ACKGROUND: Imatinib is a direct and potent inhibitor of the constitutively active tyrosine kinase, breakpoint cluster region-Abelson (Bcr-Abl), which is central to the pathogenesis of chronic myeloid leukaemia (CML) patients. As such, imatinib has become the frontline treatment for CML patients. However, the recent emergence of imatinib resistance, commonly associated with point mutations within the kinase domain, has led to the search for alternative drug treatments and combination therapies for CML. METHODS: In this report, we analyse the effects of representative members of the novel pro-apoptotic microtubule depolymerising pyrrolo-1,5-benzoxazepines or PBOX compounds on chemotherapy-refractory CML cells using a series of Bcr-Abl mutant cell lines, clinical ex vivo patient samples and an in vivo mouse model. RESULTS: The PBOX compounds potently reduce cell viability in cells expressing the E225K and H396P mutants as well as the highly resistant T315I mutant. The PBOX compounds also induce apoptosis in primary CML samples including those resistant to imatinib. We also show for the first time, the in vivo efficacy of the pro-apoptotic PBOX compound, PBOX-6, in a CML mouse model of the T315I Bcr-Abl mutant. CONCLUSION: Results from this study highlight the potential of these novel series of PBOX compounds as an effective therapy against CML.

BRIGHT S., A., MCELLIGOTT A., M., O'CONNELL J., W., O'Connor, L., Carroll, P., Campiani, G., et al. (2010). Novel pyrrolo-1,5-benzoxazepine compounds display significant activity against resistant chronic myeloid leukaemia cells in vitro, in ex vivo patient samples and in vivo. BRITISH JOURNAL OF CANCER, 102(10), 1474-1482 [10.1038/sj.bjc.6605670].

Novel pyrrolo-1,5-benzoxazepine compounds display significant activity against resistant chronic myeloid leukaemia cells in vitro, in ex vivo patient samples and in vivo

CAMPIANI, GIUSEPPE;
2010-01-01

Abstract

ACKGROUND: Imatinib is a direct and potent inhibitor of the constitutively active tyrosine kinase, breakpoint cluster region-Abelson (Bcr-Abl), which is central to the pathogenesis of chronic myeloid leukaemia (CML) patients. As such, imatinib has become the frontline treatment for CML patients. However, the recent emergence of imatinib resistance, commonly associated with point mutations within the kinase domain, has led to the search for alternative drug treatments and combination therapies for CML. METHODS: In this report, we analyse the effects of representative members of the novel pro-apoptotic microtubule depolymerising pyrrolo-1,5-benzoxazepines or PBOX compounds on chemotherapy-refractory CML cells using a series of Bcr-Abl mutant cell lines, clinical ex vivo patient samples and an in vivo mouse model. RESULTS: The PBOX compounds potently reduce cell viability in cells expressing the E225K and H396P mutants as well as the highly resistant T315I mutant. The PBOX compounds also induce apoptosis in primary CML samples including those resistant to imatinib. We also show for the first time, the in vivo efficacy of the pro-apoptotic PBOX compound, PBOX-6, in a CML mouse model of the T315I Bcr-Abl mutant. CONCLUSION: Results from this study highlight the potential of these novel series of PBOX compounds as an effective therapy against CML.
2010
BRIGHT S., A., MCELLIGOTT A., M., O'CONNELL J., W., O'Connor, L., Carroll, P., Campiani, G., et al. (2010). Novel pyrrolo-1,5-benzoxazepine compounds display significant activity against resistant chronic myeloid leukaemia cells in vitro, in ex vivo patient samples and in vivo. BRITISH JOURNAL OF CANCER, 102(10), 1474-1482 [10.1038/sj.bjc.6605670].
File in questo prodotto:
File Dimensione Formato  
6605670a.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 483.3 kB
Formato Adobe PDF
483.3 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/8857
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo