Objectives. To evaluate via finite element analysis the effect of different ferrule heights on stress distribution within each part of a maxillary first premolar (MFP) restored with adhesively luted glass fiber-reinforced resin (GFRR) posts and a ceramic crown. Methods. The solid models consisted of MFP, periodontal ligament and the corresponding alveolar bone process. Four models were created representing different degrees of coronal tissue loss (0 mm, 1 mm, 2 mm and 3 mm of ferrule height). First set of computing runs was performed for in vivo FE-model validation purposes. In the second part, a 200-N force was applied on the buccal cusp directed at 45° to the longitudinal axis of the tooth. Principal stresses values and distribution were recorded within root, abutment, posts, crown and related adhesive interfaces. Results. All FE-models showed similar stress distribution within roots, with highest stress present in the chamfer area. In composite abutments higher stress was observed when no ferrule was present compared to ferruled FE-models. Stress distribution within crown and GFRR posts did not differ among the models. Stress values at the adhesive interfaces decreased with increasing ferrule height. Significance. The stress state at abutment-crown and post-root interfaces was very close to their strength, when ferrule was not present. Similarly, higher ferrule produced more favorable stress distribution at post-abutment and abutment-root interfaces. Endodontically treated teeth with higher ferrule exhibit lower stress at adhesive interfaces that may be expected to lower the probability of clinical failure

Juloski, J., Apicella, D., Ferrari, M. (2014). The effect of ferrule height on stress distribution within a tooth restored with fibre posts and ceramic crown: A finite element analysis. DENTAL MATERIALS, 30(12), 1304-1315 [10.1016/j.dental.2014.09.004].

The effect of ferrule height on stress distribution within a tooth restored with fibre posts and ceramic crown: A finite element analysis

JULOSKI, JELENA;APICELLA, DAVIDE;FERRARI, MARCO
2014-01-01

Abstract

Objectives. To evaluate via finite element analysis the effect of different ferrule heights on stress distribution within each part of a maxillary first premolar (MFP) restored with adhesively luted glass fiber-reinforced resin (GFRR) posts and a ceramic crown. Methods. The solid models consisted of MFP, periodontal ligament and the corresponding alveolar bone process. Four models were created representing different degrees of coronal tissue loss (0 mm, 1 mm, 2 mm and 3 mm of ferrule height). First set of computing runs was performed for in vivo FE-model validation purposes. In the second part, a 200-N force was applied on the buccal cusp directed at 45° to the longitudinal axis of the tooth. Principal stresses values and distribution were recorded within root, abutment, posts, crown and related adhesive interfaces. Results. All FE-models showed similar stress distribution within roots, with highest stress present in the chamfer area. In composite abutments higher stress was observed when no ferrule was present compared to ferruled FE-models. Stress distribution within crown and GFRR posts did not differ among the models. Stress values at the adhesive interfaces decreased with increasing ferrule height. Significance. The stress state at abutment-crown and post-root interfaces was very close to their strength, when ferrule was not present. Similarly, higher ferrule produced more favorable stress distribution at post-abutment and abutment-root interfaces. Endodontically treated teeth with higher ferrule exhibit lower stress at adhesive interfaces that may be expected to lower the probability of clinical failure
2014
Juloski, J., Apicella, D., Ferrari, M. (2014). The effect of ferrule height on stress distribution within a tooth restored with fibre posts and ceramic crown: A finite element analysis. DENTAL MATERIALS, 30(12), 1304-1315 [10.1016/j.dental.2014.09.004].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/983171
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo