The characteristics of multispectral (MS) and panchromatic (P) image fusion, or pansharpening, methods are investigated. Depending on the way spatial details are extracted from P, such methods can be broadly labeled into two main classes, roughly corresponding to component substitution (CS), also known as projection substitution, and methods based on multiresolution analysis (MRA), i.e. on digital filtering. Theoretical and experimental results carried out on QuickBird and Ikonos data sets evidence that CS-based fusion is far less sensitive than MRA-based fusion to registration errors, i.e. spatial misalignments between MS and P images, possibly originated by cartographic projection and resampling of individual data sets, and aliasing occurring in MS bands and deriving from a modulation transfer function (MTF) of each MS channel that is excessively broad relatively to the spatial sampling interval. Simulated misalignments carried out at full scale by means of a suitable quality evaluation protocol have evidenced the quality-shift tradeoff of the two classes: MRA methods yield a slightly superior quality in the absence of misalignments, but are more penalized, whenever shifts between MS and P are present, than CS methods producing a slightly lower quality in the ideal case, but that are intrinsically more shift tolerant.

B., A., L., A., S., B., Garzelli, A., M., S. (2010). A theoretical evaluation of aliasing and misregistration effects on pansharpening methods. In Proc. SPIE 7830 (pp.7830021-7830029). SPIE [10.1117/12.865980].

A theoretical evaluation of aliasing and misregistration effects on pansharpening methods

GARZELLI, ANDREA;
2010-01-01

Abstract

The characteristics of multispectral (MS) and panchromatic (P) image fusion, or pansharpening, methods are investigated. Depending on the way spatial details are extracted from P, such methods can be broadly labeled into two main classes, roughly corresponding to component substitution (CS), also known as projection substitution, and methods based on multiresolution analysis (MRA), i.e. on digital filtering. Theoretical and experimental results carried out on QuickBird and Ikonos data sets evidence that CS-based fusion is far less sensitive than MRA-based fusion to registration errors, i.e. spatial misalignments between MS and P images, possibly originated by cartographic projection and resampling of individual data sets, and aliasing occurring in MS bands and deriving from a modulation transfer function (MTF) of each MS channel that is excessively broad relatively to the spatial sampling interval. Simulated misalignments carried out at full scale by means of a suitable quality evaluation protocol have evidenced the quality-shift tradeoff of the two classes: MRA methods yield a slightly superior quality in the absence of misalignments, but are more penalized, whenever shifts between MS and P are present, than CS methods producing a slightly lower quality in the ideal case, but that are intrinsically more shift tolerant.
2010
9780819483478
B., A., L., A., S., B., Garzelli, A., M., S. (2010). A theoretical evaluation of aliasing and misregistration effects on pansharpening methods. In Proc. SPIE 7830 (pp.7830021-7830029). SPIE [10.1117/12.865980].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/5777
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo