Many proteins, including actin, are targets for S-glutathionylation, the reversible formation of mixed disulphides between protein cysteinyl thiol groups and glutathione (GSH) that can be induced in cells by oxidative stress. Proposed mechanisms of protein S-glutathionylation follow mainly two distinct pathways. One route involves the initial oxidative modification of a reduced protein thiol to an activated protein, which may then react with GSH to the mixed disulphide. The second route involves the oxidative modification of GSH to an activated form such as glutathione disulphide (GSSG), which may then react with a reduced protein thiol, yielding the corresponding protein mixed disulphide. We show here that physiological levels of GSSG induce a little extent of actin S-glutathionylation. Instead, actin with the exposed cysteine thiol activated by diamide or 5,5′-dithiobis(2-nitrobenzoic acid) reacts with physiological levels of GSH, incorporating about 0.7 mol GSH/mol protein. Differently, an extremely high concentration of GSSG induces an increased level of S-glutathionylation that causes a 50% inhibition in actin polymerization not reversed by dithiotreitol. In mammalian cells, GSH is present in millimolar concentrations and is in about 100-fold excess over GSSG. The high concentration of GSSG required for obtaining a significant actin S-glutathionylation as well as attendant irreversible changes in protein functions make unlikely that actin may be S-glutathionylated by a thiol-disulphide exchange mechanism within the cell.

Dalle Donne, I., Rossi, R., Giustarini, D., Colombo, R., Milzani, A. (2003). Actin S-glutathionylation: evidence against a thiol-disulphide exchange mechanism. FREE RADICAL BIOLOGY & MEDICINE, 35(10), 1185-1193 [10.1016/S0891-5849(03)00504-5].

Actin S-glutathionylation: evidence against a thiol-disulphide exchange mechanism

Rossi, Ranieri;Giustarini, D.;
2003-01-01

Abstract

Many proteins, including actin, are targets for S-glutathionylation, the reversible formation of mixed disulphides between protein cysteinyl thiol groups and glutathione (GSH) that can be induced in cells by oxidative stress. Proposed mechanisms of protein S-glutathionylation follow mainly two distinct pathways. One route involves the initial oxidative modification of a reduced protein thiol to an activated protein, which may then react with GSH to the mixed disulphide. The second route involves the oxidative modification of GSH to an activated form such as glutathione disulphide (GSSG), which may then react with a reduced protein thiol, yielding the corresponding protein mixed disulphide. We show here that physiological levels of GSSG induce a little extent of actin S-glutathionylation. Instead, actin with the exposed cysteine thiol activated by diamide or 5,5′-dithiobis(2-nitrobenzoic acid) reacts with physiological levels of GSH, incorporating about 0.7 mol GSH/mol protein. Differently, an extremely high concentration of GSSG induces an increased level of S-glutathionylation that causes a 50% inhibition in actin polymerization not reversed by dithiotreitol. In mammalian cells, GSH is present in millimolar concentrations and is in about 100-fold excess over GSSG. The high concentration of GSSG required for obtaining a significant actin S-glutathionylation as well as attendant irreversible changes in protein functions make unlikely that actin may be S-glutathionylated by a thiol-disulphide exchange mechanism within the cell.
2003
Dalle Donne, I., Rossi, R., Giustarini, D., Colombo, R., Milzani, A. (2003). Actin S-glutathionylation: evidence against a thiol-disulphide exchange mechanism. FREE RADICAL BIOLOGY & MEDICINE, 35(10), 1185-1193 [10.1016/S0891-5849(03)00504-5].
File in questo prodotto:
File Dimensione Formato  
2003 Dalle-Donne FRBMb.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 218.43 kB
Formato Adobe PDF
218.43 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/411610