The relative bio-optical variability within Lake Victoria was analyzed through the spatio-temporal decomposition of a 1997– 2004 dataset of remotely-sensed reflectance ratios in the visible spectral range. Results show a regular seasonal pattern with a phase shift (around 2 months) between the south and north parts of the lake. Interannual trends suggested a teleconnection between the lake dynamics and El-Nin˜o phenomena. Both seasonal and interannual patterns were associated to conditions of light limitation for phytoplankton growth and basin-scale hydrodynamics on phytoplankton access to light. Phytoplankton blooms developed during the periods of lake surface warming and water column stability. The temporal shift apparent in the bio-optical seasonal cycles was related to the differential cooling of the lake surface by southeastern monsoon winds. North-south differences in the exposure to trade winds are supported by the orography of the Eastern Great Rift Valley. The result is that surface layer warming begins in the northern part of the lake while the formation of cool and dense water continues in the southern part. The resulting buoyancy field is sufficient to induce a lakewide convective circulation and the tilting of the isotherms along the north-south axis. Once surface warming spreads over the whole lake, the phytoplankton bloom dynamics are subjected to the internal seiche derived from the relaxation of thermocline tilting. In 1997–98, El-Nin˜o phenomenon weakened the monsoon wind flow which led to an increase in water column stability and a higher phytoplankton optical signal throughout the lake. This suggests that phytoplankton response to expected climate scenarios will be opposite to that proposed for nutrient-limited great lakes. The present analysis of remotely-sensed bio-optical properties in combination with environmental data provides a novel basin-scale framework for research and management strategies in Lake Victoria.

Cózar, A., M., B., N., B., B., Ú., L., B., A. M., D., et al. (2012). Basin-scale Control on the Phytoplankton Biomass in Lake Victoria, Africa. PLOS ONE, 7(e29962), 1-9.

Basin-scale Control on the Phytoplankton Biomass in Lake Victoria, Africa

LOISELLE, STEVEN ARTHUR
2012-01-01

Abstract

The relative bio-optical variability within Lake Victoria was analyzed through the spatio-temporal decomposition of a 1997– 2004 dataset of remotely-sensed reflectance ratios in the visible spectral range. Results show a regular seasonal pattern with a phase shift (around 2 months) between the south and north parts of the lake. Interannual trends suggested a teleconnection between the lake dynamics and El-Nin˜o phenomena. Both seasonal and interannual patterns were associated to conditions of light limitation for phytoplankton growth and basin-scale hydrodynamics on phytoplankton access to light. Phytoplankton blooms developed during the periods of lake surface warming and water column stability. The temporal shift apparent in the bio-optical seasonal cycles was related to the differential cooling of the lake surface by southeastern monsoon winds. North-south differences in the exposure to trade winds are supported by the orography of the Eastern Great Rift Valley. The result is that surface layer warming begins in the northern part of the lake while the formation of cool and dense water continues in the southern part. The resulting buoyancy field is sufficient to induce a lakewide convective circulation and the tilting of the isotherms along the north-south axis. Once surface warming spreads over the whole lake, the phytoplankton bloom dynamics are subjected to the internal seiche derived from the relaxation of thermocline tilting. In 1997–98, El-Nin˜o phenomenon weakened the monsoon wind flow which led to an increase in water column stability and a higher phytoplankton optical signal throughout the lake. This suggests that phytoplankton response to expected climate scenarios will be opposite to that proposed for nutrient-limited great lakes. The present analysis of remotely-sensed bio-optical properties in combination with environmental data provides a novel basin-scale framework for research and management strategies in Lake Victoria.
2012
Cózar, A., M., B., N., B., B., Ú., L., B., A. M., D., et al. (2012). Basin-scale Control on the Phytoplankton Biomass in Lake Victoria, Africa. PLOS ONE, 7(e29962), 1-9.
File in questo prodotto:
File Dimensione Formato  
journal.pone.0029962.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 569.31 kB
Formato Adobe PDF
569.31 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/43994
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo