Catalytic micro- and nanoparticles are widely employed to study the global behavior of large networks of coupled chemical oscillators. In this paper, we present a new class of catalysts for the BZ oscillating reaction, based on the functionalization of natural inorganic materials (1:1 and 2:1 clays) through the sorption of the iron-complex ferroin on their surface. The small size of the clay basic units (diameter < 2 μm) and their colloidal nature make these particles interesting for studying systems having dimensions at the border between the nano- and the mesoscale. In the first part of this paper, we present the synthesis and the characterization of the ferroin-functionalized clay. We then show an extensive study on the oscillatory dynamics of the BZ reaction catalyzed by the clay. Through a direct comparison with a classical ferroin-catalyzed BZ system, we describe the modifications of the oscillation mechanisms induced by the new catalyst. Finally, we illustrate an application of the microparticles as a solid support for the study of synchronization in a network of independent chemical oscillators, showing that the diffusion of intermediate species can be fine-tuned through the stirring rate of the solution where the catalytic spots are soaked. The global system can be thus switched from a noncoupled to a coupled state. © 2014 American Chemical Society.

Rossi, F., Ristori, S., Marchettini, N., Pantani, O.L. (2014). Functionalized clay microparticles as catalysts for chemical oscillators. JOURNAL OF PHYSICAL CHEMISTRY. C, 118(42), 24389-24396 [10.1021/jp5032724].

Functionalized clay microparticles as catalysts for chemical oscillators

Rossi, F.;Marchettini, N.;
2014-01-01

Abstract

Catalytic micro- and nanoparticles are widely employed to study the global behavior of large networks of coupled chemical oscillators. In this paper, we present a new class of catalysts for the BZ oscillating reaction, based on the functionalization of natural inorganic materials (1:1 and 2:1 clays) through the sorption of the iron-complex ferroin on their surface. The small size of the clay basic units (diameter < 2 μm) and their colloidal nature make these particles interesting for studying systems having dimensions at the border between the nano- and the mesoscale. In the first part of this paper, we present the synthesis and the characterization of the ferroin-functionalized clay. We then show an extensive study on the oscillatory dynamics of the BZ reaction catalyzed by the clay. Through a direct comparison with a classical ferroin-catalyzed BZ system, we describe the modifications of the oscillation mechanisms induced by the new catalyst. Finally, we illustrate an application of the microparticles as a solid support for the study of synchronization in a network of independent chemical oscillators, showing that the diffusion of intermediate species can be fine-tuned through the stirring rate of the solution where the catalytic spots are soaked. The global system can be thus switched from a noncoupled to a coupled state. © 2014 American Chemical Society.
2014
Rossi, F., Ristori, S., Marchettini, N., Pantani, O.L. (2014). Functionalized clay microparticles as catalysts for chemical oscillators. JOURNAL OF PHYSICAL CHEMISTRY. C, 118(42), 24389-24396 [10.1021/jp5032724].
File in questo prodotto:
File Dimensione Formato  
2014 - Rossi et al - J Phys Chem C.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.47 MB
Formato Adobe PDF
1.47 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/49518
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo