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ABSTRACT This study employs an unsupervised procedure to spatially decorrelate fully-developed speckle
in single-look complex (SLC) synthetic aperture radar (SAR) images. The goal is evaluating the extent
to which the spatial correlation of the noise induced by the SAR processor affects the detection accuracy
of temporal variations of land-cover between two one-look images of the same landscape acquired on
different dates. To simulate the scenario, we have spatially correlated a synthetic map of white complex
circular symmetric Gaussian noise by using a two-dimensional separable Hamming window in the Fourier
domain. The correlated complex speckle field has been modulated by a noise-free optical view, to simulate
an SLC SAR image. Subsequently, we have reduced the correlation of the SLC image through a whitening
process and calculated the modulus of the complex image. We have applied various methods of statistical
change detection for real-valued SAR data, and compared the accuracy of change maps in the following
cases: i) ideally uncorrelated noise, ii) correlated noise, iii) correlated noise that has been decorrelated. The
study considers three change detection algorithms, ranging from the basic Log-Ratio operator preceded by
despeckling to advanced parametric and nonparametric methods based on Kullback-Leibler distance and
mean-shift clustering of bivariate scatterplots of local means. Simulation results demonstrate consistent
performance improvements, in terms of both geometric accuracy and reduced number of false alarms.

INDEX TERMS Inverse filtering, noise whitening, SAR image change detection, SAR processor, single-
look complex (SLC) images, synthetic aperture radar (SAR), tapering windows.

I. INTRODUCTION
The all-weather and all-day acquisition capability makes
spaceborne synthetic aperture radar (SAR) systems extremely
attractive for environmental monitoring. SAR images, how-
ever, are intrinsically affected by speckle, a multiplicative
granular noise, typical of coherent imaging systems, that
degrades the visual appearance of images and reduces the
performance attainable by analysis / processing algorithms.

Fully-developed speckle is characterized in the spatial
frequency domain as a white process. In the complex
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spatial domain (in-phase and quadrature components), it is
modeled as a spatially uncorrelated multiplicative random
process, independent of the underlying radar reflectivity and
characterized by a zero-mean circular Gaussian probability
density function (PDF) [1]. During the processing of raw
data to create an image, however, there may be stages that
violate the validity of this assumption. Before the at-ground
SAR processing, the raw data from satellite are slightly
oversampled (by approximately 10%) and windowed, that
is weighted in the Fourier-domain, where the deconvolution
process takes place, to prevent Gibbs effects from occurring
around point targets. As a consequence of the use of tapering
windows, typically Hamming or Kaiser windows, in both
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the range and azimuth focusing steps, the speckle at the
output of the SAR processor, becomes autocorrelated. Thus,
the single-look complex (SLC) image is generated with
spatially correlated speckle; this was first noted by some
authors [2], [3], who adjusted their processing algorithms
to tackle correlated speckle. Incoherent spatial multi-looking
is a common practice, whenever phase information is not
relevant. The benefit of a reduction in spatial correlation,
achieved by means of downsampling, however, is paid in
terms of a degraded spatial resolution, and hence of a
loss of information that may not be tolerable in some
applications.

In this work, we investigate the sensitivity of SAR change
detection algorithms to the spatial correlation of single-
look envelope-detected real-valued speckle patterns. The
goal is to achieve an improvement in the change detection
performance by means of a whitening of the data, whenever
they are available in SLC format. Statistical change analysis
is the analysis of structural rather than of stochastic changes
between two scenes represented by single-look data, taken
in two dates along parallel orbits by the same satellite or
by a satellite constellation (e.g. TerraSAR-X–Tandem-X,
COSMO-SkyMed). The spatial resolution of the SLC format
is the highest resolution allowed by the SAR system in a
preset modality: StripMap, ScanSAR or SpotLight [4]. Such a
resolution is highly beneficial for change analysis and should
be preserved by pre-processing. Thus, the spatial correlation
can be removed by means of a deconvolution operation
which aims to restore a flat SLC power spectrum [5]. The
same whitening step has been applied also to interferometric
SAR (InSAR) couples [6] with promising results, thanks
to the unbiased estimation of interferometric coherence [7]
from whitened data. Actually, coherence measures structural
and stochastic changes at the same time, because it is
related to the similarity of speckle patterns between the
scenes [8]. A further achievement of some of the authors is an
investigation on the influence of correlation on polarimetric
SAR (PolSAR) filtering [9] and features extraction [10]:
again, the decorrelation procedure described in the seminal
article [5], has been separately applied to all polarimetric
channels [9]; quantitative assessments are reported in [10],
thanks to the use of a PolSAR simulator. The influence of
speckle autocorrelation on SAR change detection has been
the object of a preliminary study carried out by some of the
authors [11].
In a realistically simulated scenario, we generated uncor-

related SLC data from high-resolution optical images and
synthetic patterns of complex speckle. We optionally intro-
duced a spatial correlation in the synthetic SLC data bymeans
of separable Hamming windows along range and azimuth.
Then, we removed the correlation by using the whitening
procedure [5]. Afterwards, for the three case of uncor-
related, correlated and decorrelated speckle, we extracted
the modulus of the SLC images, applied change detection
algorithms and compared the accuracy of the estimated
change maps for the three cases. Three change detection

methods were considered: from the simple Log-Ratio point
operator preceded by despeckling [12], to more advanced
parametric or nonparametric methods based on Kullback-
Leibler divergence [13] or on mean-shift clustering of the
bivariate scatterplot [14], respectively. Simulation results
show a consistent improvement in performance of the
decorrelated vs the correlated case, notably the geometric
accuracy of changes [15], but also the detection probability
of fake changes, or false-alarm probability [16].

This paper is organized as follows. Section II provides
a brief review of SAR systems and explains the origin of
speckle correlation and how it can be abated in practical
scenarios concerning real-world data. Section III reviews the
main approaches for SAR change detection used throughout
this work. Section IV presents quantitative results on two
simulated datasets portraying an urban and a rural scenario
and discusses the assets of decorrelation with respect to the
specificity of each change algorithm. Concluding remarks
and possible developments are drawn in Section V.

II. SPATIAL DECORRELATION OF SPECKLE
A. OVERVIEW OF SAR SYSTEM
SAR images are computed images obtained by processing
radar echoes taken from a moving platform [1], [4]. A train of
pulses, or chirps, is sent along a leaning direction across the
track of the platformwith respect to the vertical, referred to as
slant-range. The SAR system records the complex echoes of
targets encountered across the track, which are discriminated
by the delays of their responses. The in-phase and quadrature
components of the complex envelope are sampled at least
twice the chirp bandwidth, quantized and accumulated in a
buffer; they constitute the 2D array of raw data, which is
stored in a mass memory of the aircraft or transmitted to the
ground station by the satellite.

Afterward, the matrix of raw data, which does not show
any perceivable shape, but only a granular noise and a slowly
space-varying mean, must be focused by the SAR processor
at the ground station, more seldom on the aircraft, never on
the satellite, because of processing power requirements. The
processing consists of a 2D separable deconvolution: of the
nonideal shape of the chirp [17] in the slant-range direction
(range focusing) and of the antenna pattern gain, whose shape
varies with the range, in the direction along the track of
the platform (azimuth focusing). Deconvolution performed
in the Fourier domain is fast and accurate, but requires that
the trajectory of the platform is perfectly predictable, which
happens for a satellite and a large/medium aircraft, but not for
a small aircraft or for drones [18].

The two deconvolution operations have the purpose of
simulating: a) an ideal perfectly bandlimited pulse having a
rectangular Fourier transform; b) an ideal antenna beam, with
a narrow main lobe and absence of side lobes in the azimuth
direction. After deconvolution, however, the pulse becomes
the inverse Fourier transform of a rect, that is, a sinc function
having slowly decaying tails; analogously in the azimuth
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FIGURE 1. Flowchart of SAR system (onboard sensor followed by at-ground processor) with optional whitening stage.

direction, after the antenna pattern has been deconvoluted.
The unpleasant consequence is that after deconvolution a
target one pixel wide (point target) is surrounded by a square
cross with dashed sides, originated by separable Gibbs effects
in the two dimensions.

The SAR processor usually employs frequency windowing
to prevent the onset of Gibbs effects. Widely used are
Hamming and Kaiser windows. The benefit of windowing
is avoiding the spread of point targets. The drawback is
that fully-developed speckle, which should be perfectly
uncorrelated, at least if the raw data are not oversampled,
becomes spatially correlated and passes from a sandy to
a grainy appearance. Speckle originates from the coherent
combination of echoes from multiple scattering elements
at the receiver end. Fully-developed speckle occurs when
a significant number of independent scatterers is contained
within the resolution cell of the system, approximately twice
the pixel size, or four times in terms of areas. If there are
few dominant scattering elements in the cell, speckle is
not fully-developed and in principle it might even vanish,
if a unique scatter, e.g., a corner reflector or a man-made
structure, exists in the cell. The autocorrelation function of
speckle is expected to impact on the subsequent analysis
and processing for statistical change detection from SAR
data.

B. PROBLEM STATEMENT
Here, we make use of the spectral properties of SLC
SAR images derived in [19]. Accordingly, the observed
scene is made-up by a set of scatterers, one for each
pixel. Let Swpq(r) denote the discrete complex scattering
coefficient, where the subscripts pq denote the transmitting
and receiving polarizations, namely, HH, VV, HV and VH,
and r ≜ (rx , ry) denotes the two-dimensional coordinates in
the image plane. Under the assumption of fully-developed
speckle, Swpq(r) is a zero-mean, white complex circular
symmetric Gaussian process, with variance σpq(r), which
is the radar reflectivity imaged by the system [1]. The
complex image at the output of a SAR processor equipped
with a 2D separable tapering window H (f ), with f ≜
(fx , fy), can be formulated as a convolution of the scattering
coefficient by the inverse Fourier transform of the frequency
tapering window, H (f ), or point spread function (PSF),
h(r):

Spq(r) = Swpq(r) ∗ h(r) (1)

or equivalently in the Fourier domain as:

Spq(r) = F−1
{
F

{
Swpq(r)

}
· H (f )

}
. (2)

In Eqs. (1) and (2), we have supposed that the entire
SAR system, i.e. onboard acquisition followed by at-ground
focusing, can bemodeled as a cascade of linear shift-invariant
filters, characterized by their PSFs.

The most widespread formulation of the SAR image with
fully-developed speckle model for the single-polarization
case (the subscripts p = q will be omitted, hereafter) is
given by:

|S(r)|2 = σ (r) · uu(r) (3)

in which uu(r) is the fading term, modeled as a white
random process having mean and variance both unity-valued
and a negative exponential PDF. Eq. (3) represents the
intensity format of a single-look image, that is the power
of the backscattered signal. Note that, according to its defi-
nition [20], the signal-to-noise ratio (SNR) of a single-look
SAR image in intensity format is 0 dB. The model (3) holds,
if the SAR system features an ideal PSF, i.e. a discrete δ(r)
function. The case of polarimetric SAR data is more complex
and is not reported here, because the speckle patterns are
not independent among the polarimetric channels [21], even
though each channel is focused independently of the others.

A more general formulation of the problem accounts for a
possible autocorrelation of the fading term and is given by:

|S(r)|2 ≈ σ (r) · us(r) (4)

where us(r) is the fading term, spatially correlated because of
the non-ideal SAR system transfer function, and independent
of σ (r). According to [19], the approximation is better
verified, the wider the Fourier transform of the SAR system’s
PSF is than the power spectral density of of the noise-free
radar reflectivity. In other words, the correlation length of the
speckle should not be greater than that of the reflectivity. The
model (4) accounts for the speckle correlation, provided that
the bandwidth of the SAR system largely encompasses the
power spectrum of the imaged reflectivity.

The rationale of using speckle decorrelation is exactly
to remove the effects of the SAR system transfer function,
to restore Sw(r) from S(r). The blind deconvolution problem
may be simplified assuming the SAR system’s transfer
function to be a band-limited lowpass filter with cutoff
frequency fc:

H (f ) ≈ 0 ∀|f | > |fc|. (5)

32336 VOLUME 12, 2024



L. Alparone et al.: Increasing the Detection Accuracy of Bi-Temporal Changes

FIGURE 2. (a): Power spectrum of true SLC data (correlated) in slant-range direction; (b): frequency response of inverse filter; (c): power spectrum
of correlated SLC data in (a) after decorrelation with the filter in (b); (d) modulus of SLC image with original power spectrum in (a); (d) modulus of
SLC image with whitened power spectrum as in (c).

Unlike other image restoration methods, any assumptions
on σ (r) are unnecessary; it can be demonstrated that an
estimator of Ŝw(r) is given by:

Ŝw(r) =


F−1

{F {S(r)} · [Ĥ (f )]−1
} ∀|f | ≤ |fc|

0 otherwise

(6)

in which Ĥ (f ) denotes the estimate of the transfer function
H (f ).

In this way, the problem of blind deconvolution may be
translated to the spectral estimation of the SAR transfer
function H (f ), required to build the inverse filter and recover
the original whiteness of the data. Unless H (f ) is otherwise
known, its estimation may be performed by using an LS
minimization in the spectral domain starting from the SLC
data [5]. Inmost practical cases the taperingwindow is known
and need not to be estimated.

Fig. 1 shows the processing chain including the decor-
relation stage of the complex data. The cascade of SAR
sensor and SAR processor constitutes the SAR system, which
in principle should output the product of reflectivity and
complex speckle found at its input. In practice the SAR
processor includes a tapering window and hence its output

becomes spatially correlated and should be decorrelated by
means of the inverse filter of the window.

With reference to a true SLC image provided by the
X-band COSMO-SkyMed constellation, Fig. 2 shows the
range power spectrum after the SAR processor, the inverse
filter used by the decorrelation stage and the power spectrum
at its output. The moduli of original and whitened images are
displayed in Fig. 2(d) and Fig. 2(e), respectively. They exhibit
lag-one correlation coefficients (CC) equal to 0.29, before
decorrelation and 0.05, after being decorrelated. The original
range power spectrum, shown in Fig. 2(b) resembles a
Hamming window, as otherwise indicated in the data product
manual. The whitened spectrum is approximately flat. Statis-
tical estimations of from local windows of correlated samples
may be inaccurate, because the set of samples is not locally
ergodic.

C. PROCESSING OF POINT TARGETS
The effectiveness of the whitening process described in
Section II-B is obviously reduced if the fully-developed
speckle model does not hold; this occurs in the presence
of single-pixel reflectors or strong scatterers, referred
to as point targets. The latter must be removed and
replaced with synthetic patches of complex speckle,
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with variance proportional to the average variance of
neighboring pixels, before the deconvolution process is
performed [5].

For single-polarization SAR images, the detection of point
targets is carried out through a percentile thresholding of the
modulus (amplitude), or squared modulus (intensity) of the
SLC image [20]. For PolSAR data, advantage should be taken
of the capability of PolSAR to yield information on the nature
of the scattering mechanisms [10].

It is note worthy that the Fourier-domain whitening scheme
requires a proper point-target detection. The deconvolution
process cancels the effects of the tapering window: the spatial
correlation is removed over distributed targets, whereas on
strong scatterers, or hard targets, if they are not detected,
removed and replaced, the inverse filter will originate
undesired annoying cross-shaped artifacts, similar to the
SAR system’s PSF, especially due to the increment of the
antenna sidelobes in azimuth. Thus, the processing of point
targets before the spectrum flattening operation, is crucial.
In this sense, rather than a simple thresholding, which works,
despite its simplicity, a more refined point-target detector
could be adopted. As an example, contextual information
on the nature of targets may be used after thresholding the
‘‘brightest’’ pixels, because if the target spans more than one
pixel, Gibbs effects are not introduced by the inverse filter.
However, if bright spots wider than one pixel are removed
after whitening and reinserted later, the high heterogeneity
of pixels surrounding a target makes their speckles to be little
developed [22]; thus, the decorrelation is not relevant and can
be avoided.

III. CHANGE DETECTION FROM SAR IMAGES
The discrimination between changed and unchanged pixels
in very-high-resolution (VHR) bi-temporal SAR images is
a nontrivial task because of the presence of speckle [13].
Actually, two SAR images taken on exactly the same
scene, but on different times, may be pixel-by-pixel dif-
ferent because of different speckle patterns and calibration
uncertainty. The latter is caused by unreliability of the
permanent scatterers and/or corner reflectors, which are used
for the relative calibration [23], e.g., to compensate the
attenuation of e.m. waves in atmosphere, possibly due to
different meteorological conditions on the two passes. Also
registration inaccuracies between the two images may appear
as temporal changes.

For the challenging case of one-look images, despeckling
filters, rather than multilooking, may be suitable for preserv-
ing the spatial resolution of single-date images and to improve
classification, detection, and parameter estimation. However,
they are unable to expedite the discrimination between
stochastic changes due to speckles and structural changes in
radar reflectivity: the reliable detection of changes, both in
level, either intensity or amplitude, and in spatial extent, may
be a very hard task.

Although the analysis and processing of SAR data is often
based on modeling [24], alternative approaches exploiting

learning concepts are promising for texture analysis and
classification of forests [25]; For the present case, how-
ever, change detection methods that are based on learning
require extensive training datasets (pre-/post-event images
and related ground truth (GT) maps) that may be hardly
available. The training datasets could be simulated from
optical images by using correlated speckles with different
degrees of development: e.g., full, medium, low, null (point
targets). In this case, the algorithm would automatically
learn how to tackle speckle correlation. Thus, the accurate
synthesis of test images becomes a crucial aspect.

A. LOG-RATIO OPERATOR
Maps of pixel ratios, or better of logarithm of pixel
ratios (LR), namely difference in backscatters that have
been expressed in decibels (dB). are useful for detect-
ing changes [26] with good preservation of geometric
details [27], but limited capabilities of rejecting false
alarms [12]. The main drawback of features relying on pixel
ratios is that they can capture only changes generated by
variations in first-order statistics.

SAR systems measure the radar reflectivity of the surface,
defined as the ratio of backscattered to incident power.
Speckle is a multiplicative fading term originated by the
coherent superposition at the receiver of radar echoes of
scattering elements within the same resolution cell of the
system. Fully-developed speckle means that there are many
independent returns from the same cell. A preliminary stage
of speckle reduction, or ‘‘despeckling’’, is recommended
before computing the LR image. A great number of
despeckling filters, mostly adaptive, has been been developed
over time [28]. The finite size of the processing window
of spatial-domain filters, however, originates outliers that
are likely to be mistaken for spatial changes. Such blobs
increase with speckle correlation and may lead to gross
errors. Though speckle correlation is always a drawback, this
inconvenience is mitigated for despeckling filters operating
in a shift-invariant multiscale domain [29], [30], [31],
[32]. Despeckling is expected to preserve texture features,
like [33], used for classification [34] and for merging SAR
and optical data [35], [36], [37], [38].

As already mentioned, an intrinsic limitation of the change
detector based on ratio of local means is that it the comparison
is made only on first-order image statistics. According to the
established multiplicative model for detected SAR data [39],
a piecewise constant radar cross-section is modulated by
a unity-mean texture term and by the unity-mean speckle.
Hence, changes at texture level that preserve the mean,
will likely not be detected. To overcome this inconvenience,
higher order statistics, such as Log-cumulants, have been
considered to address the change detection problem [40].
Alternatively, a contextual approach to ratioing has been
devised [41]. The presence of an imperfect relative calibration
between the two images originates an offset in the response of
the LR operator, which can be detected and suppressed before
the threshold decision.

32338 VOLUME 12, 2024



L. Alparone et al.: Increasing the Detection Accuracy of Bi-Temporal Changes

B. KULLBACK-LEIBLER DISTANCE
The Kullback-Leibler (KL) divergence between the PDFs, fX
and fY , of two random variables X and Y is defined as

K (Y |X ) =

∫
+∞

−∞

log
[
fX (x)
fY (x)

]
· fX (x)dx. (7)

The KL divergence is a measure of how much the PDF of
Y diverges from that of X . K (Y |X ) is not symmetric, but a
symmetric extension may be defined as

D(X ,Y ) = D(Y ,X ) = K (Y |X ) + K (X |Y ) (8)

which is called KL distance (KLD).
In order to improve the estimation of KLD, a parametric

approach has been proposed [13]. Let us assume that the
statistics of real-valued envelope-detected SAR images can
be modeled by the family of PDFs known as the Pearson
system. If we adopt an approximation of KLD based on
cumulants, by means of the Edgeworth series expansion of
KL (KLE ), the change feature based onKLD,CKLD, denoted
as cCKLD, has been finally obtained:

cCKLD = KLE (X ,Y ) + KLE (Y ,X ). (9)

Since moments up to the fourth order are calculated, (9)
provides accurate local PDF distance estimation between
two SAR images using a large-size sliding window (greater
than or equal to 15 × 15), with uncommon false-alarm
rate capability but limited geometrical accuracy, due to the
size of the sliding windows for a reliable estimation of
local statistics. The relatively large size of the processing
window guarantees a low sensitivity to speckle, whose auto-
correlation, however, would require even larger windows,
with a consequent unavoidable decrement of geometrical
accuracy. As stated by the authors themselves [13], the
method does not require any preliminary relative calibration
between the two images.

C. MEAN-SHIFT INFORMATION-THEORETIC CHANGE
DETECTION
The mean-shift information-theoretic change detection
(MS-ITCD) algorithm [14] is based on a pixel feature capable
of capturing the structural change between two co-registered
real-valued SAR images X1 and X2, acquired on different
dates. MS-ITCD is robust to the stochastic change that may
be originated by speckle and co-registration inaccuracies.
The method starts from the scatterplot of the amplitude
levels in the two images and applies the mean-shift (MS)
algorithm [42] to find the modes of the underlying bivariate
distribution.

The information-theoretic approach regards the negative
of the logarithm of the probability of a mean pixel level
in one image conditional to the mean level of the same
pixel in the other image, which would measures the amount
of information associated to the pixel change, as a feature
measuring the amount of structural change. So, the change is
related to the conditional information of couples of symbols
emitted by two information sources.

Let x1(i, j) and x2(i, j) be the symbols emitted by the two
information sources X1 and X2, respectively, where i =

0, . . . I−1 and j = 0, . . . J−1 are the spatial coordinates. The
mean information of the two sources is given by the entropy,
or auto-information, H (X1) and H (X2). Unless the two
sources are statistically independent of one another, a fraction
of such an information is common to the two sources. This
common part is called mutual information,M (X1;X2), and is
a measure of statistical dependency between X1 and X2

M (X1;X2) = H (X1) − H (X1|X2) (10)

or, equivalently,

M (X1;X2) = M (X2;X1) = H (X2) − H (X2|X1) (11)

in which H (X2|X1) is the conditional entropy of X2 to X1 and
represents the fraction of H (X2) that cannot be inferred from
the knowledge of the reference source X1, because it is due
to unpredictable variations; analogous relationships hold for
H (X1|X2), by exchanging the subscripts 1 and 2.
Given the conditional information between x2(i, j) and

x1(i, j), defined by

I (x2(i, j)|x1(i, j)) ≜ − log [p(x2|x1)] (12)

the conditional entropy is the expected value of (12),

H (X2|X1) ≜ −

∑
X1

∑
X2

p(x1, x2) log [p(x2|x1)] (13)

where p(x1, x2) and p(x2|x1) are the joint probabilities of
x1(i, j) and x2(i, j) and the conditional probabilities of x2(i, j)
to x1(i, j), respectively.
The ITCD change features can be computed from the

scatterplot of the amplitude levels in the two images, while
the meanshift-enforced version, MS-ITCD, is computed
similarly after performing a migration of the scatterpoints
toward the center of their attracting cluster [42].
The effect of mean shift is that the scatterpoints contained

in each bin are moved towards the attracting center corre-
sponding to a mode (relative maximum) of the underlying
PDF. Unchanged pixels produce scatterpoints that are likely
to be moved towards one of the modes along the main
diagonal; conversely, changed pixels will be moved towards
one of the modes far apart from the main diagonal. The
presence of a relative calibration error between the two
images (typical values reported in data product manuals are
2 dB, 3 dB atmost) has the effect of rotating themain diagonal
and is implicitly tackled by the algorithm.
The main difference of MS-ITCD, originally introduced

in [43], from its earlier version, ITCD [44], is that the
presence of MS: the MS algorithm starts from the scatterplot
of the local means in the two images and finds the local
maxima (modes) of the underlying PDF, without explicitly
calculating the PDF, but simply considering the scatterpoints
contained in a window surrounding the gravity center of the
cloud of scatterpoints encompassed by the window at the
previous iteration [42]. Each iteration moves the window
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FIGURE 3. Dataset 1: (a) first acquisition; (b) second acquisition; (c) change map.

FIGURE 4. Dataset 2: (a) first acquisition; (b) second acquisition; (c) change map.

FIGURE 5. Simulation of SLC images with different speckles:
uncorrelated, correlated, decorrelated.

towards a cluster in the scatterplot, corresponding to a
maximum, either relative or absolute, of the bivariate PDF.
The information-theoretic change feature is calculated from
the values of conditional probabilities calculated from the
off-diagonal modes of the joint PDF. MS-ITCD is slightly
more accurate than ITCD [14], but substantially similar.
Unlike LR, MS-ITCD and ITCD exhibit good tolerance to
speckle and require no preliminary de-speckling, which may
introduce an undesired correlation. Nevertheless, the benefits
of speckle decorrelation are still evident.

We wish to remind that all the change-detection methods
addresses in this study concern single-polarization images.

Change detection from polarimetric SAR (PolSAR) data is a
more complex task, because of the interrelationships among
the various channels. Nevertheless, the information-theoretic
approach is still pursued [45].

IV. RESULTS
A. SETUP
Two different datasets have been simulated following the
fully-developed speckle model. The first image represents
an urban scenario. The second scene portrays a rural
landscape. For each dataset, starting from a high-resolution
panchromatic (Pan) image from IKONOS satellite, with
1 m2 spatial resolution and 11 bits radiometric resolution,
simulating the noise-free radar reflectivity, first the synthetic
reflectivity image with simulated changes is generated by
means of known patches with different shapes, sizes and
change levels. Figs. 3 and 4 show the synthetic reflectivity
images, without and with changes, and the ground truth maps
of changes for the two datasets.

According to the flowchart in Fig. 1, Fig. 5 shows
how simulated SLC images are generated starting from the
synthetic reflectivity scenes, without or with changes. First
the scene is multiplied by a spatial realization of a complex
white Gaussian process, to yield the output of the SAR
processor without focusing window. The sign introduced
by the Gaussian noise makes the real and imaginary parts
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FIGURE 6. Dataset 1: Simulated pre-/post-event single-look amplitude images with; (a),(d) uncorrelated, (b),(e) correlated,
(c),(f) decorrelated speckles.

FIGURE 7. Dataset 2: Simulated pre-/post-event single-look amplitude images with; (a),(d) uncorrelated, (b),(e) correlated,
(c),(f) decorrelated speckles.

of the synthetic SLC data to exactly fit the typical signed
12-bit format of true SLC data. The noise realizations of the
pre-event and post-event scenes are obviously independent

of one another. Then the Hamming frequency window is
applied to the uncorrelated data, both real and imaginary
parts, to produce an SLC image with spatially correlated
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FIGURE 8. Dataset 1. Left column (a),(d),(g): uncorrelated; center column (b),(e),(h): correlated; right column (c),(f),(i):
decorrelated. LR: (a)-(c); CKLD: (d)-(f); MS-ITCD: (g)-(i).

speckle. The original variance, which has been reduced by
the filter, is restored, to avoid losing the calibration of the
data. Eventually, the correlated image is whitened by means
of the decorrelation procedure described in Section II [5].
Again the variance is adjusted to match its value before
decorrelation. We wish to highlight that, even though the
speckle is assumed to be fully developed and no processing of
point targets is performed, this represents the least favorable
case, because true targets are little noisy or no noisy at
all; thus they are seldom mistaken by any change-detection
algorithm. For other applications, like despeckling based
on learning [46], different degrees of speckle development
should be considered to train the network. In this case, the
simulation of the dataset becomes a demanding task.

Figs. 6 and 7 show the synthetic single-look images for the
two datasets, with uncorrelated, correlated and decorrelated

speckle. Note that, while the grainy appearance of the
correlated case stands out, the uncorrelated and decorrelated
cases are almost identical. What immediately stand out is that
all the images are extremely noisy and the change patches
are hardly visible in some case. The subsequent analysis will
demonstrate that, at the same SNR, the change analysis is
significantly impaired by the speckle autocorrelation.

Three change-detection algorithms have been tested:
• Log-ratio (LR) preceded by despeckling (9 × 9 Kuan
filtering [47]).

• Change analysis based on Kullback-Leibler distance
(CKLD) [13].

• Mean-shift Information-Theoretic Change Detection
(MS-ITCD) [14].

Thanks to the use of simulated data, the performance has
been objectively evaluated by means of confusion matrices,
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FIGURE 9. Dataset 2. Left column (a),(d),(g): uncorrelated; center column (b),(e),(h): correlated; right column (c),(f),(i):
decorrelated. LR: (a)-(c); CKLD: (d)-(f); MS-ITCD: (g)-(i).

Receiver Operating Characteristic (ROC) curves and Area
Under ROC Curve (AUC) metrics. Hereafter, the urban and
rural datasets will be referred to as Dataset 1 and Dataset 2,
respectively.

B. PERFORMANCE ANALYSIS
For each dataset, the three change algorithms have beer
executed three times: a) with hypothetically uncorrelated
speckle, which would require running the SAR processor
without tapering window; b) with correlated speckle, as avail-
able with a standard SAR processor; c) with correlated
speckle that has been de-correlated by the inverse filter [5],
without processing of point targets because the synthetic
speckle is fully developed.

Figs. 8 and 9 show change maps obtained by threshold-
ing LR, CKLD and MS-ITCD features, respectively. For

each change feature, thresholding has been performed by
maximizing Cohen’s kappa coefficient

κ =
po − pe
1 − pe

= 1 −
1 − po
1 − pe

, (14)

where po is the overall accuracy of the resulting change map
and pe is the accuracy of a random classifier.

For both the datasets and all algorithms, the uncorrelated
cases (a),(d),(g) (leftmost column) are the best, in terms
of lower number of false alarms (outliers) and geometric
accuracy of patches. The correlated cases (b),(e),(h) (center
column) is far the worst, especially in terms of number of
outliers, which often occur also inside the patch, if the change
level is low. The decorrelated cases (c),(f),(i) (rightmost
column) is comparable to the uncorrelated cases. In the
majority of real cases, the SAR raw data are slightly
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oversampled to compensate the cutoff in bandwidth at the
output of the SAR processor due to the tapering window.

The behaviors of the three algorithms is far different from
one another. LR is not only the worst, but also the most
sensitive to speckle correlation, also because the mandatory
preliminary despeckling step is little effective on correlated
1-look data [5]. CKLD and MS-ITCD, though totally
different to one another, perform similarly and much better
than LR. CKLD is a bit more accurate in the uncorrelated
case, but MS-ITCD is better in the decorrelated case. The
latter is especially robust to speckle in general, as otherwise
noticed since its introduction [14]. Thus, even though both are
geometrically accurate, MS-ITCD produces a lower number
of false alarms, in general. The considerations on the change
maps in Fig. 8 are strengthened by the maps in Fig. 9 relative
to the less challenging rural landscape.

To each of the simulations shown in Figs. 8 and 9 a
confusion matrix is associated. A synoptic view of each
confusion matrix [34] is represented by κ (14), which ranges
in [0,1] and is independent of the population of each class,
far different for changed and unchanged pixels. Table 1 report
the kappa coefficients of all the 18 simulations (2 datasets ×

3 change algorithms × 3 cases of correlation). What
immediately stands out is that LR preceded by despekling
is moderately sensitive to correlation but also the least
performing method. CKLD is top performing, but extremely
sensitive to correlation.MS-ITCD best trades off insensitivity
to correlation and detection ability. Dataset 2 presents higher
values of κ , being more likely as a true SAR image, because
speckle is not always fully developed on an urban landscape.
In other works, Dataset 1 is too noisy because, in a true SAR
image, a built area made of man-made scatterers is much less
noisy than in the simulated fully developed case.

Fig. 10 shows the ROC curve representing the change
discrimination capability, that is, the True Positive Rate
(TPR) versus the False Positive Rate (FPR), of the LR
algorithm, for the three cases of speckle correlation. Each
point of a ROC curve corresponds to a decision threshold
to detect changes and determines TPR and FPR values.
The threshold maximizing κ corresponds to the point on
the ROC curve that minimizes the distance from the point
(TPR=1,FPR=0), the upper-left vertex of the ROC plane.
Though LR is a point operator and should be not affected,
at least in principle, by spatial correlation, the decorrelation
is beneficial because LR is very sensitive to the noise and
requires a preliminary despeckling stage, which is sensitive to
correlation, at least if local operators are used [20]. The loss of
bandwidth with respect to the uncorrelated case is negligible,
also because such a loss is lower than that introduced by the
de-speckling stage.

Fig. 11 shows the ROC performance of the CKLD
varying with the type of speckle. Again, the usefulness
of decorrelation stands out. Unlike what happens for LR,
the uncorrelated case is slightly more favorable than the
decorrelated case, presumably because now there is no
preliminary despeckling. However, the parametric model of

TABLE 1. Kappa coefficient of simulations in Figs. 8 and 9.

TABLE 2. Areas underlying ROC curves for different change algorithms
and correlations.

the data, on which CKLD relies, still seems to benefit from
the missing spatial correlation of speckle.

Fig. 12 shows that also the nonparametric method based
on mean-shift clustering of local means takes a significant
advantage of the uncorrelatedness of speckle. In fact, the
estimates of local statistics are more accurate if the noise
is white. In the decorrelated case, the loss of bandwidth
practically does not affect the performance, because the local
mean can be regarded as the results of a spatial filter, same as
despeckling for LR.

Eventually, the discrimination capability of the three
change features is summarized in Table 2 for the two datasets.
The area underlying the ROC curve, which should ideally
tend to one, highlights the loss of performance due to
correlation. The decorrelated case is a fair approximation of
the ideal uncorrelated case, which is unfeasible if focusing
of targets is crucial. Overall, LR is poorer, while CKLD
and MS-ITCD are pretty equivalent in performance to one
another, regardless of correlation. For the ideal case of
uncorrelated speckle, CKLD is the best method for Dataset 1;
MS-ITCD for Dataset 2. In the case of correlated speckle,
MS-ITCD is the best method for both the datasets, though
marginally on Dataset 1. For decorrelated speckle, CKLD is
slightly better on Dataset 1; MS-ITCD superior on Dataset 2.

C. DISCUSSION
The spatial correlation of speckle, introduced by the SAR
processor to improve the focusing of point targets, has
a series of undesired consequences on the subsequent
processing for SNR improvement and information extraction
from SLC data: i) a decrement in the performance of
despeckling methods, which usually assume uncorrelated
noise [5]; ii) an inaccurate interferometric coherence, whose
estimation is biased in excess depending on the amount
of (auto)correlation [6], unless nonlocal algorithms are
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FIGURE 10. ROC cuves for LR: (a) Dataset 1; (b) Dataset 2.

FIGURE 11. ROC cuves for CKLD: (a) Dataset 1; (b) Dataset 2.

FIGURE 12. ROC curves for MS-ITCD: (a) Dataset 1; (b) Dataset 2.

used [48]; iii) a reduced accuracy in the estimation of
polarimetric features [10].

When the SLC data are envelope-detected and multi-
looked, the spatial correlation is maximum for single-look
data and decreases for increasing number of looks.
The present study has demonstrated that, whenever the
change detection task is carried out on single-look

data, the spatial correlation should be preliminarily
removed. If the despeckling or change detection task
are performed on incoherently multilooked (real) data,
the spatial correlation is mitigated by the downsam-
pling [5]; thus, the spatial decorrelation, which would
be unfeasible on envelope-detected data, is no longer
necessary.

VOLUME 12, 2024 32345



L. Alparone et al.: Increasing the Detection Accuracy of Bi-Temporal Changes

The introduction of a preliminary decorrelation stage of
the SLC data is found to significantly improve the accuracy
of change detection, as performed on the modulus of the
SLC images by different parametric and nonparametric
algorithms. Tests on simulated SLC images, with synthetic
fully-developed speckle, show that the change detection
capability of decorrelated data is significantly better than
that of the correlated data that are available at the output
of the SAR processor. The proposed system closely attains
the ultimate performance, which can be achieved only in
the case of perfectly white speckle; an ideal case, because
of the small loss of bandwidth originated by the slight
oversampling of raw data. Again, we wish to remark that
the case of fully-developed speckle, easily available for
simulation purposes, represents the worst case in terms of
SNR of the data. In practical cases, in which point targets
and strong scatterers are removed and reinserted after the
whitening, the average noisiness of the data will be lower and
hence the estimation accuracy of change is expected to be
greater.

The computational complexity of the whitening process,
including processing of point targets, is one order of
magnitude lower than that of the subsequent change-detection
algorithms, at least for CKLD and MS-ITCD, which are
computationally comparable. Actually, MS-ITCD is much
faster, if a binned implementation of MS is used. LR is
faster, at least if the preliminary despeckling step is not
too sophisticated. In this study, we adopted the simple
and fast Kuan’s despeckling filter [47], that is, a local
linear minimum mean square error (LLMMSE) estimator
in the spatial domain. As shown in [14], however, the
majority of de-speckling algorithms takes advantage of the
uncorrelatedness of speckle. Thus, the proposed whitening
patch improves the de-speckling performance and hence
that of LR change detection relying on de-speckling. Note
that, for CKLD e MS-ITCD, de-speckling does not improve
the detection of changes [13], [14]. With a more advanced
de-speckling stage, possibly less sensitive to correlation,
however, it is hard to believe that LR might ever fill the
gap in performance towards the other two change detection
algorithms.

V. CONCLUSION
In SAR remote sensing applications, whenever the spatial
resolution of the data is crucial, multilook products may
be unfit. In this case, SLC products, which retain the full
resolution of the system and are usually not geocoded,
may be invaluable. If a couple of SLC images of the
same scene is available, an analysis of interferometric
coherence may be integrated with an analysis of struc-
tural changes of backscatter. Unfortunately, SLC data are
extremely noisy and are affected by spatially correlated noise.
Hence, backscatter analysis and information extraction tools
may become little performing. This is the main reason,
for which SLC data are mainly used for interferometric

applications and less frequently for change analysis of
backscatter.

This study has highlighted that change analysis from
SLC data is found to benefit from a preliminary decor-
relation of speckles. The benefits of speckle decorrelation
is twofold: on one side, the geometric accuracy of the
changed patches is increased, thanks to the full resolution
of the SAR system; on the other side, the number of
outliers, or false alarms, is significantly reduced, thanks
to the whiteness of speckle. The false-alarm rate may be
further abated by means of a contextual analysis of changes,
with the risk of suppressing true changes of small size,
which would be mistaken for outliers. For this reason,
in this study, no contextual analysis of changes has been
performed.

The proposed decorrelation procedure of SLC data is
expected to increase the performance of SAR change
detection methods that use phase information [49], [50].

A further application of the decorrelation procedure [5]
may concern an analysis of the impact of a spatial decorre-
lation of SLC data on the SAR tomographic processing [51].
In this case, phase information is crucial and the SLC format
should be extremely accurate.
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