In the last decades several indicators have been proposed to guide decision makers and help manage natural capital. Among such indicators is the Ecological Footprint, a resource accounting tool with a biophysical and thermodynamic basis. In our recent paper (Niccolucci et al., 2009), a three dimensional Ecological Footprint (3DEF) model was proposed to better explain the difference between human demand for natural capital stocks and resource flows. Such 3DEF model has two relevant dimensions: the surface area (or Footprint size - EFsize) and the height (or Footprint depth - EFdepth). EFsize accounts for the human appropriation of the annual income from natural capital while EFdepth accounts for the depletion of stocks of natural capital and/or the accumulation of stocks of wastes. Building on the 2009 Edition of the National Footprint Accounts (NFA), global trends (from 1961 to 2006) for both EFsize and EFdepth were analyzed. EFsize doubled from 1961 to 1986; after 1986 it reached an asymptotic value equal to the Earth's biocapacity (BC) and remained constant. Conversely, EFdepth remained constant at the " natural depth" value until 1986, the year in which global EF first exceeded Earth's BC. A growing trend was observed after that. Trends in each Footprint land type were also analyzed to better appraise the land type under the higher human induced stress. The usefulness of adopting such 3DEF model in the National Footprint Accounts was also discussed. In comparing any nation's demand for ecological assets with its own biocapacity in a given year, four hypothetical cases were identified which could serve as the basis for a new Footprint geography based on both size and depth concepts. This 3DEF model could help distinguish between the use of natural capital flows and the depletion of natural capital stocks while maintaining the structure and advantages of the classical Ecological Footprint formulation. © 2011 Elsevier B.V.

Niccolucci, V., Galli, A., Reed, A., Neri, E., Wackernagel, M., Bastianoni, S. (2011). Towards a 3D National Ecological Footprint Geography. ECOLOGICAL MODELLING, 222(16), 2939-2944 [10.1016/j.ecolmodel.2011.04.020].

Towards a 3D National Ecological Footprint Geography

NICCOLUCCI, V.;NERI, E.;BASTIANONI, S.
2011-01-01

Abstract

In the last decades several indicators have been proposed to guide decision makers and help manage natural capital. Among such indicators is the Ecological Footprint, a resource accounting tool with a biophysical and thermodynamic basis. In our recent paper (Niccolucci et al., 2009), a three dimensional Ecological Footprint (3DEF) model was proposed to better explain the difference between human demand for natural capital stocks and resource flows. Such 3DEF model has two relevant dimensions: the surface area (or Footprint size - EFsize) and the height (or Footprint depth - EFdepth). EFsize accounts for the human appropriation of the annual income from natural capital while EFdepth accounts for the depletion of stocks of natural capital and/or the accumulation of stocks of wastes. Building on the 2009 Edition of the National Footprint Accounts (NFA), global trends (from 1961 to 2006) for both EFsize and EFdepth were analyzed. EFsize doubled from 1961 to 1986; after 1986 it reached an asymptotic value equal to the Earth's biocapacity (BC) and remained constant. Conversely, EFdepth remained constant at the " natural depth" value until 1986, the year in which global EF first exceeded Earth's BC. A growing trend was observed after that. Trends in each Footprint land type were also analyzed to better appraise the land type under the higher human induced stress. The usefulness of adopting such 3DEF model in the National Footprint Accounts was also discussed. In comparing any nation's demand for ecological assets with its own biocapacity in a given year, four hypothetical cases were identified which could serve as the basis for a new Footprint geography based on both size and depth concepts. This 3DEF model could help distinguish between the use of natural capital flows and the depletion of natural capital stocks while maintaining the structure and advantages of the classical Ecological Footprint formulation. © 2011 Elsevier B.V.
2011
Niccolucci, V., Galli, A., Reed, A., Neri, E., Wackernagel, M., Bastianoni, S. (2011). Towards a 3D National Ecological Footprint Geography. ECOLOGICAL MODELLING, 222(16), 2939-2944 [10.1016/j.ecolmodel.2011.04.020].
File in questo prodotto:
File Dimensione Formato  
Niccolucci_et_al_ECOMOD_2011.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 325.75 kB
Formato Adobe PDF
325.75 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/7980
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo