Periventricular heterotopia (PH) occurs when collections of neurons lay along the lateral ventricles or just beneath. Human Filamin A gene (FLNA) mutations are associated with classical X-linked bilateral periventricular nodular heterotopia (PNH), featuring contiguous heterotopic nodules, mega cisterna magna, cardiovascular malformations and epilepsy. FLNA encodes an F-actin-binding cytoplasmic phosphoprotein and is involved in early brain neurogenesis and neuronal migration. A rare, recessive form of bilateral PNH with microcephaly and severe delay is associated with mutations of the ADP-ribosylation factor guanine nucleotide-exchange factor-2 (ARFGEF2) gene, required for vesicle and membrane trafficking from the trans-Golgi. However, PH is a heterogeneous disorder. We studied clinical and brain MRI of 182 patients with PH and, based on its anatomic distribution and associated birth defects, identified 15 subtypes. Classical bilateral PNH represented the largest group (98 patients: 54%). The 14 additional phenotypes (84 patients: 46%) included PNH with Ehlers-Danlos syndrome (EDS), temporo-occipital PNH with hippocampal malformation and cerebellar hypoplasia, PNH with fronto-perisylvian or temporo-occipital polymicrogyria, posterior PNH with hydrocephalus, PNH with microcephaly, PNH with frontonasal dysplasia, PNH with limb abnormalities, PNH with fragile-X syndrome, PNH with ambiguous genitalia, micronodular PH, unilateral PNH, laminar ribbon-like and linear PH. We performed mutation analysis of FLNA in 120 patients, of whom 72 (60%) had classical bilateral PNH and 48 (40%) other PH phenotypes, and identified 25 mutations in 40 individuals. Sixteen mutations had not been reported previously. Mutations were found in 35 patients with classical bilateral PNH, in three with PNH with EDS and in two with unilateral PNH. Twenty one mutations were nonsense and frame-shift and four missense. The high prevalence of mutations causing protein truncations confirms that loss of function is the major cause of the disorder. FLNA mutations were found in 100% of familial cases with X-linked PNH (10 families: 8 with classical bilateral PNH, 1 with EDS and 1 with unilateral PH) and in 26% of sporadic patients with classical bilateral PNH. Overall, mutations occurred in 49% of individuals with classical bilateral PNH irrespective of their being familial or sporadic. However, the chances of finding a mutation were exceedingly gender biased with 93% of mutations occurring in females and 7% in males. The probability of finding FLNA mutations in other phenotypes was 4% but was limited to the minor variants of PNH with EDS and unilateral PNH. Statistical analysis considering all 42 mutations described so far identifies a hotspot region for PNH in the actin-binding domain (P < 0.05).

Parrini, E., Ramazzotti, A., Dobyns, W.b., Mei, D., Moro, F., Veggiotti, P., et al. (2006). Periventricular heterotopia: phenotypic heterogeneity and correlation with Filamin A mutations. BRAIN, 129(7), 1892-1906 [10.1093/brain/awl125].

Periventricular heterotopia: phenotypic heterogeneity and correlation with Filamin A mutations.

PALMERI, SILVIA;
2006-01-01

Abstract

Periventricular heterotopia (PH) occurs when collections of neurons lay along the lateral ventricles or just beneath. Human Filamin A gene (FLNA) mutations are associated with classical X-linked bilateral periventricular nodular heterotopia (PNH), featuring contiguous heterotopic nodules, mega cisterna magna, cardiovascular malformations and epilepsy. FLNA encodes an F-actin-binding cytoplasmic phosphoprotein and is involved in early brain neurogenesis and neuronal migration. A rare, recessive form of bilateral PNH with microcephaly and severe delay is associated with mutations of the ADP-ribosylation factor guanine nucleotide-exchange factor-2 (ARFGEF2) gene, required for vesicle and membrane trafficking from the trans-Golgi. However, PH is a heterogeneous disorder. We studied clinical and brain MRI of 182 patients with PH and, based on its anatomic distribution and associated birth defects, identified 15 subtypes. Classical bilateral PNH represented the largest group (98 patients: 54%). The 14 additional phenotypes (84 patients: 46%) included PNH with Ehlers-Danlos syndrome (EDS), temporo-occipital PNH with hippocampal malformation and cerebellar hypoplasia, PNH with fronto-perisylvian or temporo-occipital polymicrogyria, posterior PNH with hydrocephalus, PNH with microcephaly, PNH with frontonasal dysplasia, PNH with limb abnormalities, PNH with fragile-X syndrome, PNH with ambiguous genitalia, micronodular PH, unilateral PNH, laminar ribbon-like and linear PH. We performed mutation analysis of FLNA in 120 patients, of whom 72 (60%) had classical bilateral PNH and 48 (40%) other PH phenotypes, and identified 25 mutations in 40 individuals. Sixteen mutations had not been reported previously. Mutations were found in 35 patients with classical bilateral PNH, in three with PNH with EDS and in two with unilateral PNH. Twenty one mutations were nonsense and frame-shift and four missense. The high prevalence of mutations causing protein truncations confirms that loss of function is the major cause of the disorder. FLNA mutations were found in 100% of familial cases with X-linked PNH (10 families: 8 with classical bilateral PNH, 1 with EDS and 1 with unilateral PH) and in 26% of sporadic patients with classical bilateral PNH. Overall, mutations occurred in 49% of individuals with classical bilateral PNH irrespective of their being familial or sporadic. However, the chances of finding a mutation were exceedingly gender biased with 93% of mutations occurring in females and 7% in males. The probability of finding FLNA mutations in other phenotypes was 4% but was limited to the minor variants of PNH with EDS and unilateral PNH. Statistical analysis considering all 42 mutations described so far identifies a hotspot region for PNH in the actin-binding domain (P < 0.05).
2006
Parrini, E., Ramazzotti, A., Dobyns, W.b., Mei, D., Moro, F., Veggiotti, P., et al. (2006). Periventricular heterotopia: phenotypic heterogeneity and correlation with Filamin A mutations. BRAIN, 129(7), 1892-1906 [10.1093/brain/awl125].
File in questo prodotto:
File Dimensione Formato  
palmeri 2.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 448.38 kB
Formato Adobe PDF
448.38 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/9139
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo