Efficient resource allocation in cellular OFDMA systems envisages the assignment of the number of sub-carriers and the relative transmission format on the basis of the experimented link quality. In this way, a higher number of sub-carriers with low per-carrier bit rates should be assigned to users at cell border. This strategy has already proved its efficiency in the single-cell scenario, while no study has been provided in the multi-cell scenario with reuse factor equal to one, i.e., in presence of severe interference conditions. In this paper we propose an optimum centralized radio resource allocator for the multi-cell scenario of an OFDMA cellular system which allows to highly outperform iterative decentralized allocation strategies based on local optimization criteria. The proposed scheme is characterized by huge implementation complexity, and, hence, it can be hardly implemented in the real world. However, it can help the system designer in catching the essence of interference limitations in OFDMA cellular systems, thus allowing the elaboration of efficient heuristic decentralized approaches. As an example, we prove that the sub-carrier transmission format adaptation is not useful in a multi-cell scenario. This is because users at cell border tends to consume the most of the resources (i.e., they are assigned the most of sub-carriers), thus producing interference for the neighbor cells over a large set of sub-carriers. Hence, since in this case neighbor cells are forced to use those (few) sub-carriers which experiment low interference, the diversity gain tends to be missed. © 2007 IEEE.

Abrardo, A., Alessio, A., Detti, P., Moretti, M. (2007). Centralized radio resource allocation for OFDMA cellular systems. In IEEE International Conference on Communications (pp.5738-5743) [10.1109/ICC.2007.951].

Centralized radio resource allocation for OFDMA cellular systems

ABRARDO, ANDREA;ALESSIO, ALESSANDRO;DETTI, PAOLO;
2007-01-01

Abstract

Efficient resource allocation in cellular OFDMA systems envisages the assignment of the number of sub-carriers and the relative transmission format on the basis of the experimented link quality. In this way, a higher number of sub-carriers with low per-carrier bit rates should be assigned to users at cell border. This strategy has already proved its efficiency in the single-cell scenario, while no study has been provided in the multi-cell scenario with reuse factor equal to one, i.e., in presence of severe interference conditions. In this paper we propose an optimum centralized radio resource allocator for the multi-cell scenario of an OFDMA cellular system which allows to highly outperform iterative decentralized allocation strategies based on local optimization criteria. The proposed scheme is characterized by huge implementation complexity, and, hence, it can be hardly implemented in the real world. However, it can help the system designer in catching the essence of interference limitations in OFDMA cellular systems, thus allowing the elaboration of efficient heuristic decentralized approaches. As an example, we prove that the sub-carrier transmission format adaptation is not useful in a multi-cell scenario. This is because users at cell border tends to consume the most of the resources (i.e., they are assigned the most of sub-carriers), thus producing interference for the neighbor cells over a large set of sub-carriers. Hence, since in this case neighbor cells are forced to use those (few) sub-carriers which experiment low interference, the diversity gain tends to be missed. © 2007 IEEE.
2007
1424403537
Abrardo, A., Alessio, A., Detti, P., Moretti, M. (2007). Centralized radio resource allocation for OFDMA cellular systems. In IEEE International Conference on Communications (pp.5738-5743) [10.1109/ICC.2007.951].
File in questo prodotto:
File Dimensione Formato  
ICC2007.pdf

non disponibili

Descrizione: Articolo
Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 196.11 kB
Formato Adobe PDF
196.11 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/998496