices are completely positive. Newman (2018, section 7.6) indicates several measures of structural and
regular equivalence, which are appropriate for assessing the similarity of network nodes. Concerning the
normalized similarity measures of structural equivalence, g ij belongs itself to this class of similarity measures.
Therefore, Gmay be considered as a similarity matrix, even if it may be not suitable to adopt this option in
practice. Some authors implement the similarity matrices of structural equivalence on the basis of the matrix
G (see e.g. Leydesdorff 2008), while others suggest the matrix F to the same aim (see e.g. Newman 2018,
section 7.6). Since both these matrices are completely positive, we provide the following results by adopting
G—even if they can be also obtained by using F in place of G.

In the context of similarity matrices of structural equivalence, Newman (2018) emphasizes that the
well-known Jaccard coefficient and the cosine similarity coefficient are the most widely used for the practical
analysis of networks (see also Van Eck and Waltman 2009). We first consider the similarity matrix J= (Jij) of
order (n× n) which is based on the Jaccard coefficient. More precisely, J ij constitutes the Jaccard coefficient
between the ith group and the jth group, i.e.

Jij =
gij

gii+ gjj− gij
.

It should be remarked that the quantity (gii+ gjj− gij) in the denominator of J ij actually represents the total
number of items belonging to the ith group or to the jth group. Hence, J ij is a normalized similarity measure
in [0,1] obtained by considering the common items to the two groups divided by the total number of distinct
items in the two groups. Since G is symmetric, it can be easily proved that J is in turn symmetric. The
following proposition provides the target result on J.

Proposition 3.1. The matrix J is completely positive.

Proof. Let us consider the matrix U= (uij) of order (n× n) where

uij = p− gii− gjj+ gij,

i.e. uij gives the total number of items which do not belong to the ith group and/or to the jth group. Since
G= BTB and since b2ij = bij for i, j = 1, . . . ,n, it reads

uij =

p∑
k=1

(1− bki− bkj+ bkibkj) =

p∑
k=1

(1− bki)(1− bkj).

Hence, it holds U= (1p1Tn −B)T(1p1Tn −B), where 1p denotes the column vector of length p with all entries
equal to 1, and 1Tn is the row vector of length n with elements all equal to 1. Since 1p1Tn −B⩾ 0, we have that
U ∈ CPn. Moreover, let us consider the matrix V= (vij) of order (n× n) such that

vij =
1

1− uij/p
=

∞∑
k=0

1

pk
ukij,

where the last equality is obtained from the Geometric series, since it holds 0< uij < p on the basis of the
definition of uij. The matrix V may be expressed as

V=
∞∑
k=0

1

pk
Uk,

4
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where the matrix Uk is recursively defined as Uk = Uk−1 ⊙U with the initial condition U0 = 1n1Tn . Since the
Hadamard product of completely positive matrices is in turn a completely positive matrix from (ii) of pro-
position 2.1 and U0 ∈ CPn, it also holds that Uk ∈ CPn. In addition, since also the sum of completely positive
matrices is a completely positive matrix from (i) of proposition 2.1, and CPn is a closed cone, it follows that
V ∈ CPn. Thus, since

J=
1

p
G⊙V

and G ∈ CPn, we conclude that J ∈ CPn.

In the framework of structural equivalence, a further suitable similarity matrix is obtained from the
cosine similarity coefficient. This choice yields a similarity matrix C= (cij) of order (n× n), where the entry
cij represents the cosine similarity coefficient

cij =
gij

(giigjj)1/2
. (1)

The denomination ‘cosine coefficient’ derives from its morphology as a ratio of an inner product of two
vectors to the product of the corresponding norms. Hence, on the basis of the Cauchy–Schwarz inequality, cij
is a normalized similarity measure in [0,1]. Moreover, since G is symmetric, it can be easily shown that C is
in turn symmetric. The following proposition gives a result analogous to proposition 3.1 for the matrix C.

Proposition 3.2. The matrix C is completely positive.

Proof. Let us consider the vector v= (g−1/2
11 , . . . ,g−1/2

nn )T of order n and the diagonal matrixU= diag(v). The
matrix C can be expressed as

C= UTGU= UTBTBU= (BU)TBU,

and hence C ∈ CPn since BU⩾ 0.

In the framework of normalized similarity measures of regular equivalence, the SimRank similarity
measure, originally introduced by Jeh and Widom (2002), is often considered (see Newman 2018, section
7.6). The SimRank similarity matrixΣ = (σij) of order (n× n) satisfies the matrix equation
Σ = cPTΣP+D, where c ∈ (0,1) is the so-called delay factor, while D= diag(d) with d= (d1, . . . ,dn)T is
such that di ∈ [1− c,1] for i = 1, . . . ,n (see e.g. Liao et al 2019). In addition, P= (pij) is the
column-normalized adjacency matrix A, i.e. pij = aij/

∑n
l=1 ail, and hence P⩾ 0. In turn, the following

proposition provides the target result forΣ.

Proposition 3.3. The matrixΣ is completely positive.

Proof. The matrix equation which defines Σ may be recursively solved in order to obtain the series
representation

Σ =
∞∑
k=0

ck(PT)kDPk.

Since P⩾ 0 by definition, it holds that Pk ⩾ 0 on the basis of (ii) of proposition 2.1 and hence (PT)kDPk =
(Pk)TDPk ∈ CPn on the basis of (iii) of proposition 2.1. Since the sum of completely positive matrices is a
completely positive matrix from (i) of proposition 2.1 and CPn is a closed cone, it follows thatΣ ∈ CPn.

In this section we have dealt with the Jaccard and cosine similarity, as well as the SimRank (strictly
connected to the Katz similarity), since they are usually considered as the most representative and the most
frequently-used similarity measures in the framework of structural and regular equivalence (see Newman
2018, and references therein). The preference between these similarities mostly depends on the nature of the
data to be analyzed. In any case, despite the choice of the similarity measure, it should be generally required
that the corresponding similarity matrix is completely positive, since CPn is the natural space for such a
matrix.
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4. Aggregation of multiplex networks

Let us consider a multilayer network where each layer is a two-mode bipartite network. We assume the
additional property that the bipartite graphs on each layer have in common one of the two sets of the node
bipartition. The distinct subsets of nodes can be interpreted as distinct sets of items, while the vertex subset
can be seen as a set of groups the different items belong (or do not belong) to. A practical example of this
structure is constituted by a network of journals in a given discipline with respect to the editors in the journal
boards and to the authors contributing to the journals. These relations can be modelled as a two-layer
network of the type described above. Indeed, the first layer is a bipartite graph connecting editors (items) to
journals (groups); the second layer is a bipartite graph connecting authors (items) to journals (groups).
Therefore, the set of journals (groups) is common to both layers. This particular multilayer structure can be
turned into a multiplex network by considering the one-mode projection of each layer on the common subset
of nodes. Figure 1 displays the example of the simple two-layer journal network just discussed (figure 1(a)),
which can be turned into a multiplex network of journals (figure 1(b)) through one-mode projection.

Let us deal with a multilayer network withm layers having the structure described above. For the seek of
simplicity, we will refer to the common set of nodes in all the layers as the set of groups, and to the distinct
set of nodes as the set of items. Let n denote the number of groups. Formally,m two-mode bipartite networks
are considered, where for the kth layer there exists an incidence matrix Bk = (bk,ij) of order (pk× n), with pk
denoting the set of items in the kth layer, and

bk,ij =

{
1 if item i of layer k belongs to group j

0 otherwise ,

with k= 1, . . . ,m. Thus, there aremmatrices Gk = (gk,ij) of order (n× n) given by Gk = BT
kBk for

k= 1, . . . ,m. Correspondingly, there are k weighted and unweighted adjacency matrices Zk = (zk,ij),
Ak = (ak,ij) and Fk = ( fk,ij) of order (n× n) for k= 1, . . . ,m. Based on the matrices Gks or Fks, it is possible
to definem suitable similarity matrices for each layer. Thus, we explore the aggregation ofm layers of the
multiplex network into a monoplex, i.e. we assess how to achieve a suitable synthesis of the multiplex
network. This problem is pursued by averaging in some appropriate way them similarity matrices
corresponding to the layers, which will be denoted as S1, . . . ,Sm. Specifically, three proposals for a suitable
average, which will be indicated as S+, of them similarity matrices S1, . . . ,Sm ∈ CPn will be considered.

The computation of the barycenter of a set of objects is generally based on the minimization of an
appropriate objective function. More precisely, S+ is obtained as

S+ = arg min
X∈Pn

m∑
k=1

wkd(X,Sk)
2, (2)

where d : Pn×Pn → R+ is a metric on Pn, while the known weights w1, . . . ,wm are such that wk ⩾ 0 for
k= 1, . . . ,m and

∑m
k=1wk = 1. In a general framework, S+ provides the so-called Fréchet mean (see e.g.

Bacák 2014). However, the Fréchet mean might be not suitable in an arbitrary metric space, although it is
highly appropriate in a geodesic metric space of non-positive curvature—a Hadamard space—such as Pn.
The existence and uniqueness of the minimizer S+ in a Hadamard space is assured by theorem 2.4 by Bacák
(2014). It should be remarked that S+ is defined as a minimizer on Pn in expression (2). However, we seek
for a S+ that is, in turn, a similarity matrix, i.e. we would require that S+ is symmetric positive semidefinite
with non-negative entries. Since CPn is a closed convex cone in P (see section 2), the existence and
uniqueness of S+ in CPn are guaranteed if them similarity matrices S1, . . . ,Sm are defined in CPn.

We have to point out that the proposed statistical approach, which is based on the minimization of
expression (2), is descriptive in its own nature, since we do not assume a stochastic network setting. Indeed,
our target consists in providing a reasonable concept of network barycenter when a multiplex network is
considered for exploratory data analysis. This goal is fulfilled by means of the minimization of a weighted
sum of squared matrix distances, in the spirit of the celebrated least squares method. However, advanced
inferential frameworks exist, where statistical models on network spaces are suitably indexed by an average
population network (to be appropriately defined). For example, by considering a network space equipped
with the Hamming distance, Banks and Carley (1994) proposed an exponential-type distribution for
network-valued random mappings characterized by a network-valued ‘location’ parameter (defined as the
central network by these authors) and a real-valued ‘dispersion’ parameter. Noteworthy, the maximum
likelihood estimate of the central network corresponds to the sample Fréchet mean, as given in

6
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Figure 1. Scheme depicting an example of multilayer network of journals, editors and authors with two layers, each containing a
bipartite graph. We start by considering a multilayer network with a bipartite network on each layer (a). In (a), the set of journals
(blue nodes) is common to all the layers, while the green and pink sets represent editors and authors, respectively. The one mode
projection on the set of journals allows to obtain the multiplex network (b), where nodes on each layer are journals.

expression (2). In addition, Lunagómez et al (2021) consider generalizations of the model by Banks and
Carley (1994) and emphasize the central role of the sample Fréchet mean for the location parameter
estimation under the Bayesian paradigm. Hence, there is an interesting connection between our descriptive
approach and the estimation of the central network under the model-based approach.

In the following subsections, we discuss the adoption of three appropriate metrics d, i.e. the Frobenius,
the Riemannian and the Wasserstein metrics, and the properties of the corresponding S+.

4.1. Frobenius metric
If the classical Frobenius metric is adopted, i.e.

dF(X,Y) = ∥X−Y∥F = tr((X−Y)T(X−Y))1/2

for X,Y ∈ Pn, the weighted mean suggested in Abdi et al (2005) is obtained

S+F =
m∑
k=1

wkSk. (3)

From (i) of proposition 2.1, S+F ∈ CPn as expected, since S+F is a weighted sum of completely positive
matrices with positive weights. However, this proposal may involve a ‘swelling effect’ as a drawback, in the
sense that S+F may show an increase in the determinant with respect to the single components of the mean
(see e.g. Fletcher and Joshi 2007). To be more precise, if a given matrix average S+ is considered, the swelling
effect generally occurs when det(S+)⩾ det(Sk) for each k (Arsigny et al 2007).

4.2. Riemannianmetric
Let us assume the Riemannian metric, i.e.

dR(X,Y) = ∥ log(X−1/2YX−1/2)∥F
= tr(log(X−1/2YX−1/2)T log(X−1/2YX−1/2))1/2

for X,Y ∈ Pn. Bhatia (2009, chapter 6, theorem 6.1.6) remarks that dR naturally arises in the framework of
Riemannian geometry (for further details, see also Bhatia and Congedo 2019, and references therein).
Moreover, dR may be considered as the matrix version of the Fisher-Rao metric for probability laws (see in
turn chapter 6 in Bhatia 2009). In this case, the matrix S+R exists and is the unique solution of the nonlinear
matrix equation in X given by

m∑
k=1

wk log(X
1/2S−1

k X1/2) = 0, (4)

even if it is not generally expressible in closed form (see e.g. Lim and Pálfia 2014a, 2014b).
In order to introduce the explicit expression of S+R form= 2, let us consider the weighted geometric

mean of two matrices X,Y ∈ Pn, i.e.

X#wY= X(X−1Y)w = X1/2(X−1/2YX−1/2)wX1/2, (5)

7
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where w ∈ [0,1] (for its properties, see Bhatia 2009, and for its efficient computation see Iannazzo 2016).
Obviously, if X and Y were scalars and w= 1/2, expression (5) reduces to the usual geometric mean of two
numbers. Moreover, if X,Y ∈ Pn it follows that X#wY ∈ Pn (Lim and Pálfia 2014a). Actually, form= 2 it can
be proven that the solution of the nonlinear matrix equation (4) is given by

S+R = S2#w1S1 = S1/22 (S−1/2
2 S1S

−1/2
2 )w1S1/22 (6)

(see e.g. Bhatia 2009, p 210). This is the reason for which S+R is named as the weighted geometric mean of
positive definite matrices also for a generalm. It should be remarked that S+R = S1 if w1 = 1 and S+R = S2 if
w1 = 0. Moreover, since S+R constitutes a geodesic from S1 to S2 for varying w1 ∈ [0,1] (see e.g. Bhatia 2009,
p 210) and CPn is a closed convex cone in Pn, then S+R ∈ CPn form= 2.

Ifm⩾ 3, Lim and Pálfia (2014a) propose an iterative procedure for computing S+R. Let us define the
iterative sequence

Xℓ+1 = Xℓ#tℓ+1Sjℓ+1 (7)

for ℓ= 1,2, . . . , where X1 = Sj1 and tℓ = wjℓ/
∑ℓ

i=1wji . In addition, jℓ = (ℓ mod m) and null residuals are
identified withm, i.e. jim =m for i = 1,2, . . .. Accordingly, Lim and Pálfia (2014a) prove that limℓXℓ = S+R.
In Massart et al (2018), an alternative choice leading to a more efficient computation of the index jk is
provided. Since at each step Xℓ ∈ CPn, it also follows that S+R ∈ CPn. Moreover, S+R ⪯ S+F holds on the
basis of the generalized arithmetic-geometric-harmonic mean inequality (see Lim and Pálfia 2014b), a result
which emphasizes that S+R may be less prone than S+F to the swelling effect.

4.3. Wasserstein metric
A further proposal for d is given by the Wasserstein metric, i.e.

dW(X,Y) = tr(X+Y− 2(X1/2YX1/2)1/2)1/2

for X,Y ∈ Pn (for more details, see e.g. Bhatia et al 2019). Bhatia et al (2019) emphasize that dW displays
many interesting features and, among others, it corresponds to a metric in Riemannian geometry.
Álvarez-Esteban et al (2016) prove that S+W is provided by the unique solution of the nonlinear matrix
equation in X given by

X=
m∑
k=1

wk(X
1/2SkX

1/2)1/2 (8)

and S+W ∈ Pn (see also Bhatia et al 2019). The solution of the nonlinear matrix equation (8) is solely known
in a closed form form= 2 and it reads

S+W = w2
1S1 +w2

2S2 +w1w2((S1S2)
1/2 +(S2S1)

1/2) (9)

(see Bhatia et al 2019). Incidentally, it is interesting to remark that, if S1 and S2 were scalars and
w1 = w2 = 1/2, expression (9) actually provides the average of the usual arithmetic and geometric means of
two numbers. Similarly to the case of the weighted geometric mean, it holds that S+W = S1 if w1 = 1 and
S+R = S2 if w1 = 0, while S+W is a geodesic from S1 to S2 for varying w1 ∈ [0,1] (Bhatia et al 2019) and hence
S+R ∈ CPn form= 2.

In order to manage the casem⩾ 3 by adopting an algorithm based on a fixed-point iteration method,
Álvarez-Esteban et al (2016) suggest to consider the matrix function K : Pn →Pn such that

K(X) = X−1/2

(
m∑
i=1

wi(X
1/2SiX

1/2)1/2

)2

X−1/2. (10)

Álvarez-Esteban et al (2016) highlight that K(X) ∈ Pn if X ∈ Pn. Hence, by assuming that Xℓ+1 = K(Xℓ) for
ℓ= 0,1, . . . and for each X0 ∈ Pn, Álvarez-Esteban et al (2016) prove that limℓXℓ = S+W. In addition, by
means of a numerical study, they remark that algorithm convergence is fast, even for rather large n andm. It
is worth noticing that S+W ⪯ S+F on the basis of theorem 9 by Bhatia (2009), which is a suitable property, as
previously explained.

8
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4.4. Pros and cons of different metric choices
In this section we illustrate the advantages and drawbacks brought by the choices of the considered metrics.
Concerning the Frobenius metric, this proposal produces an average similarity matrix S+F which is easily
interpreted from a statistical perspective, since it is a weighted sum of the similarity matrices S1, . . . ,Sm. For
this reason, S+F is straightforwardly computed without requiring ad-hoc algorithms, even for large n andm.
Moreover, S+F is a bona-fide normalized similarity matrix. However, this metric selection may lead to the
swelling effect—a phenomenon which, in data analysis, may generally add harmful spurious variations to the
data (see e.g. the discussion in the signal processing setting provided by Yger et al 2017). In network analysis,
the swelling effect produces an increase in the determinant of S+F and, consequently, an increase in the
corresponding eigenvalues (which are positive on the basis of the assumptions). This issue could lead to a
growth of the centrality of the single nodes in the average network, as the centrality has a connection with the
eigenvalues of the similarity matrix (see Newman 2018, section 7.1).

As emphasized in sections 4.2 and 4.3, the metrics dR and dW are very appropriate for the space Pn, and
hence for the space CPn. Moreover, the use of dR and dW involves an optimal rotation of each couple of
similarity matrices, i.e. they actually provide the minimum for the orthogonal Procrustes problem (see
comment to theorem 1 in Bhatia 2009, and Bhatia and Congedo 2019). In addition, the swelling effect is
reduced with respect to the use of dF (it follows from the results given in sections 4.2 and 4.3). However, the
computation of S+R and S+W is involved form⩾ 3 and requires specific iterative algorithms, which could be
slow and could have a loss of precision for large n. In the case of S+R, an efficient algorithm for the
computation of the weighted geometric means of two matrices is in turn necessary. We finally remark that
S+R and S+W have to be re-normalized in order to achieve a proper normalized similarity matrix having all
values equal to 1 on the diagonal. In such a case, a suitable way to achieve a normalized similarity matrix
S∗ = (s∗ij) consists in modifying the generic element sij of a similarity matrix S= (sij) as follows

s∗ij =
sij

(siisjj)1/2
.

It is easily verified that if S ∈ CPn also S
∗ ∈ CPn.

5. Choice of the weights

In order to select the weights w= (w1, . . . ,wm)
T, a measure of ‘closeness’ between the couples of them

similarity matrices S1, . . . ,Sm is needed at first. A suitable such a measure is given by the RV coefficient
proposed by Robert and Escoufier (1976), which is widely adopted in many different practical analyses.
Hence, the matrix R= (rij) of order (m×m)may be considered, where rij represents the RV coefficient
between Si and Sj, i.e.

rij =
⟨Si,Sj⟩F

∥Si∥F∥Sj∥F
.

It holds that rij ∈ [0,1] and the closeness between Si and Sj increases as rij approaches one. In addition, it
should be remarked that R ∈ CPm. Indeed, this issue follows from (iii) of proposition 2.1, since Rmay be
expressed as R= diag(U)−1/2Udiag(U)−1/2 where U= VTV and V= (vec(S1), . . . ,vec(Sm)), which also
provides a computationally efficient expression for R.

When S+F is adopted, Abdi et al (2005) suggest to consider the eigendecomposition of R. In such a case,
the decomposition gives rise to R= QΛQT, where Q= (q1, . . . ,qm) is the orthogonal matrix whose columns
are the eigenvectors of R, whileΛ= diag(λ1(R), . . . ,λm(R)) is the diagonal matrix whose entries are the
positive eigenvalues of R considered in nonincreasing order. The Perron–Frobenius theorem (see
e.g. Berman and Plemmons 1994) ensures that the eigenvector q1 corresponding to the largest eigenvalue
λ1(R) has nonnegative elements. Thus, Abdi et al (2005) propose the choice

w=
1

1Tq1
q1.

In practice, a principal component analysis is considered on R and the first eigenvector is used for
implementing w. Hence, since layers with larger projections on q1 are more similar to the other layers than
the layers with smaller projections, the (rescaled) elements of this eigenvector should provide suitable weights
for S+F, which is a linear combination of S1, . . . ,Sm. Similarly to principal component analysis, the goodness
of this selection for w may be assessed by means of the ratio λ1(R)/

∑m
k=1λk(R) (see Abdi et al 2005).

9



J. Phys. Complex. 4 (2023) 025017 F Baccini et al

In the case of S+R and S+W it is not obvious if the previous choice of w is suitable, since these averages
are not linear functions of S1, . . . ,Sm. Alternatively, we suggest the choice

w=
1

1T(R− Im)1
(R− Im)1.

The rationale behind this proposal stems on the fact that the more a similarity matrix is close to the others,
the more it is representative of the whole set of similarity matrices—and hence it should receive a larger
weight with respect to the others. Thus, this proposal assigns weights according to the ratio of the RV
coefficient sum corresponding to a similarity matrix to the total of the RV coefficients. Hence, this choice
could be generally suitable, while the weights proposed by Abdi et al (2005) are more appropriate when the
Frobenius metric is specifically considered.

6. Implementation of algorithms for computing averages

The algorithms for the computation of the similarity matrix averages S+F, S+W and S+R were implemented
using the Python programming language. All the Python functions are publicly available on GitHub at
https://github.com/DedeBac/SimilarityMatrixAggregation.git.

The choice of the Frobenius metric leads to a similarity matrix average which is actually a weighted
arithmetic mean of matrices—see expression (3). Hence, the practical implementation of S+F is trivial. In
contrast, as discussed in sections 4.2 and 4.3, the choice of the Riemannian and the Wasserstein metrics
requires that S+R and S+W are computed via iterative algorithms, unless there are solely two input matrices.
Thus, in the special casem= 2 (discussed in sections 4.2 and 4.3), the closed-form solutions available in
expressions (6) and (9) were implemented. In the non-trivial casem> 2, S+R is computed using the iterative
sequence defined in expression (7). In turn, such an implementation is based on the optimized procedure
proposed by Massart et al (2018), as introduced in section 4.2. A key issue of the iterative step consists in the
computation of the weighted geometric mean of two matrices. In our algorithm, the weighted geometric
mean was implemented by using the proposal by Iannazzo (2016) (algorithm 3.1). Specifically, this
implementation adopts the Schur decomposition and the Cholesky factorization in order to simplify the
computation of the power of a matrix. In the case of the Wasserstein metric, S+W is computed by means of
the fixed-point iteration method proposed by Álvarez-Esteban et al (2016) and discussed in section 4.3, see
equation (10). Both these iterative procedures stop when either a maximum number of iterations is reached,
or when the relative distance between intermediate solutions computed at consecutive iterations reaches the
tolerance value set by the user. Finally, the implementation of the weights computation follows the proposals
discussed in section 5.

We provide a visual example of the computation of the matrix averages for each metric choice in the very
special case n= 2 andm= 2. In such a setting, the results given in the previous sections may be
conveniently—and instructively—visualized by means of ellipses of type {x ∈ R2 : xTSx= 1}. Thus, for
w1 = w2 = 1/2, figures 2, 3 and 4 provide the graphical representation of S+F, S+R and S+W for several
choices of S1 and S2. From these figures, it is apparent that S+R and S+W are less affected by the swelling
effect (see especially figure 4). Moreover, even if S+F, S+R and S+W have rather similar ‘shapes’ in figures 2
and 3, these ‘shapes’ substantially differ in figure 4.

7. Case study: multiplex network of statistical journals

In this section we present an application of the use of matrix averages to multiplex network of statistical
journals. Specifically, we will consider 79 journals belonging to the category ‘Statistics and Probability’ of the
Journal Citation Reports in the year 2006. Each journal was associated with three different types of ‘items’ in
order to obtain the multiplex network: the editors sitting on the editorial boards, the authors that published
on the journals and the journals cited in the bibliographies of the corresponding articles. This kind of
connections have a key relevance in a scientometric setting (see Baccini et al 2020, 2022, and references
therein).

Editor data include the editors of the journals in the year 2006 and were collected by Baccini et al (2009).
On the other hand, data on authors and cited journals were extracted from Clarivate Analytics Web of
Science (WoS) database (https://www.webofscience.com/). Queries were made through the SQL relational
database system hosted by the Centre for Science and Technology Studies (CWTS) at Leiden University,
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Figure 2. Visualization of (a) S+F, (b) S+R and (c) S+W (dashed style) for S1 =

(
1 1
1 2

)
and S2 =

(
4 1
1 2

)
. Continuous lines

correspond to the ellipses individuated by S1 and S2.

Figure 3. Visualization of (a) S+F, (b) S+R and (c) S+W (dashed style) for S1 =

(
1 1
1 10

)
and S2 =

(
10 1
1 1

)
. Continuous

lines correspond to the ellipses individuated by S1 and S2.

Figure 4. Visualization of (a) S+F, (b) S+R and (c) S+W (dashed style) for S1 =

(
50 1
1 1

)
and S2 =

(
1.01 1
1 1

)
. Continuous

lines correspond to the ellipses individuated by S1 and S2.

using the 2021 version of Web of Science. In both cases, authorships and cited journals were solely collected
for publications in the five-year period 2006–2010. Table 1 offers an overview of the considered dataset.

Before proceeding to the computation of averages, the journal Communications in Statistics—Simulation
and Computation was removed from the dataset since it had exactly the same editors of the journal
Communications in Statistics—Theory and Methods. In fact, Taylor & Francis, the publisher of the two
journals, considers them as ‘associated journals’. Thus, in order to avoid ambiguity we solely retained
Communications in Statistics—Theory and Methods.

The resulting one-mode networks respectively model the pairwise connections between journals based
on common editors (interlocking editorship network), common authors (interlocking authorship network)
and common cited journals (journal bibliographic coupling network). To the aim of computing the analyzed
averages, the cosine similarity defined in equation (1) was considered for each layer in order to obtain three

11
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Table 1.Main features of the considered scientometric dataset.

Layer Period of observation Two-mode network Relation in the one-mode network

Editors 2006 79 journals× 2227 editors Interlocking editorship
Authors 2006–2010 79 journals× 38 683 authors Interlocking authorship
Cited journals 2006–2010 79 journals× 7528 cited journals Journal bibliographic coupling

Figure 5. Residual values of the algorithm iterative steps for the computation of S+W for 50 iterations (a) and S+W for 30
iterations (b).

similarity matrices. The averages S+F, S+R and S+W of the three similarity matrices were computed using the
implementation described in section 6. Figure 5 displays the residual between matrices computed at
consecutive iterations in the case of S+R (figure 5(a)) and S+W (figure 5(b)). It should be remarked that both
algorithms converge to a solution after few iterative steps.

Figures 6–8 respectively display the networks corresponding to the averages S+F, S+R and S+W. The
networks were plotted by means of the Gephi software (Bastian et al 2009) and by using the ForceAtlas2
visualization algorithm (Jacomy et al 2014). Different colors correspond to distinct communities computed
with the Louvain algorithm (Blondel et al 2008) by setting the resolution parameter to 1 (see Lambiotte et al
2008). Actually, the Louvain algorithm is commonly adopted in order to detect communities in a network.
The modularity score obtained was 0.131 for S+F, 0.222 for S+R, and 0.166 for S+W, as reported in table 2.
The Louvain algorithm partitions the three aggregated networks into five communities. All the networks are
characterized by three large communities, indicated by the pink, orange and green nodes in figures 6–8, and
reported in table 2 as Community 1, Community 2 and Community 3, respectively. Specifically, Community
1 (pink nodes) gathers journals in the field of statistical methodology, Community 2 (orange nodes) groups
journals mainly devoted to probability theory and its applications, while Community 3 gathers journals from
the field of applied statistics. Finally, two much smaller communities are individuated—Community 4 (blue
nodes) and Community 5 (yellow nodes) in table 2. They both gather journals that are at the boundary with
the fields of Economics (Community 4) and Bioinformatics (Community 5), respectively.

Overall, the modularity values and the communities detected in the three aggregated networks are very
similar. This issue suggests that the choice of the metric in the computation of the matrix average does not
significantly affect the community structure of the network. Moreover, the emerging communities are
coherent with those obtained in Baccini et al (2020, 2022).

Finally, in order to assess the structural similarity between S+F, S+R, and S+W, the generalized distance
correlation suggested by Székely et al (2007) is computed for each pair of networks. Distance correlation is a
measure of correlation between distance matrices belonging to the family of ‘energy statistics’ (Székely and
Rizzo 2017, Szekely and Rizzo 2023). Such measure can be seen as a generalization to matrix spaces of the
usual squared Pearson correlation coefficient. Indeed, it assumes values in the interval [0,1], with values near
to zero indicating a low level of association, and values close to one indicating high association. Omelka and
Hudecová (2013) observed that its use is suitable to evaluate the association between similarity matrices. The
distance correlation values between the similarity matrices S+F, S+R, and S+W are reported in table 3. The
table shows that a very elevate association exists between each pair of averages. Therefore, the monoplex
networks obtained with different metric choices are strongly associated, i.e. they are structurally similar.
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Table 2. Number of nodes for each community individuated by the Louvain modularity optimization algorithm and for each average
S+F, S+R and S+W. The first column reports the modularity score associated to each partitioning of the networks.

Average Modularity Community 1 Community 2 Community 3 Community 4 Community 5

S+F 0.131 27 22 21 4 4
S+R 0.222 29 20 20 5 4
S+W 0.166 29 21 16 8 4

Table 3. Distance correlation between monoplex networks obtained with the choice of the Frobenius, Riemannian and Wasserstein
metrics (denoted, respectively, as S+F, S+R, and S+W). Since distance correlation is symmetric in its arguments, we only fill the upper
triangular part of the table.

S+F S+R S+W

S+F 1 0.9634 0.9885
S+R — 1 0.9896
S+W — — 1

8. Conclusions

This work proposes the use of similarity matrix average to aggregate multiplex networks by using some
concepts in the Riemannian geometry formulation of barycenter. In particular, we show that some
commonly-adopted similarity measures allow to obtain similarity matrices which belong to the space of
completely positive matrices by starting from two-mode bipartite networks. These types of similarity
matrices are averaged by considering the minimization of a Fréchet mean criterion with the Frobenius, the
Riemannian and the Wasserstein metric choices. The results obtained on the multiplex network of statistical
journals highlight the availability of the methodology. The proposed method constitutes an advance in the
topic of multiplex network aggregation, since it provides a theoretically justified framework—along with its
implementation—to combine the contribution of different relations which exist among a set of nodes. This
methodology might be of interest in several application fields, such as social network analysis and
bioinformatics, where relations of different nature have to be explored and integrated to determine some
structural organization of a set of entities. Indeed, the aggregation allows to perform the required task—such
as the detection of communities—on a single network, rather than on a multiplex network, in order to
reduce the complexity of the problem.

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI: https://
github.com/DedeBac/SimilarityMatrixAggregation.git.
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